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We study the existence of general competitive equilibria in economies with agents and goods in a finite number.We show that there
exists aWalras competitive equilibrium in all ownership private economies such that, for all consumers, initial endowments do not
contain free goods and utility functions are locally Lipschitz quasiconcave. The proof of the existence of competitive equilibria is
based on variational methods by applying a theoretical existence result for Generalized Quasi Variational Inequalities.

1. Introduction

The proof of the existence of economic equilibria is certainly
considered the first principal problem to be solved in General
Equilibrium Theory (see [1]). Specifically, the question is to
investigate what assumptions concerning environment and
mechanism are able to guarantee the existence of one state
where the aggregate demand does not excess the aggregate
supply for all markets at prices endogenously determined.

In the model à-la Arrow-Debreu (see [2, 3], for major
details) convexity and closure for the choice sets, price
systems in the unit simplex, closure and convexity for the
production plans, impossibility that two plans are able to
cancel an other one, continuity and monotonicity for the
utility functions, and nonsatiability and global survivability
for the consumers are its main assumptions. Over the years,
the assumptions’ successive refinements had to contextually
(1) show the properties of consequent demand (see the
literature about regular economies, for instance) and (2)
adopt suitable mathematical tools able either to compute or
only to show the existence of a feasible equilibrium. In favour
of this thesis we report the results in [2–9], obtained by
Kakutani’s fix point theorem in [10], by gradient’s algorithm,
or by the techniques known as differential approach, because

continuity, differentiability, and concavity are guaranteed for
utility functions or for the preference relations.

Given the classicism of the problem and many excellent
papers, as listed above, and books on the economic equilib-
rium (see, e.g., [11–13]), there is however the need to justify
yet an other paper on the subject.

It is well known that variational analysis introduced by
Stampacchia in [14, 15] became an extremely useful tool to
solve the optimization problems and so to give a solution
to the competitive equilibrium problem in economics (see,
e.g., [5, 16, 17] and the references therein), too. Furthermore,
the importance of concavity in economics for describing the
increase of the consumer’s preferences and the consequential
returns to scale (see, e.g., [7]) is well known. From convex
analysis, clearly, strong concavity implies uniform concavity,
uniform concavity implies strict concavity, strict concavity
implies (weak) concavity, (weak) concavity implies quasicon-
cavity, and quasiconcavity does not imply differentiability.
Therefore, combining all these facts, the purpose of this paper
is to give a more extensive result on the existence of general
competitive equilibrium by using nonsmooth analysis (see,
e.g., [18, 19]) combined with variational analysis (see also
[20]).
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Our model describes a private ownership economy with
two classes of agents, consumers and producers, and a
finite number of no free goods at disposal. Consumers, as
shareholders, will control the producers.The equilibriumwill
be realized when each consumer optimizes his utility under
the budget set, each producer will realize themaximumprofit
according to his own production plan, and the sum of the
total endowment plus the total consumption will not exceed
the total production. In this economic scenery we will admit
a list of assumptions which for now is the more generalized
both from a mathematical and from an economic viewpoint.
In detail, the assumptions are as follows:

(i) the initial endowment of any consumer will consist of
at least one type of goods of minima or greater price
(absence of free goods in the initial endowment) (as
in [21]);

(ii) the production set 𝑌𝑗 of the 𝑗th producer will be a
convex and compact set in Rℓ containing the origin;

(iii) the utility function 𝑢𝑖 of the 𝑖th consumer will be
assumed quasiconcave and locally Lipschitz contin-
uous.

The principal novelty consists in the assumptions on
the utility function. As said above, because a quasiconcave
function is not always differentiable, adding the locally
Lipschitz condition we can drop gradient with generalized
gradient (see [19, pages 25–28]) and so, differently to what
it was proved in [6, 21], we are able to advance every
possibility on the return to scale in satisfaction terms for the
consumer. In other words, since the quasiconcave condition
for utility function is weaker than weak concave and strong
concave ones, or, also, it is the most general assumption
in Consumer’s Theory (see [7, 9]), this fact allows us to
express how marginal utility changes for any increase of
consumption. Thus for the consumer’s progressive satiety we
could attend all the feasible consequences which go from a
possible reduction (exclusively for the strong concave utility)
to a possible increase (typical for the quasiconcave utility)
through the constant state (typical for the weak concave
utility). From this fact, we can reasonably take into account
a wide range of utility functions including also the typical
economic ones, in generalized form, as Cobb Douglas’s and
Constant Elasticity of Substitution (briefly CES) class, which,
till now, have got involved in the proof of the existence of
a general competitive equilibrium iff the utility is supposed
to be concave (see [21]). With a more complicated type of
generalized quasivariational inequality (see [20] for major
details) and with the help of nonsmooth analysis (see, e.g.,
[18] for the continuity of set-valued map) we can yet treat
the existence of a competitive economic equilibrium problem
via variational method in generalized way with respect to
[6, 21, 22].The proof of the existence of competitive equilibria
will be based on variational methods and, in particular, on
an abstract existence result for Generalized Quasi Variational
Inequalities due to Cubiotti (Theorem 3.2 in [23]).

Furthermore, an other novel result is that every com-
petitive economic equilibrium is also a Walras competitive
equilibrium (see Proposition 14).

Finally, we point out that our main result contains, as
special cases, some recent existence results of competitive
equilibria for pure exchange economics established in [24,
25]. Probably, our techniques also work if we consider the
dynamic version of pure exchange economics introduced
in [16, 17] (see also [26, 27]) and so the existing results of
these papers could be improved by replacing the concavity
condition with the quasiconcavity condition.

The organization of the remainder of this paper is as
follows.

In Section 2 for the sake of convenience, we will recall the
main notations, definitions and results that will be used in the
sequel for our analysis.

In Section 3 we will describe the economic model with its
environments and related restrictions and its internal mech-
anisms, defining the general economic equilibrium problem
through constrained maximization problems system.

In Section 4 we will point out the connections between
the competitive economic equilibriumproblem and a suitable
GQVI, proving also that in a suitable compact set any
competitive equilibrium is aWalras competitive equilibrium.

In Section 5 we will prove the existence of a solution to
GQVI, recalling, in particular, Theorem 3.2 of Cubiotti in
[23] and, thus, concluding with the existence of at least one
(Walras) competitive equilibrium for the private ownership
economy considered.

In Section 6 we shall show how two well-known func-
tions, Cobb-Douglas and CES, could be employed as utility
functions in economics under the locally Lipschitz and
quasiconcavity assumption.

2. Preliminaries

Throughout this paper, for each 𝑛 ∈ N, R𝑛 denotes the
Euclidean space of the real 𝑛-vectors 𝑥 = (𝑥1, . . . , 𝑥𝑛)

equipped with the usual inner product ⟨𝑥, 𝑦⟩ = ∑
𝑛
𝑖=1 𝑥𝑖𝑦𝑖 and

norm |𝑥|𝑛 = √⟨𝑥, 𝑥⟩, for any 𝑥, 𝑦 ∈ R𝑛.

The symbols R𝑛
+, R

𝑛
0+, and

∘

R
𝑛

0+ will indicate the cone of
nonnegative, positive, and strongly positive vectors of R𝑛,
respectively. Furthermore, the set Δ 𝑛−1 = {𝑥 ∈ R𝑛

+ : ∑
𝑛
𝑖=1 𝑥𝑖 =

1} indicates the unit simplex of R𝑛
+. We adopt the usual

notation for vector inequalities, that is, for any 𝑥, 𝑦 ∈ R𝑛,
one has 𝑥 ≥ 𝑦 if 𝑥 − 𝑦 ∈ R𝑛

+; 𝑥 > 𝑦 if 𝑥 − 𝑦 ∈ R𝑛
0+; and

𝑥 ≫ 𝑦 if 𝑥 − 𝑦 ∈
∘

R
𝑛

0+. Let 𝐴 ⊂ R𝑛; we will write int(𝐴) and 𝐴

to indicate its interior and its closure, respectively. Open and
closed balls of radius 𝜀, centered at 𝑥 ∈ R𝑛, are denoted by
𝐵𝜀(𝑥) and 𝐵𝜀(𝑥), respectively.

Let 𝑋 be a subset of R𝑛. A function 𝑓 : 𝑋 → R is said
to be quasiconcave iff for every 𝑟 < sup𝑋𝑓, the set {𝑥 ∈ 𝑋 :

𝑓(𝑥) ≥ 𝑟} is convex. A function 𝑓 : 𝑋 → R is said to be
locally Lipschitz continuous near 𝑥 ∈ 𝑋 if there exist constants
𝐿 > 0 and 𝜀 > 0 such that 𝑦 ∈ 𝐵𝜀(𝑥) implies |𝑓(𝑦) − 𝑓(𝑥)| ≤

𝐿|𝑦 − 𝑥|𝑛. 𝐿 is called Lipschitz constant or rank of 𝑓.
Let 𝑓 be a locally Lipschitz function near 𝑥 ∈ 𝑋 and

let 𝑧 ∈ R𝑛. According to Clarke (see [19, page 25]), the
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generalized directional derivative of 𝑓 at 𝑥 in the direction 𝑧

is defined by

𝑓
∘
(𝑥, 𝑧) fl lim sup

𝑦→𝑥,𝜎→0+

𝑓 (𝑦 + 𝜎𝑧) − 𝑓 (𝑦)

𝜎
, (1)

and the generalized gradient, or simply subdifferential, of 𝑓 at
𝑥 is the set-valued mapping, 𝑥 → 𝜕

∘
𝑓(𝑥), defined as follows:

𝜕
∘
𝑓 (𝑥) fl {𝑇 ∈ R

𝑛
: 𝑓

∘
(𝑥, 𝑧) ≥ ⟨𝑇, 𝑧⟩ , ∀𝑧 ∈ R

𝑛
} . (2)

For the sequel, we recall below three results on gener-
alized derivative and subdifferential, here, for convenience,
rewritten when 𝑋 is a subset of R𝑛.

Proposition 1 (Proposition 2.1.1 of [19]). Let 𝑓 be a locally
Lipschitz function near 𝑥 of rank 𝐿. Then the following hold:

(a) the function 𝑧 → 𝑓
∘
(𝑥, 𝑧) is finite, positively homoge-

neous, and subadditive on 𝑅
𝑛 and satisfies

𝑓
∘
(𝑥, 𝑧) ≤ 𝐿 |𝑧|𝑛 , (3)

(b) 𝑓
∘
(𝑥, −𝑧) = (−𝑓)

∘
(𝑥, 𝑧).

Proposition 2 (Proposition 2.1.2 of [19]). Let 𝑓 be a locally
Lipschitz function near 𝑥 of rank 𝐿. Then the following hold:

(a) 𝜕
∘
𝑓(𝑥) is a nonempty, convex, and compact set of R𝑛,

(b) for every 𝑧 ∈ R𝑛, one has

𝑓
∘
(𝑥, 𝑧) = max {⟨𝑇, 𝑧⟩ : 𝑇 ∈ 𝜕

∘
𝑓 (𝑥)} . (4)

Proposition 3 (Proposition 2.1.5 of [19]). Let 𝑓 be a locally
Lipschitz function near 𝑥 of rank 𝐿. Then

(a) the multifunction 𝜕𝑓 is closed,
(b) the multifunction 𝜕𝑓 is upper semicontinuous at 𝑥.

Let𝑋 be a set; we write 2
𝑋 for the family of all nonempty

subsets of 𝑋. A correspondence or a multifunction between
two sets 𝑋 and 𝑌 is a function 𝐹 : 𝑋 → 2

𝑌. The graph of
a multifunction 𝐹 : 𝑋 → 2

𝑌 is the subset of 𝑋 × 𝑋 defined
by gr(𝐹) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝐹(𝑋)}. Let 𝑋

be a subset of R𝑛 and let Γ : 𝑋 → 2
𝑋, Φ : 𝑋 → 2

R𝑛 be
twomultifunctions.The classical generalized quasivariational
inequality problem associated to 𝑋, Γ, Φ, denoted briefly by
GQVI(𝑋, Γ, Φ), is to find (𝑥, 𝑧) ∈ 𝑋 × R𝑛 such that

𝑥 ∈ Γ (𝑥) ,

𝑧 ∈ Φ (𝑥) ,

⟨𝑧, 𝑥 − 𝑦⟩ ≤ 0 ∀𝑦 ∈ Γ (𝑥) .

(5)

For the reader convenience, we report here the statement
of Theorem 3.2 of [23], which the prove of our main result is
based on.

Theorem 4 (Theorem 3.2 of Cubiotti [23]). Let𝑋 be a closed
convex subset of R𝑛, 𝐾 ⊆ 𝑋 a nonempty compact set, and Φ :

𝑋 → 2
R𝑛 and Γ : 𝑋 → 2

𝑋 two multifunctions. Assume the
following:

(i) the set Φ(𝑥) is convex for each 𝑥 ∈ 𝐾, with 𝑥 ∈ Γ(𝑥);
(ii) the set Φ(𝑥) is nonempty and compact for each 𝑥 ∈ 𝑋;
(iii) for each𝑦 ∈ 𝑋−𝑋, the set {𝑥 ∈ 𝑋 : inf𝑧∈Φ(𝑥)⟨𝑧, 𝑦⟩ ≤ 0}

is closed;
(iv) Γ is a lower semicontinuous multifunction (i.e., {𝑥 ∈

𝑋 : Γ(𝑥) ∩ 𝐴 ̸= 0} is open in 𝑋, for each open set 𝐴 in
𝑋) with closed graph and convex values.

Moreover, assume that there exists an increasing sequence 𝜖𝑘 of
positive real numbers, with 𝑋 ∩ 𝐵(0, 𝜖1) ̸= 0 and lim𝑘→∞𝜖𝑘 =

+∞ such that if one puts𝐷𝑘 = 𝐵(0, 𝜖𝑘), for each 𝑘 ∈ N one has
the following:

(v) Γ(𝑥) ∩ 𝐷𝑘 ̸= 0, for all 𝑥 ∈ 𝑋 ∩ 𝐷𝑘;
(vi) for each 𝑥 ∈ (𝑋 ∩ 𝐷𝑘) \ 𝐾, with 𝑥 ∈ Γ(𝑥),

sup
𝑦∈Γ(𝑥)∩𝐷

𝑘

inf
𝑧∈Φ(𝑥)

⟨𝑧, 𝑥 − 𝑦⟩ > 0. (6)

Then, there exists at least one solution to GQVI(𝑋, Γ, Φ)

belonging to 𝐾 × R𝑛.

3. Economic Model

We consider a private ownership economy E à-la Arrow-
Debreu (see [2, 3] for major details), where there are ℓ

commodities, 𝑚 producers, and 𝑛 consumers (ℓ, 𝑛,𝑚 ∈ N).
We index the commodities by the subscripts ℎ = 1, . . . , ℓ, the
producers by the subscripts 𝑗 = 1, . . . , 𝑚, and the consumers
by the subscripts 𝑖 = 1, . . . , 𝑛.We regardRℓ as the commodity
space. By assuming the vector 𝑝 = (𝑝1, . . . , 𝑝ℓ) ∈ Rℓ

+ as
a price system, the value of a commodity bundle 𝑎 ∈ Rℓ

relative to the price 𝑝 will be given by the inner product
⟨𝑝, 𝑎⟩ = ∑

ℓ
ℎ=1 𝑝ℎ𝑎ℎ.

3.1. Environments. The 𝑛 consumers are labeled by 𝑖 =

1, . . . , 𝑛. The consumption set 𝑋𝑖 = Rℓ
+ related to the

consumer 𝑖 is the set of all the ℓ-uple of nonnegative real
numbers. The preferences of the consumer 𝑖 are expressed
by utility functions 𝑢𝑖 : 𝑋𝑖 → R, endowments by vectors
𝑒𝑖 ∈ 𝑋𝑖, and shares of the profits of each firm by vectors
𝜃𝑖 ∈ [0, 1]

𝑚. The 𝑚 producers are labeled by 𝑗 = 1, . . . , 𝑚.
The production set 𝑌𝑗 ⊆ Rℓ related to consumer 𝑖 is a subset
of the set of all the ℓ-tuple of real numbers. The aggregate
endowment is 𝑒 = ∑

𝑛
𝑖=1 𝑒𝑖. We assume that the firms are owed

by someone, or in other terms, 1 = ∑
𝑛
𝑖=1 𝜃𝑖𝑗 with 𝜃𝑖𝑗 ∈ [0, 1]

for all 𝑗 = 1, . . . , 𝑚. We summarized a private ownership
economy by the tuple E = ({𝑋𝑖, 𝑒𝑖, 𝑢𝑖, 𝜃𝑖}𝑖, {𝑌𝑗}𝑗, 𝑒).

3.2. Basic Restrictions. For a private ownership economy E
we assume the restrictions listed as follows:
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(A1) any price system 𝑝 = (𝑝
(1)

, . . . , 𝑝
(ℓ)

) ∈ Rℓ
+ is

normalized and bounded below by the vector 𝑞 =

(𝑞
(1)

, . . . , 𝑞
(ℓ)

) ∈ Rℓ
+, called the minima prices, whose

ℎth component does not exceed the value of 1/ℓ, or
equivalently

𝑃 = {𝑝 ∈ Δ ℓ−1 : 𝑞
(ℎ)

≤ 𝑝
(ℎ)

, ∀ℎ = 1, . . . , ℓ} (7)

is the set of the available price systems;

(A2) in any initial commodity bundle 𝑒𝑖 ∈ Rℓ
+ there exists

at least one good ℎ of positive quantity and positive
minimum price:

there exists ℎ ∈ {1, . . . , ℓ} such that, ∀𝑖

= 1, . . . , 𝑛, 𝑞
(ℎ)

> 0, 𝑒
(ℎ)
𝑖 > 0;

(8)

(A3) for all 𝑗 = 1, . . . , 𝑚, 𝑌𝑗 is convex and compact in 𝑅
ℓ

such that 0R𝑙 ∈ 𝑌𝑗;

(A4) there exists an open convex 𝐴 ⊃ Rℓ such that, for all
𝑖 = 1, . . . , 𝑛, the following holds:

(a) 𝑢𝑖 : 𝐴 → R is locally Lipschitz continuous and
quasi-concave,

(b) 0Rℓ ∉ 𝜕
∘
(−𝑢𝑖)(𝑥𝑖) for all 𝑥𝑖 ∈ 𝐾𝑖,

(c) (−𝑢𝑖)
∘
(𝑥𝑖, iℎ) < 0, for all𝑥𝑖 ∈ 𝐾𝑖, and ℎ = 1, . . . , ℓ

such that 𝑥(ℎ)
𝑖 = 0,

where

𝐾𝑖 =

𝑛

∏

𝑖=1

(

ℓ

⋃

ℎ=1

{𝑥𝑖 ∈ R
ℓ
+ : 𝑥

(ℎ)
𝑖 ≤ 𝑒

(ℎ)
𝑖 + 𝑀}

∩

ℓ

∏

𝑏=1

[0,

𝑛

∑

𝑎=1

𝑒
𝑏
𝑎 + 𝑀]) ,

(9)

with 𝑀 = max1≤𝑗≤𝑚max
(𝑦
(1)

𝑗

,...,𝑦
(ℓ)

𝑗

)∈𝑌
𝑗

∑
𝑙
ℎ=1 |𝑦

(ℎ)
𝑗 |, and

iℎ is the unit vector of the ℎth axis.

Remark 5. Locally Lipschitz condition in an open convex
set 𝐴 ⊃ Rℓ

+, listed in (A4), will be needed to consider the
Clark-subdifferential of 𝑢𝑖 at each point of the closed set
Rℓ

+. Quasiconcavity condition (b) in (A4) is weaker than
the concavity condition and the strictly concave condition
usually considered in the literature. Finally, the existence
of the constant 𝑀 comes from the compactness of the set
⋃

𝑚
𝑗=1 𝑌𝑗 (see assumption (A3)).

3.3. Existence Equilibrium Problem. Because consumer 𝑖

owns two resources (initial endowment and profit share),

indicated by ⟨𝑝, 𝑥𝑖⟩ his expenditure and by ⟨𝑝, 𝑦𝑗⟩ his profit
derived from producer 𝑗,

𝑀𝑖 (𝑝, 𝑦) fl
{

{

{

𝑥𝑖 ∈ R
ℓ
+ : ⟨𝑝, 𝑥𝑖⟩ ≤ ⟨𝑝, 𝑒𝑖⟩

+ max
{

{

{

0,⟨𝑝,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦𝑗⟩

}

}

}

}

}

}

(10)

represents his budget set.
Set 𝑌 = ∏

𝑚
𝑗=1𝑌𝑗, and 𝑀(𝑝, 𝑦) = ∏

𝑛
𝑖=1𝑀𝑖(𝑝, 𝑦).

Definition 6. An allocation is a couple (𝑥, 𝑦) ∈ R𝑛×ℓ
+ × 𝑌,

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) represents the consumptions of all the
consumers and 𝑦 = (𝑦1, . . . , 𝑦𝑚) represents the productions
of all the producers. In particular, an allocation (𝑥, 𝑦) is said
to be an individual allocation if 𝑥 ∈ 𝑀(𝑝, 𝑦). An allocation
is said to be a weakly balanced allocation if ∑

𝑛
𝑖=1(𝑥𝑖 − 𝑒𝑖) −

∑
𝑚
𝑗=1 𝑦𝑗 ≤ 0. Finally, an allocation is said to be an available

allocation if it is both individual and weakly balanced.

Definition 7. A state of the economy E is a triple (𝑝, 𝑥, 𝑦) ∈

𝑃×R𝑛×ℓ
+ ×𝑌, where𝑝 is a price vector and (𝑥, 𝑦) is an available

allocation.

Considering consumers and producers as price-takers,
the above model leads to the following general economic
problem.

Problem 8. Find (𝑝, 𝑥, 𝑦) ∈ 𝑃 × R𝑛×ℓ
+ × 𝑌, with 𝑥 ∈ 𝑀(𝑝, 𝑦)

satisfying

𝑢𝑖 (𝑥𝑖) = max
𝑥
𝑖
∈𝑀
𝑖
(𝑝,𝑦)

𝑢𝑖 (𝑥𝑖)

∀𝑖 = 1, . . . , 𝑛

(11a)

⟨𝑝, 𝑦𝑗⟩ = max
𝑦
𝑗
∈𝑌
𝑗

⟨𝑝, 𝑦𝑗⟩

∀𝑗 = 1, . . . , 𝑚

(11b)

𝑛

∑

𝑖=1

(𝑥
(ℎ)
𝑖 − 𝑒

(ℎ)
𝑖 ) −

𝑚

∑

𝑗=1

𝑦
(ℎ)
𝑗 ≤ 0 ∀ℎ = 1, . . . , ℓ. (11c)

Remark 9. A solution to Problem 8 is, then, a price vector
𝑝 and an available allocation (𝑥, 𝑦) such that 𝑥 maximizes
the consumers’ utility, 𝑦maximizes the producers’ profit, and
(𝑥, 𝑦) makes the market clear.

Definition 10. A state (𝑝, 𝑥, 𝑦) ∈ 𝑃 × R𝑛×ℓ
+ × 𝑌, with

𝑥 ∈ 𝑀(𝑝, 𝑦), satisfying conditions (11a), (11b), and (11c)
of Problem 8 is said to be a competitive equilibrium or free
disposal-equilibrium for the private ownership economyE.
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An equilibrium (𝑝, 𝑥, 𝑦) ∈ 𝑃 × 𝑀(𝑝, 𝑦) × 𝑌 is said to be
a Walras competitive equilibrium if in addition it satisfies the
Walras’ law:

⟨𝑝, 𝑥𝑖⟩ = ⟨𝑝, 𝑒𝑖⟩ + max
{

{

{

0,⟨𝑝,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦𝑗⟩

}

}

}

∀𝑖 = 1, . . . , 𝑛.

(12)

Remark 11. If there is no production (i.e., 𝑌𝑗 = 0Rℓ
+

for all
𝑗 = 1, . . . , 𝑚), then E becomes a pure exchange economy. In
this case Problem 8 assumes the form of the one in [24, 25].

4. Variational Method

Now, we establish a GQVI problem as follows.

Problem 12. Find (𝑝, 𝑥, 𝑦) ∈ 𝑃 ×R𝑛×ℓ
+ × 𝑌, with 𝑥 ∈ 𝑀(𝑝, 𝑦),

such that there exists 𝑇 = (𝑇1, . . . , 𝑇𝑛) ∈ ∏
𝑛
𝑖=1𝜕

∘
(−𝑢𝑖)(𝑥𝑖)

satisfying

−

𝑛

∑

𝑖=1

⟨𝑇𝑖, 𝑥𝑖 − 𝑥𝑖⟩ +

𝑚

∑

𝑗=1

⟨𝑝, 𝑦𝑗 − 𝑦𝑗⟩

+ ⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝 − 𝑝⟩ ≤ 0,

∀ (𝑝, 𝑥, 𝑦) ∈ 𝑃 × 𝑀(𝑝, 𝑦) × 𝑌.

(GQVI)

Let 𝐾 = ∏
𝑛
𝑖=1𝐾𝑖, where 𝐾𝑖 is as in condition (A4c).

Proposition 13. Let (𝑝, 𝑥, 𝑦) ∈ 𝑃 × R𝑛×ℓ
+ × 𝑌, with 𝑥 ∈

𝑀(𝑝, 𝑦), satisfying condition (11c) of Problem 8. Then 𝑥 ∈ 𝐾.

Proof. From (11c) of Problem 8 and the definition of the
constant 𝑀, it promptly follows that

𝑥𝑖 ∈

ℓ

∏

𝑏=1

[0,

𝑛

∑

𝑎=1

𝑒
(𝑏)
𝑎 + 𝑀] , (13)

for all 𝑖 = 1, . . . , 𝑛. Now, suppose that 𝑥 ∉ 𝐾. Then,

𝑥𝑖 ∉

ℓ

⋃

ℎ=1

{𝑥𝑖 ∈ 𝑋𝑖 : 𝑥
(ℎ)
𝑖 ≤ 𝑒

(ℎ)
𝑖 + 𝑀} (14)

for some 𝑖 ∈ {1, . . . , 𝑛}. This means that, for all ℎ = 1, . . . , ℓ,
we should have

𝑥
ℎ
𝑖 > 𝑒

(ℎ)
𝑖 + 𝑀 ≥ 𝑒

(ℎ)
𝑖 +

𝑚

∑

𝑗=1


𝑦
(ℎ)
𝑗


. (15)

Hence,

⟨𝑝, 𝑥𝑖⟩ > ⟨𝑝, 𝑒𝑖⟩ +

𝑚

∑

𝑗=1

ℓ

∑

ℎ=1

𝑝
(ℎ) 

𝑦
(ℎ)
𝑗



≥ ⟨𝑝, 𝑒𝑖⟩ + max
{

{

{

0,⟨𝑝,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦𝑗⟩

}

}

}

,

(16)

which is in contradiction with 𝑥𝑖 ∈ 𝑀𝑖(𝑝, 𝑦). Thus, 𝑥 ∈ 𝐾.

Proposition 14. Let assumption (A4) be entirely satisfied.
Then, any competitive equilibrium is a Walras competitive
equilibrium.

Proof. Let (𝑝, 𝑥, 𝑦) ∈ 𝑃 × 𝑀(𝑝, 𝑦) × 𝑌 be a competitive
equilibrium and fix 𝑖 ∈ {1, . . . , 𝑛}. From Proposition 13, we
have 𝑥𝑖 ∈ 𝐾𝑖. So, by assumption (A4b) and condition (11a) of
Problem 8 it cannot be that 𝑥𝑖 ∈ int(𝑀𝑖(𝑝, 𝑦)).

Moreover, assumption (A4c) and again condition (11a)
of Problem 8 imply that 𝑥

(ℎ)
𝑖 > 0 for all ℎ = 1, . . . , 𝑙.

Therefore, (12) is verified, which means that (𝑝, 𝑥, 𝑦) is a
Walras competitive equilibrium.

The next propositionwill be needed for themain theorem
of this section.

Proposition 15. Let assumption (A4a) be satisfied. Let 𝑖 ∈

{1, . . . , 𝑛} and let 𝑥𝑖, 𝑧𝑖 ∈ Rℓ
+ be such that 𝑢𝑖(𝑥𝑖) < 𝑢𝑖(𝑧𝑖). Then,

(−𝑢𝑖)
∘
(𝑥𝑖, 𝑧𝑖 − 𝑥𝑖) ≤ 0.

Proof. Let {(𝑦𝑛, 𝑡𝑛)} be a sequence in 𝐴 × (0, 1) (the set 𝐴 is
as in (A4a)) such that (𝑦𝑛, 𝑡𝑛) → (𝑥𝑖, 0). In force of locally
Lipschitz continuity (and thus continuity) and 𝑢𝑖(𝑥𝑖) < 𝑢𝑖(𝑧𝑖),
we can suppose that 𝑢𝑖(𝑦𝑛) < 𝑢𝑖(𝑧𝑖) for all 𝑛 ∈ N. In force of
quasiconcavity, one has 𝑢𝑖(𝑦𝑛) ≤ 𝑢𝑖(𝑦𝑛 + 𝑡𝑛(𝑧𝑖 − 𝑦𝑛)) for all
𝑛 ∈ N. Consequently,

lim sup
𝑛→∞

−𝑢𝑖 (𝑦𝑛 + 𝑡𝑛 (𝑧𝑖 − 𝑦𝑛)) + 𝑢𝑖 (𝑦𝑛)

𝑡𝑛

≤ 0. (17)

Taking into account the arbitrariness of the sequence
{(𝑦𝑛, 𝑡𝑛)}𝑛∈𝑁, conclusion follows.

The next theoremwill state that under the above assump-
tions any competitive equilibrium is a solution to Problem 12.

Theorem 16. Let assumptions (A1), (A2), (A3), and (A4c) be
satisfied.Moreover, let (𝑝, 𝑥, 𝑦) ∈ 𝑃×Rℓ

+×𝑌, with𝑥 ∈ 𝑀(𝑝, 𝑦).
Assume that (𝑝, 𝑥, 𝑦) is a solution to Problem 12.Then, (𝑝, 𝑥, 𝑦)

is a solution to Problem 8.

Proof. Let (𝑝, 𝑥, 𝑦) be a solution to Problem 12, and let 𝑇 ∈

∏
𝑛
𝑖=1𝜕

∘
(−𝑢𝑖)(𝑥𝑖) satisfying inequality (GQVI).

Testing (GQVI) with (𝑝, 𝑥, 𝑦), 𝑝 ∈ 𝑃, one has

⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝 − 𝑝⟩ ≤ 0 ∀𝑝 ∈ 𝑃. (18)

Moreover, from 𝑥 ∈ 𝑀(𝑝, 𝑦), we promptly obtain

⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝⟩ ≤ 0 ∀𝑝 ∈ 𝑃. (19)
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Hence,

⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝⟩

= ⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝 − 𝑝⟩

+ ⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝⟩ ≤ 0 ∀𝑝 ∈ 𝑃.

(20)

Now, choosing 𝑝 = (0, . . . , 0, 1, 0, . . . , 0) ∈ 𝑃 (the fact
is possible in force of assumption (A1)), with 1 at the ℎth
position, we obtain condition (11c) of Problem 8. Further-
more, for each fixed 𝑗 ∈ {1, . . . , 𝑚}, testing (GQVI) with
(𝑝, 𝑥, (𝑦1, . . . , 𝑦𝑗−1, 𝑦𝑗, 𝑦𝑗+1, . . . , 𝑦𝑚)), 𝑦𝑗 ∈ 𝑌𝑗, we obtain
⟨𝑝, 𝑦𝑗 − 𝑦𝑗⟩ ≤ 0, for all 𝑦𝑗 ∈ 𝑌𝑗, which is condition (11b)
of Problem 8.

At this point, condition (11a) of Problem 8 remains the
only one to be proved. Fix 𝑖 ∈ {1, . . . , 𝑛}. Testing (GQVI)with
(𝑝, (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛), 𝑦), 𝑥𝑖 ∈ 𝑀𝑖(𝑝, 𝑦), we obtain

⟨𝑇𝑖, 𝑥𝑖 − 𝑥𝑖⟩ ≥ 0. (21)

Testing, for each ℎ ∈ {1, . . . , ℓ}, inequality (21) with

𝑥𝑖 = (𝑥
(1)
𝑖 , . . . , 𝑥

(ℎ−1)
𝑖 , 0, 𝑥

(ℎ+1)
𝑖 , . . . , 𝑥

(ℓ)
𝑖 ) , (22)

one has

𝑇
(ℎ)
𝑖 𝑥

(ℎ)
𝑖 ≤ 0, for each ℎ ∈ {1, . . . , ℓ} , (23)

which clearly implies ⟨𝑇𝑖, 𝑥𝑖⟩ ≤ 0. We claim that

⟨𝑇𝑖, 𝑥𝑖⟩ < 0. (24)

Indeed, assume, on the contrary, that

⟨𝑇𝑖, 𝑥𝑖⟩ = 0. (25)

Then, for each ℎ = 1, . . . , ℓ, one has 𝑥(ℎ)
𝑖 > 0. Indeed, if 𝑥(ℎ)

𝑖 =

0 for some ℎ ∈ {1, . . . , ℓ}, by condition (A4c), we should have

𝑇
(ℎ)
𝑖 ⋅ 𝜌 ≤ 𝜌 ⋅ (−𝑢𝑖)

∘
(𝑥𝑖, iℎ) < 0, for each 𝜌 > 0. (26)

Now, from assumption (A2), there exists ℎ ∈ {1, . . . , ℓ} such
that 𝑝

(ℎ)
> 0 and 𝑒

(ℎ)
𝑖 > 0. So, in particular, ⟨𝑒𝑖, 𝑝⟩ >

0. Then, if we fix 𝜌 > 0 small enough, we have 𝑥𝜌 fl
(0, 0, . . . , 𝜌, 0, . . . , 0) ∈ 𝑀𝑖(𝑝, 𝑦), with 𝜌 at the ℎth position.
Consequently, testing (21) with 𝑥𝑖 = 𝑥𝜌 and taking (25) into
account, we have

0 ≤ ⟨𝑇𝑖, 𝑥𝜌 − 𝑥𝑖⟩ = ⟨𝑇𝑖, 𝑥𝜌⟩ − ⟨𝑇𝑖, 𝑥𝑖⟩ = 𝑇
(ℎ)
𝑖 ⋅ 𝜌, (27)

which is in contradiction with (26). Therefore, 𝑥
(ℎ)
𝑖 > 0,

for each ℎ = 1, . . . , ℓ. In view of (23) and (25) this implies
𝑇𝑖 = 0R𝑙 , which is again in contradiction with (26). Then,
strict inequality (24) holds. At this point, let 𝑧𝑖 ∈ 𝑀𝑖(𝑝, 𝑦).

By observing that 𝑧𝑖/2, 𝑥𝑖/2 ∈ 𝑀𝑖(𝑝, 𝑦), if we put 𝑦
𝜃,1
𝑖 =

(1 − 𝜃)(𝑥𝑖/2) + 𝜃(𝑧𝑖/2) and 𝑦
𝜃,2
𝑖 = (1 − 𝜃)𝑥𝑖 + 𝜃(𝑥𝑖/2), for all

𝜃 ∈ (0, 1), by the convexity of 𝑀𝑖(𝑝, 𝑦), we infer 𝑦
𝜃,1
𝑖 , 𝑦

𝜃,2
𝑖 ∈

𝑀𝑖(𝑝, 𝑦). So, taking (21) into account, one has

⟨𝑇𝑖, 𝑦
𝜃,1
𝑖 −

𝑥𝑖

2
⟩ = ⟨𝑇𝑖, (1 − 𝜃)

𝑥𝑖

2
+ 𝜃

𝑧𝑖

2
−

𝑥𝑖

2
⟩

=
𝜃

2
⟨𝑇𝑖,

𝑧𝑖

2
− 𝑥𝑖⟩ ≥ 0.

(28)

Moreover, in view of (24), one also has

⟨𝑇𝑖,
𝑥𝑖

2
− 𝑦

𝜃,2
𝑖 ⟩ = ⟨𝑇𝑖,

𝑥𝑖

2
− (1 − 𝜃) 𝑥𝑖 − 𝜃

𝑥𝑖

2
⟩

= −
1

2
(1 − 𝜃) ⟨𝑇𝑖, 𝑥𝑖⟩ > 0,

(29)

for all 𝜃 ∈ (0, 1). Adding side to side the above inequalities,
we obtain

0 < ⟨𝑇𝑖, 𝑦
𝜃,1
𝑖 − 𝑦

𝜃,2
𝑖 ⟩

= ⟨𝑇𝑖, (1 − 𝜃)
𝑥𝑖

2
+ 𝜃

𝑧𝑖

2
− (1 − 𝜃) 𝑥𝑖 − 𝜃

𝑥𝑖

2
⟩

=
1

2
⟨𝑇𝑖, 𝜃𝑧𝑖 − 𝑥𝑖⟩ ≤

1

2
(−𝑢𝑖)

∘
(𝑥𝑖, 𝜃𝑧𝑖 − 𝑥𝑖) ,

∀𝜃 ∈ (0, 1) .

(30)

From the above inequality and Proposition 15, it follows that
𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑖(𝜃𝑧𝑖), for all 𝜃 ∈ (0, 1). By the continuity of 𝑢𝑖,
we then obtain 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑖(𝑧𝑖). From the arbitrariness of 𝑧𝑖 ∈
𝑀𝑖(𝑝, 𝑦), condition (11a) of Problem 8 follows.

Remark 17. Under the assumptions ofTheorem 16, condition
(11c) actually holds as equality. Indeed, fix 𝑖 ∈ {1, . . . , 𝑛} and
define

𝑔𝑖 (𝑥𝑖) fl −

ℓ

∑

ℎ=1

𝑝
ℎ
(𝑥

(ℎ)
𝑖 − 𝑒

(ℎ)
𝑖 )

+ max
{

{

{

0,⟨𝑝,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦𝑗)

}

}

}

∀𝑥𝑖 ∈ 𝑀𝑖 (𝑝, 𝑦) .

(31)

We claim that 𝑔𝑖(𝑥𝑖) = 0. Indeed, if not, taking in mind that
𝑥𝑖 ∈ 𝑀𝑖(𝑝, 𝑦), it should be 𝑔𝑖(𝑥𝑖) > 0. Then, for each ℎ =

1, . . . , 𝑙, there exists 𝜌ℎ > 0 such that

𝑥 (𝜌) fl (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + 𝜌iℎ, 𝑥𝑖+1, . . . , 𝑥𝑛)

∈ 𝑀 (𝑝, 𝑦) ∀𝜌 ∈ [0, 𝜌ℎ[ .

(32)

Testing (GQVI) with (𝑝, 𝑥(𝜌), 𝑦), we obtain

𝜌 ⟨𝑇𝑖, iℎ⟩ ≥ 0, ∀𝜌 ∈ [0, 𝜌ℎ[ . (33)

Thus, in view of (A4c), it must be 𝑥
ℎ
𝑖 > 0 for all

ℎ = 1, . . . , 𝑙. This fact, together with 𝑔𝑖(𝑥𝑖) > 0, implies
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𝑥𝑖 ∈ int(𝑀𝑖(𝑝, 𝑦)). Testing (GQVI) with (𝑝, 𝑥, 𝑦), where 𝑥 =

(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛), with 𝑥𝑖 being arbitrarily chosen
in 𝑀𝑖(𝑝, 𝑦), we obtain ⟨𝑇𝑖, 𝑥𝑖 − 𝑥𝑖⟩ ≥ 0 for all 𝑥𝑖 ∈ 𝑀𝑖(𝑝, 𝑦).
Since 𝑥𝑖 ∈ int(𝑀𝑖(𝑝, 𝑦)), from this inequality it follows that
𝑇𝑖 = 0Rℓ in contradiction with assumption (A4b).

5. Main Result

At this point, it remains to prove that Problem 12 admits at
least a solution.

First, we need the following proposition.

Proposition 18. For each 𝑖 = 1, . . . , 𝑛, the map 𝜕
∘
(−𝑢𝑖) :

Rℓ
+ → 2

Rℓ has closed graph.

Proof. If, for each 𝑖 = 1, . . . , 𝑛 the utility 𝑢𝑖 is locally Lipschitz
on Rℓ

+, then according to (b) of Proposition 1, to (a) of
Proposition 2, and to (b) of Proposition 3, for each 𝑖 =

1, . . . , 𝑛, the subdifferential of −𝑢𝑖 has closed graph.

Now, put 𝑋 = 𝑃 × R𝑛×ℓ
+ × 𝑌 and define

𝑢 (𝑥) = (𝑢1 (𝑥1) , . . . , 𝑢𝑛 (𝑥𝑛)) ,

∀𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R
𝑛×ℓ
+ ,

Γ (𝑝, 𝑥, 𝑦) = 𝑃 × 𝑀(𝑝, 𝑦) × 𝑌, ∀ (𝑝, 𝑥, 𝑦) ∈ 𝑋,

Φ (𝑝, 𝑥, 𝑦) = (−

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖)

+

𝑚

∑

𝑗=1

𝑦𝑗, 𝜕
∘
(−𝑢) (𝑥) , (−𝑝, . . . , −𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚-times
) ,

∀ (𝑝, 𝑥, 𝑦) ∈ 𝑋,

(34)

where 𝜕
∘
(−𝑢)(𝑥) = (𝜕

∘
(−𝑢1)(𝑥1), . . . , 𝜕

∘
(−𝑢𝑛)(𝑥𝑛)), for all 𝑥 =

(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛×ℓ
+ .

By means of these notations, we can rewrite the varia-
tional inequality (GQVI) as follows: find (𝑝, 𝑥, 𝑦) ∈ 𝑃×R𝑛×ℓ

+ ×

𝑌, with (𝑝, 𝑥, 𝑦) ∈ Γ(𝑝, 𝑥, 𝑦), and (�̂�, 𝑇, �̂�) ∈ Φ(𝑝, 𝑥, 𝑦) such
that

⟨(�̂�, 𝑇, �̂�) , (𝑝, 𝑥, 𝑦) − (𝑝, 𝑥, 𝑦)⟩ ≤ 0,

∀ (𝑝, 𝑥, 𝑦) ∈ Γ (𝑝, 𝑥, 𝑦) .

(35)

Theorem 19. Assume that conditions (A3), (A4a), and (A2)
hold. Then, Problem 12 admits at least a solution in 𝑃 × 𝐶 × 𝑌,
where

𝐶 fl {𝑥 = (𝑥
(ℎ)
𝑖 ) 1≤𝑖≤𝑛

1≤ℎ≤𝑙

∈ R
𝑛×ℓ
+ :

𝑛

∑

𝑖=1

ℓ

∑

ℎ=1

𝑥
(ℎ)
𝑖 ≤

𝑛

∑

𝑖=1

ℓ

∑

ℎ=1

𝑒
(ℎ)
𝑖

+ 𝑀} ,

(36)

and 𝑀 > 0 is as in (𝐴4𝑐).

Proof. First, note the following:

(i) the set𝑋 is nonempty closed and convex inRℓ
×R𝑛×ℓ

×

R𝑚×ℓ;
(ii) the set𝐾 fl 𝑃×𝐶×𝑌 ⊂ 𝑋 is nonempty and compact

in Rℓ
× R𝑛×ℓ

× R𝑚×ℓ;
(iii) Γ(𝑝, 𝑥, 𝑦) is a nonempty convex subset of 𝑋, for all

(𝑝, 𝑥, 𝑦) ∈ 𝑋.

Moreover, recalling that 𝜕
∘
(−𝑢𝑖)(𝑥𝑖) is (nonempty) convex

and compact in Rℓ, for all 𝑖 = 1, . . . , 𝑛 and for all 𝑥𝑖 ∈ Rℓ
+,

we also have the following:

(iv) Φ(𝑝, 𝑥, 𝑦) is a nonempty convex and compact subset
of R𝑛

× R𝑛×ℓ
× R𝑚×ℓ, for all (𝑝, 𝑥, 𝑦) ∈ 𝑋.

Thus, to satisfy all the assumptions of Theorem 3.2 of
[23], it remains to check that the following further conditions
hold:

(a1) the set

Λ (𝜌, 𝜏, 𝜔) fl {(𝑝, 𝑥, 𝑦)

∈ 𝑋 : inf
(𝑧,𝑇,𝑤)∈Φ(𝑝,𝑥,𝑦)

⟨(𝑧, 𝑇, 𝑤) , (𝜌, 𝜏, 𝜔)⟩ ≤ 0}

(37)

is closed, for each (𝜌, 𝜏, 𝜔) ∈ 𝑋 − 𝑋;

(a2) the map Γ : 𝑋 → 2
𝑋 is lower semicontinuous with

closed graph;
(a3) there exists 𝑅0 such that if for each 𝑅 ∈ [𝑅0,∞[ we

denote by 𝐵𝑅 the closed ball in R𝑛
× R𝑛×ℓ

× R𝑚×ℓ

centered at 0 with radius 𝑅, one has 𝐵𝑅 ∩ 𝑋 ̸= 0, and

(i) Γ(𝑝, 𝑥, 𝑦) ∩ 𝐵𝑅 ̸= 0, for all (𝑝, 𝑥, 𝑦) ∈ 𝑋 ∩ 𝐵𝑅;
(ii) sup(𝑝 ,𝑥 ,𝑦)∈Γ(𝑝,𝑥,𝑦)∩𝐵

𝑅

inf (𝑧,𝑇,𝑤)∈Φ(𝑝,𝑥,𝑦)⟨(𝑧, 𝑇, 𝑤),
(𝑝, 𝑥, 𝑦) − (𝑝


, 𝑥


, 𝑦


)⟩ > 0, for all

(𝑝, 𝑥, 𝑦) ∈ 𝑋∩𝐵𝑅 \𝐾, with (𝑝, 𝑥, 𝑦) ∈ Γ(𝑝, 𝑥, 𝑦).

At the end we divide the proof in several steps.

Step 1. To prove that condition (a1) holds true, fix (𝜌, 𝜏, 𝜔) ∈

𝑋 − 𝑋 and let {(𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
)} be a sequence in Λ(𝜌, 𝜏, 𝜔) such

that (𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
) → (𝑝∗, 𝑥

∗
, 𝑦

∗
) as 𝑘 → ∞. Let us show

that (𝑝∗, 𝑥
∗
, 𝑦

∗
) ∈ Λ(𝜌, 𝜏, 𝜔). At first observe that since

𝑋 is closed, one has (𝑝∗, 𝑥
∗
, 𝑦

∗
) ∈ 𝑋. Moreover, since

Φ(𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
) is compact for each 𝑘 ∈ N, and the function

(𝑧, 𝑇, 𝑤) ∈ R
𝑛
× R

𝑛×ℓ
× R

𝑚×ℓ

→ ⟨(𝑧, 𝑇, 𝑤) , (𝜌, 𝜏, 𝜔)⟩

(38)

is continuous in R𝑛
× R𝑛×ℓ

× R𝑚×ℓ, then, for each 𝑘 ∈ N, we
can find (𝑧

𝑘
, 𝑇

𝑘
, 𝑤

𝑘
) ∈ Φ(𝑝𝑘, 𝑥

𝑘
, 𝑦

𝑘
) such that

⟨(𝑧
𝑘
, 𝑇

𝑘
, 𝑤

𝑘
) , (𝜌, 𝜏, 𝜔)⟩ ≤ 0. (39)
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Note that, from the definition of Φ, for each 𝑘 ∈ N, one has

𝑧
𝑘
= −

𝑛

∑

𝑖=1

(𝑥
𝑘
𝑖 − 𝑒𝑖) +

𝑚

∑

𝑗=1

𝑦
𝑘
𝑗 ; (40)

𝑤
𝑘
= (−𝑝𝑘, . . . , −𝑝𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚-times

; (41)

𝑇
𝑘
∈ 𝜕 (−𝑢) (𝑥

𝑘
) . (42)

Moreover, recalling that 𝑢𝑖 is locally Lipschitz continuous in
Rℓ

+ for all 𝑖 = 1, . . . , 𝑛, then, for each 𝑘 ∈ N, there exist an
open neighborhood 𝐴𝑘 of 𝑥

𝑘 in R𝑛×ℓ and a constant 𝐿𝑘 ≥ 0

such that

sup
𝑇∈𝜕∘(−𝑢)(𝑥)

|𝑇| ≤ 𝐿𝑘, for each 𝑥 ∈ 𝐴𝑘 ∩ R
ℓ
+. (43)

Furthermore, there exist an open neighborhood 𝐴0 of 𝑥
∗ in

R𝑛×ℓ and a constant 𝐿0 ≥ 0 such that

sup
𝑇∈𝜕∘(−𝑢)(𝑥)

|𝑇| ≤ 𝐿0, for each 𝑥 ∈ 𝐴0 ∩ R
ℓ
+. (44)

At this point, observe that the family of open sets {𝐴𝑘}𝑘∈N∪{0}

is a covering of the compact set {𝑥𝑘
}𝑘∈N∪{𝑥

∗
}.Therefore, from

(43) and (44), we infer that there exists a constant 𝐿 ≥ 0 such
that

sup
𝑇∈𝜕∘(−𝑢)(𝑥𝑘)

|𝑇| ≤ 𝐿, for each 𝑘 ∈ N. (45)

Consequently, from (42), up to a subsequence, we can
suppose that the sequence {𝑇

𝑘
} converges to some𝑇

∗
∈ R𝑛×ℓ.

Now, from (40) and (41), we infer that

𝑧
𝑘
→ 𝑧

∗ fl −

𝑛

∑

𝑖=1

(𝑥
∗
𝑖 − 𝑒𝑖) +

𝑚

∑

𝑗=1

𝑦
∗
𝑗 , as 𝑘 → ∞;

𝑤
𝑘
→ 𝑤

∗ fl (−𝑝∗, . . . , −𝑝∗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚-times

, as 𝑘 → ∞,

(46)

and, from Proposition 18 and (42), we also infer that

𝑇
∗
∈ 𝜕 (−𝑢) (𝑥

∗
) . (47)

Furthermore, from (39), passing to the limit as 𝑘 → ∞, one
has

⟨(𝑧
∗
, 𝑇

∗
, 𝑤

∗
) , (𝜌, 𝜏, 𝜔)⟩ ≤ 0. (48)

At this point, observe that considering together conditions
(46) and (47) means that (𝑧

∗
, 𝑇

∗
, 𝑤

∗
) ∈ Φ(𝑝∗, 𝑥

∗
, 𝑦

∗
) and

this latter condition, together with (48), gives (𝑝∗, 𝑥
∗
, 𝑦

∗
) ∈

Λ(𝜌, 𝜏, 𝜔). Therefore, condition (a1) is proved.

Step 2. Now, let us show that the map Γ is lower semicon-
tinuous in 𝑋. To this end, it is sufficient to prove that, for
every (𝑝0, 𝑥0, 𝑦0) ∈ 𝑋, every (𝑝, 𝑥, 𝑦) ∈ Γ(𝑝0, 𝑥0, 𝑦0), and
every sequence {(�̂�𝑘, �̂�

𝑘
, �̂�

𝑘
)} in 𝑋 such that (�̂�𝑘, �̂�

𝑘
, �̂�

𝑘
) →

(𝑝0, 𝑥0, 𝑦0) as 𝑘 → +∞, there exists a sequence {(𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
)}

in 𝑋 such that (𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
) ∈ Γ(�̂�𝑘, �̂�

𝑘
, �̂�

𝑘
) for all 𝑘 ∈ N and

(𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
) → (𝑝, 𝑥, 𝑦) as 𝑘 → +∞ (see [18] at page 39, for

instance).
So, let (𝑝0, 𝑥0, 𝑦0), (𝑝, 𝑥, 𝑦), and {(�̂�𝑘, �̂�

𝑘
, �̂�

𝑘
)} be as above.

For each 𝑖 = 1, . . . , 𝑛, using the fact that (𝑝, 𝑥, 𝑦) ∈

Γ(𝑝0, 𝑥0, 𝑦0), we have the following two situations:
either

⟨𝑝0, 𝑥𝑖⟩ < ⟨𝑝0, 𝑒𝑖⟩ + max
{

{

{

0,⟨𝑝0,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦0𝑗⟩

}

}

}

(49)

or

⟨𝑝0, 𝑥𝑖⟩ = ⟨𝑝0, 𝑒𝑖⟩ + max
{

{

{

0,⟨𝑝0,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦0𝑗⟩

}

}

}

. (50)

Suppose that (49) holds. Then, since (�̂�𝑘, �̂�
𝑘
) → (𝑝0, 𝑦0),

there exists 𝑘0 ∈ N such that

⟨�̂�𝑘, 𝑥𝑖⟩ < ⟨�̂�𝑘, 𝑒𝑖⟩ + max
{

{

{

0,⟨�̂�𝑘,

𝑚

∑

𝑗=1

𝜃𝑖𝑗�̂�
𝑘
𝑗⟩

}

}

}

,

∀𝑘 ∈ N, with 𝑘 ≥ 𝑘0.

(51)

So, in this case, if we put 𝑥𝑘
𝑖 = 𝑥𝑖 for 𝑘 ≥ 𝑘0 and 𝑥

𝑘
𝑖 = 0 for

𝑘 = 1, . . . , 𝑘0 − 1, it is easy to check that 𝑥𝑘
𝑖 ∈ 𝑀𝑖(�̂�𝑘, �̂�

𝑘
), for

all 𝑘 ∈ N. Moreover, it is clear that 𝑥𝑘
𝑖 → 𝑥𝑖 as 𝑘 → +∞.

Suppose that (50) holds. Then, from the survivability
condition (A2), we have

⟨𝑝0, 𝑥𝑖⟩ = ⟨𝑝0, 𝑒𝑖⟩ + max
{

{

{

0,⟨𝑝0,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦0𝑗⟩

}

}

}

> 0.

(52)

Consequently, since (�̂�𝑘, �̂�𝑘, �̂�
𝑘
) → (𝑝0, 𝑥0, 𝑦0), we have

lim
𝑘→∞

⟨�̂�𝑘, 𝑒𝑖⟩ + max {0, ⟨�̂�𝑘, ∑
𝑚
𝑗=1 𝜃𝑖𝑗�̂�

𝑘
𝑗⟩}

⟨�̂�𝑘, 𝑥𝑖⟩

=

⟨𝑝0, 𝑒𝑖⟩ + max {0, ⟨𝑝0, ∑
𝑚
𝑗=1 𝜃𝑖𝑗𝑦0𝑗⟩}

⟨𝑝0, 𝑥𝑖⟩
= 1.

(53)

Therefore, if we put

𝑎𝑘 = max
{

{

{

0, 1

−

⟨�̂�𝑘, 𝑒𝑖⟩ + max {0, ⟨�̂�𝑘, ∑
𝑚
𝑗=1 𝜃𝑖𝑗�̂�

𝑘
𝑗⟩}

⟨�̂�𝑘, 𝑥𝑖⟩

}

}

}

,

∀𝑘 ∈ N,

𝑥
𝑘
𝑖 = (1 − 𝑎𝑘) 𝑥𝑖, ∀𝑘 ∈ N,

(54)
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it is easy to check that 𝑥𝑘
𝑖 ∈ 𝑀𝑖(�̂�𝑘, �̂�

𝑘
), for all 𝑘 ∈ N. Indeed,

if 𝑎𝑘 > 0, then

⟨�̂�𝑘, 𝑥
𝑘
𝑖 ⟩ =

⟨�̂�𝑘, 𝑒𝑖⟩ + max {0, ⟨�̂�𝑘, ∑
𝑚
𝑗=1 𝜃𝑖𝑗�̂�

𝑘
𝑗⟩}

⟨�̂�𝑘, 𝑥𝑖⟩

⋅ ⟨�̂�𝑘, 𝑥𝑖⟩

= ⟨�̂�𝑘, 𝑒𝑖⟩ + max
{

{

{

0,⟨�̂�𝑘,

𝑚

∑

𝑗=1

𝜃𝑖𝑗�̂�
𝑘
𝑗⟩

}

}

}

,

(55)

and so 𝑥
𝑘
𝑖 ∈ 𝑀𝑖(�̂�𝑘, �̂�

𝑘
), while, if 𝑎𝑘 = 0, then 𝑥

𝑘
𝑖 = 𝑥𝑖 and

⟨�̂�𝑘, 𝑒𝑖⟩ + max {0, ⟨�̂�𝑘, ∑
𝑚
𝑗=1 𝜃𝑖𝑗�̂�

𝑘
𝑗⟩}

⟨�̂�𝑘, 𝑥
𝑘
𝑖 ⟩

=

⟨�̂�𝑘, 𝑒𝑖⟩ + max {0, ⟨�̂�𝑘, ∑
𝑚
𝑗=1 𝜃𝑖𝑗�̂�

𝑘
𝑗⟩}

⟨�̂�𝑘, 𝑥𝑖⟩
≥ 1

(56)

fromwhich we again obtain 𝑥
𝑘
𝑖 ∈ 𝑀𝑖(�̂�𝑘, �̂�

𝑘
). Finally, observe

that 𝑥𝑘
𝑖 → 𝑥𝑖 as 𝑘 → +∞.

So, for each 𝑖 = 1, . . . , 𝑛, in both cases (49) and (50), we
can find a sequence 𝑥

𝑘
𝑖 which converges to 𝑥𝑖 and such that

𝑥
𝑘
𝑖 ∈ 𝑀𝑖(�̂�𝑘, �̂�

𝑘
), for all 𝑘 ∈ N. Consequently, if we put 𝑥𝑘

=

(𝑥
𝑘
1 , . . . , 𝑥

𝑘
𝑛), for all 𝑘 ∈ N, the sequence {(𝑝𝑘, 𝑥

𝑘
, 𝑦

𝑘
)}, where

𝑝𝑘 = 𝑝 and 𝑦
𝑘

= 𝑦, for all 𝑘 ∈ N, satisfies (𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
) ∈

Γ(�̂�𝑘, �̂�
𝑘
, �̂�

𝑘
) for all 𝑘 ∈ N and (𝑝𝑘, 𝑥

𝑘
, 𝑦

𝑘
) → (𝑝, 𝑥, 𝑦) as 𝑘 →

+∞, as desired. Therefore, Γ is lower semicontinuous in 𝑋.
To show that condition (a2) hold true, it remains to prove

that Γ has closed graph. To this end, let {(�̂�𝑘, �̂�
𝑘
, �̂�

𝑘
)} and

{(𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
)} be two sequences in 𝑋 such that (𝑝𝑘, 𝑥

𝑘
, 𝑦

𝑘
) ∈

Γ(�̂�𝑘, �̂�
𝑘
, �̂�

𝑘
), for all 𝑘 ∈ N, and suppose that (�̂�𝑘, �̂�

𝑘
, �̂�

𝑘
) →

(𝑝0, 𝑥0, 𝑦0), (𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
) → (𝑝, 𝑥, 𝑦), as 𝑘 → ∞. Let us show

that (𝑝, 𝑥, 𝑦) ∈ Γ(𝑝0, 𝑥0, 𝑦0).
Since 𝑃 and 𝑌 are closed, one has 𝑝 ∈ 𝑃 and 𝑦 ∈ 𝑌.

Moreover, with (𝑝𝑘, 𝑥
𝑘
, 𝑦

𝑘
) ∈ Γ(�̂�𝑘, �̂�

𝑘
, �̂�

𝑘
) for all 𝑘 ∈ N, one

has

⟨�̂�𝑘, 𝑥
𝑘
𝑖 ⟩ ≤ ⟨�̂�𝑘, 𝑒𝑖⟩ + max

{

{

{

0,⟨�̂�𝑘,

𝑚

∑

𝑗=1

𝜃𝑖𝑗�̂�
𝑘
𝑗⟩

}

}

}

,

∀𝑘 ∈ N, 𝑖 = 1, . . . , 𝑛.

(57)

Passing to the limit as 𝑘 → ∞, we obtain

⟨𝑝0, 𝑥𝑖⟩ ≤ ⟨𝑝0, 𝑒𝑖⟩ + max
{

{

{

0,⟨𝑝0,

𝑚

∑

𝑗=1

𝜃𝑖𝑗𝑦0𝑗⟩

}

}

}

,

∀𝑖 = 1, . . . , 𝑛.

(58)

Thus,

𝑥 ∈ 𝑀(𝑝0, 𝑦0) (59)

which, together with 𝑝 ∈ 𝑃 and 𝑦 ∈ 𝑌, gives (𝑝, 𝑥, 𝑦) ∈

Γ(𝑝0, 𝑥0, 𝑦0), as desired.

Step 3. To finish the proof of ourTheorem, it remains to show
that condition (a3) holds true as well.

Let 𝑅0 > 0 be such that the closed ball 𝐵𝑅
0

⊂ R𝑛
×R𝑛×ℓ

×

R𝑚×ℓ contains the compact set𝐾.Then, for each𝑅 ∈ [𝑅0,∞[,
one has 𝐾 ⊂ 𝑋 ∩ 𝐵𝑅 and 𝑃 × {0} × 𝑌 ⊂ Γ(𝑝, 𝑥, 𝑦) ∩ 𝐵𝑅, for all
(𝑝, 𝑥, 𝑦) ∈ 𝑋. Therefore, condition (i) of (a3) holds. Suppose
that condition (ii) of (a3) does not hold. Then, there should
exist (𝑝, 𝑥, 𝑦) ∈ 𝑋 ∩ 𝐵𝑅 \ 𝐾, with (𝑝, 𝑥, 𝑦) ∈ Γ(𝑝, 𝑥, 𝑦), such
that

inf
(𝑧,𝑇,𝑤)∈Φ(𝑝,𝑥,𝑦)

⟨(𝑧, 𝑇, 𝑤) , (𝑝, 𝑥, 𝑦) − (𝑝

, 𝑥


, 𝑦


)⟩ ≤ 0,

∀ (𝑝

, 𝑥


, 𝑦


) ∈ Γ (𝑝, 𝑥, 𝑦) ∩ 𝐵𝑅.

(60)

Now, let us put 𝑝∗ fl (1/ℓ, . . . , 1/ℓ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℓ-times
) ∈ 𝑃. Then, (𝑝∗, 𝑥, 𝑦) ∈

𝐵𝑅 ∩ 𝑋. Moreover, from (𝑝, 𝑥, 𝑦) ∈ Γ(𝑝, 𝑥, 𝑦), it trivially
follows that (𝑝∗, 𝑥, 𝑦) ∈ Γ(𝑝, 𝑥, 𝑦).Thus, we can test (60) with
(𝑝


, 𝑥


, 𝑦


) = (𝑝∗, 𝑥, 𝑦). Doing so, we get

inf
(𝑧,𝑇,𝑤)∈Φ(𝑝,𝑥,𝑦)

⟨(𝑧, 𝑇, 𝑤) , (𝑝 − 𝑝∗, 0, 0)⟩ ≤ 0. (61)

Therefore, with Φ(𝑝, 𝑥, 𝑦) being a compact set, there should
exist (𝑧, 𝑇, 𝑤) ∈ Φ(𝑝, 𝑥, 𝑦) such that

⟨(𝑧, 𝑇, 𝑤) , (𝑝 − 𝑝∗, 0, 0)⟩ ≤ 0. (62)

From the definition ofΦ, the previous inequality is equivalent
to

⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝∗ − 𝑝⟩ ≤ 0 (63)

which, taking in mind that 𝑥 ∈ 𝑀(𝑝, 𝑦), implies

⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝∗⟩ ≤ 0. (64)

Consequently,
𝑛

∑

𝑖=1

ℓ

∑

ℎ=1

(𝑥
ℎ
𝑖 − 𝑒

ℎ
𝑖 ) −

𝑚

∑

𝑗=1

ℓ

∑

ℎ=1

𝑦
ℓ
𝑗

= 𝑙⟨

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑒𝑖) −

𝑚

∑

𝑗=1

𝑦𝑗, 𝑝∗⟩ ≤ 0.

(65)

Therefore, 𝑥 ∈ 𝐶. But this contradicts the fact that (𝑝, 𝑥, 𝑦) ∈

𝑋 ∩ 𝐵𝑅 \ 𝐾 = (𝑃 × R𝑛×ℓ
+ × 𝑌) ∩ 𝐵𝑅 \ (𝑃 × 𝐶 × 𝑌).

The proof is now complete.

6. Applications

The well-known Cobb-Douglas utility function 𝑢𝑖 : Rℓ
+ →

R+ defined by

𝑢𝑖 (𝑥
(1)
𝑖 , . . . , 𝑥

(ℓ)
𝑖 ) = 𝐴

ℓ

∏

ℎ=1

(𝑥
(𝑗)

𝑖 )
𝜆
ℎ

, (66)

where 𝜆ℎ > 0 for all ℎ = 1, . . . , ℓ, is concave if ∑
𝑙
ℎ=1 𝜆ℎ <

1, but it is only quasiconcave (and not necessarily concave)
regardless of the sum of exponents 𝜆ℎ. Following the same
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arguments at page 178 of [25], Theorems 16 and 19 can be
applied to prove the existence of competitive equilibrium
for Problem 8 with 𝑢𝑖 given by (66) for arbitrary positive
exponents 𝜆ℎ. The same result also applies to CES utility
function defined by

𝑢𝑖 (𝑥
(1)
𝑖 , . . . , 𝑥

(ℓ)
𝑖 ) = 𝐴(

ℓ

∑

ℎ=1

𝜆ℎ (𝑥
(ℎ)
𝑖 )

𝜌
)

1/𝜌

∀𝑖 = 1, . . . , 𝑛,

(67)

where 𝐴, 𝛼ℎ > 0, for all ℎ = 1, . . . , ℓ, and 𝜌 ≤ 1.
It is also to be noted that, as we require only a local Lip-

schitz condition on the utility functions, our main theorems
can be applied to generalized Cobb-Douglas utility functions
of the type

𝑢𝑖 (𝑥
(1)
𝑖 , . . . , 𝑥

(ℓ)
𝑖 ) =

ℓ

∏

𝑗=1

𝑔𝑗 (𝑥
(𝑗)

𝑖 ) , (68)

where𝑔𝑗 : R+ → R+ are strictly increasing concave or convex
functions, not necessarily of class 𝐶1.

7. Conclusions

In [6, 21] under concavity assumption, a demand function
𝑥𝑖(𝑝) was defined and a competitive economic equilibrium
was characterized as a solution of generalized quasivari-
ational inequalities or variational inequality involving the
Lagrange multipliers, respectively. In this paper we have
weakened the concavity assumptions by requiring only the
quasiconcavity on the utility functions. Moreover, we dot not
require the differentiability of the utility functions but only a
local Lipschitz condition.

In Theorem 16 we have shown that any solution of
particular GQVI problem is a competitive equilibrium. In
Theorem 19, using an abstract result due to Cubiotti ([23]), we
have proved the existence of solution to this GQVI problem.
Under the same assumptions, we finally have shown that any
competitive equilibrium is a Walras competitive equilibrium
too (Proposition 14).

As examples of utility functions to which our main
results apply we have exhibited two typical well-known utility
functions as follows:

(i) the Cobb-Douglas type utility so defined by

𝑢𝑖 (𝑥
(1)
𝑖 , . . . , 𝑥

(ℓ)
𝑖 ) = 𝐴

ℓ

∏

ℎ=1

(𝑥
(ℎ)
𝑖 )

𝜆
ℎ

∀𝑖 = 1, . . . , 𝑛, (69)

where 𝐴, 𝜆ℎ > 0, for all ℎ = 1, . . . , ℓ;
(ii) the CES type utility so defined by

𝑢𝑖 (𝑥
(1)
𝑖 , . . . , 𝑥

(ℓ)
𝑖 ) = 𝐴(

ℓ

∑

ℎ=1

𝜆ℎ (𝑥
(ℎ)
𝑖 )

𝜌
)

1/𝜌

∀𝑖 = 1, . . . , 𝑛,

(70)

where 𝐴, 𝜆ℎ > 0, for all ℎ = 1, . . . , ℓ and 𝜌 ≤ 1.
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