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In the year 2003, McD Mercer established an interesting variation of Jensen’s inequality and later in 2009 Mercer’s result was
generalized to higher dimensions by M. Niezgoda. Recently, Asif et al. has stated an integral version of Niezgoda’s result for convex
functions.We further generalize Niezgoda’s integral result for functions with nondecreasing increments and give some refinements
with applications. In the way, we generalize an important result, Jensen-Boas inequality, using functions with nondecreasing
increments. These results would constitute a valuable addition to Jensen-type inequalities in the literature.

1. Introduction and Preliminaries

Let us start with Jensen’s inequality for convex functions,
one of the most celebrated inequalities in mathematics and
statistics (for detailed discussion and history, see [1, 2]).
Throughout the paper, we assume that 𝐽 and [𝑎, 𝑏] are
intervals in R, and J is an interval in R𝑘 and U ⊂ R𝑘 is a
𝑘-dimensional rectangle for integer 𝑘 ≥ 1. Also for weights
𝑤𝑖, 𝑖 ∈ {1, . . . , 𝑛}, we would use𝑊𝑛 = ∑

𝑛

𝑖=1
𝑤𝑖.

Proposition 1. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ [𝑎, 𝑏] and let 𝑤1, 𝑤2, . . . ,
𝑤𝑛 be nonnegative real numbers such that 𝑊𝑛 > 0. If 𝜑 :

[𝑎, 𝑏] → R is a convex function, then the following inequality
holds:

𝜑(
1

𝑊𝑛

𝑛

∑

𝑖=1

𝑤𝑖𝑥𝑖) ≤
1

𝑊𝑛

𝑛

∑

𝑖=1

𝑤𝑖𝜑 (𝑥𝑖) . (1)

In [3], McD Mercer proved the following variant of
Jensen’s inequality, which we will refer to asMercer’s inequal-
ity.

Proposition 2. Under the assumptions of Proposition 1, the
following inequality holds:

𝜑(𝑚1 + 𝑚2 −
1

𝑊𝑛

𝑛

∑

𝑖=1

𝑤𝑖𝑥𝑖)

≤ 𝜑 (𝑚1) + 𝜑 (𝑚2) −
1

𝑊𝑛

𝑛

∑

𝑖=1

𝑤𝑖𝜑 (𝑥𝑖) ,

(2)

where

𝑚1 = min
1≤𝑖≤𝑛

{𝑥𝑖} ,

𝑚2 = max
1≤𝑖≤𝑛

{𝑥𝑖} .

(3)

There are many versions, variants, and generalizations of
Propositions 1 and 2; see for example [4–7]. Here we state an
integral version of Jensen’s inequality from [1, pages 58-59]
which will be needed in our main result.

Proposition 3. Let 𝑓 : [𝑎, 𝑏] → 𝐽 be a continuous function.
If the function 𝐻 : [𝑎, 𝑏] → R is nondecreasing and bounded
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and 𝐻(𝑎) ̸= 𝐻(𝑏), then for every continuous convex function
𝜑 : 𝐽 → R the inequality

𝜑(
∫
𝑏

𝑎
𝑓 (𝑡) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

) ≤
∫
𝑏

𝑎
𝜑 (𝑓 (𝑡)) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

(4)

holds.

In our construction for next proposition, we recall the
definitions of majorization.

For fixed 𝑛 ≥ 2,

x = (𝑥1, . . . , 𝑥𝑛) ,

y = (𝑦1, . . . , 𝑦𝑛) ,

(5)

denote two real 𝑛-tuples and let

𝑥[1] ≥ 𝑥[2] ≥ ⋅ ⋅ ⋅ ≥ 𝑥[𝑛],

𝑦[1] ≥ 𝑦[2] ≥ ⋅ ⋅ ⋅ ≥ 𝑦[𝑛]

(6)

be their ordered components.

Definition 4. For x, y ∈ R𝑛,

x ≺ y if
{{{{

{{{{

{

𝑘

∑

𝑖=1

𝑥[𝑖] ≤

𝑘

∑

𝑖=1

𝑦[𝑖], 𝑘 ∈ {1, . . . , 𝑛 − 1} ,

𝑛

∑

𝑖=1

𝑥[𝑖] =

𝑛

∑

𝑖=1

𝑦[𝑖];

(7)

when x ≺ y, x is said to be majorized by y or ymajorizes x.

This notion and notation ofmajorizationwere introduced
by Hardy et al. in [8].

The following extension of inequality (2) was given by
Niezgoda in [6] which is referred to as Niezgoda’s inequality.

Proposition 5. Let 𝜑 : [𝑎, 𝑏] → R be a continuous convex
function. Suppose that 𝛼 = (𝛼1, . . . , 𝛼𝑚) with 𝛼𝑗 ∈ [𝑎, 𝑏] and
X = (𝑥𝑖𝑗) is a real 𝑛 × 𝑚 matrix such that 𝑥𝑖𝑗 ∈ [𝑎, 𝑏] for all
𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑚}.

If 𝛼majorizes each row of X, that is,

x𝑖. = (𝑥𝑖1, . . . , 𝑥𝑖𝑚) ≺ (𝛼1, . . . , 𝛼𝑚) = 𝛼

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ {1, . . . , 𝑛} ,
(8)

then we have the inequality

𝜑(

𝑚

∑

𝑗=1

𝛼𝑗 −
1

𝑊𝑛

𝑚−1

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤𝑖𝑥𝑖𝑗)

≤

𝑚

∑

𝑗=1

𝜑 (𝛼𝑗) −
1

𝑊𝑛

𝑚−1

∑

𝑗=1

𝑛

∑

𝑖=1

𝑤𝑖𝜑 (𝑥𝑖𝑗) ,

(9)

where𝑊𝑛 > 0 with nonnegative weights 𝑤𝑖.

The present paper is organized as follows: after some
preliminaries, in Section 2, we recall definition of functions
with nondecreasing increments and their properties and note
that some inequalities from Section 1 which held true for
convex functions also hold for functions with nondecreasing
increments. In Section 3, we give an integral generalization
of Niezgoda’s inequality. In the process, we will use an
integral majorization result of Pečarić [9] and prove a result
which gives the Jensen-Boas inequality on disjoint set of
subintervals for functions with nondecreasing increments.
In Section 4, we will discuss some refinements of the main
results we proved in Section 3. The last part of this section is
devoted to the applications of some related results.

2. Introduction to Functions with
Nondecreasing Increments

In 1964, Brunk defined an interesting class ofmultivariate real
valued functions [10] known as functionswith nondecreasing
increments.

Definition 6. A real valued function 𝑓 on a 𝑘-dimensional
rectangle U ⊂ R𝑘, where 𝑘 is a fixed positive integer, is said
to have nondecreasing increments if

𝑓 (a + h) − 𝑓 (a) ≤ 𝑓 (b + h) − 𝑓 (b)

whenever 0 ≤ h ∈ R
𝑘
, a ≤ b, a, b + h ∈ U,

(10)

where partial order is defined by (𝑥1, 𝑥2, . . . , 𝑥𝑘) ≤ (𝑦1, 𝑦2,

. . . , 𝑦𝑘) ⇔ 𝑥1 ≤ 𝑦1, . . . , 𝑥𝑘 ≤ 𝑦𝑘.

In the same paper [10], Brunk gave some examples and
properties of the functions which we discuss below.

2.1. Examples of Functions with Nondecreasing Increments

(i) The simplest example of a function with nondecreas-
ing increments is a constant function.

(ii) Lines of the form x = a𝑡 + b, where (0, . . . , 0) ≤

a ∈ R𝑘 and b ∈ R𝑘 whose direction cosines are
nonnegative, also belong to the family of functions
with nondecreasing increments.

(iii) An important continuous function with nondecreas-
ing increments is 𝜙 : R2 → R defined by 𝜙(𝑥, 𝑦) =
𝑥𝑦:

Another useful continuous function with non-
decreasing increments is 𝜑 : [0,∞)

𝑘
→ R

defined by 𝜑(x) = ∏
𝑘

𝑖=1
𝑥𝑖.

(iv) An interesting and widely used example of such
functions is the Cauchy functional equation

𝐹 (x + y) = 𝐹 (x) + 𝐹 (y) . (11)

2.2. Properties of Functions with Nondecreasing Increments.
Functionswith nondecreasing increments possess the follow-
ing properties:
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(i) A function with nondecreasing increments is not
necessarily continuous.

(ii) If the first partial derivatives of a function 𝑓 : U → R

exist for x ∈ U, then x has nondecreasing increments
if and only if each of these partial derivatives is
nondecreasing in each argument.

(iii) If the second partial derivatives of a function𝑓 : U →

R exist for x ∈ U, then x has nondecreasing incre-
ments if and only if each of these partial derivatives is
nonnegative.

(iv) If a function 𝑓 with nondecreasing increments is
continuous for b ≤ x ≤ a + b, where 0 ≤ a ∈ R𝑘, then
the function𝜑 : [0, 1] → Rdefined by𝜑(𝑡) = 𝑓(𝑡a+b)
is convex.

We define here a special type of functions which belong
to the class of functions with nondecreasing increments and
which themselves contain the class of convex functions.These
functions are called Wright convex functions [1, page 7].

Definition 7. We say 𝑓 : 𝐼 → R is a Wright convex function if
∀𝑎, 𝑏 + ℎ ∈ 𝐼 with 𝑎 < 𝑏 and ℎ > 0 we have

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎) ≤ 𝑓 (𝑏 + ℎ) − 𝑓 (𝑏) . (12)

Remark 8. It is easy to see that, in one-dimensional case,
functions with nondecreasing increments are Wright convex
functions. Also, continuous Wright convex functions are
convex functions. Thus, the class of convex functions is a
proper subclass of the Wright convex functions.

Now we state some results that will be needed to derive
our main results. The following proposition gives Jensen’s
inequality for functions with nondecreasing increments [11].

Proposition 9. Let 𝑓 : U → R be a continuous function with
nondecreasing increments, let w be a nonnegative n-tuple such
that𝑊𝑛 > 0, and let x(𝑖) ∈ U, where 𝑖 ∈ {1, . . . , 𝑛}, be such that
x(1) ≤ ⋅ ⋅ ⋅ ≤ x(𝑛) or x(1) ≥ ⋅ ⋅ ⋅ ≥ x(𝑛). Then, it holds that

𝑓(
1

𝑊𝑛

𝑛

∑

𝑖=1

𝑤𝑖x
(𝑖)
) ≤

1

𝑊𝑛

𝑛

∑

𝑖=1

𝑤𝑖𝑓 (x
(𝑖)
) . (13)

We now state Jensen-Steffensen’s inequality for functions
with nondecreasing increments [12].

Proposition 10. f : [𝑎, 𝑏] → J is a nondecreasing continuous
function and𝐻 : [𝑎, 𝑏] → R is of bounded variation satisfying

𝐻(𝑎) ≤ 𝐻 (𝑡) ≤ 𝐻 (𝑏) ∀𝑡 ∈ [𝑎, 𝑏] , 𝐻 (𝑏) > 𝐻 (𝑎) . (14)

If 𝜑 : J → R is a continuous function with nondecreasing
increments, then the following inequality holds:

𝜑(
∫
𝑏

𝑎
f (𝑡) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

) ≤
∫
𝑏

𝑎
𝜑 (f (𝑡)) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

, (15)

where ∫𝑏
𝑎
f𝑑𝐻 = (∫

𝑏

𝑎
𝑓1𝑑𝐻, . . . , ∫

𝑏

𝑎
𝑓𝑘𝑑𝐻).

At this stage, we prove Jensen-Boas inequality for func-
tions with nondecreasing increments as follows.

Theorem 11. Let f : [𝑎, b] → J be a continuous andmonotonic
(either nonincreasing or nondecreasing) map in each of the 𝑘
intervals (𝑏𝑖−1, 𝑏𝑖). Let 𝐻 : [𝑎, 𝑏] → R be continuous or of
bounded variation satisfying

𝐻(𝑎) ≤ 𝐻 (𝑎1) ≤ 𝐻 (𝑏1) ≤ 𝐻 (𝑎2) ≤ ⋅ ⋅ ⋅ ≤ 𝐻 (𝑏𝑘−1)

≤ 𝐻 (𝑎𝑘) ≤ 𝐻 (𝑏)

(16)

for all 𝑎𝑖 ∈ (𝑏𝑖−1, 𝑏𝑖) (𝑏0 = 𝑎, 𝑏𝑘 = 𝑏) and 𝐻(𝑏) > 𝐻(𝑎). If
𝜑 is a continuous function having nondecreasing increments
in each of the 𝑘 intervals (𝑏𝑖−1, 𝑏𝑖), then we have the following
inequality:

𝜑(
∫
𝑏

𝑎
f (𝑡) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

) ≤
∫
𝑏

𝑎
𝜑 (f (𝑡)) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

. (17)

Proof. Using Jensen’s inequality (13) for nonnegative 𝑛-tuple
w and Jensen-Steffensen’s inequality (15), if 𝐻(𝑎) ≤ 𝐻(𝑎1) ≤

𝐻(𝑏1) ≤ 𝐻(𝑎2) ≤ ⋅ ⋅ ⋅ ≤ 𝐻(𝑏𝑘−1) ≤ 𝐻(𝑏) we have

𝜑(

∫
𝑏𝑖

𝑏𝑖−1
f (𝑡) 𝑑𝐻 (𝑡)

∫
𝑏𝑖

𝑏𝑖−1
𝑑𝐻 (𝑡)

) ≤

∫
𝑏𝑖

𝑏𝑖−1
𝜑 (f (𝑡)) 𝑑𝐻 (𝑡)

∫
𝑏𝑖

𝑏𝑖−1
𝑑𝐻 (𝑡)

(18)

for 𝑖 ∈ {1, 2, . . . , 𝑘}.
If we consider 𝑡𝑖 = (∫

𝑏𝑖

𝑏𝑖−1
f(𝑡)𝑑𝐻(𝑡)/ ∫

𝑏𝑖

𝑏𝑖−1
𝑑𝐻(𝑡)) and 𝑤𝑖 =

∫
𝑏𝑖

𝑏𝑖−1
𝑑𝐻(𝑡), then we can write

𝜑 (𝑡𝑖) ≤
1

𝑤𝑖
∫

𝑏𝑖

𝑏𝑖−1

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡) ; (19)

using this fact, we have

𝜑(
∫
𝑏

𝑎
f (𝑡) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

) = 𝜑(
∑
𝑛

𝑖=1
𝑤𝑖𝑡𝑖

∑
𝑛

𝑖=1
𝑤𝑖

)

≤
∑
𝑛

𝑖=1
𝑤𝑖𝜑 (𝑡𝑖)

∑
𝑛

𝑖=1
𝑤𝑖

≤

∑
𝑛

𝑖=1
𝑤𝑖 (1/𝑤𝑖) ∫

𝑏𝑖

𝑏𝑖−1
𝜑 (f (𝑡)) 𝑑𝐻 (𝑡)

∑
𝑛

𝑖=1
𝑤𝑖

=
∫
𝑏

𝑎
𝜑 (f (𝑡)) 𝑑𝐻 (𝑡)

∫
𝑏

𝑎
𝑑𝐻 (𝑡)

.

(20)

The following proposition represents an integral
majorization result which would be needed in our next main
result [1, page 328].
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Proposition 12. Let f , g : [𝑎, 𝑏] → J be two nonincreasing
continuous functions and let 𝐻 : [𝑎, 𝑏] → R be a function of
bounded variation. If

∫

𝑥

𝑎

f (𝑡) 𝑑𝐻 (𝑡) ≤ ∫

𝑥

𝑎

g (𝑡) 𝑑𝐻 (𝑡) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ (𝑎, 𝑏) ,

∫

𝑏

𝑎

f (𝑡) 𝑑𝐻 (𝑡) = ∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

(21)

hold, then for every continuous function with nondecreasing
increments 𝜑 : J → R the following inequality holds:

∫

𝑏

𝑎

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡) ≤ ∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡) . (22)

Remark 13. If f , g : [𝑎, 𝑏] → J are two nondecreasing
continuous functions such that

∫

𝑏

𝑥

f (𝑡) 𝑑𝐻 (𝑡) ≤ ∫

𝑏

𝑥

g (𝑡) 𝑑𝐻 (𝑡) ,

for each 𝑥 ∈ (𝑎, 𝑏) ,

∫

𝑏

𝑎

f (𝑡) 𝑑𝐻 (𝑡) = ∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡) ,

(23)

then again inequality (22) holds. In this paper, we will
state our results for nonincreasing f and g satisfying the
assumption of Proposition 12, but they are still valid for
nondecreasing f and g satisfying the above condition (see,
e.g., [13, page 584]).

3. Generalized Jensen-Mercer Inequality

Here we state a result needed in the main theorems of this
section. The following lemma shows that the subintervals in
the Jensen-Boas inequality (see Theorem 11) can be disjoint
for the inequality of type (15) to hold.

Lemma 14. Let 𝐻 : [𝑎, 𝑏] → R be continuous or a function
of bounded variation and let 𝑎 ≤ 𝑎1 ≤ 𝑏1 ≤ 𝑎2 ≤ ⋅ ⋅ ⋅ ≤ 𝑎𝑘 ≤

𝑏𝑘 ≤ 𝑏 be a partition of the interval [𝑎, 𝑏]; 𝐼 = ⋃
𝑘

𝑖=1
[𝑎𝑖, 𝑏𝑖] and

𝐿 = ∫
𝐼
𝑑𝐻(𝑡) > 0. If

𝐻(𝑎𝑖) ≤ 𝐻 (𝑡) ≤ 𝐻 (𝑏𝑖) ∀𝑡 ∈ (𝑎𝑖, 𝑏𝑖) , 1 ≤ 𝑖 ≤ 𝑘, (24)

then, for every function f : [𝑎, 𝑏] → J which is continuous
andmonotonic (either nonincreasing or nondecreasing) in each
of the 𝑘 intervals (𝑎𝑖, 𝑏𝑖) and every continuous function with
nondecreasing increments 𝜑 : J → R, the following inequality
holds:

𝜑(
1

𝐿
∫
𝐼

f (𝑡) 𝑑𝐻 (𝑡)) ≤
1

𝐿
∫
𝐼

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡) . (25)

Proof. Denote 𝑤𝑖 = ∫
𝑏𝑖

𝑎𝑖
𝑑𝐻(𝑡). Due to (16), if 𝐻(𝑎𝑖) = 𝐻(𝑏𝑖)

then 𝑑𝐻 is a null-measure on [𝑎𝑖, 𝑏𝑖] and 𝑤𝑖 = 0, while
otherwise 𝑤𝑖 > 0. Denote 𝑆 = {𝑖 : 𝑤𝑖 > 0} and

x𝑖 =
1

𝑤𝑖
∫

𝑏𝑖

𝑎𝑖

f (𝑡) 𝑑𝐻 (𝑡) , for 𝑖 ∈ 𝑆. (26)

Notice that

𝐿 = ∫
𝐼

𝑑𝐻 (𝑡) = ∑

𝑖∈𝑆

𝑤𝑖 > 0,

∫
𝐼

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡) = ∑

𝑖∈𝑆

∫

𝑏𝑖

𝑎𝑖

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡)

(27)

and, due to Proposition 10,

𝑤𝑖𝜑 (x𝑖) ≤ ∫

𝑏𝑖

𝑎𝑖

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡) , for 𝑖 ∈ 𝑆. (28)

Therefore, taking into account the discrete Jensen’s inequality
(13),

𝜑(
1

𝐿
∫
𝐼

f (𝑡) 𝑑𝐻 (𝑡)) = 𝜑(
1

𝐿
∑

𝑖∈𝑆

𝑤𝑖x𝑖)

≤
1

𝐿
∑

𝑖∈𝑆

𝑤𝑖𝜑 (x𝑖)

≤
1

𝐿
∑

𝑖∈𝑆

∫

𝑏𝑖

𝑎𝑖

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡)

=
1

𝐿
∫
𝐼

𝜑 (f (𝑡)) 𝑑𝐻 (𝑡) .

(29)

The following theorem is our main result of this section
and it gives a generalization of Proposition 5.

Theorem 15. Let 𝑎 = 𝑏0 ≤ 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 < ⋅ ⋅ ⋅ < 𝑎𝑘 < 𝑏𝑘 ≤

𝑎𝑘+1 = 𝑏, 𝐼 = ⋃
𝑘

𝑖=1
(𝑎𝑖, 𝑏𝑖), 𝐼𝑐 = [𝑎, 𝑏] \ 𝐼 = ⋃

𝑘+1

𝑖=1
[𝑏𝑖−1, 𝑎𝑖], and

𝐻 : [𝑎, 𝑏] → R be a function of bounded variation such that
𝐻(𝑏𝑖−1) ≤ 𝐻(𝑡) ≤ 𝐻(𝑎𝑖) for all 𝑡 ∈ (𝑏𝑖−1, 𝑎𝑖) and 1 ≤ 𝑖 ≤ 𝑘 + 1

and 𝐿 = ∫
𝐼𝑐
𝑑𝐻(𝑡) > 0.

Furthermore, let (𝑋, Σ, 𝜇) be a measure space with positive
finite measure 𝜇, let g : [𝑎, 𝑏] → J be a nonincreasing
continuous function, and let f : 𝑋×[𝑎, 𝑏] → J be a measurable
function such that themapping 𝑡 → f(𝑠, 𝑡) is nonincreasing and
continuous for each 𝑠 ∈ 𝑋:

∫

𝑥

𝑎

f (s, 𝑡) 𝑑𝐻 (𝑡) ≤ ∫

𝑥

𝑎

g (𝑡) 𝑑𝐻 (𝑡) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ (𝑎, 𝑏) ,

∫

𝑏

𝑎

f (𝑠, 𝑡) 𝑑𝐻 (𝑡) = ∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡) .

(30)
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Then, for a continuous function with nondecreasing increments
𝜑 : J → R, the following inequality holds:

𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

≤
1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

𝜑 (f (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(31)

Proof. Using Fubini’s theorem, inequality (30), and Jensen’s
integral inequality (4), we have

𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

= 𝜑(
1

𝐿
(∫

𝑏

𝑎

1

𝜇 (𝑋)
∫
𝑋

g (𝑡) 𝑑𝐻 (𝑡) 𝑑𝜇 (𝑠)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))) = 𝜑(
1

𝜇 (𝑋)

⋅ ∫
𝑋

[
1

𝐿
∫
𝐼𝑐
f (𝑠, 𝑡) 𝑑𝐻 (𝑡)] 𝑑𝜇 (𝑠)) ≤

1

𝜇 (𝑋)

⋅ ∫
𝑋

𝜑(
1

𝐿
∫
𝐼𝑐
f (𝑠, 𝑡) 𝑑𝐻 (𝑡)) 𝑑𝜇 (𝑠) .

(32)

Applying Lemma 14 and Proposition 12, respectively, we have

1

𝜇 (𝑋)
∫
𝑋

𝜑(
1

𝐿
∫
𝐼𝑐
f (𝑠, 𝑡) 𝑑𝐻 (𝑡)) 𝑑𝜇 (𝑠) ≤

1

𝜇 (𝑋)

⋅ ∫
𝑋

(
1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡)

− ∫
𝐼

𝜑 (f (𝑠, 𝑡)) 𝑑𝐻 (𝑡)) 𝑑𝜇 (𝑠))

=
1

𝐿
(

1

𝜇 (𝑋)
∫
𝑋

𝑑𝜇 (𝑠) ∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

𝜑 (f (𝑠, 𝑡)) 𝑑𝐻 (𝑡) 𝑑𝜇 (𝑠))

=
1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

𝜑 (f (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(33)

The special case ofTheorem 15 can be found in [14] which
may be stated as follows.

Corollary 16. Let 𝑎 = 𝑏0 ≤ 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 < ⋅ ⋅ ⋅ < 𝑎𝑘 <

𝑏𝑘 ≤ 𝑎𝑘+1 = 𝑏, 𝐼 = ⋃
𝑘

𝑖=1
(𝑎𝑖, 𝑏𝑖), 𝐼𝑐 = [𝑎, 𝑏] \ 𝐼 = ⋃

𝑘+1

𝑖=1
[𝑏𝑖−1, 𝑎𝑖],

and 𝐻 : [𝑎, 𝑏] → R be a function of bounded variation such
that 𝐻(𝑏𝑖−1) ≤ 𝐻(𝑡) ≤ 𝐻(𝑎𝑖) for all 𝑡 ∈ (𝑏𝑖−1, 𝑎𝑖) and 1 ≤ 𝑖 ≤

𝑘 + 1 and 𝐿 = ∫
𝐼𝑐
𝑑𝐻(𝑡) > 0.

Furthermore, let (𝑋, Σ, 𝜇) be a measure space with positive
finite measure 𝜇, let 𝑔 : [𝑎, 𝑏] → 𝐽 be a nonincreasing
continuous function, and let𝑓 : 𝑋×[𝑎, 𝑏] → 𝐽 be ameasurable
function such that the mapping 𝑡 → 𝑓(𝑠, 𝑡) is nonincreasing
and continuous for each 𝑠 ∈ 𝑋:

∫

𝑥

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝐻 (𝑡) ≤ ∫

𝑥

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ (𝑎, 𝑏) ,

∫

𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝐻 (𝑡) = ∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡) .

(34)

Then, for a continuous convex function 𝜑 : 𝐽 → R, the
following inequality holds:

𝜑(
1

𝐿
(∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

≤
1

𝐿
(∫

𝑏

𝑎

𝜑 (𝑔 (𝑡)) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

𝜑 (𝑓 (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(35)

4. Refinements

Let (𝑋, Σ, 𝜇) be a measure space with positive finite measure
𝜇. Throughout this section, we assume that 𝐸 ⊂ 𝑋 with 𝜇(𝐸),
𝜇(𝐸
𝑐
) > 0 and we use the following notations:

𝑊𝐸 =
𝜇 (𝐸)

𝜇 (𝑋)
,

𝑊𝐸𝑐 =
𝜇 (𝐸
𝑐
)

𝜇 (𝑋)
= 1 −𝑊𝐸.

(36)

The following refinement of (31) is valid.
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Theorem 17. Under the assumptions of Theorem 15, the
following refinement is valid for every continuous functionwith
nondecreasing increments 𝜑 : J → R:

𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (X)
∫
𝐼

∫
𝑋

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))) ≤ 𝐹 (f , g, 𝜑;

𝐸) ≤
1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

𝜑 (f (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ,

(37)

where

𝐹 (f , g, 𝜑; 𝐸) = 𝑊𝐸𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸)
∫
𝐼

∫
𝐸

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

+𝑊𝐸𝑐𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))) .

(38)

Proof. Using discrete Jensen’s inequality (13) for functions
with nondecreasing increments, we have

𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

= 𝜑(𝑊𝐸 [
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸)
∫
𝐸

∫
𝐼

f (𝑠, 𝑡) 𝑑𝐻 (𝑡)) 𝑑𝜇 (𝑠)]

+𝑊𝐸𝑐 [
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸𝑐)
∫
𝐸𝑐
∫
𝐼

f (𝑠, 𝑡) 𝑑𝐻 (𝑡)) 𝑑𝜇 (𝑠)])

≤ 𝑊𝐸𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡) −
1

𝜇 (𝐸)

⋅ ∫
𝐸

∫
𝐼

f (𝑠, 𝑡) 𝑑𝐻 (𝑡)) 𝑑𝜇 (𝑠))

+𝑊𝐸𝑐𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡) −
1

𝜇 (𝐸𝑐)

⋅ ∫
𝐸𝑐
∫
𝐼

f (𝑠, 𝑡) 𝑑𝐻 (𝑡)) 𝑑𝜇 (𝑠))

= 𝐹 (f , g, 𝜑; 𝐸)
(39)

for any 𝐸, which proves the first inequality in (37).
By inequality (31), we also have

𝐹 (f , g, 𝜑; 𝐸) = 𝑊𝐸𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸)
∫
𝐼

∫
𝐸

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

+𝑊𝐸𝑐𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

≤ 𝑊𝐸 [
1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸)
∫
𝐼

∫
𝐸

𝜑 (f (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))]

+𝑊𝐸𝑐 [
1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
𝜑 (f (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))]

=
1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

𝜑 (f (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

(40)

for any 𝐸, which proves the second inequality in (37).
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Remark 18. Direct consequences of the previous theorem are
the following two inequalities:

𝜑(
1

𝐿
(∫

𝑏

𝑎

g (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

f (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

≤ inf
{𝐸:0<𝜇(𝐸)<𝜇(𝑋)}

𝐹 (f , g, 𝜑; 𝐸) ,

(41)

sup
{𝐸:0<𝜇(𝐸)<𝜇(𝑋)}

𝐹 (f , g, 𝜑; 𝐸) ≤ 1

𝐿
(∫

𝑏

𝑎

𝜑 (g (𝑡)) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝜑 (f (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(42)

The special case ofTheorem 17 can be found in [14] which
may be stated as follows.

Corollary 19. Under the assumptions of Corollary 16, the
following refinement is valid for every continuous convex
function 𝜑 : 𝐽 → R:

𝜑(
1

𝐿
(∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))) ≤ 𝐹 (𝑓, 𝑔, 𝜑;

𝐸) ≤
1

𝐿
(∫

𝑏

𝑎

𝜑 (𝑔 (𝑡)) 𝑑𝐻 (𝑡) −
1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

𝜑 (𝑓 (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ,

(43)

where

𝐹 (𝑓, 𝑔, 𝜑; 𝐸) = 𝑊𝐸𝜑(
1

𝐿
(∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸)
∫
𝐼

∫
𝐸

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)))

+𝑊𝐸𝑐𝜑(
1

𝐿
(∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))) .

(44)

4.1. Applications. Haluška and Hutnı́k discussed a class of
generalized weighted quasiarithmetic means in the inte-
gral form 𝑀[𝑎,𝑏],𝑔(𝑤, 𝑓) using the integral form of Jensen’s
inequality [15]. In their work, they used the definition of
quasiarithmetic nonsymmetricalweightedmeanproposed by
Feng [16] which we state below.

Let [𝑎, 𝑏] ⊂ R, where 𝑎 < 𝑏, be an interval. Let 𝐿1([𝑎, 𝑏])
denote the vector space of all real Lebesgue measurable
functions defined on the interval [𝑎, 𝑏] with the classical

Lebesgue measure, and let 𝐿+
1
([𝑎, 𝑏]) denote the positive cone

of 𝐿1([𝑎, 𝑏]), that is, the vector space of all real positive
Lebesgue integrable functions on [𝑎, 𝑏]. Let ‖𝑤‖[𝑎,𝑏] denote
the finite 𝐿1-norm of a function 𝑤 ∈ 𝐿

+

1
([𝑎, 𝑏]).

Definition 20. Let (𝑤, 𝑓) ∈ 𝐿
+

1
([𝑎, 𝑏]) × 𝐿

+

1
([𝑎, 𝑏]) and 𝑔 :

[0,∞] → R be a real continuous and strictly monotone
function. The generalized weighted quasiarithmetic mean of
a function f with respect to weight function 𝑤 is a number
𝑀[𝑎,𝑏],𝑔(𝑤, 𝑓) ∈ R, where

𝑀[𝑎,𝑏],𝑔 (𝑤, 𝑓)

= 𝑔
−1
(

1

‖𝑤‖[𝑎,𝑏]
∫

𝑏

𝑎

𝑤 (𝑥) 𝑔 (𝑓 (𝑥)) 𝑑𝑥) ,

(45)

where 𝑔−1 denotes the inverse of the function 𝑔.

In what follows, 𝑔 is always a real continuous and strictly
monotone function (in accordance with Definition 20).
Means 𝑀[𝑎,𝑏],𝑔(𝑤, 𝑓) include many commonly used two-
variable integral means as particular cases when taking the
suitable functions 𝑤, 𝑓, and 𝑔. For instance,

(a) for 𝑔(𝑥) = 𝑥 = 𝐼(𝑥) (the identity function), we obtain
the weighted arithmetic mean:

𝑀[𝑎,𝑏],𝑔 (𝑤, 𝑓) = 𝐴 [𝑎,𝑏] (𝑤, 𝑓)

=
1

‖𝑤‖[𝑎,𝑏]
∫

𝑏

𝑎

𝑤 (𝑥) 𝑓 (𝑥) 𝑑𝑥;

(46)

(b) for 𝑔(𝑥) = 𝑥
−1, we have the weighted harmonic mean:

𝑀[𝑎,𝑏],𝑔 (𝑤, 𝑓) = 𝐻[𝑎,𝑏] (𝑤, 𝑓)

= (
1

‖𝑤‖[𝑎,𝑏]
∫

𝑏

𝑎

𝑤 (𝑥)

𝑓 (𝑥)
𝑑𝑥)

−1

;

(47)

(c) for𝑔(𝑥) = 𝑥
𝑟, we get theweighted powermean of order

𝑟:

𝑀[𝑎,𝑏],𝑔 (𝑤, 𝑓) = 𝑀
[𝑟]
(𝑓; 𝑤; 𝑎, 𝑏)

=

{{{{

{{{{

{

(
1

‖𝑤‖[𝑎,𝑏]
∫

𝑏

𝑎

𝑤 (𝑥) 𝑓 (𝑥)
𝑟
𝑑𝑥)

1/𝑟

;

exp( 1

‖𝑤‖[𝑎,𝑏]
∫

𝑏

𝑎

𝑤 (𝑥) ln𝑓 (𝑥) 𝑑𝑥) .

(48)

The case 𝑟 = 0 corresponds to the weighted geometric
mean.

Under the assumptions of Corollary 19, we define the
following notations where 𝑆 ∈ {𝑋, 𝐸, 𝐸

𝑐
}. Throughout this

section, we also assume that ln and exp have the natural
domain.
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Arithmetic Mean. It is as follows:

𝐴


𝑔
=
1

𝐿
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

𝐴𝑆 =
1

𝐿 ⋅ 𝜇 (𝑆)
∫
𝐼

∫
𝑆

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)

�̃�𝑆 = 𝐴


𝑔
− 𝐴𝑆.

(49)

Geometric Mean. It is as follows:

𝐺


𝑔
= exp(1

𝐿
∫

𝑏

𝑎

ln𝑔 (𝑡) 𝑑𝐻 (𝑡))

𝐺𝑆 = exp( 1

𝐿 ⋅ 𝜇 (𝑆)
∫
𝐼

∫
𝑆

ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

�̃�𝑆 =
𝐺


𝑔

𝐺𝑆
.

(50)

Harmonic Mean. It is as follows:

𝐻


𝑔
= (

1

𝐿
∫

𝑏

𝑎

1

𝑔 (𝑡)
𝑑𝐻 (𝑡))

−1

,

𝐻𝑆 = (
1

𝐿 ⋅ 𝜇 (𝑆)
∫
𝐼

∫
𝑆

1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

−1

,

1

�̃�𝑆

=
1

𝐻
𝑔

−
1

𝐻𝑆
.

(51)

Power Mean. It is as follows:

𝑀


𝑔
=
1

𝐿
∫

𝑏

𝑎

g (𝑡)𝑟 𝑑𝐻 (𝑡) ,

𝑀
[𝑟]

𝑆
=

1

𝐿 ⋅ 𝜇 (𝑆)
∫
𝐼

∫
𝑆

f (𝑠, 𝑡)𝑟 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) ,

�̃�
[𝑟]

𝑆
= (𝑀



𝑔
−𝑀
[𝑟]

𝑆
)
1/𝑟

.

(52)

We now define a relationship between arithmetic and geo-
metric means.

Theorem 21. Consider �̃�𝑋 ≤ �̃�
𝑊𝐸

𝐸
⋅ �̃�
𝑊
𝐸
𝑐

𝐸𝑐
≤ �̃�𝑋.

Proof. In (43), let 𝜑(𝑥) = − ln(𝑥) to get

− ln(1

𝐿
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤ −𝑊𝐸

⋅ ln(1

𝐿
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸)
∫
𝐼

∫
𝐸

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) −𝑊𝐸𝑐

⋅ ln(1

𝐿
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤ −(

1

𝐿

⋅ ∫

𝑏

𝑎

ln (𝑔 (𝑡)) 𝑑𝐻 (𝑡) −
1

𝐿 ⋅ 𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

ln (𝑓 (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(53)

In our notation, we have

− ln (𝐴
𝑔
− 𝐴𝑋) ≤ −𝑊𝐸 ln (𝐴



𝑔
− 𝐴𝐸) −𝑊𝐸𝑐 ln (𝐴



𝑔

− 𝐴𝐸𝑐) ≤ −[ln(exp 1

𝐿
∫

𝑏

𝑎

ln (𝑔 (𝑡)) 𝑑𝐻 (𝑡))

− ln(exp 1

𝐿 ⋅ 𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

ln (𝑓 (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))] .

(54)

Further simplification gives us

− ln �̃�𝑋 ≤ − (𝑊𝐸 ln �̃�𝐸 +𝑊𝐸𝑐 ln �̃�𝐸𝑐)

≤ − [ln𝐺
𝑔
− ln𝐺𝑋] .

(55)

Using the property of ln gives us

− ln �̃�𝑋 ≤ −(ln �̃�𝑊𝐸
𝐸

+ ln �̃�𝑊
𝑐

𝐸

𝐸𝑐
) ≤ − ln �̃�𝑋, (56)

which can be written as

ln �̃�𝑋 ≥ ln(�̃�𝑊𝐸
𝐸

⋅ �̃�
𝑊
𝑐

𝐸

𝐸𝑐
) ≥ ln �̃�𝑋. (57)

Finally,

�̃�𝑋 ≤ �̃�
𝑊𝐸

𝐸
⋅ �̃�
𝑊
𝐸
𝑐

𝐸𝑐
≤ �̃�𝑋. (58)

Here we obtain another relationship between geometric
and arithmetic means.
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Theorem 22. Consider �̃�𝑋 ≤ 𝑊𝐸�̃�𝐸 +𝑊𝐸𝑐�̃�𝐸𝑐 ≤ �̃�𝑋.

Proof. Take 𝜑(𝑥) = exp(𝑥); if we replace 𝑔(𝑡) with ln𝑔(𝑡) and
𝑓(𝑠, 𝑡) with ln𝑓(𝑠, 𝑡) in (43), then we get

exp(1

𝐿
∫

𝑏

𝑎

ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤ 𝑊𝐸

⋅ exp(1

𝐿
∫

𝑏

𝑎

ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸)
∫
𝐼

∫
𝐸

ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) +𝑊𝐸𝑐

⋅ exp(1

𝐿
∫

𝑏

𝑎

ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤

1

𝐿

⋅ ∫

𝑏

𝑎

exp (ln𝑔 (𝑡)) 𝑑𝐻 (𝑡) −
1

𝐿 ⋅ 𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

exp (ln𝑓 (𝑠, 𝑡)) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) .

(59)

Using the property of exp, we have

exp ((1/𝐿) ∫𝑏
𝑎
ln𝑔 (𝑡) 𝑑𝐻 (𝑡))

exp ((1/ (𝐿 ⋅ 𝜇 (𝑋))) ∫
𝐼
∫
𝑋
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

≤ 𝑊𝐸

⋅

exp ((1/𝐿) ∫𝑏
𝑎
ln𝑔 (𝑡) 𝑑𝐻 (𝑡))

exp ((1/ (𝐿 ⋅ 𝜇 (𝐸))) ∫
𝐼
∫
𝐸
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

+ 𝑊𝐸𝑐

⋅

exp ((1/𝐿) ∫𝑏
𝑎
ln𝑔 (𝑡) 𝑑𝐻 (𝑡))

exp ((1/ (𝐿 ⋅ 𝜇 (𝐸𝑐))) ∫
𝐼
∫
𝐸𝑐
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

≤
1

𝐿
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡) −
1

𝐿 ⋅ 𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) .

(60)

In out notations, we have

𝐺


𝑔

𝐺𝑋
≤ 𝑊𝐸

𝐺


𝑔

𝐺𝐸
+𝑊𝐸𝑐

𝐺


𝑔

𝐺𝐸𝑐
≤ 𝐴


𝑔
− 𝐴𝑋.

(61)

Finally,

�̃�𝑋 ≤ 𝑊𝐸�̃�𝐸 +𝑊𝐸𝑐�̃�𝐸𝑐 ≤ �̃�𝑋. (62)

The following theorem states a relationship between
geometric and harmonic means.

Theorem 23. Consider 1/�̃�𝑋 ≤ 1/�̃�
𝑊𝐸

𝐸
�̃�
𝑊
𝐸
𝑐

𝐸𝑐
≤ 1/�̃�𝑋.

Proof. Take 𝜑(𝑥) = − ln(𝑥); replace 𝑔(𝑡) with 1/𝑔(𝑡) and
𝑓(𝑠, 𝑡) with 1/𝑓(𝑠, 𝑡) in (43) to get

− ln(1

𝐿
∫

𝑏

𝑎

1

𝑔 (𝑡)
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤ −𝑊𝐸

⋅ ln 1

𝐿
(∫

𝑏

𝑎

1

𝑔 (𝑡)
𝑑𝐻 (𝑡) −

1

𝜇 (𝐸)

⋅ ∫
𝐼

∫
𝐸

1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) −𝑊𝐸𝑐 ln

1

𝐿

⋅ (∫

𝑏

𝑎

1

𝑔 (𝑡)
𝑑𝐻 (𝑡) −

1

𝜇 (𝐸𝑐)

⋅ ∫
𝐼

∫
𝐸𝑐

1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤ −

1

𝐿

⋅ ∫

𝑏

𝑎

ln( 1

𝑔 (𝑡)
) 𝑑𝐻 (𝑡) +

1

𝐿 ⋅ 𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

ln( 1

𝑓 (𝑠, 𝑡)
) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) .

(63)

In our notations, we have

− ln [(𝐻
𝑔
)
−1

− (𝐻𝑋)
−1
] ≤ −𝑊𝐸

⋅ ln [(𝐻
𝑔
)
−1

− (𝐻𝐸)
−1
] −𝑊𝐸𝑐

⋅ ln [(𝐻
𝑔
)
−1

− (𝐻𝐸𝑐)
−1
]

≤ −(
1

𝐿
∫

𝑏

𝑎

ln 1 − ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

ln 1 − ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ,

(64)

which gives us

− ln (�̃�𝑋)
−1

≤ −𝑊𝐸 ln (�̃�𝐸)
−1

−𝑊𝐸𝑐 ln (�̃�𝐸𝑐)
−1

≤ −(−
1

𝐿
∫

𝑏

𝑎

ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

+
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(65)
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Multiplying the last inequality above by ln exp, we get

− ln 1

(�̃�𝑋)
≤ −𝑊𝐸 ln

1

(�̃�𝐸)
−𝑊𝐸𝑐 ln

1

(�̃�𝐸𝑐)

≤ −(− ln exp 1

𝐿
∫

𝑏

𝑎

ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

+ ln exp 1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ,

(66)

which can be written as

− ln 1

(�̃�𝑋)
≤ − ln( 1

�̃�𝐸

)

𝑊𝐸

− ln( 1

�̃�𝐸𝑐
)

𝑊
𝐸
𝑐

≤ − [− ln𝐺
𝑔
+ ln (𝐺𝑋)] .

(67)

Using the property of ln, we have

− ln 1

(�̃�𝑋)
≤ −(ln 1

�̃�
𝑊𝐸

𝐸

+ ln 1

�̃�
𝑊
𝐸
𝑐

𝐸𝑐

) ≤ − ln
(𝐺𝑋)

𝐺
𝑔

. (68)

Simplifying the above, we get

− ln 1

(�̃�𝑋)
≤ − ln( 1

�̃�
𝑊𝐸

𝐸

1

�̃�
𝑊
𝐸
𝑐

𝐸𝑐

) ≤ − ln 1

�̃�𝑋

. (69)

Finally, we get

1

�̃�𝑋

≤
1

�̃�
𝑊𝐸

𝐸
�̃�
𝑊
𝐸
𝑐

𝐸𝑐

≤
1

�̃�𝑋

. (70)

Now we define another relationship between geometric
and harmonic means.

Theorem 24. Consider 1/�̃�𝑋 ≤ 𝑊𝐸/�̃�𝐸 +𝑊𝐸𝑐/�̃�𝐸𝑐 ≤ 1/�̃�𝑋.

Proof. In (43), take 𝜑(𝑥) = exp(𝑥) and replace 𝑔(𝑡) with
ln(1/𝑔(𝑡)) and 𝑓(𝑠, 𝑡) with ln(1/𝑓(𝑠, 𝑡)) to get

exp(1

𝐿
∫

𝑏

𝑎

ln 1

𝑔 (𝑡)
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

ln 1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤ 𝑊𝐸

⋅ exp(1

𝐿
∫

𝑏

𝑎

ln 1

𝑔 (𝑡)
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸)
∫
𝐼

∫
𝐸

ln 1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) +𝑊𝐸𝑐

⋅ exp(1

𝐿
∫

𝑏

𝑎

ln 1

𝑔 (𝑡)
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
ln 1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

≤
1

𝐿
(∫

𝑏

𝑎

exp(ln 1

𝑔 (𝑡)
) 𝑑𝐻 (𝑡) −

1

𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

exp(ln 1

𝑓 (𝑠, 𝑡)
) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(71)

Using the property of ln, we have

exp(1

𝐿
∫

𝑏

𝑎

− ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

+
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤ 𝑊𝐸

⋅ exp(1

𝐿
∫

𝑏

𝑎

− ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

+
1

𝐿 ⋅ 𝜇 (𝐸)
∫
𝐼

∫
E
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) +𝑊𝐸𝑐

⋅ exp(1

𝐿
∫

𝑏

𝑎

− ln𝑔 (𝑡) 𝑑𝐻 (𝑡)

+
1

𝐿 ⋅ 𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
ln 1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) ≤

1

𝐿

⋅ ∫

𝑏

𝑎

1

𝑔 (𝑡)
𝑑𝐻 (𝑡) −

1

𝐿 ⋅ 𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

1

𝑓 (𝑠, 𝑡)
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) .

(72)

Using the property of exp, we have

exp ((1/ (𝐿 ⋅ 𝜇 (𝑋))) ∫
𝐼
∫
𝑋
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

exp ((1/𝐿) ∫𝑏
𝑎
ln𝑔 (𝑡) 𝑑𝐻 (𝑡))

≤ 𝑊𝐸

⋅
exp ((1/ (𝐿 ⋅ 𝜇 (𝐸))) ∫

𝐼
∫
𝐸
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

exp ((1/𝐿) ∫𝑏
𝑎
ln𝑔 (𝑡) 𝑑𝐻 (𝑡))

+𝑊𝐸𝑐

⋅
exp ((1/ (𝐿 ⋅ 𝜇 (𝐸𝑐))) ∫

𝐼
∫
𝐸𝑐
ln𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

exp ((1/𝐿) ∫𝑏
𝑎
ln𝑔 (𝑡) 𝑑𝐻 (𝑡))

≤
1

𝐻
𝑔

−
1

𝐻𝑋
.

(73)
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In our notations, we have

𝐺𝑋

𝐺
𝑔

≤ 𝑊𝐸
𝐺𝐸

𝐺
𝑔

+𝑊𝐸𝑐
𝐺𝐸𝑐

𝐺
𝑔

≤
1

�̃�𝑋

. (74)

Finally,

1

�̃�𝑋

≤
𝑊𝐸

�̃�𝐸

+
𝑊𝐸𝑐

�̃�𝐸𝑐
≤

1

�̃�𝑋

. (75)

Now we define a relationship between power mean and
arithmetic mean.

Theorem 25. (i) For 𝑟 ≤ 1, we have

�̃�
[𝑟]

𝑋
≤ 𝑊𝐸�̃�

[𝑟]

𝐸
+𝑊
[𝑟]

𝐸𝑐
�̃�𝐸𝑐 ≤ �̃�𝑋. (76)

(ii) For 𝑟 ≥ 1, the above inequalities are reversed.

Proof. (i) In (43), take 𝜑(𝑥) = 𝑥
1/𝑟 and replace 𝑔(𝑡) with

(𝑔(𝑡))
𝑟 and 𝑓(𝑠, 𝑡) with (𝑓(𝑠, 𝑡))𝑟 to get

(
1

𝐿
∫

𝑏

𝑎

(𝑔 (𝑡))
𝑟
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

1/𝑟

≤ 𝑊𝐸 (
1

𝐿
∫

𝑏

𝑎

(𝑔 (𝑡))
𝑟
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸)
∫
𝐼

∫
𝐸

(𝑓 (𝑠, 𝑡))
𝑟
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

1/𝑟

+𝑊𝐸𝑐 (
1

𝐿
∫

𝑏

𝑎

(𝑔 (𝑡))
𝑟
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
(𝑓 (𝑠, 𝑡))

𝑟
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

1/𝑟

≤
1

𝐿
∫

𝑏

𝑎

((𝑔 (𝑡))
𝑟
)
1/𝑟

𝑑𝐻 (𝑡) −
1

𝐿 ⋅ 𝜇 (𝑋)

⋅ ∫
𝐼

∫
𝑋

((𝑓 (𝑠, 𝑡))
𝑟
)
1/𝑟

𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) .

(77)

In out notations, we have

(𝑀


𝑔
−𝑀
[𝑟]

𝑋
)
1/𝑟

≤ 𝑊𝐸 (𝑀


𝑔
−𝑀
[𝑟]

𝐸
)
1/𝑟

+𝑊𝐸𝑐 (𝑀


𝑔
−𝑀
[𝑟]

𝐸𝑐
)
1/𝑟

≤
1

𝐿
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) ,

(78)

which can be written as

(𝑀


𝑔
−𝑀
[𝑟]

𝑋
)
1/𝑟

≤ 𝑊𝐸 (𝑀


𝑔
−𝑀
[𝑟]

𝐸
)
1/𝑟

+𝑊𝐸𝑐 (𝑀


𝑔
−𝑀
[𝑟]

𝐸𝑐
)
1/𝑟

≤ (𝐴


𝑔
− 𝐴𝑋) .

(79)

Finally,

�̃�
[𝑟]

𝑋
≤ 𝑊𝐸�̃�

[𝑟]

𝐸
+𝑊𝐸𝑐�̃�

[𝑟]

𝐸𝑐
≤ �̃�𝑋. (80)

(ii) If 𝑟 ≥ 1, then 𝜑(𝑥) = 𝑥
1/𝑟 is concave, so the inequal-

ities in (76) are reversed.

The following theorem gives another relationship
between power and arithmetic means.

Theorem 26. Let 𝑟, 𝑠 ∈ R, 𝑟 ≤ 𝑠.

(i) If 𝑠 ≥ 0, then

(�̃�
[𝑟]

𝑋
)
𝑠

≤ 𝑊𝐸 (�̃�𝐸)
𝑠

+𝑊𝐸𝑐 (�̃�𝐸𝑐)
𝑠

≤ (�̃�𝑋)
𝑠

. (81)

(ii) For 𝑠 < 0, the above inequalities are reversed.

Proof. (i) In (43), take 𝜑(𝑥) = 𝑥
𝑠/𝑟 and replace 𝑔(𝑡) with

(𝑔(𝑡))
𝑟 and 𝑓(𝑠, 𝑡) with (𝑓(𝑠, 𝑡))𝑟 to get

(
1

𝐿
∫

𝑏

𝑎

(𝑔 (𝑡))
𝑟
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡) 𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

𝑠/𝑟

≤ 𝑊𝐸 (
1

𝐿
∫

𝑏

𝑎

(𝑔 (𝑡))
𝑟
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸)
∫
𝐼

∫
𝐸

(𝑓 (𝑠, 𝑡))
𝑟
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

𝑠/𝑟

+𝑊𝐸𝑐 (
1

𝐿
∫

𝑏

𝑎

(𝑔 (𝑡))
𝑟
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝐸𝑐)
∫
𝐼

∫
𝐸𝑐
(𝑓 (𝑠, 𝑡))

𝑟
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡))

𝑠/𝑟

≤
1

𝐿
(∫

𝑏

𝑎

((𝑔 (𝑡))
𝑟
)
𝑠/𝑟

𝑑𝐻 (𝑡)

−
1

𝜇 (𝑋)
∫
𝐼

∫
𝑋

((𝑓 (𝑠, 𝑡))
𝑟
)
𝑠/𝑟

𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡)) .

(82)
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In our notations, we have

(𝑀


𝑔
−𝑀
[𝑟]

𝑋
)
𝑠/𝑟

≤ 𝑊𝐸 (𝑀


𝑔
−𝑀
[𝑟]

𝐸
)
𝑠/𝑟

+𝑊𝐸𝑐 (𝑀


𝑔
−𝑀
[𝑟]

𝐸𝑐
)
𝑠/𝑟

≤
1

𝐿
∫

𝑏

𝑎

𝑔 (𝑡)
𝑠
𝑑𝐻 (𝑡)

−
1

𝐿 ⋅ 𝜇 (𝑋)
∫
𝐼

∫
𝑋

𝑓 (𝑠, 𝑡)
𝑠
𝑑𝜇 (𝑠) 𝑑𝐻 (𝑡) .

(83)

Further simplification gives us

(𝑀


𝑔
−𝑀
[𝑟]

𝑋
)
𝑠/𝑟

≤ 𝑊𝐸 (𝑀


𝑔
−𝑀
[𝑟]

𝐸
)
𝑠/𝑟

+𝑊𝐸𝑐 (𝑀


𝑔
−𝑀
[𝑟]

𝐸𝑐
)
𝑠/𝑟

≤ (𝐴


𝑔
− 𝐴𝑋)

𝑠

.

(84)

Finally,

(�̃�
[𝑟]

𝑋
)
𝑠

≤ 𝑊𝐸 (�̃�𝐸)
𝑠

+𝑊𝐸𝑐 (�̃�𝐸𝑐)
𝑠

≤ (�̃�𝑋)
𝑠

. (85)

(ii) For 𝑠 < 0, the function 𝜑(𝑥) = 𝑥
𝑠/𝑟 is concave, so the

inequalities in (81) are reversed.
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