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We study the inextensible flows of curves in 3-dimensional Euclidean spaceR3. Themain purpose of this paper is constructing and
plotting the surfaces that are generated from the motion of inextensible curves in R3. Also, we study some geometric properties
of those surfaces. We give some examples about the inextensible flows of curves in R3 and we determine the curves from their
intrinsic equations (curvature and torsion). Finally, we determine and plot the surfaces that are generated by the motion of those
curves by using Mathematica 7.

1. Introduction

The evolution of curves and surfaces has important applica-
tions in many fields such ascomputer vision [1, 2], computer
animation [3], and image processing [4]. The motion of
curves and surfaces in R3 leads to nonlinear evolution equa-
tions, which are often integrable. The connection between
integrable systems and the differential geometry of curves has
been studied extensively. Some integrable systems arise from
invariant curve flows in certain geometries such as affine and
centroaffine geometries [5–7] and similarity and projective
geometries [8, 9]. Motion of curves in Minkowski space 𝑅

3

1
is

studied in [10–12]. Hashimoto [13] showed that the integrable
nonlinear Schrodinger equation (NLS)

𝑖𝜙
𝑡

+ 𝜙
𝑠𝑠

+
󵄨󵄨󵄨󵄨𝜙

󵄨󵄨󵄨󵄨

2
𝜙 = 0 (1)

is equivalent to the system for the curvatures 𝑘 and 𝜏 of curves
in R3:

𝑘
𝑡

= −𝜏
𝑠
𝑘 − 2𝜏𝑘

𝑠
,

𝜏
𝑡

= 𝑘𝑘
𝑠

+
𝜕

𝜕𝑠
(

−𝜏
2
𝑘 + 𝑘
𝑠𝑠

𝑘
) ,

(2)

via the so-calledHashimoto transformation𝜙 = 𝑘 exp𝑖 ∫ 𝜏(𝑠,𝑡)𝑑𝑠.
System (2) is equivalent to the vortex filament equation

𝛾
𝑡

= 𝛾
𝑠

× 𝛾
𝑠𝑠

= 𝑘𝑏, (3)

where 𝑏 is the binormal vector of 𝛾.
In [14], Schief and Rogers studied the binormal motion of

curves of constant curvature or torsion.
This line of research has been extended to motions of

curves in three-dimensional space forms.
Recently, Abdel-All et al. [15–18] constructed new geo-

metrical models of motion of plane curves. Also, they
constructed a Hashimoto surface from its fundamental
coefficients via numerical integration of Gauss-Weingarten
equations and fundamental theorem of surfaces. Also, they
studied kinematics of moving generalized curves in 𝑛-
dimensional Euclidean space in terms of intrinsic geometries.
Mohamed [19] studied the motions of inextensible curves in
spherical space S3.

In this paper, we will present the flows of curves in R3.
The outline of this paper is as follows.

In Section 2, we study the geometry of curves in R3. In
Sections 3 and 4, we study the motion of curves in R3 and
we get the time evolution of Serret-Frenet frame and the
evolution of curvatures. In Section 5, we study the geometric
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properties of the surfaces that are generated by the motion of
the family of curves𝐶

𝑡
. In Section 6,we give some examples of

motions of inextensible curves inR3, and we plot the surfaces
that are generated by the motion of those curves. For these
surfaces, we study theGaussian andMean curvatures. Finally,
Section 7 is devoted to conclusion.

2. Geometric Preliminaries

Consider a smooth curve in a 3-dimensional space. Assume
that 𝑢 is the parameter along the curve inR3. Let 𝑟(𝑢) denote
the position vector of a point on the curve.The metric on the
curve is

𝑔 (𝑢) = ⟨
𝜕𝑟

𝜕𝑢
,

𝜕𝑟

𝜕𝑢
⟩ , (4)

where 𝑢 is the parameter of the curve. The arc length along
the curve is given by

𝑠 (𝑢) = ∫

𝑢

0

√𝑔 (𝜎)𝑑𝜎,

𝜕

𝜕𝑠
=

1

√𝑔

𝜕

𝜕𝑢
;

(5)

we use {𝑢, 𝑡} as coordinates of a point on the curve.
Consider the orthonormal frameI = {𝑇, 𝑁, 𝐵}, such that

𝑇 is the tangent vector and 𝑁, 𝐵 denote the normal vectors
at any point on the curve.

Lemma 1. The Frenet frame for the curve in R3 satisfies the
following:

𝐹
𝑠

= 𝑄 ⋅ 𝐹, (6)

where

𝐹 = (

𝑇

𝑁

𝐵

) ,

𝑄 = (

0 𝑘 0

−𝑘 0 𝜏

0 −𝜏 0

) .

(7)

Lemma 2. Consider the curve 𝛾(𝑠(𝑢)) with an arbitrary
parameter 𝑢 ∈ 𝐼. Then the Serret-Frenet frame satisfies

𝐹
𝑢

= √𝑔𝑄 ⋅ 𝐹, (8)

where 𝑄 and 𝐹 are given as in (6).

3. Curve Evolution

An evolving curve can be considered as a family of curves
parametrized by time. This means that each curve in the
family is a mapping 𝛾 : 𝐼 × (0, 1] → R2 that assigns for each
space parameter 𝑢 ∈ 𝐼 and each time parameter 𝑡 ∈ (0, 1];

there is a point 𝛾(𝑢, 𝑡) ∈ R2. An evolution equation which is
a differential equation that describes the evolution of 𝛾(𝑢, 𝑡)

in time can be specified by the form

𝛾̇ =
𝑑𝛾

𝑑𝑡
= 𝑊𝑇 + 𝑈𝑁 + 𝑉𝐵, (9)

where 𝑊, 𝑈, 𝑉 are the velocities along the frame 𝑇, 𝑁, 𝐵.
Consider a local motion; that is, the velocities 𝑊, 𝑈, 𝑉

depend only on the local values of the curvatures {𝑘, 𝜏}.

4. Main Results

From [18], we considered the curve 𝛾(𝑢, 𝑡). For the curve flow

𝑑𝛾

𝑑𝑡
=

𝑛

∑

𝑗=1

V
𝑗
𝑒
𝑗
, (10)

where V
𝑗
are the velocities in the direction of 𝑒

𝑗
, we had the

following.

Lemma 3. The evolution equation for the metric 𝑔 is given by

𝑔̇ = 2𝑔𝜆, (11)

where 𝜆 = (𝜕V
1
/𝜕𝑠 − 𝑘V

2
).

Theorem 4. The evolution for the frame 𝐹 = (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)
𝑡

can be given in a matrix form

𝐹
𝑡

= 𝑀 ⋅ 𝐹, (12)

where 𝑀 is the evolution matrix and it takes the form

𝑀

=

(
(
(
(
(
(

(

0 𝑀
12

𝑀
13

. . . 𝑀
1𝑛

−𝑀
12

0 𝑀
23

. . . 𝑀
2𝑛

−𝑀
13

−𝑀
23

0 . . . 𝑀
3𝑛

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

−𝑀
1(𝑛−1)

−𝑀
2(𝑛−1)

−𝑀
3(𝑛−1)

. . . 𝑀
(𝑛−1)𝑛

−𝑀
1𝑛

−𝑀
2𝑛

−𝑀
3𝑛

. . . 0

)
)
)
)
)
)

)

,

(13)

where the elements of the matrix 𝑀 are given explicitly by

𝑀
1𝑗

= 𝐴
𝑗

= V
𝑗,𝑠

+ 𝑘
𝑗−1

V
𝑗−1

− 𝑘
𝑗
V
𝑗+1

, 𝑗 = 2, 3, . . . , 𝑛,

𝑀
𝛼𝜇

=
1

𝑘
𝜇−𝛼

(𝑀
(𝛼−1)𝜇,𝑠

+ 𝑘
𝜇−1

𝑀
(𝛼−1)(𝜇−1)

+ 𝑘
𝜇
𝑀
(𝛼−1)(𝜇+1)

+ 𝑘
𝛼−2

𝑀
(𝛼−2)𝜇

) ,

𝛼 = 2, . . . , 𝑛 − 1, 𝛼 < 𝜇 ≤ 𝑛, 𝑘
0

= 𝑘
𝑛

= 0.

(14)

Theorem 5. The time evolution equations for the curvatures
take the form

𝑘
1,𝑡

= 𝑀
12,𝑠

− 𝑘
1
𝜆 − 𝑘
2
𝑀
13

,

𝑘
𝛼,𝑡

= 𝑀
𝛼𝜇,𝑠

− 𝑘
𝛼

𝜆 + 𝑘
𝛼−1

𝑀
(𝛼−1)𝜇

− 𝑘
𝛼+1

𝑀
𝛼(𝜇+1)

,

𝑘
0

= 𝑘
𝑛

= 0.

(15)
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For 𝑛 = 3, we can study the motion of curves in R3; we choose
𝑘
1

= 𝑘, 𝑘
2

= 𝜏, V
1

= 𝑊, V
2

= 𝑈, and V
3

= 𝑉; then we have
the following.

Theorem 6. The time evolution of the Serret-Frenet frame can
be written in matrix form as follows:

𝐹
𝑡

= 𝑀 ⋅ 𝐹, (16)

where

𝐹 = (

𝑇

𝑁

𝐵

) ,

𝑀 = (

0 𝑀
12

𝑀
13

−𝑀
12

0 𝑀
23

−𝑀
13

−𝑀
23

0

) ,

(17)

𝑀
12

= 𝑘𝑊 + 𝑈
𝑠

− 𝜏𝑉,

𝑀
13

= 𝑉
𝑠

+ 𝜏𝑈,

𝑀
23

=
1

𝑘
(𝑀
13,𝑠

+ 𝜏𝑀
12

) .

(18)

Theorem 7. The time evolution of the curvature and torsion of
the curve 𝐶

𝑡
can be given by

(

𝑘

𝜏
)

𝑡

= (

−
𝑔
𝑡

2𝑔
−𝑀
13

𝑀
13

−
𝑔
𝑡

2𝑔

) (

𝑘

𝜏
) + (

𝑀
12,𝑠

𝑀
23,𝑠

) . (19)

Definition 8. An inextensible curve is a curve whose length is
preserved; that is, it does not evolve in time:

𝜕𝑠

𝜕𝑡
= 0,

i.e., 𝑔
𝑡

= 𝑔̇ = 0.

(20)

The necessary and sufficient conditions for inextensible
flows are then given by the following theorem.

Theorem 9. The flow of the curve is inextensible if and only if
𝜕𝑊/𝜕𝑠 = 𝑘𝑈.

Lemma 10. If the curve 𝛾(𝑠, 𝑡) is inextensible (𝑔
𝑡

= 𝑔̇ = 0),
then the evolution equations for the curvature and torsion (19)
are

(

𝑘

𝜏
)

𝑡

= (

0 −𝑀
13

𝑀
13

0
) (

𝑘

𝜏
) + (

𝑀
12,𝑠

𝑀
23,𝑠

) . (21)

Then the PDE system (21) can be written explicitly in the
following form:

𝑘
𝑡

= (𝑘
2

− 𝜏
2
) 𝑈 + 𝑈

𝑠𝑠
+ 𝑘
𝑠
𝑊 − 𝜏

𝑠
𝑉 − 2𝜏𝑉

𝑠
,

𝜏
𝑡

= 𝑘 (𝑉
𝑠

+ 𝜏𝑈)

+ (
1

𝑘
(−𝜏
2
𝑉 + 𝜏 (𝑘𝑊 + 2𝑈

𝑠
) + 𝑉
𝑠𝑠

+ 𝜏
𝑠
𝑈))
,𝑠

.

(22)

5. Examples of Inextensible Flows of
Curves in R3

Example 11. If

𝑊 = constant = 𝑎 ̸= 0,

𝑈 = 0,

𝑉 =
𝑘 (𝑠, 𝑡)

𝑎
,

(23)

the PDE system (22) takes the form

𝑘
𝑡

=
1

𝑎
(−𝑘𝜏
𝑠

+ (𝑎
2

− 2𝜏) 𝑘
𝑠
) ,

𝜏
𝑡

=
𝑘

𝑎
𝑘
𝑠

+ (
𝜏

𝑎
(−𝜏
2

+ 𝑎
2
) +

𝑘
𝑠𝑠

𝑘
)

,𝑠

.

(24)

One solution of this system is

𝑘 (𝑠, 𝑡) = −2𝑐
1
sech (𝑐

1
𝑠 + 𝑐
2
𝑡 + 𝑐
3
) ,

𝜏 (𝑠, 𝑡) =
𝑎 (𝑎𝑐
1

− 𝑐
2
)

2𝑐
1

,

(25)

where 𝑐
1
, 𝑐
2
, and 𝑐

3
are constants.

The curvature of the family of curves 𝐶
𝑡
as a function of

the coordinates 𝑠 and 𝑡 is plotted in Figure 1.
Substitute (23) and (25) into systems (6) and (16) and

solve them numerically. Then we can get the family of curves
𝐶
𝑡

= 𝛾(𝑠, 𝑡), so we can determine the surface that is generated
by this family of curves (Figure 2).

Example 12. If

𝑊 = constant = 𝑎,

𝑈 = 0,

(26)

and assuming that 𝜏(𝑠, 𝑡) = 𝑘(𝑠, 𝑡), thenPDE system (22) takes
the form

𝜏
𝑡

= 𝑎𝑘
𝑠

− 𝜏
𝑠
𝑉 − 2𝜏𝑉

𝑠
,

𝜏
𝑡

= 𝑘𝑉
𝑠

+ (
1

𝑘
(−𝜏
2
𝑉 + 𝑎𝜏𝑘 + 𝑉

𝑠𝑠
))
,𝑠

.

(27)

One solution of this system is

𝜏 (𝑠, 𝑡) = 𝑘 (𝑠, 𝑡) = 𝑐
4
tanh (𝑐

1
𝑠 + 𝑐
2
𝑡 + 𝑐
3
) ,

𝑉 (𝑠, 𝑡) =
𝑎𝑐
1

− 𝑐
2

𝑐
1

,

(28)

where 𝑐
1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
are constants.

The curvature of the family of curves 𝐶
𝑡
as a function of

the coordinates 𝑠 and 𝑡 is plotted in Figure 3.
Substitute (26) and (28) into systems (6) and (16) and

solve them numerically. Then we can get the family of curves
𝐶
𝑡

= 𝛾(𝑠, 𝑡), so we can determine the surface that is generated
by this family of curves (Figure 4).
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Figure 1: The curvature of the family of curves 𝐶
𝑡
for 𝑠 ∈ [0, 5],

𝑡 ∈ [0, 8], 𝑎 = 0.5, 𝑐
1

= 1, 𝑐
2

= −0.001, and 𝑐
3

= 0.

t = 0

t = 4

t = 7

Figure 2: The surface that is generated by the motion of the family
of curves 𝐶

𝑡
for 𝑠 ∈ [0, 5], 𝑡 ∈ [0, 8], 𝑎 = 0.5, 𝑐

1
= 1, 𝑐
2

= −0.001, and
𝑐
3

= 0. The bold black curves in this surface represent the family of
curves 𝐶

𝑡
for 𝑡 = 0, 4, 7.
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k
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,
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Figure 3: The curvature of the family of curves 𝐶
𝑡
for 𝑠 ∈ [0, 5],

𝑡 ∈ [0, 3], 𝑎 = 0.6, 𝑐
1

= 1, 𝑐
2

= 0.01, 𝑐
3

= 0, and 𝑐
4

= 1.

t = 2

t = 1

t = 0

Figure 4: The surface that is generated by the motion of the family
of curves 𝐶

𝑡
for 𝑠 ∈ [0, 5], 𝑡 ∈ [0, 3], 𝑎 = 0.6, 𝑐

1
= 1, 𝑐
2

= 0.01, 𝑐
3

= 0,
and 𝑐
4

= 1.The bold black curves in this surface represent the family
of curves 𝐶

𝑡
for 𝑡 = 0, 1, 2.

Example 13. If

𝑊 = 𝑘 (𝑠, 𝑡) ,

𝑈 =
𝑘
𝑠

𝑘
,

𝑉 = 𝑏 = constant ̸= 0,

(29)

then the PDE system (22) takes the form

𝑘
𝑡

= (𝑘
2

− 𝜏
2
) (

𝑘
𝑠

𝑘
) + (

𝑘
𝑠

𝑘
)

𝑠𝑠

+ 𝑘𝑘
𝑠

− 𝑏𝜏
𝑠
,

𝜏
𝑡

= 𝑘𝜏
𝑘
𝑠

𝑘

+ (
1

𝑘
(−𝜏
2
𝑏 + 𝜏 (𝑘

2
+ 2 (

𝑘
𝑠

𝑘
)

𝑠

) +
𝜏
𝑠
𝑘
𝑠

𝑘
))

,𝑠

.

(30)

One solution of this system is

𝑘 (𝑠, 𝑡) = 𝜏 (𝑠, 𝑡) = −√2
𝑐
1

𝑏
sech(

𝑐
1

(−𝑠 + 𝑏𝑡) + 𝑏𝑐
2

𝑏
) , (31)

where 𝑐
1
and 𝑐
2
are constants.

The curvature of the family of curves 𝐶
𝑡
as a function of

the coordinates 𝑠 and 𝑡 is plotted in Figure 5.
Substitute (29) and (31) into systems (6) and (16) and solve

them numerically. Then we can get the family of curves 𝐶
𝑡

=

𝛾(𝑠, 𝑡), so we can determine the surface that is generated by
this family of curves (Figure 6).

5.1. Examples of Binormal Motion of Inextensible Curves.
Consider the binormal motion of inextensible curves in R3,
so 𝑊 = 𝑈 = 0. Then the evolution equation (9) takes the
form

̇𝑟 =
𝑑𝑟

𝑑𝑡
= 𝑉𝐵. (32)
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Figure 5: The curvature of the family of curves 𝐶
𝑡
for 𝑠 ∈ [0, 8],

𝑡 ∈ [0, 3], 𝑏 = 1.5, 𝑐
1

= 0.8, and 𝑐
2

= 0.5.

t = 2

t = 1

t = 2.9

t = 0

Figure 6: The surface that is generated by the motion of the family
of curves 𝐶

𝑡
for 𝑠 ∈ [0, 8], 𝑡 ∈ [0, 3], 𝑏 = 1.5, 𝑐

1
= 0.8, and 𝑐

2
= 0.5.

The bold black curves in this surface represent the family of curves
𝐶
𝑡
for 𝑡 = 0, 1, 2, 2.9.

Lemma 14. Consider the binormal motion of inextensible
curves inR3; then the time evolution of the Serret-Frenet frame
can be written in matrix form as follows:

𝐹
𝑡

= 𝑀 ⋅ 𝐹, (33)

where

𝐹 = (

𝑇

𝑁

𝐵

) ,

𝑀 = (

0 −𝜏𝑉 𝑉
𝑠

𝜏𝑉 0
1

𝑘
(−𝜏
2
𝑉 + 𝑉

𝑠𝑠
)

−𝑉
𝑠

−
1

𝑘
(−𝜏
2
𝑉 + 𝑉

𝑠𝑠
) 0

) .

(34)

The PDE system (22) takes the form

𝑘
𝑡

= −𝜏
𝑠
𝑉 − 2𝜏𝑉

𝑠
,

𝜏
𝑡

= 𝑘𝑉
𝑠

+ (
1

𝑘
(−𝜏
2
𝑉 + 𝑉

𝑠𝑠
))
,𝑠

.

(35)

Example 15. The famous example of binormal motion is the
motion of the vortex filament in R3, where the binormal
velocity equals the curvature of the curve 𝑉 = 𝑘, and the
evolution equation is

̇𝑟 =
𝑑𝑟

𝑑𝑡
= 𝑘𝐵. (36)

If 𝑉 = 𝑘, then the PDE system (35) takes the form

𝑘
𝑡

= −𝑘𝜏
𝑠

− 2𝜏𝑘
𝑠
,

𝜏
𝑡

= 𝑘𝑘
𝑠

+ (
1

𝑘
(−𝜏
2
𝑘 + 𝑘
𝑠𝑠

))
,𝑠

.

(37)

The solution of the PDE (37) is

𝑘 (𝑠, 𝑡) = −2𝑐
1
sech (𝑐

1
𝑠 + 𝑐
2
𝑡 + 𝑐
3
) ,

𝜏 (𝑠, 𝑡) = 𝜏
0

=
𝑎

2𝑐
1

(𝑎𝑐
1

− 𝑐
2
) ,

(38)

where 𝑐
1
, 𝑐
2
, and 𝑐

3
are constants.

The curvature of the family of curves 𝐶
𝑡
as a function of

the coordinates 𝑠 and 𝑡 is plotted in Figures 7 and 8.
Substitute (38) into (6), (33) for 𝑉 = 𝑘 and solve them

numerically. Then we can get the family of curves 𝛾(𝑠, 𝑡), so
we can determine the surface that is generated by this family
of curves. For 𝜏 = 𝜏

0
= −1/2 see (Figure 9), and for 𝜏 = 𝜏

0
= 0

see (Figure 10).

Example 16. If 𝑉 = constant = 𝑎, then (35) takes the form

𝑘
𝑡

= −𝑎𝜏
𝑠
,

𝜏
𝑡

= (
−𝑎𝜏
2

𝑘
)

,𝑠

.

(39)

The solution of the PDE system (39) is

𝑘 (𝑠, 𝑡) =
𝑎𝑐
1

𝑐
2

(𝑐
4

+ 𝑐
5
tanh (𝑐

1
𝑠 + 𝑐
2
𝑡 + 𝑐
3
)) ,

𝜏 (𝑠, 𝑡) = 𝑐
4

+ 𝑐
5
tanh (𝑐

1
𝑠 + 𝑐
2
𝑡 + 𝑐
3
) ,

(40)

where 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, and 𝑐

5
are constants.

The curvature of the family of curves 𝐶
𝑡
as a function of

the coordinates 𝑠 and 𝑡 is plotted in Figure 11.
Substitute (40) into (6), (33) and solve them numerically.

Then we can get the family of curves 𝛾(𝑠, 𝑡), so we can
determine the surface that is generated by this family of
curves (Figure 12).
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Figure 7: The curvature of the family of curves 𝐶
𝑡
for 𝑠 ∈ [0, 10],

𝑡 ∈ [0, 15], 𝑐
1

= 1, 𝑐
2

= −1, and 𝑐
3

= 0.

−5

0

5 0

2

4

6

s

t

2.0

1.5

1.0

0.5

0.0

k
(s
,
t)
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Figure 9: The surface that is generated by the motion of the family
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1
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𝑡
for 𝑡 = 0, 6.

t = 3

t = 5

t = 0

t = 1

Figure 10: The surface that is generated by the motion of the family
of curves 𝐶

𝑡
for 𝜏
0

= 0, 𝑠 ∈ [0, 5], 𝑡 ∈ [0, 6.3], 𝑐
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for 𝑡 = 0, 1, 3, 5.
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Figure 12: The surface that is generated by the motion of the family
of curves 𝐶

𝑡
for 𝑠 ∈ [0, 8], 𝑡 ∈ [0, 3], 𝑏 = 1.5, 𝑐
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2
= 0.5.

The bold black curves in this surface represent the family of curves
𝐶
𝑡
for 𝑡 = 0, 1, 2, 2.9.
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6. Geometric Properties of
the Generated Surfaces

Let Σ = 𝛾(𝑠, 𝑡) be the surface that is generated by the motion
of the family of curves 𝐶

𝑡
. In this section, we study some

geometric properties of these surfaces.

Lemma 17. The first fundamental form of the surface Σ =

𝛾(𝑠, 𝑡) in R3 is given by

𝐼 = 𝑔
11 (𝑑𝑠)

2
+ 2𝑔
12

𝑑𝑠 𝑑𝑡 + 𝑔
22 (𝑑𝑡)

2
, (41)

where 𝑔
11

, 𝑔
12

, 𝑔
22

are the first fundamental quantities and
they are given by

𝑔
11

= ⟨𝛾
𝑠
, 𝛾
𝑠
⟩ = 1,

𝑔
12

= ⟨𝛾
𝑠
, 𝛾
𝑡
⟩ = 𝑊

2
+ 𝑈
2

+ 𝑉
2
,

𝑔
22

= ⟨𝛾
𝑡
, 𝛾
𝑡
⟩ = 𝑊.

(42)

Lemma 18. The unit normal vector 𝑛(𝑠, 𝑡) to the surface Σ =

𝛾(𝑠, 𝑡) in R3 at a point 𝑝 = 𝛾(𝑠, 𝑡) on the surface is given by

𝑛 (𝑠, 𝑡) =
1

√𝑈2 + 𝑉2
(𝑈𝐵 − 𝑉𝑁) . (43)

Lemma 19. The second fundamental form of the surface Σ =

𝛾(𝑠, 𝑡) in R3 is given by

𝐼𝐼 = 𝐿
11

(𝑑𝑠)
2

+ 2𝐿
12

𝑑𝑠 𝑑𝑡 + 𝐿
22

(𝑑𝑡)
2

, (44)

where 𝐿
11

, 𝐿
12

, 𝐿
22

are the second fundamental quantities
and they are given by

𝐿
11

= ⟨𝛾
𝑠𝑠

, 𝑛⟩ =
−𝑘𝑉

√𝑈2 + 𝑉2
,

𝐿
12

= ⟨𝛾
𝑠𝑡

, 𝑛⟩ =
1

√𝑈2 + 𝑉2
(−𝑈𝑀

13
+ 𝑉𝑀

12
) ,

𝐿
22

= ⟨𝛾
𝑡𝑡

, 𝑛⟩ =
1

√𝑈2 + 𝑉2
(𝑈𝑉
𝑡

− 𝑈
𝑡
𝑉

+ 𝑊 (𝑈𝑀
13

− 𝑉𝑀
12

) + (𝑈
2

+ 𝑉
2
) 𝑀
23

) ,

(45)

where 𝑀
12
, 𝑀
13
, and 𝑀

23
are given from (18).

Lemma 20. For the surface Σ = 𝛾(𝑠, 𝑡) in R3, the Gaussian
and the Mean curvatures 𝐾 and 𝐻, respectively, are given by

𝐾 =
det 𝐼𝐼

det 𝐼
=

𝐿
11

𝐿
22

− 𝐿
2

12

𝑔
11

𝑔
22

− 𝑔
2

12

,

𝐻 =
1

2

𝐿
11

𝑔
22

+ 𝐿
22

𝑔
11

𝑔
11

𝑔
22

− 𝑔
2

12

.

(46)

Lemma 21. The Gaussian curvature 𝐾 and the Mean curva-
ture 𝐻 for the surface in (Figure 2) are given by

𝐾 (𝑠, 𝑡) =
−𝑘
𝑠𝑠

𝑘2
,

𝐻 (𝑠, 𝑡) =
1

2

𝑘
3

+ 𝑘𝜏
2

− 𝑘
𝑠𝑠

𝑘2
.

(47)

Lemma 22. The Gaussian curvature 𝐾 and the Mean curva-
ture 𝐻 for the surface in (Figure 4) are given by

𝐾 (𝑠, 𝑡) = 0,

𝐻 (𝑠, 𝑡) =
− (𝑐
2

− 𝑎𝑐
1
) 𝜏

𝑎𝑐
1

− 𝑐
2

.

(48)

Hence the surface in Figure 4 is developable surface.

Lemma 23. The Gaussian curvature 𝐾 and the Mean curva-
ture 𝐻 for the surface in (Figure 6) are given by

𝐾 (𝑠, 𝑡) =
−𝑘
𝑠𝑠

𝑘2
,

𝐻 (𝑠, 𝑡) =
1

2

𝑘
3

+ 𝑘𝜏
2

− 𝑘
𝑠𝑠

𝑘2
.

(49)

Lemma 24. The Gaussian curvature 𝐾 and the Mean curva-
ture 𝐻 for the surfaces in Figures 9 and 10 are given by

𝐾 (𝑠, 𝑡) = −
𝑘
𝑠𝑠

𝑘
,

𝐻 (𝑠, 𝑡) = −
1

2

𝑘
3

+ 𝑘𝜏
2

0
− 𝑘
𝑠𝑠

𝑘2
.

(50)

Lemma 25. The Gaussian curvature 𝐾 and the Mean curva-
ture 𝐻 for the surface in (Figure 12) are given by

𝐾 (𝑠, 𝑡) = 0,

𝐻 (𝑠, 𝑡) = −
1

2

𝑘
2

+ 𝑘𝜏
2

𝑘
.

(51)

Hence the surface in (Figure 12) is developable surface.

7. Conclusion

In this paper we studied the inextensible flows of curves
in R3. We constructed and plotted the surfaces that are
generated from themotion of inextensible curves inR3. Also,
we studied some geometric properties of those surfaces.
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