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We investigate the existence of solutions for a class of impulsive fractional evolution equations with nonlocal conditions in Banach
space by using some fixed point theorems combined with the technique of measure of noncompactness. Our results improve and
generalize some known results corresponding to those obtained by others. Finally, two applications are given to illustrate that our
results are valuable.

1. Introduction

Fractional differential equations arise in many engineering
and scientific disciplines as the mathematical modelling of
systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, and
polymer rheology and have been emerging as an important
area of investigation in the last few decades; see [1–4]. How-
ever, the theory of impulsive fractional evolution equations
was still in the initial stages and many aspects of this theory
need to be explored.

The theory of impulsive differential equations is a new
and important branch of differential equation theory, which
has an extensive physical, population dynamics, ecology,
chemical, biological systems, and engineering background.
Therefore, it has been an object of intensive investigation
in recent years; some basic results on impulsive differential
equations have been obtained and applications to different
areas have been considered by many authors; see [4–8].

The study of nonlocal Cauchy problem for abstract evolu-
tion differential equations has been initiated byByszewski [9].
The existence of solutions for fractional abstract differential
equations with nonlocal initial condition was recently inves-
tigated by N’Guérékata [10] and Balachandran and Park [11].
In [12], Balachandran et al. were concernedwith the existence

of solutions of first-order nonlinear impulsive fractional
integrodifferential equations in Banach spaces:

𝑐𝐷𝛼𝑡 𝑢 (𝑡) = 𝐴𝑢 (𝑡)
+ 𝑓(𝑡, 𝑢 (𝑡) , ∫𝑡

0

ℎ (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠) ,
𝑡 ∈ [0, 𝑇] ,

Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡−𝑘 )) , 𝑘 = 1, . . . , 𝑚,𝑢 (0) + 𝑔 (𝑢) = 𝑢0;

(1)

the results are obtained by using fixed point principles.
Shu andWang [4] studied the existence of mild solutions

for fractional differential equation with nonlocal conditions
in a Banach space 𝐸:

𝑐𝐷𝛼𝑡 𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡))
+ ∫𝑡
0

𝑞 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,
𝑡 ∈ [0, 𝑇] ,

𝑢 (0) + 𝑚 (𝑢) = 𝑢0 ∈ 𝐸,
𝑢󸀠 (0) + 𝑛 (𝑢) = 𝑢1 ∈ 𝐸.

(2)
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By using the contraction mapping principle and Krasnosel-
skii’s fixed point theorem, they obtained the existence of
solutions for the equation.

In [13], Gou and Li investigated local and global exis-
tence of mild solution for an impulsive fractional functional
integrodifferential equation with noncompact semigroup in
Banach spaces 𝐸:
𝑐𝐷𝛼𝑡 𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡))

+ ∫𝑡
0

𝑞 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,
𝑡 ≥ 0, 𝑡 ̸= 𝑡𝑘,

Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡−𝑘 )) , 𝑘 = 1, . . . , 𝑚,
𝑢 (0) = 𝑢0 ∈ 𝐸,

(3)

and they establish a general framework to find the mild
solutions for impulsive fractional integrodifferential equa-
tions, which will provide an effective way to deal with such
problems.

Motivated by this consideration, we investigate the exis-
tence of solutions for a class of impulsive fractional evolution
equations with nonlocal conditions in Banach space 𝐸:
𝑐𝐷𝛼𝑡 𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , (𝐹𝑢) (𝑡) , (𝐺𝑢) (𝑡)) ,

𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡𝑘,
Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡−𝑘 )) , 𝑘 = 1, 2, . . . , 𝑚,
𝑢 (0) = 𝑔 (𝑢) + 𝑢0,

(4)

by using some fixed point theorems combined with the
technique of measure of noncompactness, where 𝑐𝐷𝛼𝑡 is the
Caputo fractional derivative of order 𝛼 ∈ (1, 2], 𝐴 : 𝐷(𝐴) ⊂𝐸 → 𝐸 is a closed linear operator, and −𝐴 generates a 𝐶0-
semigroup 𝑇(𝑡) (𝑡 ≥ 0) in 𝐸; 𝑓 : 𝐽×𝐸×𝐸×𝐸 → 𝐸, 𝐽 = [0, 𝑎],
where 𝑎 > 0 is a constant, 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑚 < 𝑡𝑚+1 =𝑎; 𝐼𝑘 : 𝐸 → 𝐸 is an impulsive function, and 𝑘 = 1, 2, . . . , 𝑚;
and 𝑥0 ∈ 𝐸, 𝑝1, 𝑝2 is an 𝐸-valued function to be given later
and

(𝐹𝑢) (𝑡) = ∫𝑡
0

𝑘 (𝑡, 𝑠) 𝑝1 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑘 ∈ 𝐶 (𝐷, 𝑅+) ,
(𝐺𝑢) (𝑡) = ∫𝑎

0

ℎ (𝑡, 𝑠) 𝑝2 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, ℎ ∈ 𝐶 (𝐷0, 𝑅+) ,
(5)

𝐷 = {(𝑡, 𝑠) ∈ 𝑅2 : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑎}, 𝐷0 = {(𝑡, 𝑠) ∈ 𝑅2 : 0 ≤𝑡, 𝑠 ≤ 𝑎}, 𝑝𝑖 ∈ 𝐶(𝐽 × 𝐸, 𝐸), 𝑖 = 1, 2, and Δ𝑢|𝑡=𝑡𝑘 denotes the
jump of 𝑢(𝑡) at 𝑡 = 𝑡𝑘; that is, Δ𝑢|𝑡=𝑡𝑘 = 𝑢(𝑡+𝑘 ) − 𝑢(𝑡−𝑘 ), 𝑢(𝑡+𝑘 )
and 𝑢(𝑡−𝑘 ) represent the right and left limits of 𝑢(𝑡) at 𝑡 = 𝑡𝑘,
respectively.

The paper is organized as follows. In Section 2, we recall
some concepts and facts about the Kuratowski measure of
noncompactness and some fixed point theorems. In Sec-
tion 3, we obtain the existence solutions of problem (4). In
Section 4, we give two examples to illustrate our results.

2. Preliminaries

In this section, we briefly recall some definitions and the fixed
point theorems which will be used in the sequel. Throughout
this paper, let 𝐸 be a Banach space; we assume that 𝐴 :𝐷(𝐴) ⊂ 𝐸 → 𝐸 is a closed linear operator and −𝐴
generates a uniformly bounded𝐶0-semigroup𝑇(𝑡) (𝑡 > 0) on
a Banach space (𝐸, ‖ ⋅‖) and𝑀 = sup𝑡∈[0,+∞)‖𝑇(𝑡)‖𝐵(𝐸), where𝐵(𝐸) stands for the Banach space of all linear and bounded
operators in 𝐸.𝐶(𝐽, 𝐸) denote the Banach space of all continuous E-value
functions on interval 𝐽 and 𝑃𝐶(𝐽, 𝐸) = {𝑢 : 𝐽 → 𝐸 :𝑢 ∈ 𝐶((𝑡𝑘−1, 𝑡𝑘], 𝐸), 𝑘 = 1, 2, . . . , 𝑚, and there exist 𝑢(𝑡−𝑘 ) and𝑢(𝑡+𝑘 ), 𝑘 = 1, 2, . . . , 𝑚 with 𝑢(𝑡−𝑘 ) = 𝑢(𝑡𝑘)}. Obviously,𝑃𝐶(𝐽, 𝐸)
is a Banach space with the supnorm ‖𝑢‖ = sup𝑡∈𝐽‖𝑢(𝑡)‖.
Definition 1. The fractional integral of order 𝛼 > 0 with the
lower limit zero for a function 𝑢 is defined as

𝐼𝛼𝑡 𝑢 (𝑡) = 1Γ (𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1 𝑢 (𝑠) 𝑑𝑠, 𝑡 > 0, (6)

where Γ(⋅) is the Gamma function.

Definition 2. The Caputo fractional derivative of order 𝛼 > 0
with the lower limit zero for a function 𝑢 is defined as

𝑐𝐷𝛼𝑡 𝑢 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝑛−𝛼−1 𝑢(𝑛) (𝑠) 𝑑𝑠,
𝑡 > 0, 0 ≤ 𝑛 − 1 < 𝛼 < 𝑛,

(7)

where the function 𝑢(𝑡) has absolutely continuous derivatives
up to order 𝑛 − 1.
Remark 3. If 𝑢 is an abstract function with values in 𝐸, then
the integrals which appear in Definitions 1 and 2 are taken in
Bochner’s sense.

Definition 4. By a mild solution of the initial value problem

𝑐𝐷𝛼𝑡 𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ≥ 0,
𝑢 (0) = 𝑢0, (8)

on [0,∞), we mean that a continuous function 𝑢 defined
from [0,∞) into 𝐸 satisfying
𝑢 (𝑡) = T𝛼 (𝑡) 𝑢0

+ ∫𝑡
0

(𝑡 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,
𝑡 ∈ [0,∞) ,

(9)
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where

T𝛼 (𝑡) = ∫∞
0

𝜃𝛼 (𝑠) 𝑇 (𝑡𝛼𝑠) 𝑑𝑠,
S𝛼 (𝑡) = 𝛼∫∞

0

𝑠𝜃𝛼 (𝑠) 𝑇 (𝑡𝛼𝑠) 𝑑𝑠,
𝜃𝛼 (𝑠) = 1𝜋𝛼

∞∑
𝑛=1

(−𝑠)𝑛−1 Γ (𝑛𝛼 + 1)𝑛! sin (𝑛𝜋𝛼) ,
𝑠 ∈ (0,∞)

(10)

are the functions of Wright type defined on (0,∞) which
satisfies

∫∞
0

𝜃𝛼 (𝑠) 𝑑𝑠 = 1, 𝜃𝛼 (𝑠) ≥ 0, 𝑠 ∈ (0,∞) ,
∫∞
0

𝑠V𝜃𝛼 (𝑠) 𝑑𝑠 = Γ (1 + V)Γ (1 + 𝛼V) , V ∈ [0, 1] .
(11)

The following lemma can be found in [14, 15].

Lemma 5. The operators T𝛼(𝑡) and S𝛼(𝑡) (𝑡 ≥ 0) have the
following properties:

(i) For any fixed 𝑡 ≥ 0,T𝛼(𝑡) and S𝛼(𝑡) are linear and
bounded operators; that is, for any 𝑢 ∈ 𝐸,
󵄩󵄩󵄩󵄩T𝛼 (𝑡) 𝑢󵄩󵄩󵄩󵄩 ≤ 𝑀‖𝑢‖ ,
󵄩󵄩󵄩󵄩S𝛼 (𝑡) 𝑢󵄩󵄩󵄩󵄩 ≤ 𝛼𝑀Γ (𝛼 + 1) ‖𝑢‖ = 𝑀Γ (𝛼) ‖𝑢‖ .

(12)

(ii) For every 𝑢 ∈ 𝐸, 𝑡 → T𝛼(𝑡)𝑢 and 𝑡 → S𝛼(𝑡)𝑢 are
continuous functions from [0,∞) into 𝐸.

(iii) The operators T𝛼(𝑡) (𝑡 ≥ 0) and S𝛼(𝑡) (𝑡 ≥ 0) are
strongly continuous, which means that, for ∀𝑢 ∈ 𝐸 and0 ≤ 𝑡󸀠 < 𝑡󸀠󸀠 ≤ 𝑎, one has󵄩󵄩󵄩󵄩󵄩T𝛼 (𝑡󸀠󸀠) 𝑢 −T𝛼 (𝑡󸀠) 𝑢󵄩󵄩󵄩󵄩󵄩 󳨀→ 0,󵄩󵄩󵄩󵄩󵄩S𝛼 (𝑡󸀠󸀠) 𝑢 −S𝛼 (𝑡󸀠) 𝑢󵄩󵄩󵄩󵄩󵄩 󳨀→ 0,

as 𝑡󸀠󸀠 − 𝑡󸀠 󳨀→ 0.
(13)

(iv) If the semigroup 𝑇(𝑡) is continuous by operator norm
for every 𝑡 > 0, then T𝛼(𝑡) and S𝛼(𝑡) are continuous
in (0, +∞) by the operator norm.

Let 𝛽(⋅) denote the Kuratowski measure of noncompact-
ness of the bounded set. For the details of the definition and
properties of the measure of noncompactness, see [6].

The following lemmas are to be used in proving our main
results.

Lemma 6 (see [16]). Let 𝐸 be a Banach space, and let𝐷 ⊂ 𝐶(𝐽, 𝐸) be equicontinuous and bounded; then 𝛽(𝐷(𝑡)) is
continuous on 𝐽, and 𝛽(𝐷) = max𝑡∈𝐽𝛽(𝐷(𝑡)).
Lemma 7 (see [7]). Let 𝐷 ⊂ 𝐸 be bounded. Then there exists
a countable set𝐷0 ⊂ 𝐷, such that 𝛽(𝐷) ≤ 2𝛽(𝐷0).

Lemma 8 (see [17]). Let 𝐸 be a Banach space, and let 𝐷 ={𝑢𝑛} ⊂ 𝐶(𝐼, 𝑋) be a bounded and countable set. Then 𝛽(𝐷(𝑡))
is the Lebesgue integral on 𝑋, and

𝛽({∫
𝐼

𝑢𝑛 (𝑡) 𝑑𝑡 | 𝑛 ∈ N}) ≤ 2∫
𝐼

𝛽 (𝐷 (𝑡)) 𝑑𝑡. (14)

In the following, we introduce the definition of (𝛾, 𝜓, 𝑝)-
contractive mapping.

Definition 9 (see [18]). Let (𝐸, 𝑑) be a metric space with 𝑤
distance 𝑝 and 𝑓 : 𝐸 → 𝐸 a given mapping. We say that 𝑓 is
an (𝛾, 𝜓, 𝑝)-contractive mapping if there exist two functions𝛾 : 𝐸 × 𝐸 → [0,∞) and 𝜓 ∈ Ψ such that

𝛾 (𝑥, 𝑦) 𝑝 (𝑓𝑥, 𝑓𝑦) ≤ 𝜓 (𝑝 (𝑥, 𝑦)) (15)

for all 𝑥, 𝑦 ∈ 𝐸.
We will show some fixed point theorems about condens-

ing operator and (𝛾, 𝜓, 𝑝)-contractive mapping, which play a
key role in the proof of our main results.

Lemma 10 (see [19]). Let 𝐸 be a Banach space. Assume that𝐷 ⊂ 𝐸 is a bounded closed and convex set on 𝐸, 𝑄 : 𝐷 → 𝐷 is
condensing. Then 𝑄 has at least one fixed point in𝐷.
Lemma 11 (see [18]). Let 𝑝 be a 𝑤 distance on a complete
metric space (𝐸, 𝑑) and let 𝑓 : 𝐸 → 𝐸 be an (𝛾, 𝜓, 𝑝)-
contractive mapping. Suppose that the following conditions
hold:

(i) 𝑓 is an 𝛾-admissible mapping;

(ii) there exists a point 𝑥0 ∈ 𝐸 such that 𝛾(𝑥0, 𝑓𝑥0) ≥ 1;
(iii) either 𝑓 is continuous or, for any sequence {𝑥𝑛} in 𝐸,

if 𝛾(𝑥𝑛, 𝑥𝑛+1) ≥ 1 for all 𝑛 ∈ N and 𝑥𝑛 → 𝑥 ∈ 𝐸 as𝑛 → ∞, then 𝛾(𝑥𝑛, 𝑥) ≥ 1 for all 𝑛 ∈ N. Then there
exists a point 𝑢 ∈ 𝐸 such that 𝑓𝑢 = 𝑢. Moreover, if𝛾(𝑢, 𝑢) ≥ 1, then 𝑝(𝑢, 𝑢) = 0.

3. Main Results

In this section, we will establish the existence theorems of
solutions for the nonlocal problem (4). For convenience, we
give some notations.

For 𝐵 ⊂ 𝐶(𝐽, 𝐸), let 𝐵(𝑡) = {𝑢(𝑡) : 𝑢 ∈ 𝐵} and denote𝐵𝑅 = {𝑢 ∈ 𝐸 : ‖𝑢‖ ≤ 𝑅}. Let 𝑘0 = max{𝑘(𝑡, 𝑠) : (𝑡, 𝑠) ∈ 𝐷},ℎ0 = max{ℎ(𝑡, 𝑠) : (𝑡, 𝑠) ∈ 𝐷0}. First of all, let us start by
defining what we mean by a solution of problem (4).

Definition 12. A function 𝑢 ∈ 𝑃𝐶(𝐽, 𝐸) is said to be a mild
solution of problem (4) if 𝑢 satisfies the equation
𝑢 (𝑡) = T𝛼 (𝑡) (𝑔 (𝑢) + 𝑢0) + ∑

0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1

⋅S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
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+ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢)
⋅ (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑢 (𝑡−𝑘 )) .
(16)

To prove our main results, we state the following basic
assumptions of this paper.

(H1) There exists a positive constant 𝐾𝑖, (𝑖 = 1, 2, 3) such
that
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢 (𝑡) , (𝐹𝑢) (𝑡) , (𝐺𝑢) (𝑡))
− 𝑓 (𝑡, V (𝑡) , (𝐹V) (𝑡) , (𝐺V) (𝑡))󵄩󵄩󵄩󵄩 ≤ 𝐾1 ‖𝑢 − V‖
+ 𝐾2 ‖𝐹𝑢 − 𝐹V‖ + 𝐾3 ‖𝐺𝑢 − 𝐺V‖

(17)

and for 𝑝𝑖 ∈ 𝐶(𝐽 × 𝐸, 𝐸), 𝑡 ∈ 𝐽, 𝑢, V ∈ 𝐵𝑅, there exists
a constant 𝑏𝑖, 𝑐𝑖 > 0 such that

󵄩󵄩󵄩󵄩𝑝𝑖 (𝑡, 𝑢) − 𝑝𝑖 (𝑡, V)󵄩󵄩󵄩󵄩 ≤ 𝑏𝑖 ‖𝑢 − V‖ ,󵄩󵄩󵄩󵄩𝑝𝑖 (𝑡, 𝑢)󵄩󵄩󵄩󵄩 ≤ 𝑐𝑖 ‖𝑢‖ ,
𝑖 = 1, 2.

(18)

(H2) For any 𝑅 > 0, there exist a Lebesgue-integrable
function 𝑀𝑅 : 𝐼 → 𝑅+ and nondecreasing
continuous functionΩ : [0,∞) → (0,∞) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥, 𝑦, 𝑧)󵄩󵄩󵄩󵄩 ≤ 𝑀𝑅 (𝑡) Ω (𝑅) (19)

for all 𝑡 ∈ 𝐼, (𝑥, 𝑦, 𝑧) ∈ 𝐵𝑅 × 𝐵𝑅 × 𝐵𝑅.
(H3) 𝑔 : 𝐸 → 𝐸 is a continuous and compact mapping;

furthermore, there exists positive number 𝑁1, 𝑁2
such that ‖𝑔(𝑢) − 𝑔(V)‖ ≤ 𝑁1 and ‖𝑔(𝑢)‖ ≤ 𝑁2 for
any 𝑢, V ∈ 𝐵𝑅.

(H4) The functions 𝐼𝑘 : 𝐸 → 𝐸 are continuous and there
exists a constant 𝜇 > 0 and 𝜌 > 0 such that

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑡, 𝑢) − 𝐼𝑘 (𝑡, V)󵄩󵄩󵄩󵄩 ≤ 𝜇 ‖𝑢 − V‖ ,󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢)󵄩󵄩󵄩󵄩 ≤ 𝜌 ‖𝑢‖ ,
∀𝑢, V ∈ 𝐵𝑅, 𝑘 = 1, 2, . . . , 𝑚.

(20)

(H5) There exist constants 𝐿 𝑖 > 0, (𝑖 = 1, 2, 3) such
that for any bounded and equicontinuous sets 𝐷𝑖 ⊂𝐶(𝐽, 𝐸), (𝑖 = 1, 2, 3) and 𝑡 ∈ 𝐽,

𝛽 (𝑓 (𝑡, 𝐷1, 𝐷2, 𝐷3)) ≤ 3∑
𝑖=1

𝐿 𝑖𝛽 (𝐷𝑖) ,
𝛽 (𝑘 (𝑡, 𝑠) 𝑝1 (𝑠, 𝐷4)) ≤ 𝐿4𝛽 (𝐷4) ,
𝛽 (ℎ (𝑡, 𝑠) 𝑝2 (𝑠, 𝐷5)) ≤ 𝐿5𝛽 (𝐷5) .

(21)

Lemma 13 (see [13]). Let 𝑓, 𝑔 : 𝐽 × 𝐸 → 𝐸 be a continuous
function and let −𝐴 be the generator of a 𝐶0-semigroup(𝑇(𝑡)) (𝑡 ≥ 0). If 𝑢 ∈ 𝑃𝐶(𝐽, 𝐸) is a mild solution of (4) in the
sense of Definition 12, then for any 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], 𝑘 = 1, . . . , 𝑚,
𝑢 (𝑡) = T𝛼 (𝑡) (𝑔 (𝑢) + 𝑢0) + ∑

0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1

⋅S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
+ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢)
⋅ (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑢 (𝑡−𝑘 ))

(22)

is a solution of (4). In other words 𝑢(𝑡) is a mild solution of (4).

Theorem 14. Let 𝐸 be a Banach space, let 𝐴 : 𝐷(𝐴) ⊂ 𝐸 → 𝐸
be a closed linear operator, and−𝐴 generates an equicontinuous𝐶0-semigroup 𝑇(𝑡) (𝑡 ≥ 0) of uniformly bounded operators in𝐸. Suppose that the conditions (H1)–(H5) are satisfied.Then for
every 𝑢0 ∈ 𝑃𝐶(𝐽, 𝐸) there exists a 𝜏1 = 𝜏1(𝑢0), 0 < 𝜏1 < 𝑎 such
that problem (4) has a solution 𝑢 ∈ 𝑃𝐶([0, 𝜏1], 𝐸).
Proof. Since we are interested here only in local solutions, we
may assume that 𝑎 < ∞. By using our assumption (H1)–(H4),
let 𝑡󸀠 > 0, 𝑅 = 𝑀(2‖𝑢0‖ + 1) > 0 be such that 𝐵𝑅(𝑢0) = {𝑢 :‖𝑢−𝑢0‖ ≤ 𝑅}, for 0 ≤ 𝑡 ≤ 𝑡󸀠 and 𝑢 ∈ 𝐵𝑅(𝑢0), and let us choose

𝜏1 = min{𝑡󸀠, 𝑎,

[ Γ (𝛼 + 1) (󵄩󵄩󵄩󵄩𝑥0󵄩󵄩󵄩󵄩 + 1 − 𝑁2 − 𝑚𝜌1)(𝑚 + 1) 󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑀(2 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 + 1))]
1/𝛼 ,

[ Γ (𝛼 + 1)2𝑀 (𝑚 + 1) (𝐿1 + 𝑎𝑘0𝐿2𝐿4 + 𝑎ℎ0𝐿3𝐿5)]
1/𝛼} .

(23)

Set Ω = {𝑢 ∈ 𝑃𝐶([0, 𝜏1], 𝐸) : ‖𝑢(𝑡)‖ ≤ 𝑅, 𝑡 ∈ [0, 𝜏1]}; thenΩ is a closed ball in 𝑃𝐶([0, 𝜏1], 𝐸) with center 𝜃 and radius 𝑅.
Consider the operator 𝑄 : Ω → 𝑃𝐶([0, 𝜏1], 𝐸) defined by

(𝑄𝑢) (𝑡) = T𝛼 (𝑡) (𝑔 (𝑢) + 𝑢0) + ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1

⋅S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
+ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢)
⋅ (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑢 (𝑡−𝑘 )) .

(24)

It is easy to see that the fixed points of 𝑄 are the solutions of
the nonlocal problem (4); we shall prove that 𝑄 has a fixed
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point by using Lemma 10. For any 𝑢 ∈ Ω and 𝑡 ∈ [0, 𝜏1], by
Lemma 5(i), we have

‖(𝐹𝑢) (𝑠)‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑝1 (𝑠, 𝑢 (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝑘0 ∫𝑎

0

󵄩󵄩󵄩󵄩𝑝1 (𝑠, 𝑢 (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠 ≤ 𝑅𝑐1𝑘0 ≤ 𝑅,
(25)

where 𝑐1 = (𝑘0)−1. So 𝑇𝑥 ∈ Ω. Similarly, we prove 𝐺𝑢 ∈ Ω.
And by (19), we have

‖(𝑄𝑢) (𝑡)‖
≤ 󵄩󵄩󵄩󵄩T𝛼 (𝑡) (𝑔 (𝑢) + 𝑢0)󵄩󵄩󵄩󵄩
+ 𝑀󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅)Γ (𝛼) ∑

0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1 𝑑𝑠

+ 𝑀󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅)Γ (𝛼) ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1 𝑑𝑠
+𝑀 ∑
0<𝑡𝑘<𝑡

𝐼𝑘 (𝑢 (𝑡−𝑘 ))

≤ 𝑀(𝑁2 + 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩) + 𝑀
󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅) (𝑚 + 1) 𝜏𝛼1Γ (𝛼 + 1)

+𝑀𝑚𝜌 ≤ 𝑅.

(26)

Therefore, 𝑄𝑢 ∈ Ω. Now we show that 𝑄 is continuous
from Ω into Ω. To show this, we first observe that since 𝑓
is continuous in [0, 𝑎] × 𝐸, it follows that for any 𝜖 > 0 and
for a fixed 𝑢 ∈ 𝐵𝑅(𝑢0) there exists 𝛿1(𝑢), 𝛿2(𝑢) > 0 such that
for any V ∈ 𝐵𝑅(𝑢0) and let 𝛿(𝑢) = min{𝛿1(𝑢), 𝛿2(𝑢)}. Then for
any V ∈ Ω, ‖𝑢 − V‖ < 𝛿(𝑢) and choose

(𝑀(𝑚 + 1) (𝐾1 + 𝐾2𝑎𝑘0𝑏1 + 𝐾3𝑎ℎ0𝑏2) 𝜏𝛼1Γ (𝛼 + 1)
+𝑀(𝑚𝜇 + 𝑁1)) < 𝜖𝛿 (𝑢) .

(27)

Then we have

‖(𝑄𝑢) (𝑡) − (𝑄V) (𝑡)‖ ≤ T𝛼 (𝑡) 󵄩󵄩󵄩󵄩(𝑔 (𝑢) − 𝑔 (V))󵄩󵄩󵄩󵄩
+ ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1 󵄩󵄩󵄩󵄩S𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠))
− 𝑓 (𝑠, V (𝑠) , (𝐹V) (𝑠) , (𝐺V) (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠 + ∫𝑡

𝑡𝑘

(𝑡
− 𝑠)𝛼−1 󵄩󵄩󵄩󵄩S𝛼 (𝑡 − 𝑠)󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠))

− 𝑓 (𝑠, V (𝑠) , (𝐹V) (𝑠) , (𝐺V) (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠
+ ∑
0<𝑡𝑘<𝑡

󵄩󵄩󵄩󵄩T𝛼 (𝑡 − 𝑡𝑘)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢 (𝑡−𝑘 )) − 𝐼𝑘 (V (𝑡−𝑘 ))󵄩󵄩󵄩󵄩
≤ (𝑀(𝑚 + 1) (𝐾1 + 𝐾2𝑎𝑘0𝑏1 + 𝐾3𝑎ℎ0𝑏2) 𝜏𝛼1Γ (𝛼 + 1)
+𝑀(𝑚𝜇 + 𝑁1)) ‖𝑢 − V‖ ≤ 𝜖.

(28)

Thus, we proved that 𝑄 : Ω → Ω is a continuous operator.
Now, we demonstrate that the operator 𝑄 : Ω → Ω is

equicontinuous. For any 𝑢 ∈ Ω and 0 ≤ 𝑡1 < 𝑡2 ≤ 𝜏1, we get
that

󵄩󵄩󵄩󵄩(𝑄𝑢) (𝑡2) − (𝑄𝑢) (𝑡1)󵄩󵄩󵄩󵄩 = T𝛼 (𝑡2) (𝑔 (𝑢) + 𝑢0)
−T𝛼 (𝑡1) (𝑔 (𝑢) + 𝑢0)
+ ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1 (S𝛼 (𝑡2 − 𝑠) −S𝛼 (𝑡1 − 𝑠))

× 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠 + ∫𝑡2
𝑡1

(𝑡2
− 𝑠)𝛼−1S𝛼 (𝑡2 − 𝑠)
⋅ 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
+ ∫𝑡1
𝑡𝑘

((𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1)S𝛼 (𝑡2 − 𝑠)
⋅ 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠 + ∫𝑡1

𝑡𝑘

(𝑡1
− 𝑠)𝛼−1 (S𝛼 (𝑡2 − 𝑠) −S𝛼 (𝑡1 − 𝑠))
⋅ 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
+ ∑
0<𝑡𝑘<𝑡

(T𝛼 (𝑡2 − 𝑡𝑘) −T𝛼 (𝑡1 − 𝑡𝑘)) × 𝐼𝑘 (𝑢 (𝑡−𝑘 ))
= 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5 + 𝐼6,

(29)

where

𝐼1 = T𝛼 (𝑡2) (𝑔 (𝑢) + 𝑢0) −T𝛼 (𝑡1) (𝑔 (𝑢) + 𝑢0) ,
𝐼2 = ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1 (S𝛼 (𝑡2 − 𝑠) −S𝛼 (𝑡1 − 𝑠))
× 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠,

𝐼3 = ∫𝑡2
𝑡1

(𝑡2 − 𝑠)𝛼−1S𝛼 (𝑡2 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢)
⋅ (𝑠)) 𝑑𝑠,
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𝐼4 = ∫𝑡1
𝑡𝑘

((𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1)S𝛼 (𝑡2 − 𝑠)
⋅ 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠,

𝐼5 = ∫𝑡1
𝑡𝑘

(𝑡1 − 𝑠)𝛼−1 (S𝛼 (𝑡2 − 𝑠) −S𝛼 (𝑡1 − 𝑠))
⋅ 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠,

𝐼6 = ∑
0<𝑡𝑘<𝑡

(T𝛼 (𝑡2 − 𝑡𝑘) −T𝛼 (𝑡1 − 𝑡𝑘)) × 𝐼𝑘 (𝑢 (𝑡−𝑘 )) .
(30)

Here we calculate

󵄩󵄩󵄩󵄩(𝑄𝑢) (𝑡2) − (𝑄𝑢) (𝑡1)󵄩󵄩󵄩󵄩 ≤
6∑
𝑖=1

󵄩󵄩󵄩󵄩𝐼𝑖󵄩󵄩󵄩󵄩 . (31)

Therefore, we inspect that ‖𝐼𝑖‖ tend to 0, when 𝑡2 − 𝑡1 → 0,𝑖 = 1, 2, . . . , 6.
For 𝐼1, by Lemma 5(iii), ‖𝐼1‖ → 0 as 𝑡2 − 𝑡1 → 0.
For 𝐼2, by Lemma 5(iii), we have

󵄩󵄩󵄩󵄩𝐼2󵄩󵄩󵄩󵄩
≤ ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1 󵄩󵄩󵄩󵄩S𝛼 (𝑡2 − 𝑠) −S𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅) 𝑑𝑠 󳨀→ 0, 𝑡2 − 𝑡1 󳨀→ 0.

(32)

For 𝐼3, by Lemma 5(i), we have

󵄩󵄩󵄩󵄩𝐼3󵄩󵄩󵄩󵄩 ≤ 𝑀
󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅)Γ (𝛼) ∫𝑡2

𝑡1

(𝑡2 − 𝑠)𝛼−1 𝑑𝑠
≤ 𝑀󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅)Γ (𝛼 + 1) (𝑡2 − 𝑡1)𝛼 󳨀→ 0,

𝑡2 − 𝑡1 󳨀→ 0.
(33)

For 𝐼4, by Lemma 5(i), we have

󵄩󵄩󵄩󵄩𝐼4󵄩󵄩󵄩󵄩 ≤ 𝑀
󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅)Γ (𝛼)

⋅ ∫𝑡1
𝑡𝑘

((𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1) 𝑑𝑠

≤ 𝑀󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅)Γ (𝛼 + 1) ((𝑡1 − 𝑡2)𝛼 − (𝑡𝑘 − 𝑡2)𝛼
+ (𝑡𝑘 − 𝑡1)𝛼) 󳨀→ 0, 𝑡2 − 𝑡1 󳨀→ 0.

(34)

For 𝐼5, by Lemma 5(iii), we have

󵄩󵄩󵄩󵄩𝐼5󵄩󵄩󵄩󵄩 ≤ ∫𝑡1
𝑡𝑘

(𝑡1 − 𝑠)𝛼−1 󵄩󵄩󵄩󵄩S𝛼 (𝑡2 − 𝑠) −S𝛼 (𝑡1 − 𝑠)󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑀𝑅󵄩󵄩󵄩󵄩Ω (𝑅) 𝑑𝑠 󳨀→ 0, 𝑡2 − 𝑡1 󳨀→ 0.

(35)

For 𝐼6, by Lemma 5(iii), we have
󵄩󵄩󵄩󵄩𝐼6󵄩󵄩󵄩󵄩 ≤ 𝑚𝜌 󵄩󵄩󵄩󵄩T𝛼 (𝑡2 − 𝑡𝑘) −T𝛼 (𝑡1 − 𝑡𝑘)󵄩󵄩󵄩󵄩 󳨀→ 0,

𝑡2 − 𝑡1 󳨀→ 0. (36)

In conclusion, ‖(𝑄𝑢)(𝑡2)− (𝑄𝑢)(𝑡1)‖ tends to 0 as 𝑡2 − 𝑡1 → 0,
which implies that 𝑄(Ω) is equicontinuous.

Let 𝐵 = co𝑄(Ω). Then it is easy to verify that 𝑄 maps 𝐵
into itself and𝐵 ⊂ 𝑃𝐶(𝐽, 𝐸) is equicontinuous. Now, we prove
that 𝑄 : 𝐵 → 𝐵 is a condensing operator. For any 𝐷 ⊂ 𝐵, by
Lemma 7, there exists a countable set 𝐷0 = {𝑢𝑛} ⊂ 𝐷, such
that

𝛽 (𝑄 (𝐷)) ≤ 2𝛽 (𝑄 (𝐷0)) . (37)

By the equicontinuity of 𝐵, we know that 𝐷0 ⊂ 𝐵 is also
equicontinuous.

By the fact that

∫𝑎
0

𝑢 (𝑠) 𝑑𝑠 ∈ 𝑎co {𝑢 (𝑠) | 𝑠 ∈ 𝐽} , 𝑢 ∈ 𝐶 (𝐽, 𝐸) , (38)

we have

𝛽({∫𝑡
0

𝑘 (𝑡, 𝑠) 𝑝1 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 | 𝑢 ∈ 𝐵, 𝑡 ∈ 𝐽})
≤ 𝑎𝑘0𝐿4𝛽 ({𝑢 (𝑡) | 𝑢 ∈ 𝐵, 𝑡 ∈ 𝐽}) ,

𝛽 ({∫𝑡
0

ℎ (𝑡, 𝑠) 𝑝2 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 | 𝑢 ∈ 𝐵, 𝑡 ∈ 𝐽})
≤ 𝑎ℎ0𝐿5𝛽 ({𝑢 (𝑡) | 𝑢 ∈ 𝐵, 𝑡 ∈ 𝐽}) .

(39)

Thus, by (H1), (H2), (39), and Lemma 13, we have

𝛽 (𝑄 (𝐷0) (𝑡)) = 𝛽({T𝛼 (𝑡) (𝑔 (𝑢𝑛) + 𝑢0) + ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢𝑛 (𝑠) , (𝐹𝑢𝑛) (𝑠) , (𝐺𝑢𝑛) (𝑠)) 𝑑𝑠

+ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢𝑛 (𝑠) , (𝐹𝑢𝑛) (𝑠) , (𝐺𝑢𝑛) (𝑠)) 𝑑𝑠 + ∑
0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑢𝑛 (𝑡−𝑘 ))}) ≤ 2𝑀 (𝑚 + 1)Γ (𝛼) ∫𝑡
0

(𝑡

− 𝑠)𝛼−1 𝛼 (S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢𝑛 (𝑠) , (𝐹𝑢𝑛) (𝑠) , (𝐺𝑢𝑛) (𝑠))) 𝑑𝑠 ≤ 2𝑀 (𝑚 + 1) (𝐿1 + 𝑎𝑘0𝐿2𝐿4 + 𝑎ℎ0𝐿3𝐿5) 𝜏
𝛼
1Γ (𝛼 + 1) 𝛽 (𝐷) .

(40)
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Since 𝑄(𝐷0) ⊂ 𝐵 is bounded and equicontinuous, we know
from Lemma 6 that

𝛽 (𝑄 (𝐷0)) = max
𝑡∈𝐼
𝛽 (𝑄 (𝐷0) (𝑡)) . (41)

Therefore, from (37), (40), and (41), we know that

𝛽 (𝑄 (𝐷))
≤ 2𝑀 (𝑚 + 1) (𝐿1 + 𝑎𝑘0𝐿2𝐿4 + 𝑎ℎ0𝐿3𝐿5) 𝜏𝛼1Γ (𝛼 + 1)
⋅ 𝛽 (𝐷) ≤ 𝛽 (𝐷) .

(42)

Thus, 𝑄 : 𝐵 → 𝐵 is a condensing operator. It follows from
Lemma 10 that𝑄 has at least one fixed point 𝑢(𝑡0) ∈ 𝐵, which
is just a solution of problem (4) on the interval [0, 𝜏1]. This
completes the proof.

Corollary 15. Let 𝐸 be a Banach space.𝐴 : 𝐷(𝐴) ⊂ 𝐸 → 𝐸 be
a closed linear operator and −𝐴 generates an equicontinuous𝐶0-semigroup 𝑇(𝑡) (𝑡 ≥ 0) of uniformly bounded operators in𝐸. Suppose that the conditions (H1)–(H5) are satisfied.Then for
every 𝑢0 ∈ 𝑃𝐶(𝐽, 𝐸) there exists a 𝜏1 = 𝜏1(𝑢0), 0 < 𝜏1 < 𝑎 such
that the nonlocal problem

𝑐𝐷𝛼𝑡 𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , (𝐹𝑢) (𝑡) , (𝐺𝑢) (𝑡)) ,
𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡𝑘,

Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡−𝑘 )) , 𝑘 = 1, 2, . . . , 𝑚,
𝑢 (0) = 𝑢0 + 𝑚∑

𝑖=1

𝑐𝑖𝑢 (𝑡𝑖)
(43)

has a solution 𝑢 ∈ 𝑃𝐶([0, 𝜏1], 𝐸).
Proof. Let the function 𝑔(𝑢) = ∑𝑚𝑖=1 𝑐𝑖𝑢(𝑡𝑖); by the similar way
one can easily verify the conditions (H1)–(H5) by properly
choosing 𝑐𝑖. Hence, by Theorem 14, problem (43) has a
solution.

Theorem 16. Let 𝜉 : 𝐸 × 𝐸 → 𝑅+ be a given function. Assume
that the following conditions hold:

(A) there exists 𝜓 ∈ Ψ such that

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠))
− 𝑓 (𝑠, V (𝑠) , (𝐹V) (𝑠) , (𝐺V) (𝑠))󵄩󵄩󵄩󵄩 ≤ Γ (𝛼 + 1)3𝑀 (𝑚 + 1) 𝑎𝛼
⋅ 𝜓 (‖𝑢 − V‖) ,

󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (V)󵄩󵄩󵄩󵄩 ≤ 13𝑀𝜓 (‖𝑢 − V‖) ,
󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢 (𝑡−𝑘 )) − 𝐼𝑘 (V (𝑡−𝑘 ))󵄩󵄩󵄩󵄩 ≤ 13𝑀𝑚𝜓 (‖𝑢 − V‖) ,

(44)

for all 𝑡 ∈ 𝐽 and for all 𝑎, 𝑏 ∈ 𝐸 with 𝜉(𝑎, 𝑏) ≥ 0;

(B) there exists 𝑢0 ∈ 𝑃𝐶(𝐽, 𝐸) such that 𝜉(𝑢0(𝑡), 𝑄𝑢0(𝑡)) ≥0 for all 𝑡 ∈ 𝐽, where a mapping 𝑄 : 𝑃𝐶(𝐽, 𝐸) →𝑃𝐶(𝐽, 𝐸) is defined by
𝑄𝑢 (𝑡) = T𝛼 (𝑡) (𝑔 (𝑢) + 𝑢0) + ∑

0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1

⋅S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
+ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢)
⋅ (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑢 (𝑡−𝑘 )) ;

(45)

(C) for each 𝑡 ∈ 𝐽, and 𝑢, V ∈ 𝑃𝐶(𝐽, 𝐸), 𝜉(𝑢(𝑡), V(𝑡)) ≥ 0
implies that 𝜉(𝑄𝑢(𝑡), 𝑄V(𝑡)) ≥ 0;

(D) for each 𝑡 ∈ 𝐽, if {𝑢𝑛} is a sequence in 𝑃𝐶(𝐽, 𝐸) such
that 𝑢𝑛 → 𝑢 in 𝑃𝐶(𝐽, 𝐸) and 𝜉(𝑢𝑛(𝑡), 𝑢𝑛+1(𝑡)) ≥ 0 for
all 𝑛 ∈ N, then

𝜉 (𝑢𝑛 (𝑡) , 𝑢 (𝑡)) ≥ 0 (46)

for all 𝑛 ∈ N.
Proof. First of all, let 𝐸 = 𝑃𝐶(𝐽, 𝐸). It is easy to see that 𝑢 ∈ 𝐸
is a solution of (4) if and only if 𝑢 ∈ 𝐸 is a solution of the
integral equation

𝑢 (𝑡) = T𝛼 (𝑡) (𝑔 (𝑢) + 𝑢0) + ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1

⋅S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
+ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢)
⋅ (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑢 (𝑡−𝑘 )) .

(47)

Then problem (4) is equivalent to finding 𝑢∗ ∈ 𝐸 which is a
fixed point of 𝑄.

Now, let 𝑢, V ∈ 𝐸 such that 𝜉(𝑢(𝑡), V(𝑡)) ≥ 0 for all 𝑡 ∈ 𝐽.
By condition (A), we have

‖𝑄𝑢 (𝑡) − 𝑄V (𝑡)‖ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩T𝛼 (𝑡) (𝑔 (𝑢) + 𝑢0)

+ ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠 + ∫𝑡
𝑡𝑘

(𝑡
− 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) 𝑑𝑠
+ ∑
0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑢 (𝑡−𝑘 )) −T𝛼 (𝑡) (𝑔 (V) + V0)

− ∑
0<𝑡𝑘<𝑡

∫𝑡𝑘
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼−1S𝛼 (𝑡 − 𝑠)



8 International Journal of Differential Equations

⋅ 𝑓 (𝑠, V (𝑠) , (𝐹V) (𝑠) , (𝐺V) (𝑠)) 𝑑𝑠 − ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1
⋅S𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, V (𝑠) , (𝐹V) (𝑠) , (𝐺V) (𝑠)) 𝑑𝑠
− ∑
0<𝑡𝑘<𝑡

T𝛼 (𝑡 − 𝑡𝑘) 𝐼𝑘 (V (𝑡−𝑘 ))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩(𝑔 (𝑢)

− 𝑔 (V))󵄩󵄩󵄩󵄩 + 𝑀 (𝑚 + 1)Γ (𝛼) ∫𝑡
0

(𝑡 − 𝑠)𝛼−1
⋅ 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑢 (𝑠) , (𝐹𝑢) (𝑠) , (𝐺𝑢) (𝑠)) − 𝑓 (𝑠, V (𝑠) , (𝐹V)
⋅ (𝑠) , (𝐺V) (𝑠))󵄩󵄩󵄩󵄩 + 𝑀𝑚󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢 (𝑡−𝑘 )) − 𝐼𝑘 (V (𝑡−𝑘 ))󵄩󵄩󵄩󵄩
≤ 13𝜓 (‖𝑢 − V‖) + 13𝜓 (‖𝑢 − V‖) + 13𝜓 (‖𝑢 − V‖)
= 𝜓 (‖𝑢 − V‖) .

(48)

This implies that for each 𝑢, V ∈ 𝐸with 𝜉(𝑢(𝑡), V(𝑡)) ≥ 0 for all𝑡 ∈ 𝐽, we obtain that
󵄩󵄩󵄩󵄩𝑄𝑥 (𝑡) − 𝑄𝑦 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝜓 (‖𝑢 − V‖) (49)

for all 𝑢, V ∈ 𝐸. Now, we define the function 𝛾 : 𝐸 × 𝐸 →[0,∞) by
𝛾 (𝑢, V) = {{{

1 if 𝜉 (𝑢 (𝑡) , V (𝑡)) ≥ 0 ∀𝑡 ∈ 𝐽,
0 otherwise,

(50)

and also we define the𝑤-distance 𝑝 on 𝐸 by 𝑝(𝑢, V) = ‖𝑢−V‖.
From (49), we have

𝛾 (𝑢, V) 𝑝 (𝑄𝑢, 𝑄V) ≤ 𝜓 (𝑝 (𝑢, V)) (51)

for all 𝑢, V ∈ 𝐸. This implies that 𝑄 is an (𝛾, 𝜓, 𝑝)-contractive
mapping. From condition (B), there exists 𝑢0 ∈ 𝐸 such that𝛾(𝑢0, 𝑄𝑢0) ≥ 1. Next, by using condition (C), the following
assertions hold for all 𝑢, V ∈ 𝐸:

𝛾 (𝑢, V) ≥ 1 󳨐⇒
𝜉 (𝑢 (𝑡) , V (𝑡)) ≥ 0 󳨐⇒

𝜉 (𝑄𝑢 (𝑡) , 𝑄V (𝑡)) ≥ 0 󳨐⇒
𝛾 (𝑄𝑢,𝑄V) ≥ 1

(52)

and hence 𝑄 is an 𝛾-admissible mapping. Finally, from
condition (D), we get that condition (iii) of Lemma 11 holds.
Therefore, by Lemma 11, we find 𝑥∗ ∈ 𝐸 such that 𝑥∗ = 𝑄𝑥∗
and so 𝑥∗ is a solution of problem (4), which completes the
proof.

4. Applications

In this section, we present two examples, which illustrate the
applicability of our main results.

Throughout this section, we let 𝐸 = 𝐿2([0, 𝜋]) and
consider the operator 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸 defined by

𝐷 (𝐴) = {𝑢 ∈ 𝐸 : 𝜕𝑢𝜕𝑥 , 𝜕
2𝑢𝜕𝑥2 ∈ 𝐸, 𝑢 (0) = 𝑢 (𝜋) = 0} ,

𝐴𝑢 = − 𝜕2𝜕𝑥2 𝑢.
(53)

It is well known that −𝐴 generates a uniformly bounded 𝐶0
semigroup (𝑇(𝑡)) 𝑡 > 0 in 𝐸.
Example 1. We consider the following impulsive fractional
differential equation:

𝜕𝛼𝜕𝑡𝛼 𝑢 (𝑥, 𝑡) − 𝜕
2

𝜕𝑥2 𝑢 (𝑥, 𝑡)
= 1
(𝑡 + 5)2

‖𝑢 (𝑥, 𝑡)‖1 + ‖𝑢 (𝑥, 𝑡)‖ + 15 ∫
𝑡

0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠
+ 15 ∫

𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠,
𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) , 𝑡 ≥ 0,
Δ𝑢|𝑡=1/2 = sin(17

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢 (𝑥,
12
−)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,

(54)

where 𝑡 ∈ [0, 1], 𝑥 ∈ (0, 𝜋), 𝑡 ̸= 1/2, 𝜕𝛼/𝜕𝑡𝛼 is the Caputo
fractional-order partial derivative of order 𝛼, 0 < 𝛼 ≤ 1, 𝑢0 ∈𝐿2[0, 𝜋]. Take 𝐽 := [0, 1] and so 𝑎 = 1.

Let
𝑝1 (𝑡, 𝑢 (𝑡, 𝑥)) = 𝑝2 (𝑡, 𝑢 (𝑡, 𝑥)) = 𝑢 (𝑡, 𝑥) ,

𝐹𝑢 = ∫𝑡
0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠,
𝐺𝑢 = ∫𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠,
𝑓 (𝑡, 𝑢, 𝐹𝑢, 𝐺𝑢) = 1

(𝑡 + 5)2
‖𝑢 (𝑥, 𝑡)‖1 + ‖𝑢 (𝑥, 𝑡)‖ + 𝐹𝑢 + 𝐺𝑢,

𝐼𝑘 (𝑢) = sin(17 ‖𝑢 (𝑥, 𝑡)‖) ;

(55)

then the impulsive fractional differential equation (54) can be
transformed into the abstract form of problem (4).

Next, let 𝑢, V ∈ 𝐶(𝐽, 𝐸), we calculate
‖𝐹𝑢 − 𝐹V‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫

𝑡

0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠
− ∫𝑡
0

𝑒−(𝑠−𝑡)5 V (𝑥, 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤
25 ‖𝑢 − V‖ ,

‖𝐺𝑢 − 𝐺V‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠
− ∫𝑡
0

𝑒−(𝑠−𝑡)/25 V (𝑥, 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤
25 ‖𝑢 − V‖ ,
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󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢, 𝐹𝑢, 𝐺𝑢) − 𝑓 (𝑡, V, 𝐹V, 𝐺V)󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1
(𝑡 + 5)2 (

‖𝑢‖1 + ‖𝑢‖ − ‖V‖1 + ‖V‖) + 225 (𝐹𝑢 − 𝐹V)
+ 225 (𝐺𝑢 − 𝐺V)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤
125 ‖𝑢 − V‖ + 225 ‖𝐹𝑢 − 𝐹V‖

+ 225 ‖𝐺𝑢 − 𝐺V‖ ,
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢, 𝐹𝑢, 𝐺𝑢)󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1

(𝑡 + 5)2
‖𝑢 (𝑥, 𝑡)‖1 + ‖𝑢 (𝑥, 𝑡)‖

+ 15 ∫
𝑡

0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠 + 15 ∫
𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 125 ‖𝑢‖ + 225 ‖𝑢‖ + 225 ‖𝑢‖ = 15 ‖𝑢‖ ,󵄩󵄩󵄩󵄩𝑝1 (𝑡, 𝑢) − 𝑝1 (𝑡, V)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢 − V‖ ,󵄩󵄩󵄩󵄩𝑝2 (𝑡, 𝑢) − 𝑝2 (𝑡, V)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢 − V‖ ,󵄩󵄩󵄩󵄩𝑝1 (𝑡, 𝑢)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢‖ ,󵄩󵄩󵄩󵄩𝑝2 (𝑡, 𝑢)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢‖ ;

(56)

hence the condition (H1), (H2) holds with 𝐾1 = 1/25, 𝐾2 =𝐾3 = 2/25,𝑀𝑅(𝑡) = 1/5, Ω(𝑟) = 𝑟, 𝑏1 = 𝑏2 = 2, and 𝑐1 = 𝑐2 =2. Then we have

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢) − 𝐼𝑘 (V)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩sin(17𝑢) − sin(17V)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 17 ‖𝑢 − V‖ ,
󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩sin(17𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 17 ‖𝑢‖ ;
(57)

for any bounded set𝑋,𝑌, 𝑍 ∈ 𝐶(𝐽, 𝐸), 𝐼 ⊂ 𝐽, we have

𝛽 (𝑘 (𝐼, 𝐼) 𝑝1 (𝐼, 𝑌)) ≤ 25𝛽 (𝑌) ,
𝛽 (ℎ (𝐼, 𝐼) 𝑝1 (𝐼, 𝑍)) ≤ 25𝛽 (𝑍) ,
𝛽 (𝑓 (𝑡, 𝑋, 𝑌, 𝑍)) ≤ 125𝛽 (𝑋) + 225𝛽 (𝑌)

+ 225𝛽 (𝑍) .

(58)

Hence the condition (H4), (H5) holds with 𝜇 = 𝜌 = 1/7,𝐿1 = 1/25, 𝐿2 = 𝐿3 = 2/25, and 𝐿4 = 𝐿5 = 2/5. Then, by
Theorem 14, problem (54) has a solution on [0, 1].

Example 2. Consider the following impulsive fractional dif-
ferential equation:

𝜕𝛼𝜕𝑡𝛼 𝑢 (𝑥, 𝑡) − 𝜕
2

𝜕𝑥2 𝑢 (𝑥, 𝑡)
= 𝑡25 ‖𝑢 (𝑥, 𝑡)‖1 + ‖𝑢 (𝑥, 𝑡)‖ + 15 ∫

𝑡

0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠
+ 15 ∫

𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠,
𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) , 𝑡 ≥ 0,
Δ𝑢|𝑡=1/2 =

󵄨󵄨󵄨󵄨𝑢 (𝑥, (1/2)−)󵄨󵄨󵄨󵄨20 + 󵄨󵄨󵄨󵄨𝑢 (𝑥, (1/2)−)󵄨󵄨󵄨󵄨 ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) + 𝑚∑
𝑖=1

𝜂𝑖𝑢 (𝑥, 12) ,

(59)

where 𝑡 ∈ [0, 1], 𝑥 ∈ [0, 𝜋], 𝑡 ̸= 1/2, and 𝜕𝛼/𝜕𝑡𝛼 is the Caputo
fractional-order partial derivative of order 𝛼, 0 < 𝛼 ≤ 1, 𝑢0 ∈𝐿2[0, 𝜋], 0 < 𝜂1 < 𝜂2 < ⋅ ⋅ ⋅ < 1, and 𝜂𝑖 is given positive
constants with ∑𝑚𝑖=1 𝜂𝑖 < 2/15. Take 𝐽 fl [0, 1] and so 𝑎 = 1.

Let

𝐹𝑢 = ∫𝑡
0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠,
𝐺𝑢 = ∫𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠,
𝑓 (𝑡, 𝑢, 𝐹𝑢, 𝐺𝑢) = 𝑡25 ‖𝑢 (𝑥, 𝑡)‖1 + ‖𝑢 (𝑥, 𝑡)‖ + 𝐹𝑢 + 𝐺𝑢,

𝐼𝑘 (𝑢) =
󵄨󵄨󵄨󵄨𝑢 (𝑥, (1/2)−)󵄨󵄨󵄨󵄨20 + 󵄨󵄨󵄨󵄨𝑢 (𝑥, (1/2)−)󵄨󵄨󵄨󵄨 ,

𝑔 (𝑢) = 𝑚∑
𝑖=1

𝜂𝑖𝑢 (𝑥, 12) ;

(60)

then the impulsive fractional differential equation (59) can be
transformed into the abstract form of problem (43).

Next, letting 𝑢, V ∈ 𝐶(𝐽, 𝐸), we calculate

‖𝐹𝑢 − 𝐹V‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠
− ∫𝑡
0

𝑒−(𝑠−𝑡)5 V (𝑥, 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤
25 ‖𝑢 − V‖ ,

‖𝐺𝑢 − 𝐺V‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠
− ∫𝑡
0

𝑒−(𝑠−𝑡)/25 V (𝑥, 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤
25 ‖𝑢 − V‖ ,
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󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢, 𝐹𝑢, 𝐺𝑢) − 𝑓 (𝑡, V, 𝐹V, 𝐺V)󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑡25 ( ‖𝑢‖1 + ‖𝑢‖ − ‖V‖1 + ‖V‖) + 225 (𝐹𝑢 − 𝐹V)

+ 225 (𝐺𝑢 − 𝐺V)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤

125 ‖𝑢 − V‖ + 225 ‖𝐹𝑢 − 𝐹V‖
+ 225 ‖𝐺𝑢 − 𝐺V‖ ,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢, 𝐹𝑢, 𝐺𝑢)󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑡25 ‖𝑢 (𝑥, 𝑡)‖1 + ‖𝑢 (𝑥, 𝑡)‖

+ 15 ∫
𝑡

0

𝑒−(𝑠−𝑡)5 𝑢 (𝑥, 𝑠) 𝑑𝑠 + 15 ∫
𝑡

0

𝑒−(𝑠−𝑡)/25 𝑢 (𝑥, 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 125 ‖𝑢‖ + 225 ‖𝑢‖ + 225 ‖𝑢‖ = 15 ‖𝑢‖ ,󵄩󵄩󵄩󵄩𝑝1 (𝑡, 𝑢) − 𝑝1 (𝑡, V)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢 − V‖ ,󵄩󵄩󵄩󵄩𝑝2 (𝑡, 𝑢) − 𝑝2 (𝑡, V)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢 − V‖ ,󵄩󵄩󵄩󵄩𝑝1 (𝑡, 𝑢)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢‖ ,󵄩󵄩󵄩󵄩𝑝2 (𝑡, 𝑢)󵄩󵄩󵄩󵄩 ≤ 2 ‖𝑢‖ ;

(61)

hence the condition (H1), (H2) holds with 𝐾1 = 1/25, 𝐾2 =𝐾3 = 2/25,𝑀𝑅(𝑡) = 1/5, andΩ(𝑟) = 𝑟. Then we have

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢) − 𝐼𝑘 (V)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑢20 + 𝑢 − V20 + V
󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 120 ‖𝑢 − V‖ ,

󵄩󵄩󵄩󵄩𝑔 (𝑢) − 𝑔 (V)󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑚∑
𝑖=1

𝜂𝑖𝑢 − 𝑚∑
𝑖=1

𝜂𝑖V
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤

215 ‖𝑢 − V‖ ,
󵄩󵄩󵄩󵄩𝐼𝑘 (𝑢)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑢20 + 𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 120 ‖𝑢‖ ,
󵄩󵄩󵄩󵄩𝑔 (𝑢)󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑚∑
𝑖=1

𝜂𝑖𝑢
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤

215 ‖𝑢‖ ;

(62)

for any bounded set𝑋,𝑌, 𝑍 ∈ 𝐶(𝐽, 𝐸), 𝐼 ⊂ 𝐽, we have
𝛽 (𝑘 (𝐼, 𝐼) 𝑝1 (𝐼, 𝑌)) ≤ 25𝛽 (𝑌) ,
𝛽 (ℎ (𝐼, 𝐼) 𝑝1 (𝐼, 𝑍)) ≤ 25𝛽 (𝑍) ,
𝛽 (𝑓 (𝑡, 𝑋, 𝑌, 𝑍)) ≤ 125𝛽 (𝑋) + 225𝛽 (𝑌)

+ 225𝛽 (𝑍) .

(63)

Hence the condition (H3), (H4) holds with 𝜇 = 𝜌 = 1/7,𝐿1 = 1/25, 𝐿2 = 𝐿3 = 2/25, 𝐿4 = 𝐿5 = 2/5, and𝑁1 = 𝑁2 =2/15. Therefore, by Corollary 15, problem (59) has a solution
on [0, 1].

5. Conclusions

In this paper, we studied the existence of solutions for
a class of impulsive fractional evolution equations with
nonlocal conditions in Banach space by using some fixed
point theorems combined with the technique of measure of
noncompactness. Our results improve and generalize some
known results corresponding to those obtained by others.
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