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We derive a new class of linear multistep methods (LMMs) via the interpolation and collocation technique. We discuss the use of
these methods as boundary value methods and block unification methods for the numerical approximation of the general second-
order initial and boundary value problems. The convergence of these families of methods is also established. Several test problems
are given to show a computational comparison of these methods in terms of accuracy and the computational efficiency.

1. Introduction

Linear multistep methods (LMMs) are widely used for the
numerical integration of ordinary differential equations.They
are a class of 𝑘-step difference equations of the form

𝑘

∑

𝑟=0

𝛼𝑟𝑦𝑛+𝑟 = ℎ
𝜇

𝑘

∑

𝑟=0

𝛽𝑟𝑓𝑛+𝑟,
(1)

where 𝛼𝑟, 𝛽𝑟 are coefficients to be uniquely determined, 𝜇 is
the order of the differential equation whose solution is being
sought, ℎ is the constant stepsize, 𝑦𝑛+𝑖 ≡ 𝑦(𝑥𝑛+𝑖), and 𝑓𝑛+𝑖 ≡
𝑓(𝑥𝑛+𝑖, 𝑦𝑛+𝑖, 𝑦



𝑛+𝑖
, . . . , 𝑦

(𝜇−1)

𝑛+𝑖
).

To be able to use (1), we need to impose 𝑘 additional
conditions. Initial value methods (IVMs) are methods whose
additional conditions are specified as initial conditions so that
they form discrete initial value problems. The IVMs are used
for the numerical integration of initial value problems [1–
4]. However, if these additional conditions are specified as
initial and final conditions (or methods) so that they form a
discrete analog of the continuous boundary value problems,
we have the boundary value methods (BVMs). They are used
for the approximation of both initial and boundary value
problems [5–11]. The BVMs are a larger class of methods that
contains the IVMs since the IVMs are BVMs with zero final
conditions. Sometimes the additional conditions are given
as a set of LMMs which together with the main method (1)

forms the block methods. If the union of the methods in
the block is obtained for 𝑛 = 0(𝑘)(𝑁 − 𝑘), where 𝑁 is the
number of grid points, so that we have𝑁 difference equations
in𝑁 unknowns (grid values) which can be easily solved, the
resulting approach is termed the block unification methods
(BUMs) [12]. The union of the methods in the block is taken
to have a consistent equation.

In what follows, we will consider the general second-
order system of the form

𝑦

= 𝑓 (𝑥, 𝑦, 𝑦


) , 𝑥 ∈ [𝑎, 𝑏] , (2)

coupled with any of the initial or boundary conditions

𝑦 (𝑎) = 𝑦0

𝑦

(𝑎) = 𝑦



0
,

𝑦 (𝑎) = 𝑦0

𝑦 (𝑏) = 𝑦𝑁,

𝑦

(𝑎) = 𝑦



0

𝑦 (𝑏) = 𝑦𝑁,

𝑦 (𝑎) = 𝑦0

𝑦

(𝑏) = 𝑦



𝑁
,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2016, Article ID 8465103, 14 pages
http://dx.doi.org/10.1155/2016/8465103

http://dx.doi.org/10.1155/2016/8465103


2 Abstract and Applied Analysis

𝑦

(𝑎) = 𝑦



0

𝑦

(𝑏) = 𝑦



𝑁
,

(3)

where 𝑓 : R𝑚 → R𝑚 are continuous functions.The existence
and uniqueness of the solutions of (2) subject to any of (3)
have been given in Wend [13] or Ascher et al. [14].

The BVMs have been used for the numerical integration
of first-order initial and boundary value problems and their
convergence and stability analysis have been fully discussed
[5–10]. Aceto et al. [15] constructed P-stable LMMs which
were used as BVMs for the special second-order problem
𝑦

= 𝑓(𝑥, 𝑦). Recently, Biala and Jator [11] developed BVMs

for the direct solution of the general second-order initial and
boundary value problems arising from the semidiscretization
of three-dimensional partial differential equations.

The BUMs have also been successfully applied to solve
initial and boundary value problems [12]. In this paper, we
construct a new class of LMMs which we implement as
boundary value methods and block unification methods. We
compare the results of these two classes of methods in terms
of accuracy and CPU time.

The outline of the paper is as follows: In Section 2, we
derive a (2V)-step continuous LMM (CLMM) via the interpo-
lation and collocation technique [2–4, 11, 12]. In Section 3, we
construct the BVMs by using the CLMM to derive a (2V)-step
discrete LMM which is to be used with some initial and final
methods (also obtained from the CLMM). We also discuss
the convergence and the use of the BVMs in this section.
Section 4 details the BUMs. Their convergence analysis is
carried out and an algorithm for their implementation is also
discussed. In Section 5, we give several numerical test prob-
lems which were solved using both the BVMs and the BUMs.
Their comparison in terms of accuracy and computational
efficiency (CPU Time) was also shown. Finally, we give some
concluding remarks on the methods in Section 6.

2. Derivation of the CLMM

In this section, we will construct a 2V-step CLMM using the
interpolation and collocation technique. The CLMM will be
used to generate the BVMs and the BUMs.

We begin by constructing the CLMM of the form

𝑈 (𝑥) = 𝛼V (𝑥) 𝑦𝑛+V + 𝛼V−1 (𝑥) 𝑦𝑛+V−1 + 𝛼0 (𝑥) 𝑦𝑛

+ ℎ
2

2V

∑

𝑟=0

𝛽𝑟 (𝑥) 𝑓𝑛+𝑟,

(4)

where 𝛼0(𝑥), 𝛼V−1(𝑥), 𝛼V(𝑥), and 𝛽𝑟(𝑥) are continuous coef-
ficients. The next theorem discusses the construction of the
CLMM.

Theorem 1. Let (4) satisfy the following equations:

𝑈(𝑥𝑛+𝑗) = 𝑦𝑛+𝑗 𝑗 = 0, V − 1, V,

𝑈

(𝑥𝑛+𝑗) = 𝑓𝑛+𝑗 𝑗 = 0 (1) (2V) ;

(5)

then the continuous representation (4) is equivalent to

𝑈 (𝑥) =

2V+3

∑

𝑗=0

det (𝑊𝑗)
det (𝑊)

𝑃𝑗 (𝑥) , (6)

where 𝑃𝑗(𝑥) = 𝑥𝑗; 𝑗 = 0(1)(2V + 3) are basis functions and the
matrix𝑊 is defined as follows:

𝑊

=

(
(
(
(
(
(
(
(
(

(

𝑃0 (𝑥𝑛) 𝑃1 (𝑥𝑛) ⋅ ⋅ ⋅ 𝑃2V+3 (𝑥𝑛)

𝑃0 (𝑥𝑛+V−1) 𝑃1 (𝑥𝑛+V−1) ⋅ ⋅ ⋅ 𝑃2V+3 (𝑥𝑛+V−1)

𝑃0 (𝑥𝑛+V) 𝑃1 (𝑥𝑛+V) ⋅ ⋅ ⋅ 𝑃2V+3 (𝑥𝑛+V)

𝑃


0
(𝑥𝑛) 𝑃



1
(𝑥𝑛) ⋅ ⋅ ⋅ 𝑃



2V+3 (𝑥𝑛)

𝑃


0
(𝑥𝑛+1) 𝑃



1
(𝑥𝑛+1) ⋅ ⋅ ⋅ 𝑃



2V+3 (𝑥𝑛+1)

.

.

.

.

.

.

.

.

.

.

.

.

𝑃


0
(𝑥𝑛+2V) 𝑃



1
(𝑥𝑛+2V) ⋅ ⋅ ⋅ 𝑃



2V+3 (𝑥𝑛+2V)

)
)
)
)
)
)
)
)
)

)

;

(7)

𝑊𝑗 is obtained by replacing the jth column of𝑊 by 𝑉, where

𝑉 = (𝑦𝑛, 𝑦𝑛+V−1, 𝑦𝑛+V, 𝑓𝑛, 𝑓𝑛+1, . . . , 𝑓𝑛+2V)
𝑇
, (8)

where 𝑇 denotes the transpose.

Proof. We begin the proof by assuming polynomial basis
functions of the form

𝛼𝑗 (𝑥) =

2V+3

∑

𝑖=0

𝛼𝑖+1,𝑗𝑃𝑖 (𝑥) , 𝑗 = 0, V − 1, V,

ℎ
2
𝛽𝑗 (𝑥) =

2V+3

∑

𝑖=0

ℎ
2
𝛽𝑖+1,𝑗𝑃𝑖 (𝑥) , 𝑗 = 0 (1) (2V) ,

(9)

where 𝛼𝑖+1,𝑗, ℎ
2
𝛽𝑖+1,𝑗 are coefficients to be determined.

By substituting (9) into (4), we have

𝑈 (𝑥) =

2V+3

∑

𝑖=0

𝛼𝑖+1,0𝑃𝑖 (𝑥) 𝑦𝑛 +

2V+3

∑

𝑖=0

𝛼𝑖+1,V−1𝑃𝑖 (𝑥) 𝑦𝑛+V−1

+

2V+3

∑

𝑖=0

𝛼𝑖+1,V𝑃𝑖 (𝑥) 𝑦𝑛+V

+

2V

∑

𝑗=0

2V+3

∑

𝑖=0

ℎ
2
𝛽𝑖+1,𝑗𝑃𝑖 (𝑥) 𝑓𝑛+𝑗

(10)

which is simplified to

𝑈 (𝑥) =

2V+3

∑

𝑖=0

{

{

{

𝛼𝑖+1,0𝑦𝑛 + 𝛼𝑖+1,V−1𝑦𝑛+V−1 + 𝛼𝑖+1,V𝑦𝑛+V

+

2V

∑

𝑗=0

ℎ
2
𝛽𝑖+1,𝑗𝑓𝑛+𝑗

}

}

}

𝑃𝑖 (𝑥)

(11)
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and expressed in the form

𝑈 (𝑥) =

2V+3

∑

𝑖=0

ℓ𝑖𝑃𝑖 (𝑥) , (12)

where
ℓ𝑖 = 𝛼𝑖+1,0𝑦𝑛 + 𝛼𝑖+1,V−1𝑦𝑛+V−1 + 𝛼𝑖+1,V𝑦𝑛+V

+

2V

∑

𝑗=0

ℎ
2
𝛽𝑖+1,𝑗𝑓𝑛+𝑗.

(13)

Imposing conditions (5) on (12), we obtain a system of
(2V + 4) equations which can be expressed as𝑊𝐿 = 𝑉, where
𝐿 = (ℓ0, ℓ1, . . . , ℓ2V+3)

𝑇 is a vector of (2V + 4) undetermined
coefficients.

UsingCramer’s rule, the elements of𝐿 are determined and
given as

ℓ𝑖 =

det (𝑊𝑗)
det (𝑊)

, 𝑗 = 0 (1) (2V + 3) , (14)

where 𝑊𝑗 is obtained by replacing the 𝑗th column of 𝑊 by
𝑉. We rewrite (12) as (6) using the newly found elements of
𝐿.

Remark 2. It has been shown in [11] that symmetric schemes
are the best candidates to be used as final methods. Thus,
CLMM (4) is chosen to ensure that we have discrete symm-
teric schemes by evaluation at some points 𝑥𝑛+𝑗.

3. The Boundary Value Methods

CLMM (4) is evaluated at 𝑥𝑛+𝑗, 𝑗 = 1(1)(2V), 𝑗 ̸= V − 1, V,
to obtain the BVMs. The main method of the BVM, that is,
𝑈(𝑥𝑛+2V), is of the form

𝑦𝑛+2V + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 + 𝛼0𝑦𝑛 = ℎ
2

2V

∑

𝑟=0

𝛽𝑟𝑓𝑛+𝑟 (15)

whose derivative formula, obtained by evaluating 𝑈(𝑥) at
𝑥𝑛+2V, is

ℎ𝑦


𝑛+2V + 𝛼


V𝑦𝑛+V + 𝛼


V−1𝑦𝑛+V−1 + 𝛼


0
𝑦𝑛 = ℎ

2

2V

∑

𝑟=0

𝛽


𝑟
𝑓𝑛+𝑟. (16)

3.1. Convergence of the BVMs. In this section, we will discuss
the convergence of the BVMs. We emphasize that (4) is
evaluated at 𝑥𝑛+𝑗, 𝑗 = 1(1)(2V), 𝑗 ̸= V − 1, V, to obtain

𝑦𝑛+1 + 𝛼
(1)

V−1𝑦𝑛+V−1 + 𝛼
(1)

V 𝑦𝑛+V + 𝛼
(1)

0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(1)

𝑖
𝑓𝑛+𝑖

𝑦𝑛+2 + 𝛼
(2)

V−1𝑦𝑛+V−1 + 𝛼
(2)

V 𝑦𝑛+V + 𝛼
(2)

0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(2)

𝑖
𝑓𝑛+𝑖

.

.

.

𝑦𝑛+V−2 + 𝛼
(V−2)
V−1 𝑦𝑛+V−1 + 𝛼

(V−2)
V 𝑦𝑛+V

+ 𝛼
(V−2)
0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(V−1)
𝑖
𝑓𝑛+𝑖

𝑦𝑛+V+1 + 𝛼
(V+1)
V−1 𝑦𝑛+V−1 + 𝛼

(V+1)
V 𝑦𝑛+V

+ 𝛼
(V+1)
0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(V+1)
𝑖
𝑓𝑛+𝑖

.

.

.

𝑦𝑛+2V + 𝛼
(2V)
V−1𝑦𝑛+V−1 + 𝛼

(2V)
V 𝑦𝑛+V

+ 𝛼
(2V)
0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(2V)
𝑖
𝑓𝑛+𝑖

(17)

and also, by evaluating 𝑈(𝑥) at 𝑥𝑛+𝑖, 𝑖 = 0(1)(2V), we obtain
the derivative formulas

ℎ𝑦


𝑛
+ 𝛼
(0)

V−1𝑦𝑛+V−1 + 𝛼
(0)

V 𝑦𝑛+V + 𝛼
(0)

0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(0)

𝑖
𝑓𝑛+𝑖

ℎ𝑦


𝑛+1
+ 𝛼
(1)

V−1𝑦𝑛+V−1 + 𝛼
(1)

V 𝑦𝑛+V

+ 𝛼
(1)

0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(1)

𝑖
𝑓𝑛+𝑖

.

.

.

ℎ𝑦


𝑛+2V + 𝛼
(2V)
V−1 𝑦𝑛+V−1 + 𝛼

(2V)
V 𝑦𝑛+V

+ 𝛼
(2V)
0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽
(2V)
𝑖
𝑓𝑛+𝑖.

(18)

We note that the formulas in (17) and (18) are of𝑂(ℎ2V+4).
We establish the convergence of the BVMs in the following
theorem.

Theorem 3. Let Y be an approximation of the solution vector
Y for the system obtained on a partition 𝜋𝑁 fl {𝑎 = 𝑥0 <
𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑁 = 𝑏, 𝑥𝑛 = 𝑥𝑛−1 + ℎ} from methods (17) and
(18). If 𝑒𝑛 = |𝑦(𝑥𝑛) − 𝑦𝑛|, ℎ𝑒𝑛 = |ℎ𝑦


(𝑥𝑛) − ℎ𝑦



𝑛
|, where the

exact solution 𝑦(𝑥) is several times differentiable on [𝑎, 𝑏], and
if ‖E‖ = ‖Y − Y‖, then the BVM is convergent and of order
2V + 2, which implies that ‖E‖ = 𝑂(ℎ2V+2).

Proof. We compactly write (17) and (18) in matrix form by
introducing the following matrix notations. Let 𝐴 be a 2𝑁 ×
2𝑁matrix defined by

𝐴 = [

𝐴11 𝐴12

𝐴21 𝐴22

] , (19)
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where 𝐴 𝑖𝑗 are𝑁 ×𝑁matrices given as

𝐴11

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛼
(0)

V−1 𝛼
(0)

V 𝛼
(0)

0

1 𝛼
(1)

V−1 𝛼
(1)

V 𝛼
(1)

0

.

.

.

.

.

.

.

.

.

.

.

.

1 𝛼
(V−2)
V−1 𝛼

(V−2)
V 𝛼

(V−2)
0

1 𝛼
(V+1)
V−1 𝛼

(V+1)
V 𝛼

(V+1)
0

.

.

.

.

.

.

.

.

.

.

.

.

1 𝛼
(2V)
V−1 𝛼

(2V)
V 𝛼

(2V)
0

d d d

d d d

1 𝛼
(2V)
V−1 𝛼

(2V)
V ⋅ ⋅ ⋅ 𝛼

(2V)
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐴21 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛼
(1)

V−1 𝛼
(1)

V 𝛼
(1)

0

𝛼
(2)

V−1 𝛼
(2)

V 𝛼
(2)

0

.

.

.

.

.

.

.

.

.

𝛼
(2V)
V−1 𝛼

(2V)
V 𝛼

(2V)
0

𝛼
(2V)
V−1 𝛼

(2V)
V ⋅ ⋅ ⋅ 𝛼

(2V)
0

d d d

𝛼
(2V)
V−1 𝛼

(2V)
V 𝛼

(2V)
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(20)

𝐴12 is an𝑁×𝑁 null matrix, and𝐴22 is an𝑁×𝑁 identity
matrix.

Similarly, let 𝐵 be a 2𝑁 × 2𝑁matrix defined by

𝐵 = [

𝐵11 𝐵12

𝐵21 𝐵22

] , (21)

where 𝐵𝑖𝑗 are𝑁 ×𝑁matrices given as

𝐵11 = ℎ
2

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
(0)

1
𝛽
(0)

2
⋅ ⋅ ⋅ 𝛽

(0)

2V

𝛽
(1)

1
𝛽
(1)

2
⋅ ⋅ ⋅ 𝛽

(1)

2V
.
.
.

.

.

.

.

.

.

.

.

.

𝛽
(V−1)
1
𝛽
(V−1)
2
⋅ ⋅ ⋅ 𝛽
(V−1)
2V

𝛽
(V+1)
1
𝛽
(V+1)
2
⋅ ⋅ ⋅ 𝛽
(V+1)
2V

.

.

.

.

.

.

.

.

.

.

.

.

𝛽
(2V)
1
𝛽
(2V)
2
⋅ ⋅ ⋅ 𝛽

(2V)
2V

𝛽
(0)

0
𝛽
(0)

1
⋅ ⋅ ⋅ 𝛽

(0)

2V

𝛽
(1)

0
𝛽
(1)

1
⋅ ⋅ ⋅ 𝛽

(1)

2V
.
.
.

.

.

.

.

.

.

.

.

.

𝛽
(V−1)
0
𝛽
(V−1)
1
⋅ ⋅ ⋅ 𝛽

(V−1)
2V

𝛽
(V+1)
0
𝛽
(V+1)
1
⋅ ⋅ ⋅ 𝛽

(V+1)
2V

.

.

.

.

.

.

.

.

.

.

.

.

𝛽
(2V)
0
𝛽
(2V)
1
⋅ ⋅ ⋅ 𝛽

(2V)
2V

d d d d d
𝛽
(2V)
0
𝛽
(2V)
1
⋅ ⋅ ⋅ 𝛽
(2V)
2V

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵21 = ℎ
2

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
(1)

1
𝛽
(1)

2
⋅ ⋅ ⋅ 𝛽

(1)

2V
.
.
.

.

.

.

.

.

.

.

.

.

𝛽
(2V)
1
𝛽
(2V)
2
⋅ ⋅ ⋅ 𝛽
(2V)
2V
𝛽
(1)

0
𝛽
(1)

1
⋅ ⋅ ⋅ 𝛽

(1)

2V
.
.
.

.

.

.

.

.

.

.

.

.

𝛽
(1)

0
𝛽
(1)

1
⋅ ⋅ ⋅ 𝛽

(1)

2V
d d d
𝛽
(1)

0
𝛽
(1)

1
⋅ ⋅ ⋅ 𝛽
(1)

2V

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(22)

and 𝐵12, 𝐵22 are𝑁 ×𝑁 null matrices.
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We also define the following vectors:

Y = (𝑦1, . . . , 𝑦𝑁, ℎ𝑦


1
, . . . , ℎ𝑦



𝑁
)

𝑇

,

Y = (𝑦 (𝑥1) , . . . , 𝑦 (𝑥𝑁) , ℎ𝑦

(𝑥1) , . . . , ℎ𝑦


(𝑥𝑁))

𝑇

,

F = (𝑓1, . . . , 𝑓𝑁, ℎ𝑓


1
, . . . , ℎ𝑓



𝑁
)

𝑇

,

L (ℎ) = (𝑙1, . . . , 𝑙𝑛, 𝑙


1
, . . . , 𝑙



𝑁
)

𝑇

,

C = (𝛽(0)
0
ℎ
2
𝑓0 − ℎ𝑦



0
, 𝛽
(0)

0
ℎ
2
𝑓0 − 𝑦0, 𝛽

(1)

0
ℎ
2
𝑓0, . . . ,

𝛽
(V−1)
ℎ
2
𝑓0, 𝛽
(V+1)
0
ℎ
2
𝑓0, . . . , 𝛽

(2V)
0
ℎ
2
𝑓0, 0, . . . , 0,

𝛽
(0)

0
ℎ
2
𝑓0, . . . , 𝛽

(2V)
0
ℎ
2
𝑓0, 0, . . . , 0)

𝑇

.

(23)

The exact form of the system formed by (17) and (18) is given
by

𝐴Y − 𝐵F (Y) + C + L (ℎ) = 0, (24)

where L(ℎ) is the truncation error vector of the formulas in
(17) and (18). The approximate form of the system is given by

𝐴Y − 𝐵F (Y) + C = 0, (25)

where Y is the approximate solution of vector Y.
Subtracting (24) from (25) and letting E = Y − Y =
(𝑒1, . . . , 𝑒𝑁, 𝑒



1
, . . . , 𝑒



𝑁
)
𝑇 and using the mean value theorem,

we have the error system

(𝐴 − 𝐵𝐽)E = L (ℎ) , (26)

where 𝐽 is the Jacobian matrix and its entries 𝐽11, 𝐽12, 𝐽21, and
𝐽22 are defined as

𝐽11 =

[
[
[
[
[
[
[

[

𝜕𝑓1

𝜕𝑦1

⋅ ⋅ ⋅

𝜕𝑓1

𝜕𝑦𝑁

.

.

.

.

.

.

.

.

.

𝜕𝑓𝑁

𝜕𝑦1

⋅ ⋅ ⋅

𝜕𝑓𝑁

𝜕𝑦𝑁

]
]
]
]
]
]
]

]

,

𝐽12 =

[
[
[
[
[
[
[

[

𝜕𝑓1

𝜕𝑦


1

⋅ ⋅ ⋅

𝜕𝑓1

𝜕𝑦


𝑁

.

.

.

.

.

.

.

.

.

𝜕𝑓𝑁

𝜕𝑦


1

⋅ ⋅ ⋅

𝜕𝑓𝑁

𝜕𝑦


𝑁

]
]
]
]
]
]
]

]

,

𝐽21 = ℎ

[
[
[
[
[
[
[
[

[

𝜕𝑓


1

𝜕𝑦1

⋅ ⋅ ⋅

𝜕𝑓


1

𝜕𝑦𝑁

.

.

.

.

.

.

.

.

.

𝜕𝑓


𝑁

𝜕𝑦1

⋅ ⋅ ⋅

𝜕𝑓


𝑁

𝜕𝑦𝑁

]
]
]
]
]
]
]
]

]

,

𝐽22 = ℎ

[
[
[
[
[
[
[
[

[

𝜕𝑓


1

𝜕𝑦


1

⋅ ⋅ ⋅

𝜕𝑓


1

𝜕𝑦


𝑁

.

.

.

.

.

.

.

.

.

𝜕𝑓


𝑁

𝜕𝑦


1

⋅ ⋅ ⋅

𝜕𝑓


𝑁

𝜕𝑦


𝑁

]
]
]
]
]
]
]
]

]

.

(27)

Let 𝑁 = −𝐵𝐽 be a matrix of dimension 2𝑁 so that (26)
becomes

(𝐴 + 𝑁)E = L (ℎ) , (28)

and, for sufficiently small ℎ, 𝐴+𝑁 is a monotone matrix and
thus nonsingular (see [16]). Therefore

(𝐴 + 𝑁)
−1
= 𝐷 = (𝑑𝑖𝑗) ≥ 0,

2𝑁

∑

𝑗=1

𝑑𝑖𝑗 = 𝑂 (ℎ
−2
) ,

E = 𝐷L (ℎ) ,

‖E‖ = ‖𝐷L (ℎ)‖ = 𝑂 (ℎ−2)𝑂 (ℎ2V+4)

= 𝑂 (ℎ
2V+2
) ,

(29)

which shows that the methods are convergent and the global
error is of order 𝑂(ℎ2V+2).

3.2. Use of Methods. The BVMs can only be successfully
implemented if used together with appropriate additional
methods [5]. In this regard, we have proposed amainmethod
and additional methods which are obtained from the same
continuous scheme (the CLMM).

To use LMM (15) as BVMs, we rewrite main method (15)
as

𝑦𝑛+V−1 + 𝛼V𝑦𝑛−1 + 𝛼V−1𝑦𝑛−2 + 𝛼0𝑦𝑛−V−1

= ℎ
2

V−1

∑

𝑖=−V−1
𝛽𝑖+V+1𝑓𝑛+𝑖, 𝑛 = V + 1, . . . , 𝑁 − V + 1,

(30)

with the derivative formula

ℎ𝑦


𝑛+V−1 + 𝛼


V𝑦𝑛−1 + 𝛼


V−1𝑦𝑛−2 + 𝛼


0
𝑦𝑛−V−1

= ℎ
2

V−1

∑

𝑖=−V−1
𝛽


𝑖+V+1𝑓𝑛+𝑖, 𝑛 = V + 1, . . . , 𝑁 − V + 1,
(31)

which are to be used with some boundary conditions and
𝑈

(𝑥𝑟), 𝑟 = 0(1)(2V − 1).
The discrete solutions

𝑦0, . . . , 𝑦V, 𝑦𝑁−V+2, . . . , 𝑦𝑁

𝑦


0
, . . . , 𝑦



V, 𝑦


𝑁−V+2, . . . , 𝑦


𝑁

(32)

are to be obtained for methods (30) and (31) to be useful.
However, (3) provides two solution values so that we have
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to impose 4V − 2 additional conditions of which 𝑈(𝑥𝑟), 𝑟 =
0(1)(2V − 1), gives 2V methods and the remaining 2V − 2
methods are given as a set of V−1 initial and V−1finalmethods
which is readily obtained from CLMM (4). Approximations
(32) need be at least of order 𝑂(ℎ𝑝+1) accuracy if BVM (30)
is of order 𝑝 in order to have a solution accuracy of 𝑂(ℎ𝑝+1).
Equations (30) and (31) with the 4V − 2 additional methods
give a set of 2𝑁 equations in 2𝑁 unknowns which can be
easily solved. We give below the BVMs of orders 6 and 8.

BVM of Order 6 (V = 2)

𝑦𝑛+1 − 2𝑦𝑛−1 + 𝑦𝑛−3

=
ℎ
2

15

(𝑓𝑛−3 + 16𝑓𝑛−2 + 26𝑓𝑛−1 + 16𝑓𝑛 + 𝑓𝑛+1) ,

𝑛 = 3, . . . , 𝑁 − 1,

(33)

with the derivative formulas

ℎ𝑦


𝑛+1
=
−107

42

𝑦𝑛−1 +
128

21

𝑦𝑛−2 −
149

42

𝑦𝑛−3

+
ℎ
2

1260

(325𝑓𝑛−3 + 4048𝑓𝑛−2 + 1106𝑓𝑛−1

+ 1744𝑓𝑛 + 397𝑓𝑛+1) ,

ℎ𝑦


0
=
−107

42

𝑦2 +
128

21

𝑦1 −
149

42

𝑦0 +
ℎ
2

1260

(−67𝑓0

+ 2256𝑓1 + 434𝑓2 − 48𝑓3 + 5𝑓4) ,

ℎ𝑦


1
=
41

21

𝑦2 −
61

21

𝑦1 +
20

21

𝑦0 +
ℎ
2

10080

(−613𝑓0

+ 11464𝑓1 − 2870𝑓2 + 344𝑓3 − 37𝑓4) ,

ℎ𝑦


2
=
5

42

𝑦2 +
16

21

𝑦1 −
37

42

𝑦0 +
ℎ
2

1260

(73𝑓0 + 1136𝑓1

+ 574𝑓2 − 48𝑓3 + 5𝑓4) ,

ℎ𝑦


3
=
41

21

𝑦2 −
61

21

𝑦1 +
20

21

𝑦0 +
ℎ
2

10080

(−725𝑓0

− 7656𝑓1 + 9898𝑓2 + 410𝑓3 − 149𝑓4)

(34)

which are to be used with the initial method

𝑦3 − 2𝑦2 + 𝑦1

=
ℎ
2

240

(−𝑓0 + 24𝑓1 + 194𝑓2 + 24𝑓3 − 𝑓4)

(35)

and the final method

𝑦𝑁−3 − 2𝑦𝑁−2 + 𝑦𝑁−1 =
ℎ
2

240

(−𝑓𝑁 + 24𝑓𝑁−1

+ 194𝑓𝑁−2 + 24𝑓𝑁−3 − 𝑓𝑁−4) .

(36)

BVM of Order 8 (V = 3)

𝑦𝑛+2 − 2𝑦𝑛−1 + 𝑦𝑛−4 =
ℎ
2

2240

(141𝑓𝑛−4 + 2430𝑓𝑛−3

+ 4131𝑓𝑛−2 + 6756𝑓𝑛−1 + 4131𝑓𝑛 + 2430𝑓𝑛+1

+ 141𝑓𝑛+2) , 𝑛 = 4, . . . , 𝑁 − 2,

(37)

with the derivative formulas

ℎ𝑦


𝑛+2
=
−233

30

𝑦𝑛−1 +
243

20

𝑦𝑛−2 −
263

60

𝑦𝑛−3

+
ℎ
2

44800

(128089𝑓𝑛−4 + 216774𝑓𝑛−3

+ 305847𝑓𝑛−2 + 122452𝑓𝑛−1 + 6327𝑓𝑛

+ 69318𝑓𝑛+1 + 13113𝑓𝑛+2) ,

ℎ𝑦


0
=
−233

30

𝑦3 +
243

20

𝑦2 −
263

60

𝑦0 +
ℎ
2

44800

(−1031𝑓0

+ 147654𝑓1 + 297207𝑓2 + 35412𝑓3 − 2313𝑓4

+ 198𝑓5 − 7𝑓6) ,

ℎ𝑦


1
=
5713

1920

𝑦3 −
5073

1280

𝑦2 +
3793

3840

𝑦0

+
ℎ
2

77414400

(−3977083𝑓0 − 113321𝑓1

− 208639509𝑓2 − 20080444𝑓3 + 389931𝑓4

+ 130254𝑓5 − 23611𝑓6) ,

ℎ𝑦


2
=
7

30

𝑦3 +
3

20

𝑦2 −
23

60

𝑦0 +
ℎ
2

1209600

(26803𝑓0

+ 534018𝑓1 + 323229𝑓2 − 123236𝑓3 + 31389𝑓4

+ 6654𝑓5 + 691𝑓6) ,

ℎ𝑦


3
=
3313

1920

𝑦3 −
2673

1280

𝑦2 +
1292

3840

𝑦0

+
ℎ
2

2867200

(−60609𝑓0 − 1189494𝑓1 − 1182447𝑓2

+ 820748𝑓3 − 90927𝑓4 + 17802𝑓5 − 1793𝑓6) ,

ℎ𝑦


4
=
7

30

𝑦3 +
3

20

𝑦2 −
23

60

𝑦0 +
ℎ
2

1209600

(28403𝑓0

+ 510978𝑓1 + 804189𝑓2 + 1376924𝑓3 + 512349𝑓4

− 29694𝑓5 + 2291𝑓6) ,

ℎ𝑦


5
=
5713

19200

𝑦3 −
5073

1280

𝑦2 +
3793

3840

𝑦0

+
ℎ
2

77414400

(−4632443𝑓0 − 85305138𝑓1

− 108369429𝑓2 + 34314436𝑓3 − 100660011𝑓4

+ 28146894𝑓5 − 678971𝑓6)

(38)
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which are to be used with the initial methods

𝑦1 +
95

64

𝑦3 −
349

128

𝑦2 +
31

128

𝑦0 =
ℎ
2

77414400

(91775𝑓0

+ 2787594𝑓1 + 9305553𝑓2 + 127768𝑓3

+ 109167𝑓4 + 13578𝑓5 − 961𝑓6) ,

𝑦4 − 2𝑦3 + 𝑦2 =
ℎ
2

60480

(31𝑓0 − 438𝑓1 + 6513𝑓2

+ 48268𝑓3 + 6513𝑓4 − 438𝑓5 + 31𝑓6)

(39)

and the final methods

𝑦𝑁−4 − 2𝑦𝑁−3 + 𝑦𝑁−2 =
ℎ
2

60480

(31𝑓𝑁 − 438𝑓𝑁−1

+ 6513𝑓𝑁−2 + 48268𝑓𝑁−3 + 6513𝑓𝑁−4 − 438𝑓𝑁−5

+ 31𝑓𝑁−6) ,

𝑦𝑁−5 −
223

64

𝑦𝑁−3 +
349

128

𝑦𝑁−2 −
31

128

𝑦𝑁−2

=
ℎ
2

25804800

(−𝑓𝑁 − 724398𝑓𝑁−1 − 431259𝑓𝑁−2

− 4156156𝑓𝑁−3 + 2706981𝑓𝑁−4 + 200274𝑓𝑁−5

− 5141𝑓𝑁−6) .

(40)

4. The Block Unification Methods

The BUMs are also a class of methods for the numerical
integration of both initial and boundary value problems.
CLMM (4) is a 2V-step continuous scheme and as such the
BUM requires a set of 4V methods so that, on the partition
𝜋𝑁, ℎ > 𝑜, 𝑥𝑛 = 𝑥0 + 𝑛ℎ, 𝑛 = 0(1)𝑁, the solution of the 2V
step [𝑥𝑛, 𝑦𝑛, 𝑦



𝑛
] → [𝑥𝑛+2V, 𝑦𝑛+2V, 𝑦



𝑛+2V] is obtained. CLMM
(4) is used to generate (4V − 1) methods by evaluating (4) at
𝑥 = {𝑥𝑛+1, . . . , 𝑥𝑛+V−2, 𝑥𝑛+V+1, . . . , 𝑥𝑛+2V} and also evaluating
𝑈

(𝑥) at 𝑥 = {𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑛+2V}. CLMM (4) can only be

used to construct 4V − 1 methods and as such we give the
last method as (since it is also of 𝑂(ℎ2V+4))

𝑦𝑛+2V + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 = ℎ
2

2V

∑

𝑖=1

𝛽𝑖𝑓𝑛+𝑖. (41)

The BUM (4Vmethods) is of the form

𝑦𝑛+1 + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 + 𝛼0𝑦𝑛 = ℎ
2

2V

∑

𝑖=0

𝛽𝑖𝑓𝑛+𝑖

𝑦𝑛+2 + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 + 𝛼0𝑦𝑛 = ℎ
2

2V

∑

𝑖=0

𝛽𝑖𝑓𝑛+𝑖

.

.

.

𝑦𝑛+V−2 + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 + 𝛼0𝑦𝑛 = ℎ
2

2V

∑

𝑖=0

𝛽𝑖𝑓𝑛+𝑖

𝑦𝑛+V+1 + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 + 𝛼0𝑦𝑛 = ℎ
2

2V

∑

𝑖=0

𝛽𝑖𝑓𝑛+𝑖

.

.

.

𝑦𝑛+2V + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 + 𝛼0𝑦𝑛 = ℎ
2

2V

∑

𝑖=0

𝛽𝑖𝑓𝑛+𝑖

𝑦𝑛+2V + 𝛼V𝑦𝑛+V + 𝛼V−1𝑦𝑛+V−1 = ℎ
2

2V

∑

𝑖=0

𝛽𝑖𝑓𝑛+𝑖

ℎ𝑦


𝑛
+ 𝛼


V𝑦𝑛+V + 𝛼


V−1𝑦𝑛+V−1 + 𝛼


0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽


𝑖
𝑓𝑛+𝑖

ℎ𝑦


𝑛+1
+ 𝛼


V𝑦𝑛+V + 𝛼


V−1𝑦𝑛+V−1 + 𝛼


0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽


𝑖
𝑓𝑛+𝑖

.

.

.

ℎ𝑦


𝑛+2V + 𝛼


V𝑦𝑛+V + 𝛼


V−1𝑦𝑛+V−1 + 𝛼


0
𝑦𝑛 = ℎ

2

2V

∑

𝑖=0

𝛽


𝑖
𝑓𝑛+𝑖,

𝑛 = 0 (2V) (𝑁 − 2V) .
(42)

Formulas (42) that form the BUM are all weighted the same
unlike the BVMs that have main methods (15) and (16). We
give below the BUMs of orders 6 and 8.

BUM of Order 6

𝑦𝑛+3 − 2𝑦𝑛+2 + 𝑦𝑛+1 =
ℎ
2

240

(−𝑓𝑛 + 24𝑓𝑛+1 + 194𝑓𝑛+2

+ 24𝑓𝑛+3 − 𝑓𝑛+4) ,

𝑦𝑛+4 − 2𝑦𝑛+2 + 𝑦𝑛 =
ℎ
2

15

(𝑓𝑛 + 16𝑓𝑛+1 + 26𝑓𝑛+2

+ 16𝑓𝑛+3 + 𝑓𝑛+4) ,

𝑦𝑛+4 − 3𝑦𝑛+2 + 2𝑦𝑛+1 =
ℎ
2

240

(−3𝑓𝑛 + 52𝑓𝑛+1

+ 402𝑓𝑛+2 + 252𝑓𝑛+3 + 17𝑓𝑛+4) ,

ℎ𝑦


𝑛
=
−107

42

𝑦𝑛+2 +
128

21

𝑦𝑛+1 −
149

42

𝑦𝑛 +
ℎ
2

1260

(−67𝑓𝑛

+ 2256𝑓𝑛+1 + 434𝑓𝑛+2 − 48𝑓𝑛+3 + 5𝑓𝑛+4) ,

ℎ𝑦


𝑛+1
=
41

21

𝑦𝑛+2 −
61

21

𝑦𝑛+1 +
20

21

𝑦𝑛 +
ℎ
2

10080

(−613𝑓𝑛

+ 11464𝑓𝑛+1 − 2870𝑓𝑛+2 + 344𝑓𝑛+3 − 37𝑓𝑛+4) ,

ℎ𝑦


𝑛+2
=
5

42

𝑦𝑛+2 +
16

21

𝑦𝑛+1 −
37

42

𝑦𝑛 +
ℎ
2

1260

(73𝑓𝑛

+ 1136𝑓𝑛+1 + 574𝑓𝑛+2 − 48𝑓𝑛+3 + 5𝑓𝑛+4) ,
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ℎ𝑦


𝑛+3
=
41

21

𝑦𝑛+2 −
61

21

𝑦𝑛+1 +
20

21

𝑦𝑛 +
ℎ
2

10080

(−725𝑓𝑛

− 7656𝑓𝑛+1 + 9898𝑓𝑛+2 + 410𝑓𝑛+3 − 149𝑓𝑛+4) ,

ℎ𝑦


𝑛+4
=
−107

42

𝑦𝑛+2 +
128

21

𝑦𝑛+1 −
149

42

𝑦𝑛

+
ℎ
2

1260

(325𝑓𝑛 + 4048𝑓𝑛+1 + 1106𝑓𝑛+2

+ 1744𝑓𝑛+3 + 397𝑓𝑛+4) ,

𝑛 = 0 (4) (𝑁 − 4) .

(43)

BUM of Order 8

𝑦𝑛+1 +
95

64

𝑦𝑛+3 −
349

128

𝑦𝑛+2 +
31

128

𝑦𝑛

=
ℎ
2

77414400

(91775𝑓𝑛 + 2787594𝑓𝑛+1

+ 9305553𝑓𝑛+2 + 127768𝑓𝑛+3 + 109167𝑓𝑛+4

+ 13578𝑓𝑛+5 − 961𝑓𝑛+6) ,

𝑦𝑛+4 − 2𝑦𝑛+3 + 𝑦𝑛+2 =
ℎ
2

60480

(31𝑓𝑛 − 438𝑓𝑛+1

+ 6513𝑓𝑛+2 + 48268𝑓𝑛+3 + 6513𝑓𝑛+4 − 438𝑓𝑛+5

+ 31𝑓𝑛+6) ,

𝑦𝑛+5 −
223

64

𝑦𝑛+3 +
349

128

𝑦𝑛+2 −
31

128

𝑦𝑛

=
ℎ
2

25804800

(−𝑓𝑛 − 724398𝑓𝑛+1 − 431259𝑓𝑛+2

− 4156156𝑓𝑛+3 + 2706981𝑓𝑛+4 + 200274𝑓𝑛+5

− 5141𝑓𝑛+6) ,

𝑦𝑛+6 − 2𝑦𝑛+3 + 𝑦𝑛 =
ℎ
2

2240

(141𝑓𝑛 + 2430𝑓𝑛+1

+ 4131𝑓𝑛+2 + 6756𝑓𝑛+3 + 4131𝑓𝑛+4 + 2430𝑓𝑛+5

+ 141𝑓𝑛+6) ,

𝑦𝑛+6 − 4𝑦𝑛+3 + 3𝑦𝑛+2 =
ℎ
2

10080

(−11𝑓𝑛 − 18𝑓𝑛+1

+ 2523𝑓𝑛+2 + 27268𝑓𝑛+3 + 19323𝑓𝑛+4

+ 10734𝑓𝑛+5 + 661𝑓𝑛+6) ,

ℎ𝑦


𝑛
=
−233

30

𝑦𝑛+3 +
243

20

𝑦𝑛+2 −
263

60

𝑦𝑛

+
ℎ
2

44800

(−1031𝑓𝑛 + 147654𝑓𝑛+1 + 297207𝑓𝑛+2

+ 35412𝑓𝑛+3 − 2313𝑓𝑛+4 + 198𝑓𝑛+5 − 7𝑓𝑛+6) ,

ℎ𝑦


𝑛+1
=
5713

1920

𝑦𝑛+3 −
5073

1280

𝑦𝑛+2 +
3793

3840

𝑦𝑛

+
ℎ
2

77414400

(−3977083𝑓𝑛 − 113321𝑓𝑛+1

− 208639509𝑓𝑛+2 − 20080444𝑓𝑛+3 + 389931𝑓𝑛+4

+ 130254𝑓𝑛+5 − 23611𝑓𝑛+6) ,

ℎ𝑦


𝑛+2
=
7

30

𝑦𝑛+3 +
3

20

𝑦𝑛+2 −
23

60

𝑦𝑛

+
ℎ
2

1209600

(26803𝑓𝑛 + 534018𝑓𝑛+1 + 323229𝑓𝑛+2

− 123236𝑓𝑛+3 + 31389𝑓𝑛+4 + 6654𝑓𝑛+5

+ 691𝑓𝑛+6) ,

ℎ𝑦


𝑛+3
=
3313

1920

𝑦𝑛+3 −
2673

1280

𝑦𝑛+2 +
1292

3840

𝑦𝑛

+
ℎ
2

2867200

(−60609𝑓𝑛 − 1189494𝑓𝑛+1

− 1182447𝑓𝑛+2 + 820748𝑓𝑛+3 − 90927𝑓𝑛+4

+ 17802𝑓𝑛+5 − 1793𝑓𝑛+6) ,

ℎ𝑦


𝑛+4
=
7

30

𝑦𝑛+3 +
3

20

𝑦𝑛+2 −
23

60

𝑦𝑛

+
ℎ
2

1209600

(28403𝑓𝑛 + 510978𝑓𝑛+1 + 804189𝑓𝑛+2

+ 1376924𝑓𝑛+3 + 512349𝑓𝑛+4 − 29694𝑓𝑛+5

+ 2291𝑓𝑛+6) ,

ℎ𝑦


𝑛+5
=
5713

19200

𝑦𝑛+3 −
5073

1280

𝑦𝑛+2 +
3793

3840

𝑦𝑛

+
ℎ
2

77414400

(−4632443𝑓𝑛 − 85305138𝑓𝑛+1

− 108369429𝑓𝑛+2 + 34314436𝑓𝑛+3

− 100660011𝑓𝑛+4 + 28146894𝑓𝑛+5 − 678971𝑓𝑛+6) ,

ℎ𝑦


𝑛+6
=
−233

30

𝑦𝑛+3 +
243

20

𝑦𝑛+2 −
263

60

𝑦𝑛

+
ℎ
2

44800

(128089𝑓𝑛 + 216774𝑓𝑛+1 + 305847𝑓𝑛+2

+ 122452𝑓𝑛+3 + 6327𝑓𝑛+4 + 69318𝑓𝑛+5

+ 13113𝑓𝑛+6) ,

𝑛 = 0 (6) (𝑁 − 6) .

(44)
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4.1. Convergence and Use of the BUMs. BUMs (42) are
weighted the same as each formula in (42) is used the same
number of times as others.Their convergence was established
in a similar way to Theorem 3 with some changes in the
coefficients of the matrices and the global error is also of
𝑂(ℎ
2V+2
).

The BUM is implemented efficiently by using the follow-
ing algorithm.

Step 1. Use the block unification of (42) for 𝑛 = 0 to obtain
Y1 in the interval [𝑦𝑛, 𝑦𝑛+2V]; for 𝑛 = 1, Y2 is obtained in
the interval [𝑦𝑛+2V, 𝑦𝑛+4V]; and in the intervals [𝑦𝑛+4V, 𝑦𝑛+6V],
[𝑦𝑛+6V, 𝑦𝑛+8V], . . . , [𝑦𝑁−2V, 𝑦𝑁] for 𝑛 = 2, 3, . . . , (Γ − 1), we
obtain Y3, . . . ,YΓ where𝑁 = 2V × Γ.

Step 2. The unified block given by the system Y1 ∪ Y2 ∪ ⋅ ⋅ ⋅ ∪
YΓ−1 ∪ YΓ obtained in Step 1 results in a system of 2𝑁 equa-
tions in 2𝑁 unknowns which can be easily solved.

Step 3. The values of the solution and the first derivatives of
(2) are generated by the sequence of {𝑦𝑛}, {𝑦



𝑛
}, 𝑛 = 0, . . . , 𝑁,

obtained as the solution in Step 2.

5. Test Problems

We consider five numerical examples. The examples were
solved using the BVMs and the BUMs of different order
derived in this paper. Comparisons are made between the
BVMs and BUMs by obtaining the maximum errors in
the interval of integration. We note that the number of
function evaluations (NFEs) involved in implementing the
two methods is 𝑁 × 2V in the entire range of integration. In
order to show the competitiveness of the derived methods
with some existing methods in the literature, we compared
our methods with the Extended Trapezoidal Rules (ETRs),
Extended Trapezoidal Rules of the second kind (ETR2s),
and the Top Order Methods (TOMs) of orders 6, 8, and
10, respectively, given in [6]. For linear problems, we solve
the resulting system of equations using Gaussian elimination
with partial pivoting and, for nonlinear problems, we use a
modified Newton-Raphson method.

Example 1. We consider the boundary value problem given
in [6]:

(𝑥
3
𝑢

)



= 1, 1 < 𝑥 < 2,

𝑢 (1) = 𝑢

(1) = 𝑢 (2) = 𝑢


(2) = 0,

Exact: 𝑢 (𝑥) = 1
4

(10 log (2) − 3) (1 − 𝑥)

+
1

2

(𝑥
−1
+ (3 + 𝑥) log (𝑥) − 𝑥) .

(45)

Example 2. We consider the nonlinear Fehlberg problem
given in [12]:

𝑦


1
= −4𝑥

2
𝑦1 −

2

√𝑦
2

1
+ 𝑦
2

2

𝑦2,

√
𝜋

2

< 𝑥 < 10,

𝑦


2
= −4𝑥

2
𝑦2 −

2

√𝑦
2

1
+ 𝑦
2

2

𝑦1,

𝑦1 (𝑥0) = 0,

𝑦


1
(𝑥0) = −

√2𝜋,

𝑦2 (𝑥0) = 1,

𝑦


2
(𝑥0) = 0,

𝑥0 =
√
𝜋

2

,

Exact: 𝑦1 (𝑥) = cos (𝑥
2
) ,

𝑦2 (𝑥) = sin (𝑥
2
) .

(46)

Example 3. We consider the nonlinear BVP with mixed
boundary conditions given in [17]:

𝑦

=

(𝑦

)

2

+ 𝑦
2

2𝑒
𝑥
, 0 < 𝑥 < 1,

𝑦 (0) − 𝑦

(0) = 0,

𝑦 (1) + 𝑦

(1) = 2𝑒,

Exact: 𝑦 (𝑥) = 𝑒𝑥.

(47)

Example 4. We consider the nonlinear BVP given in [18]:

𝑑
2
𝑦1

𝑑𝑥
2
+ 20𝑦



1
+ 4 cos (𝑥) 𝑦1 + sin (𝑦1𝑦2) = 𝑓1 (𝑥) ,

0 < 𝑥 < 1,

𝑑
2
𝑦2

𝑑𝑥
2
+ 5𝑒
𝑥
𝑦


2
+ 6 sinh (𝑥) 𝑦2 + cos (𝑦2) = 𝑓2 (𝑥) ,

𝑦1 (0) = 1,

𝑦2 (0) = 0,

𝑦1 (1) = 𝑒,

𝑦2 (1) = sinh (1) ,

(48)

where

𝑓1 (𝑥) = 21𝑒
𝑥
+ 4𝑒
𝑥 cos (𝑥)

+ sin (𝑒𝑥 sinh (𝑥)) ,

𝑓2 (𝑥) = 𝑥 cos (sinh (𝑥)) + 5𝑒
𝑥 cosh (𝑥)

+ sinh (𝑥) + 6 sinh2 (𝑥) ,

Exact: 𝑦1 (𝑥) = 𝑒
𝑥
,

𝑦2 (𝑥) = sinh (𝑥) .

(49)
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Table 1: Computational results for V = 2 for Example 5.1.

𝑁
BVM BUM ETRs

𝑙∞ error CPU Time 𝑙∞ error CPU Time 𝑙∞ error CPU Time
4 2.184𝑒 − 02 0.281 6.182𝑒 − 05 0.297 3.641𝑒 − 05 0.296
8 3.357𝑒 − 06 0.267 1.225𝑒 − 05 0.328 2.193𝑒 − 06 0.312
16 1.867𝑒 − 08 0.329 2.656𝑒 − 07 0.328 8.754𝑒 − 08 0.365
32 6.634𝑒 − 10 0.389 4.351𝑒 − 09 0.359 2.249𝑒 − 09 0.389
64 2.884𝑒 − 12 0.422 6.837𝑒 − 11 0.391 4.564𝑒 − 11 0.441
128 6.456𝑒 − 14 0.626 1.070𝑒 − 12 0.546 8.156𝑒 − 13 0.625

Table 2: Computational results for V = 3 for Example 5.1.

𝑁
BVM BUM ETR2s

𝑙
∞
error CPU Time 𝑙

∞
error CPU Time 𝑙

∞
error CPU Time

6 9.982𝑒 − 01 0.281 3.228𝑒 − 06 0.234 1.837𝑒 − 06 0.328
12 4.437𝑒 − 08 0.312 3.948𝑒 − 07 0.313 2.245𝑒 − 08 0.342
24 1.913𝑒 − 10 0.358 2.627𝑒 − 09 0.344 1.353𝑒 − 10 0.359
48 3.812𝑒 − 13 0.436 1.142𝑒 − 11 0.390 4.333𝑒 − 13 0.391
96 4.442𝑒 − 16 0.577 4.573𝑒 − 14 0.499 1.030𝑒 − 15 0.514
192 5.660𝑒 − 16 0.843 6.145𝑒 − 16 0.689 6.161𝑒 − 15 0.811

Table 3: Computational results for V = 3 for Example 5.2.

𝑁
BVM BUM ETR

2
s

𝑙∞ error CPU Time 𝑙∞ error CPU Time 𝑙∞ error CPU Time
150 1.326𝑒 − 02 1.266 6.027𝑒 − 02 1.078 1.631𝑒 − 02 1.178
300 4.268𝑒 − 05 2.391 1.133𝑒 − 03 2.000 6.889𝑒 − 05 2.196
600 1.511𝑒 − 07 4.470 4.756𝑒 − 05 3.749 2.714𝑒 − 07 4.461
1200 5.520𝑒 − 10 9.171 1.968𝑒 − 08 7.343 1.067𝑒 − 09 8.786
2400 3.132𝑒 − 12 19.125 7.834𝑒 − 11 15.578 4.204𝑒 − 12 17.468
4800 3.677𝑒 − 12 42.936 2.549𝑒 − 12 35.236 8.294𝑒 − 14 40.312

Table 4: Computational results for V = 4 for Example 5.2.

𝑁
BVM BUM TOMs

𝑙
∞
error CPU Time 𝑙

∞
error CPU Time 𝑙

∞
error CPU Time

150 5.048𝑒 − 04 2.142 2.261𝑒 − 03 1.671 2.993𝑒 − 03 1.985
300 2.979𝑒 − 07 3.952 1.343𝑒 − 05 3.156 4.373𝑒 − 06 3.766
600 2.560𝑒 − 10 7.704 1.447𝑒 − 08 5.890 4.752𝑒 − 09 3.735
1200 2.201𝑒 − 13 16.577 1.499𝑒 − 11 11.860 4.791𝑒 − 12 15.017
2400 5.283𝑒 − 13 33.172 6.877𝑒 − 13 25.750 4.292𝑒 − 14 28.250
4800 1.500𝑒 − 12 77.532 1.505𝑒 − 12 59.281 4.447𝑒 − 15 76.687

Example 5. Lastly, we consider the following BVP for 𝑥, 𝑦 ∈
[−1, 1] given in [19]:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −32𝜋
2 sin (4𝜋𝑥) ,

𝑢 (±1, 𝑦) = 𝑢 (𝑥, ±1) = 0,

Exact: sin (4𝜋𝑥) sin (4𝜋𝑦) .

(50)

5.1. Numerical Results and Discussion. Example 1 is a vari-
able coefficient fourth-order BVP. The fourth-order BVP is
transformed to a system of second-order BVP. We solved

the system using the BVM and BUM of orders 6 and 8. The
problem is also solved using the ETRs and ETR2s of orders
6 and 8, respectively. Tables 1 and 2 show the computational
results for this example. While the BUM produces solutions
of approximate accuracy with the BVM, it uses shorter
CPU Time. Example 2 is the well-known nonlinear Fehlberg
problem. It was solved for V = 3, 4 and the maximum of the
Euclidean norm of the errors in 𝑦1 and 𝑦2 was obtained in
the interval of integration. Example 2 was also solved using
the ETR2s and the TOMs of orders 8 and 10, respectively.
Tables 3 and 4 show that both methods produce solutions
of approximate accuracy with the BUM using shorter CPU
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Table 5: Computational results for V = 2 for Example 5.3.

𝑁
BVM BUM ETRs

𝑙
∞
error CPU Time 𝑙

∞
error CPU Time 𝑙

∞
error CPU Time

4 4.495𝑒 − 01 0.312 2.536𝑒 − 06 0.266 5.631𝑒 − 06 0.297
8 4.144𝑒 − 09 0.297 3.737𝑒 − 08 0.328 6.782𝑒 − 08 0.343
16 4.680𝑒 − 11 0.313 5.753𝑒 − 10 0.328 9.270𝑒 − 10 0.344
32 5.347𝑒 − 13 0.375 8.955𝑒 − 12 0.328 1.518𝑒 − 11 0.366
64 7.105𝑒 − 15 0.734 1.399𝑒 − 13 0.500 2.430𝑒 − 13 0.546
128 4.441𝑒 − 16 2.031 2.442𝑒 − 15 1.188 3.553𝑒 − 15 1.156

Table 6: Computational results for V = 4 for Example 5.3.

𝑁
BVM BUM TOMs

𝑙∞ error CPU Time 𝑙∞ error CPU Time 𝑙∞ error CPU Time
8 2.399𝑒 − 00 0.297 4.823𝑒 − 12 0.234 1.031𝑒 − 11 0.273
16 2.220𝑒 − 14 0.297 5.773𝑒 − 15 0.276 7.994𝑒 − 15 0.297
32 5.940𝑒 − 14 0.313 1.332𝑒 − 14 0.281 6.661𝑒 − 16 0.343
64 3.055𝑒 − 13 0.453 2.398𝑒 − 14 0.374 1.332𝑒 − 15 0.374
128 9.859𝑒 − 14 0.532 5.063𝑒 − 14 0.423 1.110𝑒 − 15 0.453
256 4.596𝑒 − 13 0.797 6.672𝑒 − 14 0.625 8.882𝑒 − 15 0.671

Table 7: Computational results for V = 2 for Example 5.4.

𝑁
BVM BUM TOMs

𝑙
∞
error CPU Time 𝑙

∞
error CPU Time 𝑙

∞
error CPU Time

4 6.230𝑒 − 02 0.282 6.379𝑒 − 07 0.273 5.431𝑒 − 06 0.297
8 2.632𝑒 − 09 0.359 1.303𝑒 − 08 0.297 8.024𝑒 − 08 0.327
16 6.021𝑒 − 11 0.390 1.865𝑒 − 10 0.405 1.307𝑒 − 09 0.468
32 5.291𝑒 − 12 0.703 2.668𝑒 − 12 0.563 2.078𝑒 − 11 0.828
64 5.991𝑒 − 13 1.782 4.157𝑒 − 14 1.281 3.269𝑒 − 13 2.624
128 5.361𝑒 − 12 9.156 1.633𝑒 − 15 5.280 5.336𝑒 − 15 10.532

Table 8: Computational results for V = 3 for Example 5.4.

𝑁
BVM BUM ETR2s

𝑙∞ error CPU Time 𝑙∞ error CPU Time 𝑙∞ error CPU Time
6 2.582𝑒 − 00 0.343 1.044𝑒 − 09 0.298 3.834𝑒 − 10 0.375
12 8.390𝑒 − 13 0.375 3.563𝑒 − 12 0.267 1.449𝑒 − 12 0.453
24 1.242𝑒 − 13 0.375 1.460𝑒 − 14 0.328 4.158𝑒 − 15 0.656
48 3.999𝑒 − 11 0.455 1.629𝑒 − 14 0.421 4.578𝑒 − 16 0.861
96 1.035𝑒 − 11 0.703 2.517𝑒 − 14 0.593 4.578𝑒 − 16 1.040
192 1.775𝑒 − 13 1.077 6.846𝑒 − 14 0.842 4.965𝑒 − 16 1.235

Time. Example 3 was chosen to demonstrate the use of the
methods on a nonlinear BVP with mixed boundary con-
ditions. The computational results were given in Tables 5
and 6. Example 4 was chosen to show the performance of
the schemes on systems of nonlinear BVPs. The maximum
of the Euclidean norm of the errors in 𝑦1 and 𝑦2 is given
in Tables 7 and 8. Lastly, we show the performance of the
methods on a Poisson equation with boundary conditions.
The partial differential equation is transformed into a system

of second-order ordinary differential equations with bound-
ary conditions using the method of lines. Table 9 shows
the computational result for this example. Also, Figures 1–4
show the efficiency curves of these methods for the different
examples where we have denoted BVM and BUM with V = 2
as BVM2 and BUM2, respectively.

From the foregoing, it can be concluded that the BUM
and the BVM produce solutions of approximate accuracy
with the BUM using shorter CPU Time. However, a 2V-step
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Figure 1: Efficiency curves for Example 1.
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Figure 4: Efficiency curves for Example 4.

Table 9: Computational results for V = 2 for Example 5.5.

𝑁
BVM BUM

𝑙∞ error CPU Time 𝑙∞ error CPU Time
16 9.662𝑒 − 00 0.483 1.251𝑒 − 01 0.531
32 2.582𝑒 − 02 1.235 2.578𝑒 − 02 1.031
64 6.433𝑒 − 03 5.358 6.459𝑒 − 03 5.516
128 1.607𝑒 − 03 43.641 1.607𝑒 − 03 46.923
256 2.00𝑒 − 00 512.843 4.016𝑒 − 04 532.657

BVM performs poorly when the number of steps, 𝑁, is 2V.
This is because the main method together with the initial
and final methods does not form a good discrete analog or
approximation of the continuous boundary value problem.
Also, the BUM has the drawback that it is only implemented
for any𝑁 which is a multiple of 2V.

6. Conclusion

In this paper, we have developed a new class of LMMs and
implemented the LMMs via two approaches, the boundary
value approach and the block unification strategy, which
are used to solve initial and boundary value problems. The
comparison of the two approaches was carried out in terms
of accuracy and computational efficiency. The results given
in Section 5 show that both approaches perform very well
with the BUM using shorter CPU Time. Our future research
will be to develop a variable stepsize version of the BVM and
the BUM and a study of the conditioning of the matrices
arising from the discretization of the continuous second-
order problems.
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