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We study the existence of solutions for nonlinear boundary value problems (𝜑(𝑢󸀠))󸀠 = 𝑓(𝑡, 𝑢, 𝑢󸀠), 𝑙(𝑢, 𝑢󸀠) = 0, where 𝑙(𝑢, 𝑢󸀠) = 0

denotes the boundary conditions on a compact interval [0, 𝑇], 𝜑 is a homeomorphism such that 𝜑(0) = 0, and𝑓 : [0, 𝑇] × R × R →

R is a continuous function. All the contemplated boundary value problems are reduced to finding a fixed point for one operator
defined on a space of functions, and Schauder fixed point theorem or Leray-Schauder degree is used.

1. Introduction

The purpose of this article is to obtain some existence results
for nonlinear boundary value problems of the form

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑓 (𝑡, 𝑢, 𝑢
󸀠
)

𝑙 (𝑢, 𝑢
󸀠
) = 0,

(1)

where 𝑙(𝑢, 𝑢󸀠) = 0 denotes the Dirichlet or mixed boundary
conditions on the interval [0, 𝑇], 𝜑 is a bounded, singular,
or classic homeomorphism such that 𝜑(0) = 0, 𝑓 : [0, 𝑇] ×

R × R → R is a continuous function, and 𝑇 is a positive real
number.

Recently, problem (1) in special cases, when 𝜑 is an
increasing homeomorphism from (−𝑎, 𝑎) to R such that
𝜑(0) = 0 and 𝑙(𝑢, 𝑢

󸀠) = 0 denotes the periodic, Neumann,
or Dirichlet boundary conditions, has been investigated by
Bereanu and Mawhin in [1].

In [2], the authors have studied problem (1), where 𝜑 :

R → (−𝑎, 𝑎) (0 < 𝑎 ≤ ∞) and 𝑙(𝑢, 𝑢
󸀠) = 0 denotes the

periodic boundary conditions.They obtained the existence of
solutions by means of the Leray-Schauder degree theory. In
particular, regular periodic problems with 𝜑- or 𝑝-Laplacian
on the left hand side were considered by several authors; see,
for example, del Pino et al. [3] or Yan [4].

In [5] Benevieri et al. proved an existence result for the
periodic boundary value problem:

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑓 (𝑡, 𝑢, 𝑢
󸀠
)

𝑢 (0) = 𝑢 (𝑇) ,

𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) ,

(2)

assuming that 𝑓 : [0, 𝑇] × R𝑛 × R𝑛 → R𝑛 is a Carathéodory
function and 𝜑 : R𝑛 → R𝑛 is a homeomorphism betweenR𝑛

and the open ball of R𝑛 with center zero and radius 1. They
used a topological method: the properties of 𝜑 and 𝑓 allowed
applying the Leray-Schauder degree.The interest in this class
of nonlinear operators 𝑢 󳨃→ (𝜑(𝑢

󸀠))󸀠 is mainly due to the fact
that they include the mean curvature operator:

𝑢 󳨃󳨀→ div(
∇𝑢

√1 + |∇𝑢|
2

). (3)

The paper is organized as follows. In Section 2, we
introduce some notations and preliminaries, which will be
crucial in the proofs of our results. Section 3 is devoted to
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the study of existence of solutions for the Dirichlet problems
with bounded homomorphisms:

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑓 (𝑡, 𝑢, 𝑢
󸀠
) ,

𝑢 (0) = 0 = 𝑢 (𝑇) .

(4)

In particular, Bereanu and Mawhin in [6] proved the exis-
tence of at least one solution by means of the Leray-Schauder
degree.

Theorem 1 (Bereanu and Mawhin). If the function 𝑓 satisfies
the condition

∃𝑐 > 0 such that 󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑐 <

𝑎

2𝑇
,

∀ (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] ×R ×R,

(5)

the Dirichlet problem has at least one solution.

The main purpose of this section is an extension of the
results obtained in the previous theorem. For this, we use
topological methods based upon Leray-Schauder degree [7]
and more general properties of the function 𝑓. In Section 4,
we use the fixed point theorem of Schauder to show the
existence of at least one solution for boundary value problems
of the type

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑓 (𝑡, 𝑢, 𝑢
󸀠
) ,

𝑢 (𝑇) = 𝑢 (0) = 𝑢
󸀠

(𝑇) ,

(6)

where 𝜑 : (−𝑎, 𝑎) → R (we call it singular). Of course, a
solution of (6) is a function 𝑢 : [0, 𝑇] → R of class 𝐶1 such
that max

[0,𝑇]
|𝑢󸀠(𝑡)| < 𝑎, satisfying the boundary conditions,

and the function 𝜑(𝑢󸀠) is continuously differentiable and
(𝜑(𝑢󸀠(𝑡)))󸀠 = 𝑓(𝑡, 𝑢(𝑡), 𝑢󸀠(𝑡)) for all 𝑡 ∈ [0, 𝑇]. In Section 5,
for 𝑢(𝑇) = 𝑢󸀠(0) = 𝑢󸀠(𝑇) boundary conditions and classic
homeomorphisms (𝜑 : R → R), we investigate the existence
of at least one solution using Leray-Schauder degree, where
a solution of this problem is any function 𝑢 : [0, 𝑇] →

R of class 𝐶
1 such that 𝜑(𝑢󸀠) is continuously differentiable,

which satisfies the boundary conditions and (𝜑(𝑢󸀠(𝑡)))󸀠 =

𝑓(𝑡, 𝑢(𝑡), 𝑢󸀠(𝑡)) for all 𝑡 ∈ [0, 𝑇]. Such problems do not
seem to have been studied in the literature. In the present
paper generally we follow the ideas of Bereanu and Mawhin
[1, 2, 6, 8].

2. Notation and Preliminaries

For fixed 𝑇, we denote the usual norm in 𝐿1 = 𝐿1([0, 𝑇],R)

by ‖ ⋅ ‖
𝐿
1 . Let 𝐶 = 𝐶([0, 𝑇],R) denote the Banach space of

continuous functions from [0, 𝑇] into R, endowed with the
uniform norm ‖ ⋅ ‖

∞
, 𝐶1 = 𝐶

1
([0, 𝑇],R) the Banach space

of continuously differentiable functions from [0, 𝑇] into R,
equipped with the usual norm ‖𝑢‖

1
= ‖𝑢‖

∞
+ ‖𝑢󸀠‖

∞
, and 𝐶1

0

the closed subspace of 𝐶1 defined by 𝐶1
0
= {𝑢 ∈ 𝐶1 : 𝑢(𝑇) =

0 = 𝑢(0)}.

We introduce the following applications:

The Nemytskii operator 𝑁
𝑓
: 𝐶1 → 𝐶:

𝑁
𝑓
(𝑢) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢

󸀠

(𝑡)) . (7)

The integration operator 𝐻 : 𝐶 → 𝐶1:

𝐻(𝑢) (𝑡) = ∫
𝑡

0

𝑢 (𝑠) 𝑑𝑠. (8)

The following continuous linear applications:

𝐾 : 𝐶 󳨀→ 𝐶
1
,

𝐾 (𝑢) (𝑡) = −∫
𝑇

𝑡

𝑢 (𝑠) 𝑑𝑠,

𝑄 : 𝐶 󳨀→ 𝐶,

𝑄 (𝑢) (𝑡) =
1

𝑇
∫
𝑇

0

𝑢 (𝑠) 𝑑𝑠,

𝑆 : 𝐶 󳨀→ 𝐶,

𝑆 (𝑢) (𝑡) = 𝑢 (𝑇) ,

𝑃 : 𝐶 󳨀→ 𝐶,

𝑃 (𝑢) (𝑡) = 𝑢 (0) .

(9)

For 𝑢 ∈ 𝐶, we write

𝑢
𝑚

= min
[0,𝑇]

𝑢,

𝑢
𝑀

= max
[0,𝑇]

𝑢,

𝑢
+
= max {𝑢, 0} ,

𝑢
−
= max {−𝑢, 0} .

(10)

The following lemma is an adaptation of a result of
[1] to the case of a homeomorphism which is not defined
everywhere. We present here the demonstration for better
understanding of the development of our research.

Lemma 2. Let 𝐵 = {ℎ ∈ 𝐶 : ‖ℎ‖
∞

< 𝑎/2}. For each ℎ ∈

𝐵, there exists a unique 𝑄
𝜑

= 𝑄
𝜑
(ℎ) ∈ Im(ℎ) (where Im(ℎ)

denotes the range of ℎ) such that

∫
𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑄
𝜑
(ℎ)) 𝑑𝑡 = 0. (11)

Moreover, the function 𝑄
𝜑

: 𝐵 → R is continuous and sends
bounded sets into bounded sets.

Proof. Let ℎ ∈ 𝐵. We define the continuous application 𝐺
ℎ
:

[ℎ
𝑚
, ℎ
𝑀
] → R for

𝐺
ℎ
(𝑠) = ∫

𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑠) 𝑑𝑡. (12)
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We now show that the equation

𝐺
ℎ
(𝑠) = 0 (13)

has a unique solution 𝑄
𝜑
(ℎ). Let 𝑟, 𝑠 ∈ [ℎ

𝑚
, ℎ
𝑀
] be such that

∫
𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑟) 𝑑𝑡 = 0,

∫
𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑠) 𝑑𝑡 = 0;

(14)

that is,

∫
𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑟) 𝑑𝑡 = ∫
𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑠) 𝑑𝑡. (15)

It follows that there exists 𝜏 ∈ [0, 𝑇] such that

𝜑
−1

(ℎ (𝜏) − 𝑟) = 𝜑
−1

(ℎ (𝜏) − 𝑠) . (16)

Using the injectivity of 𝜑
−1 we deduce that 𝑟 = 𝑠. Let us

now show the existence. Because𝜑−1 is strictlymonotone and
𝜑−1(0) = 0, we have that

𝐺
ℎ
(ℎ
𝑚
) 𝐺
ℎ
(ℎ
𝑀
) ≤ 0. (17)

It follows that there exists 𝑠 ∈ [ℎ
𝑚
, ℎ
𝑀
] such that 𝐺

ℎ
(𝑠) = 0.

Consequently for each ℎ ∈ 𝐵, (13) has a unique solution.Thus,
we define the function 𝑄

𝜑
: 𝐵 → R such that

∫
𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑄
𝜑
(ℎ)) 𝑑𝑡 = 0. (18)

On the other hand, because ℎ ∈ 𝐵, we have that
󵄨󵄨󵄨󵄨󵄨
𝑄
𝜑
(ℎ)

󵄨󵄨󵄨󵄨󵄨
≤ ‖ℎ‖
∞

<
𝑎

2
. (19)

Therefore, the function𝑄
𝜑
sends bounded sets into bounded

sets.
Finally, we show that𝑄

𝜑
is continuous on𝐵. Let (ℎ

𝑛
)
𝑛
⊂ 𝐶

be a sequence such that ℎ
𝑛

→ ℎ in 𝐶. Since the function
𝑄
𝜑
sends bounded sets into bounded sets, then (𝑄

𝜑
(ℎ
𝑛
))
𝑛

is bounded. Hence, (𝑄
𝜑
(ℎ
𝑛
))
𝑛
is relatively compact. Without

loss of generality, passing if necessary to a subsequence, we
can assume that

lim
𝑛→∞

𝑄
𝜑
(ℎ
𝑛
) = 𝑎̃, (20)

where for each 𝑛 ∈ N we obtain

lim
𝑛→∞

∫
𝑇

0

𝜑
−1

(ℎ
𝑛
(𝑡) − 𝑄

𝜑
(ℎ
𝑛
)) 𝑑𝑡 = 0. (21)

Using the dominated convergence theorem, we deduce that

∫
𝑇

0

𝜑
−1

(ℎ (𝑡) − 𝑎̃) 𝑑𝑡 = 0, (22)

so we have that 𝑄
𝜑
(ℎ) = 𝑎̃. Hence, the function 𝑄

𝜑
is

continuous.

The following extended homotopy invariance property of
the Leray-Schauder degree can be found in [9].

Proposition 3. Let 𝑋 be a real Banach space, 𝑉 ⊂ [0, 1] × 𝑋

be an open, bounded set, and 𝑀 be a completely continuous
operator on 𝑉 such that 𝑥 ̸= 𝑀(𝜆, 𝑥) for each (𝜆, 𝑥) ∈ 𝜕𝑉.
Then the Leray-Schauder degree

degLS (𝐼 − 𝑀 (𝜆, ⋅) , 𝑉
𝜆
, 0) (23)

is well defined and independent of 𝜆 in [0, 1], where 𝑉
𝜆
is the

open, bounded (possibly empty) set defined by 𝑉
𝜆

= {𝑥 ∈ 𝑋 :

(𝜆, 𝑥) ∈ 𝑉}.

3. Dirichlet Problems with Bounded
Homeomorphisms

In this section we are interested in Dirichlet boundary value
problems of the type

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑓 (𝑡, 𝑢, 𝑢
󸀠
) ,

𝑢 (0) = 0 = 𝑢 (𝑇) ,

(24)

where 𝜑 : R → (−𝑎, 𝑎) is a homeomorphism, 𝜑(0) = 0, and
𝑓 : [0, 𝑇]×R×R → R is continuous. In order to apply Leray-
Schauder degree theory to show the existence of at least one
solution of (24), we introduce, for 𝜆 ∈ [0, 1], the family of
Dirichlet boundary value problems:

(𝜑 (𝑢
󸀠
))
󸀠

= 𝜆𝑓 (𝑡, 𝑢, 𝑢
󸀠
) ,

𝑢 (0) = 0 = 𝑢 (𝑇) .

(25)

Let

Ω = {(𝜆, 𝑢) ∈ [0, 1] × 𝐶
1

0
:
󵄩󵄩󵄩󵄩󵄩
𝜆𝐻 (𝑁

𝑓
(𝑢))

󵄩󵄩󵄩󵄩󵄩∞
<

𝑎

2
} . (26)

ClearlyΩ is an open set in [0, 1]×𝐶1
0
and is nonempty because

{0} × 𝐶1
0

⊂ Ω. Using Lemma 2, we can define the operator
𝑀 : Ω → 𝐶1

0
by

𝑀(𝜆, 𝑢)

= 𝐻(𝜑
−1

[𝜆𝐻 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝜆𝐻(𝑁

𝑓
(𝑢)))]) .

(27)

Here 𝜑−1 with an abuse of notation is understood as the
operator 𝜑−1 : 𝐵

𝑎
(0) ⊂ 𝐶 → 𝐶 defined by 𝜑−1(V)(𝑡) =

𝜑−1(V(𝑡)). It is clear that𝜑−1 is continuous and sends bounded
sets into bounded sets.

When the boundary conditions are periodic orNeumann,
an operator has been considered by Bereanu andMawhin [6].

The following lemma plays a pivotal role in studying the
solutions of problem (25).

Lemma 4. The operator 𝑀 is well defined and continuous.
Moreover, if (𝜆, 𝑢) ∈ Ω is such that 𝑀(𝜆, 𝑢) = 𝑢, then 𝑢 is
solution of (25).
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Proof. Let (𝜆, 𝑢) ∈ Ω. We show that in fact𝑀(𝜆, 𝑢) ∈ 𝐶1
0
. It is

clear that

(𝑀 (𝜆, 𝑢))
󸀠

= 𝜑
−1

[𝜆𝐻 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝜆𝐻 (𝑁

𝑓
(𝑢)))] ,

(28)

where the continuity of 𝑀(𝜆, 𝑢) and (𝑀(𝜆, 𝑢))󸀠 follows from
the continuity of applications𝐻 and𝑁

𝑓
.

On the other hand using Lemma 2, we have

𝑀(𝜆, 𝑢) (0) = 0 = 𝑀 (𝜆, 𝑢) (𝑇) . (29)

Therefore 𝑀(Ω) ⊂ 𝐶1
0
and 𝑀 is well defined. The continuity

of 𝑀 follows by the continuity of the operators which
compose it𝑀.

Now suppose that (𝜆, 𝑢) ∈ Ω is such that 𝑀(𝜆, 𝑢) = 𝑢. It
follows from (27) that

𝑢 (𝑡) = 𝑀 (𝜆, 𝑢) (𝑡)

= 𝐻 (𝜑
−1

[𝜆𝐻 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝜆𝐻 (𝑁

𝑓
(𝑢)))]) (𝑡)

(30)

for all 𝑡 ∈ [0, 𝑇]. Differentiating (30), we obtain

𝑢
󸀠

(𝑡) = 𝜑
−1

[𝜆𝐻 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝜆𝐻 (𝑁

𝑓
(𝑢)))] (𝑡)

= 𝜑
−1

[𝜆𝐻 (𝑁
𝑓
(𝑢)) (𝑡) − 𝑄

𝜑
(𝜆𝐻 (𝑁

𝑓
(𝑢)))] .

(31)

Applying 𝜑 to both of its members we have that

𝜑 (𝑢
󸀠

(𝑡)) = 𝜆𝐻(𝑁
𝑓
(𝑢)) (𝑡) − 𝑄

𝜑
(𝜆𝐻(𝑁

𝑓
(𝑢))) . (32)

Differentiating again, we deduce that

(𝜑 (𝑢
󸀠

(𝑡)))
󸀠

= 𝜆𝑁
𝑓
(𝑢) (𝑡) (33)

for all 𝑡 ∈ [0, 𝑇].Thus,𝑢 satisfies problem (25).This completes
the proof.

Remark 5. Note that the reciprocal of Lemma 4 is not true
because we cannot guarantee that ‖𝜆𝐻(𝑁

𝑓
(𝑢)‖
∞

< 𝑎/2 for
every solution 𝑢 of (25).

In ourmain result, we need the following lemma to obtain
the required a priori bounds for the possible fixed points of
𝑀.

Lemma 6. Assume that there exist ℎ ∈ 𝐶([0, 𝑇],R+) and 𝑛 ∈

𝐶1(R,R) such that ‖ℎ‖
𝐿
1 < 𝑎/2, 𝑛(0) = 0,

𝜑 (𝑦) 𝑛
󸀠

(𝑥) 𝑦 ≥ 0, (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] ×R ×R, (34)
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑓 (𝑡, 𝑥, 𝑦) 𝑛 (𝑥) + ℎ (𝑡) (35)

for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × R × R. If (𝜆, 𝑢) ∈ Ω is such that
𝑀(𝜆, 𝑢) = 𝑢, then

󵄩󵄩󵄩󵄩󵄩
𝜆𝐻 (𝑁

𝑓
(𝑢))

󵄩󵄩󵄩󵄩󵄩∞
≤ ‖ℎ‖
𝐿
1 ,

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐿,

‖𝑢‖
1
≤ 𝐿 + 𝐿𝑇,

(36)

where 𝐿 = max{|𝜑−1(−2‖ℎ‖
𝐿
1)|, |𝜑−1(2‖ℎ‖

𝐿
1)|}.

Proof. Let 𝜆 ̸= 0 and (𝜆, 𝑢) ∈ Ω be such that 𝑀(𝜆, 𝑢) = 𝑢.
Using Lemma 4, we have that 𝑢 is solution of (25), which
implies that

𝜑 (𝑢
󸀠
) = 𝜆𝐻(𝑁

𝑓
(𝑢)) − 𝑄

𝜑
(𝜆𝐻 (𝑁

𝑓
(𝑢))) ,

𝑢 (0) = 0 = 𝑢 (𝑇) ,

(37)

where, for all 𝑡 ∈ [0, 𝑇], we obtain

󵄨󵄨󵄨󵄨󵄨
𝜆𝐻 (𝑁

𝑓
(𝑢)) (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

󸀠

(𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ ∫
𝑇

0

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠)) 𝑛 (𝑢 (𝑠)) 𝑑𝑠

+ ∫
𝑇

0

ℎ (𝑠) 𝑑𝑠.

(38)

On the other hand, using inequality (34) we have that

−∫
𝑇

0

𝜑 (𝑢
󸀠

(𝑡)) 𝑛
󸀠

(𝑢 (𝑡)) 𝑢
󸀠

(𝑡) 𝑑𝑡 ≤ 0. (39)

Using the integration by parts formula, the boundary condi-
tions, and the fact that 𝑛(0) = 0, we deduce that

∫
𝑇

0

(𝜑 (𝑢
󸀠

(𝑡)))
󸀠

𝑛 (𝑢 (𝑡)) 𝑑𝑡

= −∫
𝑇

0

𝜑 (𝑢
󸀠

(𝑡)) 𝑛
󸀠

(𝑢 (𝑡)) 𝑢
󸀠

(𝑡) 𝑑𝑡 ≤ 0.

(40)

Since 𝜆 ∈ (0, 1] and 𝑢 is solution of (25), it follows that

∫
𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) 𝑛 (𝑢 (𝑡)) 𝑑𝑡 ≤ 0, (41)

and hence
󵄨󵄨󵄨󵄨󵄨
𝜆𝐻 (𝑁

𝑓
(𝑢)) (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ ‖ℎ‖
𝐿
1 . (42)

On the other hand, since 𝑄
𝜑
(𝜆𝐻(𝑁

𝑓
(𝑢))) ∈

Im(𝜆𝐻(𝑁
𝑓
(𝑢))), we get

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑢
󸀠

(𝑡))
󵄨󵄨󵄨󵄨󵄨
≤ 2 ‖ℎ‖

𝐿
1 (43)

for all 𝑡 ∈ [0, 𝑇]. It follows that
󵄩󵄩󵄩󵄩󵄩
𝜑 (𝑢
󸀠
)
󵄩󵄩󵄩󵄩󵄩∞

≤ 2 ‖ℎ‖
𝐿
1 , (44)

which implies that ‖𝑢󸀠‖
∞

≤ 𝐿, where 𝐿 =

max{|𝜑−1(−2‖ℎ‖
𝐿
1)|, |𝜑−1(2‖ℎ‖

𝐿
1)|}. Using again the

boundary conditions, we have that

|𝑢 (𝑡)| ≤ ∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 ≤ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 ≤ 𝐿𝑇

(𝑡 ∈ [0, 𝑇]) ,

(45)

and hence

‖𝑢‖
1
≤ 𝐿 + 𝐿𝑇. (46)

Finally, if 𝑢 = 𝑀(0, 𝑢), then 𝑢 = 0, so the proof is complete.
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Let 𝜌, 𝜅 ∈ R be such that ‖ℎ‖
𝐿
1 < 𝜅 < 𝑎/2, 𝜌 > 𝐿 + 𝐿𝑇

and consider the set

𝑉 = {(𝜆, 𝑢) ∈ [0, 1] × 𝐶
1

0
:
󵄩󵄩󵄩󵄩󵄩
𝜆𝐻 (𝑁

𝑓
(𝑢))

󵄩󵄩󵄩󵄩󵄩∞

< 𝜅, ‖𝑢‖
1
< 𝜌} .

(47)

Since the set {0} × {𝑢 ∈ 𝐶1
0
: ‖𝑢‖
1
< 𝜌} ⊂ 𝑉, then we deduce

that 𝑉 is nonempty. Moreover, it is clear that 𝑉 is open and
bounded in [0, 1] × 𝐶1

0
and 𝑉 ⊂ Ω. On the other hand using

an argument similar to the one introduced in the proof of
Lemma 6 in [6], it is not difficult to see that 𝑀 : 𝑉 → 𝐶1

0

is well defined and completely continuous and

𝑢 ̸= 𝑀 (𝜆, 𝑢) ∀ (𝜆, 𝑢) ∈ 𝜕𝑉. (48)

3.1. Existence Results. In this subsection, we present and
prove our main result.

Theorem7. If𝑓 satisfies conditions of Lemma 6, then problem
(24) has at least one solution.

Proof. Let 𝑀 be the operator given by (27). Using Proposi-
tion 3, we deduce that

degLS (𝐼 − 𝑀 (0, ⋅) , 𝑉
0
, 0)

= degLS (𝐼 − 𝑀 (1, ⋅) , 𝑉
1
, 0) ,

(49)

where degLS(𝐼 −𝑀(0, ⋅), 𝑉
0
, 0) = degLS(𝐼, 𝐵𝜌(0), 0) = 1. Thus,

there exists 𝑢 ∈ 𝑉
1
such that 𝑀(1, 𝑢) = 𝑢, which is a solution

for (24).

Remark 8. Note that Theorem 7 is a generalization of Theo-
rem 1.

Corollary 9. Assume that 𝜑 is an increasing homomorphism.
Let ℎ ∈ 𝐶([0, 𝑇],R+) be such that

‖ℎ‖
𝐿
1 <

𝑎

2
,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑓 (𝑡, 𝑥, 𝑦) 𝑥 + ℎ (𝑡)

(50)

for all 𝑥, 𝑦 ∈ R and 𝑡 ∈ [0, 𝑇]. If (𝜆, 𝑢) ∈ Ω is such that
𝑀(𝜆, 𝑢) = 𝑢, then

󵄩󵄩󵄩󵄩󵄩
𝜆𝐻 (𝑁

𝑓
(𝑢))

󵄩󵄩󵄩󵄩󵄩∞
≤ ‖ℎ‖
𝐿
1 ,

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐿,

‖𝑢‖
1
≤ 𝐿 + 𝐿𝑇,

(51)

where 𝐿 = max{|𝜑−1(−2‖ℎ‖
𝐿
1)|, |𝜑−1(2‖ℎ‖

𝐿
1)|}.

Proof. Since 𝜑 is an increasing homomorphism we have that

𝜑 (𝑦) 𝑦 ≥ 0 (52)

for all 𝑦 ∈ R. Using Lemma 6 with 𝑛(𝑥) = 𝑥 for all 𝑥 ∈

R, we can obtain the conclusion of Corollary 9. The proof is
achieved.

Theorem 10. If 𝑓 satisfies conditions of Corollary 9, then
problem (24) has at least one solution.

Let us give now an application of Theorem 10 when 𝑓 is
unbounded.

Example 11. Consider the Dirichlet problem

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑢 − 2,

𝑢 (0) = 𝑢 (𝑇) = 0,

(53)

where 𝜑(𝑠) = 𝑠/√1 + 𝑠2.
It is not difficult to verify that 𝜑 : R → (−1, 1) is

an increasing homeomorphism and 𝑓(𝑡, 𝑥, 𝑦) = 𝑥 − 2 is a
continuous function such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨 = |𝑥 − 2| ≤ (𝑥 − 2) 𝑥 + 4,

(𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] ×R ×R.
(54)

So, we can choose ℎ(𝑡) = 4 and𝑇 < 1/8 to see that Corollary 9
holds and so, usingTheorem 10,we obtain that (53) has at least
one solution.

4. Problems with Singular Homeomorphisms
and Three-Point Boundary Conditions

In this section we study the existence of at least one solution
for boundary value problems of the type

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑓 (𝑡, 𝑢, 𝑢
󸀠
) ,

𝑢 (𝑇) = 𝑢 (0) = 𝑢
󸀠

(𝑇) ,

(55)

where 𝜑 : (−𝑎, 𝑎) → R is a homeomorphism such that 𝜑(0) =

0 and 𝑓 : [0, 𝑇] ×R ×R → R is a continuous function.
In order to transform problem (55) to a fixed point

problem we use a similar argument introduced in Lemma 2
for ℎ ∈ 𝐶.

Lemma 12. 𝑢 ∈ 𝐶
1 is a solution of (55) if and only if 𝑢 is a

fixed point of the operator 𝑀 defined on 𝐶
1 by

𝑀(𝑢)

= 𝜑
−1

(−𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢))))

+ 𝐻(𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢)))]) .

(56)

Proof. If 𝑢 ∈ 𝐶
1 is solution of (55), then

(𝜑 (𝑢
󸀠

(𝑡)))
󸀠

= 𝑁
𝑓
(𝑢) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢

󸀠

(𝑡)) ,

𝑢 (0) = 𝑢 (𝑇) ,

𝑢 (0) = 𝑢
󸀠

(𝑇)

(57)

for all 𝑡 ∈ [0, 𝑇]. Applying 𝐾 to both members and using the
fact that 𝑢(0) = 𝑢

󸀠(𝑇), we deduce that

𝜑 (𝑢
󸀠

(𝑡)) = 𝜑 (𝑢 (0)) + 𝐾 (𝑁
𝑓
(𝑢)) (𝑡) . (58)
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By the inversion of 𝜑 in (58), we have

𝑢
󸀠

(𝑡) = 𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) (𝑡) + 𝑐] , (59)

where 𝑐 = 𝜑(𝑢(0)). Integrating from 0 to 𝑡 ∈ [0, 𝑇], we have
that

𝑢 (𝑡) = 𝑢 (0) + 𝐻 (𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) + 𝑐]) (𝑡) . (60)

Because 𝑢(0) = 𝑢(𝑇), then

∫
𝑇

0

𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) (𝑡) + 𝑐] 𝑑𝑡 = 0. (61)

Using an argument similar to the one introduced in Lemma 2,
it follows that 𝑐 = −𝑄

𝜑
(𝐾(𝑁
𝑓
(𝑢))). Hence,

𝑢 = 𝜑
−1

(−𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢))))

+ 𝐻(𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢)))]) .

(62)

Let 𝑢 ∈ 𝐶
1 be such that 𝑢 = 𝑀(𝑢). Then

𝑢 (𝑡)

= 𝜑
−1

(−𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢))))

+ 𝐻(𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢)))]) (𝑡)

(63)

for all 𝑡 ∈ [0, 𝑇]. Since ∫
𝑇

0
𝜑−1[𝐾(𝑁

𝑓
(𝑢))(𝑡) −

𝑄
𝜑
(𝐾(𝑁
𝑓
(𝑢)))]𝑑𝑡 = 0, therefore, we have that 𝑢(0) = 𝑢(𝑇).

Differentiating (63), we obtain that

𝑢
󸀠

(𝑡) = 𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢)))] (𝑡) . (64)

In particular,

𝑢
󸀠

(𝑇) = 𝜑
−1

(0 − 𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢))))

= 𝜑
−1

(−𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢)))) = 𝑢 (0) .

(65)

Applying 𝜑 to both members and differentiating again, we
deduce that

(𝜑 (𝑢
󸀠

(𝑡)))
󸀠

= 𝑁
𝑓
(𝑢) (𝑡) ,

𝑢 (0) = 𝑢 (𝑇) ,

𝑢 (0) = 𝑢
󸀠

(𝑇)

(66)

for all 𝑡 ∈ [0, 𝑇]. This completes the proof.

Lemma 13. The operator 𝑀 : 𝐶1 → 𝐶1 is completely
continuous.

Proof. Let Λ ⊂ 𝐶1 be a bounded set. Then, if 𝑢 ∈ Λ, there
exists a constant 𝜌 > 0 such that

‖𝑢‖
1
≤ 𝜌. (67)

Next, we show that𝑀(Λ) ⊂ 𝐶1 is a compact set. Let (V
𝑛
)
𝑛
be a

sequence in𝑀(Λ), and let (𝑢
𝑛
)
𝑛
be a sequence in Λ such that

V
𝑛
= 𝑀(𝑢

𝑛
). Using (67), we have that there exists a constant

𝐿 > 0 such that, for all 𝑛 ∈ N,
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑓
(𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐿, (68)

which implies that

󵄩󵄩󵄩󵄩󵄩
𝐾 (𝑁
𝑓
(𝑢
𝑛
)) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢
𝑛
)))

󵄩󵄩󵄩󵄩󵄩∞
≤ 2𝐿𝑇. (69)

Hence the sequence (𝐾(𝑁
𝑓
(𝑢
𝑛
)) − 𝑄

𝜑
(𝐾(𝑁
𝑓
(𝑢
𝑛
))))
𝑛

is
bounded in 𝐶. Moreover, for 𝑡, 𝑡

1
∈ [0, 𝑇] and for all 𝑛 ∈ N,

we have that
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑁
𝑓
(𝑢
𝑛
)) (𝑡) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢
𝑛
)))

− 𝐾 (𝑁
𝑓
(𝑢
𝑛
)) (𝑡
1
) + 𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢
𝑛
)))

󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫
𝑇

𝑡

𝑓 (𝑠, 𝑢
𝑛
(𝑠) , 𝑢
󸀠

𝑛
(𝑠)) 𝑑𝑠

+ ∫
𝑇

𝑡
1

𝑓 (𝑠, 𝑢
𝑛
(𝑠) , 𝑢
󸀠

𝑛
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

𝑡
1

𝑓 (𝑠, 𝑢
𝑛
(𝑠) , 𝑢
󸀠

𝑛
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐿

󵄨󵄨󵄨󵄨𝑡 − 𝑡
1

󵄨󵄨󵄨󵄨 ,

(70)

which implies that (𝐾(𝑁
𝑓
(𝑢
𝑛
)) − 𝑄

𝜑
(𝐾(𝑁
𝑓
(𝑢
𝑛
))))
𝑛

is
equicontinuous. Thus, by the Arzelà-Ascoli theorem there is
a subsequence of (𝐾(𝑁

𝑓
(𝑢
𝑛
)) − 𝑄

𝜑
(𝐾(𝑁
𝑓
(𝑢
𝑛
))))
𝑛
, which we

call (𝐾(𝑁
𝑓
(𝑢
𝑛
𝑗

)) − 𝑄
𝜑
(𝐾(𝑁
𝑓
(𝑢
𝑛
𝑗

))))
𝑗
, which is convergent in

𝐶. Using the fact that 𝜑−1 : 𝐶 → 𝐵
𝑎
(0) ⊂ 𝐶 is continuous, it

follows from

𝑀(𝑢
𝑛
𝑗

)
󸀠

= 𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢
𝑛
𝑗

)) − 𝑄
𝜑
(𝐾(𝑁

𝑓
(𝑢
𝑛
𝑗

)))]

(71)

that the sequence (𝑀(𝑢
𝑛
𝑗

)󸀠)
𝑗
is convergent in𝐶.Then, passing

to a subsequence if necessary, we obtain that (V
𝑛
𝑗

)
𝑗

=

(𝑀(𝑢
𝑛
𝑗

))
𝑗
is convergent in 𝐶1. Finally, let (V

𝑛
)
𝑛
be a sequence

in𝑀(Λ). Let (𝑧
𝑛
)
𝑛
⊆ 𝑀(Λ) be such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − V
𝑛

󵄩󵄩󵄩󵄩1 = 0. (72)

Let (𝑧
𝑛
𝑗

)
𝑗
be a subsequence of (𝑧

𝑛
)
𝑛
such that it converges to

𝑧. It follows that 𝑧 ∈ 𝑀(Λ) and (V
𝑛
𝑗

)
𝑗
converge to 𝑧. This

concludes the proof.

The next result is based on Schauder’s fixed point theo-
rem.

Theorem 14. Let 𝑓 : [0, 𝑇] ×R×R → R be continuous. Then
(55) has at least one solution.
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Proof. Let 𝑢 ∈ 𝐶1. Then

𝑀(𝑢)

= 𝜑
−1

(−𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢))))

+ 𝐻(𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢)))]) ,

(73)

where

𝑀(𝑢) (0) = 𝜑
−1

(−𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢)))) = 𝑀 (𝑢) (𝑇) ,

𝑀 (𝑢)
󸀠

(𝑇) = 𝜑
−1

(−𝑄
𝜑
(𝐾 (𝑁

𝑓
(𝑢)))) = 𝑀 (𝑢) (0) .

(74)

Moreover,
󵄩󵄩󵄩󵄩󵄩
𝑀 (𝑢)

󸀠󵄩󵄩󵄩󵄩󵄩∞

=
󵄩󵄩󵄩󵄩󵄩
𝜑
−1

[𝐾 (𝑁
𝑓
(𝑢)) − 𝑄

𝜑
(𝐾 (𝑁

𝑓
(𝑢)))]

󵄩󵄩󵄩󵄩󵄩∞
< 𝑎,

‖𝑀 (𝑢)‖
∞

< 𝑎 + 𝑎𝑇.

(75)

Hence,

‖𝑀 (𝑢)‖
1
= ‖𝑀 (𝑢)‖

∞
+
󵄩󵄩󵄩󵄩󵄩
𝑀 (𝑢)

󸀠󵄩󵄩󵄩󵄩󵄩∞
< 𝑎 + 𝑎𝑇 + 𝑎

= 2𝑎 + 𝑎𝑇.

(76)

Because the operator 𝑀 is completely continuous and
bounded, we can use Schauder’s fixed point theorem to
deduce the existence of at least one fixed point. This, in turn,
implies that problem (55) has at least one solution. The proof
is complete.

5. Problems with Classic Homeomorphisms
and Three-Point Boundary Conditions

We finally consider boundary value problems of the form

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑓 (𝑡, 𝑢, 𝑢
󸀠
) ,

𝑢 (𝑇) = 𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) ,

(77)

where 𝜑 : R → R is a homeomorphism such that
𝜑(0) = 0 and 𝑓 : [0, 𝑇] × R × R → R is a continuous
function. We remember that a solution of this problem is
any function 𝑢 : [0, 𝑇] → R of class 𝐶

1 such that
𝜑(𝑢󸀠) is continuously differentiable, satisfying the boundary
conditions and (𝜑(𝑢󸀠(𝑡)))󸀠 = 𝑓(𝑡, 𝑢(𝑡), 𝑢󸀠(𝑡)) for all 𝑡 ∈ [0, 𝑇].

Let us consider the operator

𝑀
1
: 𝐶
1
󳨀→ 𝐶

1
,

𝑢 󳨃󳨀→ 𝑆 (𝑢) + 𝑄 (𝑁
𝑓
(𝑢))

+ 𝐾 (𝜑
−1

[𝐻 (𝑁
𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢))) + 𝜑 (𝑆 (𝑢))]) .

(78)

Analogously to Section 3, here 𝜑−1 is understood as the
operator 𝜑−1 : 𝐶 → 𝐶 defined for 𝜑−1(V)(𝑡) = 𝜑−1(V(𝑡)). It
is clear that 𝜑−1 is continuous and sends bounded sets into
bounded sets.

Lemma 15. 𝑢 ∈ 𝐶
1 is a solution of (77) if and only if 𝑢 is a

fixed point of the operator 𝑀
1
.

Proof. Let 𝑢 ∈ 𝐶1, and we have the following equivalences:

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑁
𝑓
(𝑢) ,

𝑢
󸀠

(𝑇) = 𝑢
󸀠

(0) ,

𝑢
󸀠

(0) = 𝑢 (𝑇)

⇐⇒ (𝜑 (𝑢
󸀠
))
󸀠

= 𝑁
𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢)) ,

𝑄 (𝑁
𝑓
(𝑢)) = 0, 𝑢

󸀠

(0) = 𝑢 (𝑇)

⇐⇒ 𝜑(𝑢
󸀠
) = 𝐻(𝑁

𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢))) + 𝜑 (𝑢

󸀠

(0)) ,

𝑄 (𝑁
𝑓
(𝑢)) = 0, 𝑢

󸀠

(0) = 𝑢 (𝑇)

⇐⇒ 𝑢
󸀠
= 𝜑
−1

[𝐻 (𝑁
𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢)))

+ 𝜑 (𝑢
󸀠

(0))] , 𝑄 (𝑁
𝑓
(𝑢)) = 0, 𝑢

󸀠

(0) = 𝑢 (𝑇)

⇐⇒ 𝑢 = 𝑢 (𝑇) + 𝐾 (𝜑
−1

[𝐻 (𝑁
𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢)))

+ 𝜑 (𝑢
󸀠

(0))]) , 𝑄 (𝑁
𝑓
(𝑢)) = 0, 𝑢

󸀠

(0) = 𝑢 (𝑇)

⇐⇒ 𝑢 = 𝑢 (𝑇) + 𝑄 (𝑁
𝑓
(𝑢))

+ 𝐾 (𝜑
−1

[𝐻 (𝑁
𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢))) + 𝜑 (𝑢 (𝑇))])

⇐⇒ 𝑢 = 𝑆 (𝑢) + 𝑄 (𝑁
𝑓
(𝑢))

+ 𝐾 (𝜑
−1

[𝐻 (𝑁
𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢))) + 𝜑 (𝑆 (𝑢))]) .

(79)

Remark 16. Note that 𝑢󸀠(𝑇) = 𝑢󸀠(0) ⇔ 𝑄(𝑁
𝑓
(𝑢)) = 0.

Using an argument similar to the one introduced in
Lemma 13, it is easy to see that 𝑀

1
: 𝐶1 → 𝐶1 is completely

continuous.
In order to apply Leray-Schauder degree to the operator

𝑀
1
, we introduced a family of problems depending on

parameter 𝜆. We remember that to each continuous function
𝑓 : [0, 𝑇] × R × R → R we associate its Nemytskii operator
𝑁
𝑓
: 𝐶1 → 𝐶 defined by

𝑁
𝑓
(𝑢) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢

󸀠

(𝑡)) . (80)

For 𝜆 ∈ [0, 1], we consider the family of boundary value
problems:

(𝜑 (𝑢
󸀠
))
󸀠

= 𝜆𝑁
𝑓
(𝑢) + (1 − 𝜆)𝑄 (𝑁

𝑓
(𝑢)) ,

𝑢 (𝑇) = 𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) .

(81)
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Notice that (81) coincides with (77) for 𝜆 = 1. So, for each
𝜆 ∈ [0, 1], the operator associated with (81) by Lemma 15 is
the operator𝑀(𝜆, ⋅), where𝑀 is defined on [0, 1] × 𝐶1 by

𝑀(𝜆, 𝑢) = 𝑆 (𝑢) + 𝑄 (𝑁
𝑓
(𝑢))

+ 𝐾 (𝜑
−1

[𝜆𝐻 (𝑁
𝑓
(𝑢) − 𝑄 (𝑁

𝑓
(𝑢)))

+ 𝜑 (𝑆 (𝑢))]) .

(82)

Using the same arguments as in the proof of Lemma 13
we show that the operator 𝑀 is completely continuous.
Moreover, using the same reasoning as above, system (81) (see
Lemma 15) is equivalent to the problem

𝑢 = 𝑀(𝜆, 𝑢) . (83)

5.1. Existence Results. In this subsection, we present and
prove our main results. These results are inspired by works
of Bereanu and Mawhin [6] and Manásevich and Mawhin
[10]. We denote by degB the Brouwer degree and by degLS the
Leray-Schauder degree and define the mapping𝐺 : R2 → R2

by

𝐺 : R
2
󳨀→ R

2
,

(𝑎, 𝑏) 󳨃󳨀→ (𝑎𝑇 + 𝑏𝑇
2
− 𝑏𝑇

−
1

𝑇
∫
𝑇

0

𝑓 (𝑡, 𝑎 + 𝑏𝑡, 𝑏) 𝑑𝑡, 𝑏 − 𝑎 − 𝑏𝑇) .

(84)

Theorem 17. Assume thatΩ is an open bounded set in𝐶1 such
that the following conditions hold:

(1) For each 𝜆 ∈ (0, 1) problem

(𝜑 (𝑢
󸀠
))
󸀠

= 𝜆𝑁
𝑓
(𝑢) ,

𝑢 (𝑇) = 𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) ,

(85)

has no solution on 𝜕Ω.
(2) The equation

𝐺 (𝑎, 𝑏) = (0, 0) (86)

has no solution on 𝜕Ω ∩ R2, where we consider the
natural identification (𝑎, 𝑏) ≈ 𝑎 + 𝑏𝑡 ofR2 with related
functions in 𝐶

1.
(3) The Brouwer degree

deg
𝐵
(𝐺,Ω ∩R

2
, 0) ̸= 0. (87)

Then problem (77) has a solution.

Proof. Let 𝜆 ∈ (0, 1]. If 𝑢 is a solution of (85), then
𝑄(𝑁
𝑓
(𝑢)) = 0; hence 𝑢 is a solution of problem (81). On the

other hand, for 𝜆 ∈ (0, 1], if 𝑢 is a solution of (81) and because

𝑄(𝜆𝑁
𝑓
(𝑢) + (1 − 𝜆)𝑄 (𝑁

𝑓
(𝑢))) = 𝑄 (𝑁

𝑓
(𝑢)) , (88)

we have 𝑄(𝑁
𝑓
(𝑢)) = 0; then 𝑢 is a solution of (85). It follows

that, for 𝜆 ∈ (0, 1], problems (81) and (85) have the same
solutions. We assume that, for 𝜆 = 1, (81) does not have a
solution on 𝜕Ω since otherwise we are done with proof. It
follows that (81) has no solutions for (𝜆, 𝑢) ∈ (0, 1] × 𝜕Ω. If
𝜆 = 0, then (81) is equivalent to the problem

(𝜑 (𝑢
󸀠
))
󸀠

= 𝑄 (𝑁
𝑓
(𝑢)) ,

𝑢 (𝑇) = 𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) ,

(89)

and thus, if 𝑢 is a solution of (89), we must have

∫
𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) 𝑑𝑡 = 0. (90)

Moreover, 𝑢 is a function of the form 𝑢(𝑡) = 𝑎+𝑏𝑡, 𝑎 = 𝑏−𝑏𝑇.
Thus, by (90)

∫
𝑇

0

𝑓 (𝑡, 𝑎 + 𝑏𝑡, 𝑏) 𝑑𝑡 = 0, (91)

which, together with hypothesis (2), implies that 𝑢 = 𝑏−𝑏𝑇+

𝑡𝑏 ∉ 𝜕Ω. Thus we have proved that (81) has no solution in 𝜕Ω

for all 𝜆 ∈ [0, 1]. Then we have that, for each 𝜆 ∈ [0, 1], the
Leray-Schauder degree degLS(𝐼−𝑀(𝜆, ⋅), Ω, 0) is well defined,
and by the homotopy invariance, one has

degLS (𝐼 − 𝑀 (0, ⋅) , Ω, 0) = degLS (𝐼 − 𝑀 (1, ⋅) , Ω, 0) . (92)

On the other hand, we have that

degLS (𝐼 − 𝑀 (0, ⋅) , Ω, 0)

= degLS (𝐼 − (𝑆 + 𝑄𝑁
𝑓
+ 𝐾𝑆) ,Ω, 0) .

(93)

But the range of the mapping

𝑢 󳨃󳨀→ 𝑆 (𝑢) + 𝑄 (𝑁
𝑓
(𝑢)) + 𝐾 (𝑆 (𝑢)) (94)

is contained in the subspace of related functions, isomorphic
to R2. Thus, using a reduction property of Leray-Schauder
degree [7, 11],

degLS (𝐼 − (𝑆 + 𝑄𝑁
𝑓
+ 𝐾𝑆) ,Ω, 0)

= degB (𝐼 − (𝑆 + 𝑄𝑁
𝑓
+ 𝐾𝑆)

󵄨󵄨󵄨󵄨󵄨 Ω∩R2
, Ω ∩R

2
, 0)

= degB (𝐺,Ω ∩R
2
, 0) ̸= 0.

(95)

Then, degLS(𝐼 − 𝑀(1, ⋅), Ω, 0) ̸= 0, where 𝐼 denotes the unit
operator. Hence, there exists 𝑢 ∈ Ω such that 𝑀

1
(𝑢) = 𝑢,

which is a solution for (77).

The following result gives a priori bounds for the possible
solutions of (85) and adapts a technique introduced by Ward
Jr. [12].

Theorem 18. Assume that 𝑓 satisfies the following conditions:

(1) There exists 𝑐 ∈ 𝐶 such that

𝑓 (𝑡, 𝑥, 𝑦) ≥ 𝑐 (𝑡) (96)

for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] ×R ×R.
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(2) There exists𝑀
1
< 𝑀
2
such that, for all 𝑢 ∈ 𝐶1,

∫
𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) 𝑑𝑡 ̸= 0 if 𝑢󸀠
𝑚

≥ 𝑀
2
,

∫
𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) 𝑑𝑡 ̸= 0 if 𝑢󸀠
𝑀

≤ 𝑀
1
.

(97)

If (𝜆, 𝑢) ∈ (0, 1) × 𝐶1 is such that 𝑢 is solution of (85), then

‖𝑢‖
1
< 𝑟 (2 + 𝑇) , (98)

where

𝑟

= max {
󵄨󵄨󵄨󵄨󵄨
𝜑
−1

(𝐿 + 2
󵄩󵄩󵄩󵄩𝑐
−󵄩󵄩󵄩󵄩𝐿1)

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝜑
−1

(−𝐿 − 2
󵄩󵄩󵄩󵄩𝑐
−󵄩󵄩󵄩󵄩𝐿1)

󵄨󵄨󵄨󵄨󵄨
} ,

𝐿 = max {
󵄨󵄨󵄨󵄨𝜑 (𝑀

2
)
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝜑 (𝑀
1
)
󵄨󵄨󵄨󵄨} .

(99)

Proof. Let (𝜆, 𝑢) ∈ (0, 1) × 𝐶1 be such that 𝑢 is a solution of
(85). Then, for all 𝑡 ∈ [0, 𝑇],

(𝜑 (𝑢
󸀠

(𝑡)))
󸀠

= 𝜆𝑁
𝑓
(𝑢) (𝑡) ,

𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) = 𝑢 (𝑇) ,

∫
𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) 𝑑𝑡 = 0.

(100)

Using hypothesis (2), we have that

𝑢
󸀠

𝑚
< 𝑀
2
,

𝑢
󸀠

𝑀
> 𝑀
1
.

(101)

It follows that there exists 𝜔 ∈ [0, 𝑇] such that 𝑀
1
< 𝑢󸀠(𝜔) <

𝑀
2
and

∫
𝑡

𝜔

(𝜑 (𝑢
󸀠

(𝑠)))
󸀠

𝑑𝑠 = 𝜆∫
𝑡

𝜔

𝑁
𝑓
(𝑢) (𝑠) 𝑑𝑠, (102)

which implies that

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑢
󸀠

(𝑡))
󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑢
󸀠

(𝜔))
󵄨󵄨󵄨󵄨󵄨

+ ∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

󸀠

(𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠,

(103)

where

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

󸀠

(𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ ∫
𝑇

0

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠)) 𝑑𝑠 + 2∫
𝑇

0

𝑐
−

(𝑠) 𝑑𝑠.

(104)

Hence,
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑢
󸀠

(𝑡))
󵄨󵄨󵄨󵄨󵄨
< 𝐿 + 2

󵄩󵄩󵄩󵄩𝑐
−󵄩󵄩󵄩󵄩𝐿1 , (105)

where 𝐿 = max{|𝜑(𝑀
2
)|, |𝜑(𝑀

1
)|} and 𝑡 ∈ [0, 𝑇]. It follows

that
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩∞

< 𝑟, (106)

where 𝑟 = max{|𝜑−1(𝐿 + 2‖𝑐−‖
𝐿
1)|, |𝜑−1(−𝐿 − 2‖𝑐−‖

𝐿
1)|}.

Because 𝑢 ∈ 𝐶1 is such that 𝑢󸀠(0) = 𝑢(𝑇) we have that

|𝑢 (𝑡)| ≤ |𝑢 (𝑇)| + ∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 < 𝑟 + 𝑟𝑇

(𝑡 ∈ [0, 𝑇]) ,

(107)

and hence ‖𝑢‖
1
= ‖𝑢‖
∞

+ ‖𝑢󸀠‖
∞

< 𝑟 + 𝑟𝑇 + 𝑟 = 𝑟(2 + 𝑇). This
proves the theorem.

Now we show the existence of at least one solution for
problem (77) by means of Leray-Schauder degree.

Theorem 19. Let 𝑓 be continuous and let it satisfy conditions
(1) and (2) ofTheorem 18. Assume that the following conditions
hold for some 𝜌 ≥ 𝑟(2 + 𝑇):

(1) The equation

𝐺 (𝑎, 𝑏) = (0, 0) (108)

has no solution on 𝜕𝐵
𝜌
(0) ∩R2, where we consider the

natural identification (𝑎, 𝑏) ≈ 𝑎 + 𝑏𝑡 ofR2 with related
functions in 𝐶1.

(2) The Brouwer degree

deg
𝐵
(𝐺, 𝐵
𝜌
(0) ∩R

2
, 0) ̸= 0. (109)

Then problem (77) has a solution.

Proof. Let (𝜆, 𝑢) ∈ (0, 1) × 𝐶1 be such that 𝑢 is a solution of
(85). UsingTheorem 18, we have

‖𝑢‖
1
= ‖𝑢‖
∞

+
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩∞

< 𝑟 + 𝑟𝑇 + 𝑟 = 𝑟 (2 + 𝑇) , (110)

where 𝑟 = max{|𝜑−1(𝐿 + 2‖𝑐−‖
𝐿
1)|, |𝜑−1(−𝐿 − 2‖𝑐−‖

𝐿
1)|}. Thus

the conditions of Theorem 17 are satisfied with Ω = 𝐵
𝜌
(0),

where 𝐵
𝜌
(0) is the open ball in 𝐶1 center 0 and radius 𝜌. This

concludes the proof.

Let us give now an application of Theorem 19.

Example 20. Let us consider the problem

((𝑢
󸀠
)
3

)
󸀠

=
𝑒𝑢
󸀠

2
− 1,

𝑢 (𝑇) = 𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) .

(111)

Let 𝑀
1
= −1 and 𝑀

2
= 1. If we suppose that 𝑢󸀠

𝑚
≥ 𝑀
2
and

𝑢󸀠
𝑀

≤ 𝑀
1
, then

∫
𝑇

0

(
𝑒
𝑢
󸀠
(𝑡)

2
− 1)𝑑𝑡 ≥ (

𝑒
𝑀
2

2
− 1)𝑇 > 0,

∫
𝑇

0

(
𝑒𝑢
󸀠
(𝑡)

2
− 1)𝑑𝑡 ≤ (

𝑒
𝑀
1

2
− 1)𝑇 < 0.

(112)
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On the other hand, if we choose 𝜌 ≥ (1 + 2𝑇)
1/3

(2 + 𝑇) and
𝑐(𝑡) = −1 for all 𝑡 ∈ [0, 𝑇], we have that the equation

𝐺 (𝑎, 𝑏) = (𝑎𝑇 + 𝑏𝑇
2
− 𝑏𝑇

−
1

𝑇
∫
𝑇

0

𝑓 (𝑡, 𝑎 + 𝑏𝑡, 𝑏) 𝑑𝑡, 𝑏 − 𝑎 − 𝑏𝑇) = (0, 0)

= (𝑎𝑇 + 𝑏𝑇
2
− 𝑏𝑇 −

1

𝑇
∫
𝑇

0

(
𝑒𝑏

2
− 1)𝑑𝑡, 𝑏 − 𝑎

− 𝑏𝑇) = (0, 0) = (𝑎𝑇 + 𝑏𝑇
2
− 𝑏𝑇 −

𝑒𝑏

2
+ 1, 𝑏 − 𝑎

− 𝑏𝑇) = (0, 0)

(113)

has no solution on 𝜕𝐵
𝜌
(0)∩R2.Thenwehave that theBrouwer

degree degB(𝐺, 𝐵
𝜌
(0) ∩ R2, (0, 0)) is well defined and, by the

properties of that degree, we have that

degB (𝐺, 𝐵
𝜌
(0) ∩R

2
, (0, 0)) = ∑

𝑥∈𝐺
−1
(0,0)

sgn 𝐽
𝐺
(𝑥)

̸= 0,

(114)

where (0, 0) is a regular value of 𝐺 and 𝐽
𝐺
(𝑥) = det𝐺󸀠(𝑥) is

the Jacobian of 𝐺 at 𝑥. So, using Theorem 19, we obtain that
the boundary value problem (111) has at least one solution.
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