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This paper discusses the construction of new C? rational cubic spline interpolant with cubic numerator and quadratic denominator.
The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline
interpolation. The rational cubic spline has three parameters o, f3;, and y,. The sufficient conditions for the positivity are derived
on one parameter y; while the other two parameters «; and f3; are free parameters that can be used to change the final shape of
the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic
spline interpolation with C* continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use
and does not require knots insertion and C* continuity can be achieved by solving tridiagonal systems of linear equations for the
unknown first derivatives d;, i = 1,...,n— 1. Comparisons with existing schemes also have been done in detail. From all presented
numerical results the new C rational cubic spline gives very smooth interpolating curves compared to some established rational
cubic schemes. An error analysis when the function to be interpolated is f(t) € C*[t,, t,] is also investigated in detail.

1. Introduction

Spline interpolation has been used extensively in many
research disciplines such as in car design and airplane fuse-
lage. Univariate and bivariate spline can be used to approx-
imate or interpolate the given finite data sets. Even though
the cubic spline has second-order parametric continuity, C?,
it has some weakness such that the interpolating curves may
give few unwanted behavior of the original data due to the
existing wiggles along some interval. This uncharacteristic
behavior may destroy the data. If the given data is positive
cubic spline may give some negative values along the whole
interval where the interpolating curves will lie below x-
axis. For some application any negativity is unacceptable.
For example, the wind speed, solar energy, and rainfall
received are always having positive values and any negativity
values need to be avoided as it may destroy any important
information that may exist in the original data. Similarly if
the data is monotone, then the resulting interpolating curves
also must be monotone too. Furthermore if the given data

is convex, the rational cubic spline interpolation should be
able to maintain the shape of the original data. Thus shape
preserving interpolation is important in computer graphics
and computer aided geometric design (CAGD).

Due to the fact that cubic spline is not able to produce
completely the positive, monotone, and convex interpolating
curves on entire given interval, many researchers have pro-
posed several methods and idea to preserve the positivity,
monotonicity, and convexity of the data. Fritsch and Carlson
[1] and Dougherty et al. [2] have discussed the monotonicity,
positivity, and convexity preserving by using cubic spline
interpolation by modifying the first derivative values in which
the shape violation is found. Butt and Brodlie [3] and Brodlie
and Butt [4] have used cubic spline interpolation to preserve
the positivity and convexity of the finite data by inserting
extra knots in the interval in which the positivity and/or
convexity is not preserved by the cubic spline. Their methods
did not give any extra freedom to the user in controlling the
final shape of the interpolating curves. In order to change
the final shape of the interpolating curves, the user needs to
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change the given data. Another thing is that their methods
require the modification of the first derivative parameters.
Sarfraz [5], Sarfraz et al. [6, 7], and Abbas [8] studied the
use of rational cubic interpolant for preserving the positive
data. Meanwhile M. Z. Hussain and M. Hussain [9] studied
positivity preserving for curves and surfaces by utilizing
rational cubic spline with quadratic denominator. In works
by Hussain et al. [10] and Sarfraz et al. [11] the rational
cubic spline with quadratic denominator has been used for
positivity, monotonicity, and convexity preserving with c?
continuity. Hussain et al. [10] have only one free parameter
meanwhile Sarfraz et al. [11] have no free parameter. Abbas
[8] and Abbas et al. [12] have discussed the positivity by
using new C? rational cubic spline with two free parameters.
Another paper concerning C* rational spline can be found
by Delbourgo [13], Gregory [14], and Delbourgo and Gregory
[15]. Karim and Kong [16-19] have proposed new C ! rational
cubic spline (cubic/quadratic) with three parameters where
two of them are free parameters. The rational cubic spline
has been successfully applied to the local control of the
interpolating functions, positivity, monotonicity, and con-
vexity preserving as well as the derivative control including
an error analysis when the function to be interpolated is
f() e c? [ty t,]. Motivated by the works of Tian et al. [20],
Abbas et al. [12], Hussain et al. [10], and Sarfraz et al. [11], in
this paper the authors will proposed new C* rational cubic
spline for positivity, monotonicity, and convexity preserving
and data constrained modeling. Under some circumstances
our C? rational cubic spline will give new C* rational cubic
spline based on rational cubic spline defined by Tian et
al. [20]. Numerical comparison between C? rational cubic
spline and the works of Hussain et al. [10], Abbas [8],
Abbas et al. [12], and Sarfraz et al. [11] also has been made
comprehensively. From all presented numerical results shape
preserving interpolation by using the new C* rational cubic
spline gives comparable results with existing rational cubic
spline schemes. The main scientific contribution of this paper
is summarized as follows:

(i) In this paper C* rational cubic spline (cubic/
quadratic) with three parameters has been used for
positivity, monotonicity, and convexity preserving
and constrained data modeling while in works by
Karim and Kong [17-19], M. Z. Hussain and M.
Hussain [9], and Sarfraz [5] the degree of smoothness
attained is C'.

(ii) Hussain et al. [10] and Sarfraz et al. [11] discussed
the positivity by using C® rational cubic spline
(cubic/quadratic) with two parameters with one or no
free parameter while our rational cubic spline has two
free parameters. Even though Abbas et al. [12] also
proposed C* rational cubic spline (cubic/quadratic)
with two parameters, their rational spline is different
form our rational cubic spline. Furthermore it was
noticed that schemes of Abbas et al. [12] may not
be able to produce completely positive interpolating
curves with C* continuity.
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(iii) When y; = 0, we may obtain the new C’ rational
cubic spline with two parameters, an extension to the
original C' rational cubic spline of Tian et al. [20].
Thus our C? rational cubic spline gives a larger class of
rational cubic spline which also includes the rational
cubic spline of Tian et al. [20].

(iv) Our rational scheme is local while in Lamberti and
Manni [21] their scheme is global. Furthermore our
rational scheme works well for both equally and
unequally spaced data while the rational spline inter-
polant by Duan et al. [22] and Bao et al. [23] only
works for equally spaced data.

(v) Numerical comparisons between the C? rational
cubic spline and the existing schemes such as Hussain
et al. [10], Sarfraz et al. [11], and Abbas et al. [12] for
positivity preserving and C' rational spline of Karim
and Kong [17-19] also have been done comprehen-
sively.

(vi) Our method also does not require any knots insertion.
Meanwhile the cubic spline interpolation by Butt and
Brodlie [3], Brodlie and Butt [4], and Fiorot and Tabka
[24] requires knots insertion in the interval where the
interpolating curves produce the negative values (lies
below x-axis) for positive data, nonmonotone inter-
polating curves (for monotone data), and nonconvex
interpolating curves for convex data.

(vii) This paper utilized the rational cubic spline mean-
while in Dube and Tiwari [25], Pan and Wang [26],
and Ibraheem et al. [27] the rational trigonometric
spline is used in place of standard rational cubic
spline. Thus no trigonometric functions are involved.
Therefore the method is not computationally expen-
sive.

The remainder of the paper is organized as follows.
Section 2 introduces the new C” rational cubic spline with
three parameters, with some discussion on the methods to
estimate the first derivatives values as well as shape controls of
the rational cubic spline interpolation. Meanwhile Section 3
discusses the positivity preserving by using C* rational cubic
spline together with numerical demonstrations as well as
comparison with some existing schemes including error
analysis. Section 4 is devoted for research discussion. Finally
a summary and conclusions are given in Section 5.

2. C? Rational Cubic Spline Interpolant

This section will introduce C* rational cubic spline inter-
polant with three parameters. Originally this rational cubic
spline has been initiated by Karim and Kong [18]. The main
difference is that in this paper the rational cubic spline has
C? continuity while in work by Karim and Kong [18] it has
C' continuity. We begin with the definition of C* rational
cubic spline interpolant, given set of data points {(x;, f;), i =
0,1,...,n} such that x, < x; < -+ < x,. Let h; = x;,; — x;,
A; = (fiy1 — f))/h;and 0 = (x — x;)/h;, where 0 < 0 < 1. For
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x € [x;,x;4),1 =0,1,2,...,n — 1, the rational cubic spline
interpolant with three parameters is defined as follows:

s(x) =s;(x)

A0 +A0(1-07+A,00(1-0)+A,0° D
(1-6)"a; +6(1-0) (2,5 + ;) + 6B '

The following conditions will assure that the rational cubic
spline interpolant in (1) has C* continuity:

s(x;) = f
s(xi11) = fins
sV (x;) = d, ()
s (%i41) = dig1s
s (x:,) = s (%)
where s(l)(xi) and 5(2)(xi) denote the first- and second-order

derivative with respect to x, respectively. Meanwhile the
notations s (x;,) and 5(2)(x,-_) correspond to the right and
left second derivatives values. Furthermore d; denotes the
derivative value which is given at the knot x;,i = 0, 1,2,...,n.

By using (2), the required C? rational cubic spline inter-
polant with three parameters defined by (1) has the unknowns
Aij, j=0,1,2,3, and is given as follows:

Aj = fp

Ay = Q2o+ o + ) fi + aihid,
Ajp = 0B + B + ) firn = Bihidisas
A = Bifin-

(3)

The parameters o, 5; > 0, y; > 0 are used to control the final
shape of the interpolating curves. From work by Karim and
Kong [19], the second-order derivative sP(x) is given as

Yi0Cy(1-0)y7 0

s (x) = Q0T (4)
where
Cio = 205 (y; (A, ~d;) = By (diy = A)
— 20,8, (d; - A})),
Cy =60p; (A; —d;),
)

Cp= 6“iﬁi2 (di+1 - Ai) >
Cs = 2ﬁ,2 [y: (diss = A})
- (Ai —d; - 2p (dm - Ai))] .

Now C? continuity, 5(2)(x1-+) = 5(2)(x1-,), i=12,...,n-1,
will give
2y (di=Aiy) —ay (A —diy = 2B (d; — Ay)]
hi_1 iy

_ 2 (Yi (Ai - di) - B (dm - Ai) - 20,3 (di ~ Ai))
hio; .

(6)

Now (6) provides the following system of linear equations
that can be used to compute the first derivative parameters,
d;, i=1,2,...,n—1, such that

ad;,_,+bd, +cd;,, =€, i=12,...,n-1, (7)

with
a; = oo,
b = oy (g + 2061 Bicy) + By By (v + 2008,)
G =h BB (8)
e; = Mo (yioy + oy + 2051 Bi) Ay

+ R By (v + B+ 20,8,) A

The system of linear equations given by (7) is strictly tridi-

agonal and has a unique solution for the unknown derivative

parametersd;, i =1,2,...,n—1,foralla;, ; > 0, y; > 0. The

system in (7) gives n — 1 linear equations for n + 1 unknown

derivative values. Thus two more equations are required in

order to obtain the unique solution in (7). The following is

common choices for the end points condition, that is, d, and

d,:
s (%) = do,

)

s (x,) = d,.

By using (3), C? rational cubic spline interpolant in (1) can be
reformulated and is given as follows:

umem=%%§ (10)
where
P (6)
=0 f;(1-0)
+ (B + o +y,) fi + ohid;) 0 (1 - 0)° -

+ (206, + Bi + 1) firr — Bihudiyy) 6% (1 - 6)
+ /3ifi+163>
Q) =01~ 0)2 o, +0(1-0) (20‘1‘[;1' +y;) + Bzﬁi-

The data-dependent sufficient conditions on parameters y;
will be developed in order to preserve the positivity, data con-
strained, monotonicity, and convexity on the entire interval



[x;, X;11], i =0,1,2,...,n — 1. The remaining parameters o;
and f3; can be used to refine the resulting interpolating curves.
Thus the rational cubic spline provides greater flexibility to
the user in controlling the final shape of the interpolating
curves.

Theorem 1 (C” rational cubic spline interpolant). The ratio-
nal cubic spline with three parameters defined by (1) is C* €
[xy, x,,] if there exist positive parameters o;, 3; > 0, y; = 0,
andd;, i=1,2,...,n— 1, that satisfy (7).

The choice of the end point derivatives d, and d,
depended on the original data which are chosen as follows.

Choice 1 (Geometric Mean Method (GMM)). Consider
0, Ay=0o0rA,;=0
% = {A(()Hh"/h‘)A(Z’T"/hl) otherwise,
d, (12)
A,,=00rA,, ,=0

{0
- (+hyy [hy3) A (Shyy[hy) .
AL AL otherwise.

Choice 2 (Arithmetic Mean Method (AMM)). Consider

h
dy=0g+ (8- A : ) ,
0 0 ( 0 1) ( ho + hl
L (13)
dn = An—l + (An—l - An—z) (m) :
Delbourgo and Gregory [29] give more details about the
method that can be used to estimate the first derivative value.
In this paper the AMM will be used to estimate the end point
derivatives d, and d,,, respectively.
Some observation and shape control analysis of the new

C? rational cubsic spline interpolant defined by (10) are given
as follows:

(1) When o; > 0, 5; > 0, and y; = 0, the rational
interpolant in (10) reduces to the rational spline of the
form cubic/quadratic by Tian et al. [20] and we may
obtain C? rational cubic spline with two parameters,
an extension to C' rational cubic spline originally
proposed by Tian et al. [20]. Thus by rewriting C*
condition in (7), we can obtain C? rational cubic of
Tian et al. [20].

(2) When o; = f; = 1; 9, = 0, the rational cubic
interpolant in (1) is just a standard cubic Hermite

spline with C' continuity that may not be able to
completely preserve the positivity of the data [18]:

s(x)=(1-07>1-20) f, +6*(3-20) f,,,
(14)
+0(1-0)°d,-60*(1-0)d,,,,

fori=0,1,...,n— 1.
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TABLE 1: A data from work by Sarfraz et al. [6].

i 0 1 1 3 4
x; 0 2 3 9 1
fi 0.5 L5 7 9 13
h, 2 1 6 2

A, 0.5 5.5 1/3 2

d,(CY  -2.833 3.833 4.7619 1.5833 2.4167
d, (C  -2833 4.3223 4.9828 1.2146 2.4167

(3) Furthermore the rational interpolant in (1) can be
written as [18]

S(x)=(1—6)fi+9f,~+1

+ h0 (1-0) [o; (d; - A;) (1-0) + B (A; —d,,,) 0] (15)
Q; (0) '

(4) Obviously when «; — 0, 3; — 0, 0ory; — 09,
the rational interpolant in (10) converges to following
straight line:

lim  s(x)=(1-0)f; +0fi1. (16)

«;,3;—0,y;—00

Either the decrease of the parameters «; and f; or the
increase of y; will reduce the rational cubic spline to a
linear interpolant. Figure 1 shows this example. We test shape
control analysis by using the data from work by Sarfraz et al.
[6] given in Table 1.

To show the difference between C* rational cubic spline
with three parameters and C' rational cubic spline of Karim
and Kong [17-19], we choose o; = f; = 1,9, = 2
for both cases. The main difference is that to generate C'
rational interpolating curves the first derivative parameter
d;, i =0,1,2,...,n,is calculated by using Arithmetic Mean
Method (AMM); meanwhile to generate C* rational cubic
spline with three parameters, the first derivative parameter
d;, i=1,2,...,n—1,is calculated by solving (7) with suitable
choices of the end point derivatives d, and d,,.

Remark 2. IfA;—d; =0ord;,;—A; =0,thend; =d,,, = A,
In this case the rational interpolant in (10) will be linear in the
corresponding interval or region; that is,

s(x) =(1-0) f;i +0fiyy 17)

Figure 2 shows the shape control using the rational cubic
spline for the given data in Table 1.

Figure 2(f) shows the combination of Figures 2(a), 2(d),
and 2(e). Meanwhile Figure 2(g) shows the combination of
Figures 2(a), 2(b), and 2(c), respectively.

Clearly the curves approach to the straight line if o; —
0, B; — 0, or y; — oo. Furthermore decreases in the value
of f; will pull the curves upward and vice versa. This shape
control will be useful for shape preserving interpolation as
well as local control of the interpolating curves.

Meanwhile from Figure 1(d), it can be seen clearly that
C? rational cubic spline interpolation (shown as red color) is
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FIGURE 1: Interpolating curve for data in Table 1. (a) Default C' cubic spline with ; = ; = 1 and y; = 0. (b) C" rational cubic spline with
« = B, = 1and y, = 2. (c) C” rational cubic spline by using derivative calculated from tridiagonal equation (7) with o, = 8; = 1 and y; = 2.
(d) The graphs of (b) C ! rational cubic spline (blue) and (c) C? rational cubic spline (red).

smoother than C' rational cubic spline interpolation (shown
as black color). Thus the new C? rational cubic spline provides
good alternative to the existing C' and C? rational cubic
spline.

Remark 3. Since the constructed C* rational cubic spline
has three parameters, then how do we choose the parameter
values? To answer this question, the choices of the parameters
totally depend on the data that are under considerations by
the main user. The main difference between our C* rational
cubic spline and C? cubic spline interpolation is that, in order
to change the final shape of the interpolating curves, our
schemes are only required to change the parameters values
without the need to change the data points itself. But there
are no free parameters in the descriptions of C* cubic spline
interpolation.

3. Positivity Preserving Using C* Rational
Cubic Spline Interpolation

In this section, the positivity preserving by using the pro-
posed C? rational cubic spline interpolation defined by (10)
will be discussed in detail. We follow the same idea of
Karim and Kong [18] and Abbas et al. [12] such that simple

data-dependent conditions for positivity are derived on one
parameter y; while the remaining parameters «; and S; are
free to be utilized. The main objective is that, in order
to preserve the positivity of the positive data, the rational
cubic spline interpolant must be positive on the entire given
interval. The simple way to achieve it is by finding the
automated choice of the shape parameter y;. We begin by
giving the definition of strictly positive data.

Given the strictly positive set of data (x;, f;), i =
0,1,...,n, x5 < x; <-- < x,,such that

i=0,1,...,n (18)

fi >0,

Now from (10), the rational cubic spline will preserve the
positivity of the data if and only if P,(8) > 0 and Q;(6) > 0.
Since for all «;, 3; > 0 and y; > 0, the denominator Q;(0) >

0, i=0,1,...,n—1.Thus s(x) > Oifand onlyif P,(0) > 0, i =
0,1,...,n— 1. The cubic polynomial P,(09), i =0,1,...,n—1
can be written as follows [18]:

P,(§)=B6O’ +C6>+ D, +E, (19)
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FIGURE 2: Shape control of rational cubic interpolating curves with various values of shape parameters list in Table 2.

TABLE 2: Shape parameters value for Figure 2.

Figure 2 i 1 2 3
o; 0.1 0.1 0.1 0.1
Figure 2(a) B 1 1 1 1
¥ 1 1 1 1
« 1 1 1 1
Figure 2(b) B, 0.1 0.1 0.1 0.1
v 1 1 1 1
o; 1 1 1 1
Figure 2(c) B: 1 1 1 1
Vi 100 100 100 100
« 5 5 5 5
Figure 2(d) B; 5 5 5 5
Vi 100 100 100 100
a, 5 5 5 5
Figure 2(e) B; 5 5 5 5
i 1000 1000 1000 1000
o; 0.01 0.01 0.01 0.01
Figure 2(h) B: 0.01 0.01 0.01 0.01
v 1 1 1 1
o; 0.01 0.01 0.01 0.01
Figure 2(i) B 1 1 1 1
Vi 1 1 1 1
«, 1 1 1 1
Figure 2(j) Bi 0.01 0.01 0.01 0.01
v 1 1 1 1
where

B; = ayhd; + Bihd;yy + 200f, f; + i fi = 2068, fia

C =

- Yifiﬂ’
“2a;h,d; - Bihd;yy + o f; — 4o f; - 2y, f;
+ Bifiv1 + 2058 fivn + Vi fivrs

7
15
10 1
By
sl J
ol J
0 2 4 6 8 10
Xx-axis
0
Di = (Xihidi - zal,fl + zalﬁz,fl + yif’
E; = o;f;.
(20)

From Schmidt and Hess [30], with variable substitution 6 =
s/(1+5s),s >0,P(0),i=0,1,...,n— 1, can be rewritten as
follows:

P, (s) = As’ + B> + Cs + D, (21)
where
A= B fins
B = (2a;f; + B; + Vi) firr = Bihidis»
C = Qup; +o; +v,) fi — ahid;,

(22)

D =« f;.

Theorem 4. For strictly positive data defined in (18), C*
rational cubic interpolant defined over the interval [x,, x,,] is
positive if in each subinterval [x;, x;.,1, i = 0,1,...,n -1,
the involving parameters o, 3, and vy, satisfy the following
sufficient conditions:

o« B >0,

y; > Max {0,—041. [W],

|:hidi+1 ~ (205 + 1) fiy ] }
fi+1 .

Remark 5. The sufficient condition for positivity preserving
by using C? rational cubic interpolant is different from the
sufficient condition for positivity preserving by using C'
rational cubic interpolant of Karim and Kong [18]. To achieve
C? continuity, the derivative parametersd,, i = 1,2,...,n—1,
must be calculated from C? condition given in (7); meanwhile
to achieve C' continuity, the derivative parameters d,, i =
0,1,2,...,n, are estimated by using standard approximation
methods such as Arithmetic Mean Method (AMM).

(23)

Bi
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TABLE 3: A positive data from work by Hussain et al. [10]. TABLE 5: A Positive data from work by Sarfraz et al. [28].

i 0 1 2 3 i 0 1 2 3 4 5 6

X; 0.0 1.0 1.70 1.80 X; 2 3 7 8 9 13 14

fi 0.25 1.0 11.10 25 f, 10 2 3 7 2 3 10
TABLE 4: Numerical results TABLE 6: Numerical results.

; 0 1 > 3 i 0 1 2 3 4 5 6

4, (C) —7296 8796 123.429 154 570 d,(C") -9.65 -635 325 0 -395 5.65 835

N 0.75 14.429 139 A, -8 225 40 05 025 7

o 05 05 05 o 25 25 25 25 25 25

[314 05 05 05 B, 25 25 25 25 25 25

y_’ 13.84 314 0.25 ¥ 01 168 01 0.1 485 01

A ) 7296 2108 82,5421 154570 d,(C*) -9.65 -486 334 —048 —4.057 525 835

Remark 6. The sufficient condition in (23) can be rewritten
as

a;, B >0,

hd + (28 +1) f
yi:)\i+Max{0,—oci[—’ i+ QA+,

fi ] ’ (24)
‘ hid; — 205+ 1) fiy ] }
ﬁl |: fi+1 '

The following is an algorithm that can be used to generate
c? positivity-preserving curves.

A; > 0.

1

Algorithm 7 (C* positivity preserving). Consider the follow-
ing:
(1) Input the data points {x;, f;};;, dy,andd,,.

(2) Fori=0,1,...,n—1, calculate the parameter y; using
(24) with suitable choices of «; > 0, ; > 0, and A; >

0.

(3) Fori =1,2,...,n—1, calculate the value of derivative,
d;, by solving (7) by using LU decomposition and so
forth.

(4) Fori=0,1,...,n—1, construct the piecewise positive

C? rational interpolating curves defined by (10).

3.1. Numerical Demonstrations. In this section several
numerical results for positivity preserving by using C*
rational interpolating curves will be shown including
comparison with existing rational cubic spline schemes. Two
sets of positive data taken from works by Hussain et al. [10]
and Sarfraz et al. [28] were used.

Figures 3 and 4 show the positivity preserving by using C*
rational cubic spline for data in Tables 3 and 5, respectively.
Figures 3(a) and 4(a) show the default cubic Hermite spline
polynomial for data in Tables 3 and 5, respectively. Numerical
results of Figure 3(d) were obtained by using the parameters
from the data in Table 4. Meanwhile numerical results of

Figure 4(e) were generated by using the data in Table 6. It
can be seen clearly that the positivity preserving by using our
C? rational cubic spline gives more smooth results compared
with the works of Hussain et al. [10] and Abbas et al. [12].
The graphical results in Figure 3(e) were very smooth and
visually pleasing. Meanwhile for the positive data given in
Table 5, our C* rational cubic spline gives comparable results
with the works of Abbas et al. [12], Hussain et al. [10], and
Sarfraz et al. [11]. The final resulting positive curves by using
the proposed C? rational cubic spline interpolant are slightly
different between the works of Abbas et al. [12], Hussain
et al. [10], and Sarfraz et al. [11]. Finally Figure 5 shows
the examples of positive interpolating by using Fritsch and
Carlson [1] cubic spline schemes that are well documented in
Matlab as PCHIP. It can be seen clearly that shape preserving
by using PCHIP does not give smooth results and is not
visually pleasing enough. Some of the interpolating curves
tend to overshot on some interval that the interpolating
curves are tight when compared with our work in this paper.
For instance, in Figure 4(b), the interpolating curves are very
tight and not visually pleasing.

Error Analysis. In this section, the error analysis for the
function to be interpolated is f(t) € C’[tyt,] using
our C? rational cubic spline which will be discussed in
detail. Note that the constructed rational cubic spline with
three parameters is a local interpolant and without loss of
generality, we may just consider the error on the subinterval
I = [t;,t;41]. By using Peano Kernel Theorem [31] the error
of interpolation in each subinterval I; = [¢t;,t,,,] is defined as

iy
RI=F0-RO =3[ fOR [e-02]dr @9

i
where

> > ti t)
% [(t B ‘r)i] _ r(1,t) <7< (26)

s(t,t), t<T<ty,
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with where
r(t,t) = (t—T)2 +s(1,t),
s(t,t) H = \/(Pi = B) (o + pi0) — a;p;. (1)
(27)
[{aip + i+ 1)~ 2mB¢} 62 (1-0) + 76
- Q (0) The roots of s(7,t) = Oare 13 = t;;, T, = t; — 2B;h(1 -

with { = (t;,, — 7).
The absolute error in each subinterval I, = [x;, x;,,] is
given as follows:

1 tis
ro-pols 3O @) [ Re-]dn o)
In order to enable us to derive the error analysis of C* rational
cubic spline interpolation, we need to study the properties

of the kernel functions r(z,t) and s(7,t) and evaluate the
following definite integrals:

t

J'tHl R, [(t - T)i] dr = J. |r (1, x)| dt

(29)
ti+1
+ L Is (1, x)| dT.

To simplify the integrals in (29) we begin by finding the roots
ofr(t,t) =0, r(7,t) = 0, and s(t,t) = 0, respectively. It is easy
to see that the roots of r(t,t) = 0in [0,1] are 8 = 0,1 and
0" =1 - B;/p;» where p; = 2a;3; + ;. Meanwhile the roots of
r(t,t) = 0 are

oh; (6p; + (-1)*"" H)
o; + 0p;

T =x- , k=12, (30

0)/(B; + (1 — 0)p,). Thus the following three cases can be
obtained.

Case 1. For 0 < f;/p; < 1, 0 < 6 < 67, then (28) takes the
following form:

If O -P@®) < % |7 @) Jt R [(t-7?]dr
i (32)
o A0 [T
with
G; (1) = {jt —r(r,t)dt + JT4 -s(t,t)dr
. " (33)
+ J ’ s(r,t)dr}.
Hence
If O -P®|<|fP O (0 Bo1:0),  (34)



12

where

we>  pno’
¢ (o By 0) = —T + 30,0)

2(p; + B) (8067 (1-0)*)
C3(p-0)+B) QO
8p; (h}6” (1-06)%)
3(p;(1-0)+ ﬂi)z Q; (9)

168,1°6° (1 -
3(p(1-0)+ /3,-) Qz- ©)
h(1-60)6
3Q; ()

(35)

[p; — 28] .

Case 2. For 0 < fB;/p; < 1, 6" < 0 < 1, then (28) takes the
following form:

|f (&)= P, (1) llf“’ @) J R [(t-7)}]dr
(36)
P @6 @
2
with
T, t
G, (1) = «“ —r(T,t)dT+J r(t,t)dr
) ’ " (37)
+ J " s(t,t) dT} .
Hence
If O -P @ <|f¥ @) (@ Bo1:0),  (38)
where

2h}6° (0p; - H)3
3
2816’ [G; 0]
3Q; (6)
2(p+ B) K (1-0)62 G, 6)]
3Q;(0)
-0)6? G ()]
Q 6)

¢ (e, By, 0) =

(39)

2

with G,(6) = (1 - 6) + 6(6p, — H)/(a;, + p6).

Journal of Applied Mathematics

Case 3. For B;/p; > 1, 0 < 6 < 1, then (28) takes the
following form:

|f ()= P R [(t-1)?]dr

1 iy
Aol

||f () ||{Jtr(‘rtd1+r+S(T,t)d‘r} (40)

= ||f(3) (T)“ G (i By 0)
where

KO (p+B)h (1-6)6

G5 (o By 0) =

3 3Q; (0)
(41)
Bl (-0)0*  Bhe’
Q; () 3Q,(0)

Theorem 8. The error for the interpolating rational cubic
spline interpolant defined by (1) in each subinterval I, =
[t;,t;,,), when f(t) € C[ty,t,), is given by

ool [ x

% “f(3) (T)" “;i r(r,t)dr + j:m s(t,t) dr} (42)

= 'lf(s) (T)" G>

|f )~ Pi(0)] < -2 dr

with

¢ = max{ («;, B,y 0)
Cl ((xi, ﬁi, Vi 9) s
& (o, Bynb), 0 <O<1
C3 ((xi:ﬁi>)/i;6), 0<fH<1.
Remark 9. When &; = 1, §; = 1,and y; = 0, the interpolation

function defined by (1) is reduced to the standard cubic
Hermite interpolation with

0<0<0O"
(43)

¢ (e By 0) =

46* (1 -6)° 1

Rt B l"e: > 0_9__,

(1 (0‘1 B V ) (3 (3 _ 20)2) < < 2
_40°(1-0° 1 (44)

(2 (“i)ﬁi’Yiae) = m, E <0<,

(5 (s Biny0) =0, 0<6<1,

and ¢ = 1/96. This is standard error for cubic Hermite
polynomial spline.
4. Discussions

From all numerical results presented in Section 3.1, it can
be seen clearly that the proposed C* rational cubic spline
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works very well and it is comparable with existing schemes
such as Hussain et al. [10], Sarfraz et al. [11], and Abbas
et al. [12] for positivity preserving. Furthermore similar to
the construction of rational cubic of Abbas et al. [8] our C?
rational cubic spline interpolation also has three parameters
where two are free parameters. But based on our numerical
experiments, it was noticed that schemes of Abbas et al.
[12] may not be able to produce completely C* positive
interpolating curves. Meanwhile the sufficient condition for
positivity, monotonicity, and convexity preserving and data
constrained are derived on the remaining parameter. One of
the advantages by using our C* rational cubic spline is that
when y; = 0 we may obtain the new variant of C* rational
cubic spline of Hussain and Ali [32], M. Z. Hussain and M.
Hussain [9], and Tian et al. [20] for positivity- and convexity-
preserving interpolation. Thus our C* rational cubic spline
has a larger spline class compared to the works by Abbas et
al. [12]. Furthermore the error analysis when the function to
be interpolated is f(t) € C3[t0, t,] also has been derived in
detail.

5. Conclusions

In this paper the new C” rational cubic spline with three
parameters has been introduced. It is an extension to the work
of Karim and Pang [16]. To achieve C* continuity at the join
knots x;, i = 1,2,...,n — 1, the first derivative value, d;, is
calculated by solving systems of linear equation (tridiagonal)
that is strictly positive and the solution is unique. Shape
control of the new C* rational cubic interpolation with
numerical examples also was presented. Finally C* rational
cubic spline has been used for positivity preserving including
a comparison with existing schemes. From the numerical
results clearly our C* rational cubic spline gives comparable
results with existing schemes. Finally work in parametric
shape preserving is underway by the authors.
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