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Through an Alexandrov-Fenchel inequality, we establish the general Brunn-Minkowski inequality. Then we obtain the uniqueness
of solutions to a nonlinear elliptic Hessian equation on S𝑛.

1. Introduction

According to a general Brunn-Minkowski inequality, we
obtain a proof of the uniqueness of solutions to the following
fully nonlinear elliptic Hessian equation:

𝜎𝑘 (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) = 𝑓𝑢𝑝−1 on S
𝑛, (1)

where 𝑢 is the support function of convex bodies, 𝑢𝑖𝑗 are the
second-order covariant derivations of 𝑢 with respect to any
orthonormal frame {𝑒1, 𝑒2, . . . , 𝑒𝑛} on S𝑛, 𝛿𝑖𝑗 is the standard
Kronecker symbol, S𝑛 is the unit sphere of 𝑛-dimension, 𝑓 is
a positive function defined onS𝑛, 𝑘 ∈ {1, 2, . . . , 𝑛}, 𝑝 > 1, and𝜎𝑘 is the 𝑘th elementary symmetric function defined as follows:
for 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛) ∈ R𝑛,

𝜎𝑘 (𝜆) = ∑
1⩽𝑖1<𝑖2<⋅⋅⋅<𝑖𝑘⩽𝑛

𝜆𝑖1𝜆𝑖2 ⋅ ⋅ ⋅ 𝜆𝑖𝑘 . (2)

The definition can be extended to any symmetric matrix𝑊 ∈ R𝑛×𝑛 by 𝜎𝑘(𝑊) = 𝜎𝑘(𝜆(𝑊)), where 𝜆(𝑊) = (𝜆1(𝑊),𝜆2(𝑊), . . . , 𝜆𝑛(𝑊)) is the eigenvalue vector of 𝑊.
Equation (1) arrives from the geometry of convex bodies.

A compact convex subset of Euclidean (𝑛+1)-spaceR𝑛+1 with
nonempty interiors is called a convex body. An important
concept related to a convex body 𝑄 is its support function.

Definition 1. Let 𝑀 (the boundary of a convex body 𝑄) be a
smooth, closed, uniformly convex hypersurface enclosing the

origin inR𝑛+1. Assume that𝑀 is parameterized by its inverse
Gauss map 𝑋 : S𝑛 → 𝑀 ⊂ R𝑛+1; the support function 𝑢 of 𝑀
(or 𝑄) is defined by

𝑢 (𝑥) = ⟨𝑥,𝑋 (𝑥)⟩ , ∀𝑥 ∈ S
𝑛, (3)

where ⟨⋅, ⋅⟩ denotes the standard inner product in R𝑛+1.

𝑢 is convex after being extended as a function of homoge-
neous degree 1 in R𝑛+1. Conversely, any continuous convex
function 𝑢 of homogeneous degree 1 determines a convex
body as follows:

𝑄 = {𝑦 ∈ R
𝑛+1 : 𝑦 ⋅ 𝑥 ⩽ 𝑢 (𝑥) , ∀𝑥 ∈ S

𝑛} . (4)

From some basic concepts to support function, Minkowski
sum [seeDefinition 4], andmixed volumes [seeDefinition 5],
Minkowski developed a set of theories related to convex
bodies. If 𝑘 = 𝑛 and 𝑝 = 1, (1) is the Monge-Ampère equation
corresponding to the classical Minkowski problem

det (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) = 𝑓 on S
𝑛, (5)

which has been solved by Nirenberg [1], Pogorelov [2, 3],
Cheng and Yau [4], and many others. When 𝑝 = 1, (1) is the
classical Christoffel-Minkowski problem:

𝜎𝑘 (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) = 𝑓 on S
𝑛. (6)
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A necessary condition [3] for (6) to have a solution is

∫
S𝑛

𝑥𝑖𝑓 (𝑥) 𝑑𝑠 = 0, ∀𝑖 = 1, 2, . . . , 𝑛 + 1, (7)

where 𝑑𝑠 is the standard area form on S𝑛. Guan et al. [5]
obtained that (7) is sufficient for (6) to have an admissible
solution [see Definition 6].

Firey [6] generalized the Minkowski sum to 𝑝-sum [see
Definition 4] from 𝑝 = 1 to 𝑝 ⩾ 1 in 1962. Later, Lutwak
[7] extended the classical surface area measure to the 𝑝-
sum cases. Also in [7], Lutwak first introduced the general
Minkowski problem, which is called 𝐿𝑝-Minkowski problem
thereafter. In the smooth category, 𝐿𝑝-Minkowski problem
is equivalent to considering the following Monge-Ampère
equation:

det (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) = 𝑓𝑢𝑝−1 on S
𝑛. (8)

The uniqueness of 𝐿𝑝-Minkowski problem for 𝑝 > 1 and 𝑝 ̸=𝑛 + 1 (the uniqueness holds up to a dilation if 𝑝 = 𝑛 + 1)
has been solved in [7]. However, the uniqueness for 𝑝 < 1 is
difficult and still open. In [8], Jian et al. obtained that, for any−𝑛 − 1 < 𝑝 < 0, there exists a positive function 𝑓 ∈ 𝐶∞(S𝑛)
to guarantee that (8) has two different solutions, whichmeans
that we need more conditions to consider the uniqueness.

When considering cases 1 ⩽ 𝑘 < 𝑛, attention is paid to the
generalized Christoffel-Minkowski problem. In the smooth
category, we need to study the 𝑘-Hessian equation (1).

For (1), Hu et al. [9] got the existence and uniqueness
of solutions to (1) when 1 ⩽ 𝑘 < 𝑛 and 𝑝 > 𝑘 + 1 under
appropriate conditions. However, the uniqueness of (1) when𝑝 < 1 has not been solved well. In this paper, we study the
uniqueness of (1) for 𝑝 > 1.

Our main result is the following.

Theorem 2. Suppose 𝑢 is a positive admissible solution of

𝜎𝑘 (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) = 𝑓𝑢𝑝0 𝑜𝑛 S
𝑛, (9)

where 1 ⩽ 𝑘 < 𝑛, 𝑘 ∈ Z, 𝑝0 ∈ R+ \ {𝑘}, and 𝑓 is a positive
function defined on the unit sphere S𝑛 and then the uniqueness
holds. If 𝑝0 = 𝑘, the uniqueness holds up to a dilation, which
means that if 𝑢 solves (9), then {𝑎𝑢 : ∀𝑎 ∈ R+} are the whole
solutions of (9).

Remark 3. Here, we rewrite (1) by (9), where 𝑝0 = 𝑝 − 1.
The organization of this paper is as follows. In Section 2,

we show some basic concepts and lemmas which have been
obtained by Guan et al. in [10]. In Section 3, we prove two
useful propositions according to the methods in [11]. In the
last section, we prove the main theorem.

2. Preliminaries

Definition 4. Given two convex bodies 𝑄1 and 𝑄2 in R𝑛+1

with respective support functions 𝑢1, 𝑢2, and 𝜆, 𝜇 ⩾ 0 (𝜆+𝜇 >0), the Minkowski sum 𝜆𝑄1 + 𝜇𝑄2 ⊂ R𝑛+1 is defined by the
convex body whose support function is 𝜆𝑢1 + 𝜇𝑢2.

For 𝑝 ⩾ 1, let𝑄1 and𝑄2 be two convex bodies containing
the origin in R𝑛+1 in their interiors, and 𝜆, 𝜇 ⩾ 0 (𝜆 + 𝜇 > 0).
The convex body 𝜆 ∘ 𝑄1+𝑝𝜇 ∘ 𝑄2, whose support function is
given by (𝜆𝑢𝑝1 + 𝜇𝑢𝑝2 )1/𝑝, is called Firey’s 𝑝-sum of 𝑄1 and 𝑄2,
where “+𝑝” means the 𝑝-summation and “∘” means Firey’s
multiplication.

Definition 5. Let𝑄1, 𝑄2, . . . , 𝑄𝑟 be convex bodies inR𝑛+1 and
the volume of their Minkowski sum

𝑄 = 𝜆1𝑄1 + 𝜆2𝑄2 + ⋅ ⋅ ⋅ + 𝜆𝑟𝑄𝑟, 𝜆𝑖 ⩾ 0, (10)

is an (𝑛 + 1)th degree homogeneous polynomial of the family𝜆1, 𝜆2, . . . , 𝜆𝑟. Specially, the volume of 𝑄 is

Vol (𝑄) = Vol (𝜆1𝑄1 + 𝜆2𝑄2 + ⋅ ⋅ ⋅ + 𝜆𝑟𝑄𝑟)
= 𝑟∑
𝑖1 ,𝑖2,...,𝑖𝑛+1=1

𝜆𝑖1𝜆𝑖2 ⋅ ⋅ ⋅ 𝜆𝑖𝑛+1𝑉(𝑄𝑖1 , 𝑄𝑖2 , . . . , 𝑄𝑖𝑛+1) , (11)

where the functions 𝑉 are symmetric. Then 𝑉(𝑄1, 𝑄2, . . . ,𝑄𝑛+1) is called the Minkowski mixed volume of 𝑄1, 𝑄2, . . . ,𝑄𝑛+1.
Definition 6. For 𝑘 ∈ {1, 2, . . . , 𝑛}, let Γ𝑘 be the convex cone in
R𝑛 which is determined by

Γ𝑘 = {𝜆 ∈ R
𝑛 : 𝜎1 (𝜆) > 0, 𝜎2 (𝜆) > 0, . . . , 𝜎𝑘 (𝜆) > 0} . (12)

A function 𝑢 ∈ 𝐶2(S𝑛) is called 𝑘-convex if
𝑊(𝑥) = {𝑢𝑖𝑗 (𝑥) + 𝑢 (𝑥) 𝛿𝑖𝑗} ∈ Γ𝑘, ∀𝑥 ∈ S

𝑛, (13)

and 𝑢 is called an admissible solution to (1) if 𝑢 is 𝑘-convex
and satisfies (1).

Definition 7. Let 𝐴1, 𝐴2, . . . , 𝐴𝑚 be symmetric real 𝑘 × 𝑘
matrices, 𝜆1, 𝜆2, . . . , 𝜆𝑚 ∈ R; the determinant of 𝜆1𝐴1 +⋅ ⋅ ⋅ + 𝜆𝑚𝐴𝑚 is a homogeneous polynomial of degree 𝑘 in𝜆1, 𝜆2, . . . , 𝜆𝑚. Namely,

det (𝜆1𝐴1 + ⋅ ⋅ ⋅ + 𝜆𝑚𝐴𝑚)
= 𝑚∑
𝑖1 ,...,𝑖𝑘=1

𝜆𝑖1 ⋅ ⋅ ⋅ 𝜆𝑖𝑘𝐷𝑘 (𝐴 𝑖1 , . . . , 𝐴 𝑖𝑘) . (14)

In fact, the coefficient 𝜆𝑖1 ⋅ ⋅ ⋅ 𝜆𝑖𝑘 depends only on𝐴 𝑖1 , . . . , 𝐴 𝑖𝑘 ;
then they are uniquely determined. 𝐷𝑘(𝐴1, . . . , 𝐴𝑘) is called
themixed discriminant of 𝐴1, . . . , 𝐴𝑘.

For later applications, we collect some results here which
have been proved in [10].

Lemma 8. Let 𝑢1, 𝑢2, . . . , 𝑢𝑛+1 be the support function of con-
vex bodies 𝑄1, 𝑄2, . . . , 𝑄𝑛+1, respectively. Denoting Minkowski
mixed volume 𝑉(𝑄1, 𝑄2, . . . , 𝑄𝑛+1) by 𝑉(𝑢1, 𝑢2, . . . , 𝑢𝑛+1) and

𝑊𝑚 = {(𝑢𝑚)𝑖𝑗 + 𝑢𝑚𝛿𝑖𝑗} , 𝑚 = 1, 2, . . . , 𝑛 + 1, (15)
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then
𝑉 (𝑢1, 𝑢2, . . . , 𝑢𝑛+1)

= ∫
S𝑛

𝑢1𝐷𝑛 (𝑊2,𝑊3, . . . ,𝑊𝑛+1) 𝑑𝑠, (16)

where 𝐷𝑛(𝑊2,𝑊3, . . . ,𝑊𝑛+1) is the mixed discriminant [see
Definition 7] of 𝑊2,𝑊3, . . . ,𝑊𝑛+1.
Remark 9. For all 1 ⩽ 𝑘 ⩽ 𝑛, setting 𝑢𝑘+2 = ⋅ ⋅ ⋅ = 𝑢𝑛+1 = 1,
then

𝑉 (𝑢1, . . . , 𝑢𝑘+1, 1, . . . , 1) fl 𝑉𝑘+1 (𝑢1, 𝑢2, . . . , 𝑢𝑘+1)
= ∫

S𝑛
𝑢1𝐷𝑘 (𝑊2,𝑊3, . . . ,𝑊𝑘+1) 𝑑𝑠, (17)

where 𝐷𝑘(𝑊2,𝑊3, . . . ,𝑊𝑘+1) is the mixed discriminant of𝑊2,𝑊3, . . . ,𝑊𝑘+1. Furthermore, if 𝑢1 = 𝑢2 = ⋅ ⋅ ⋅ =𝑢𝑛+1 = 𝑢, denote 𝑉(𝑢1, 𝑢2, . . . , 𝑢𝑛+1) fl 𝑉(𝑢) and 𝑉𝑘+1(𝑢1,𝑢2, . . . , 𝑢𝑘+1) fl 𝑉𝑘+1(𝑢); then
𝑉 (𝑢) = ∫

S𝑛
𝑢 det (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) 𝑑𝑠,

𝑉𝑘+1 (𝑢) = ∫
S𝑛

𝑢𝜎𝑘 (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) 𝑑𝑠.
(18)

Lemma 10. 𝑉 is a symmetricmultilinear form on (𝐶2(S𝑛))𝑛+1.
Lemma 11. For any function 𝑢 ∈ 𝐶2(S𝑛), 𝑊 = {𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗},1 ⩽ 𝑘 < 𝑛, we have the Minkowski type integral formula,

∫
S𝑛

𝑢𝜎𝑘 (𝑊) 𝑑𝑠 = ∫
S𝑛

𝜎𝑘+1 (𝑊) 𝑑𝑠, (19)

where 𝑑𝑠 is the standard area element on S𝑛.

The following is a form of Alexandrov-Fenchel inequality
for positive 𝑘-convex functions which comes from [10].

Lemma 12 (Alexandrov-Fenchel inequality). If 𝑢1, 𝑢2, . . . , 𝑢𝑘
are 𝑘-convex, 𝑢1 is positive, and there exists 𝑙 ∈ {2, 3, . . . , 𝑘}
such that 𝑢𝑙 ⩾ 0 on S𝑛, then, for any V ∈ 𝐶2(S𝑛),

𝑉2𝑘+1 (V, 𝑢1, 𝑢2, . . . , 𝑢𝑘)
⩾ 𝑉𝑘+1 (𝑢1, 𝑢1, 𝑢2, . . . , 𝑢𝑘) 𝑉𝑘+1 (V, V, 𝑢2, . . . , 𝑢𝑘) ,

(20)

with equality if and only if V = 𝑎𝑢1 + ∑𝑛+1𝑖=1 𝑎𝑖𝑥𝑖 for some
constants 𝑎, 𝑎1, . . . , 𝑎𝑛+1.
3. Two Important Propositions

Now we prove two important propositions. The methods we
use are from [11].

Proposition 13. Suppose 𝑢0, 𝑢1 > 0 are 𝑘-convex; then
𝑉1/(𝑘+1)𝑘+1 ((1 − 𝑡) 𝑢0 + 𝑡𝑢1)

⩾ (1 − 𝑡) 𝑉1/(𝑘+1)𝑘+1 (𝑢0) + 𝑡𝑉1/(𝑘+1)𝑘+1 (𝑢1) ,
∀𝑡 ∈ [0, 1] ,

(21)

with equality if and only if 𝑢0 = 𝑎𝑢1 + ∑𝑛+1𝑖=1 𝑎𝑖𝑥𝑖 for some
constants 𝑎, 𝑎1, . . . , 𝑎𝑛+1.
Proof. We only need to prove that

𝐹 (𝑡) = 𝑉1/(𝑘+1)𝑘+1 ((1 − 𝑡) 𝑢0 + 𝑡𝑢1) (22)

is concave on [0, 1]. Setting 𝑢𝑡 = (1 − 𝑡)𝑢0 + 𝑡𝑢1, 𝑡 ∈ [0, 1], we
have

𝐹 (𝑡) = 𝑉1/(𝑘+1)𝑘+1 ( 𝑘+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢𝑡, 𝑢𝑡, . . . , 𝑢𝑡) . (23)

By the symmetric multilinear property of𝑉, it is obvious that
𝐹 (𝑡) = 𝑉1/(𝑘+1)−1𝑘+1 ( 𝑘+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢𝑡, . . . , 𝑢𝑡)𝑉𝑘+1 (−𝑢0

+ 𝑢1, 𝑘⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢𝑡, . . . , 𝑢𝑡) ,
(24)

𝐹 (𝑡) = 𝑘𝑉1/(𝑘+1)−2𝑘+1 ( 𝑘+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢𝑡, . . . , 𝑢𝑡)

⋅ [𝑉𝑘+1 ( 𝑘+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢𝑡, . . . , 𝑢𝑡)

⋅ 𝑉𝑘+1 (−𝑢0 + 𝑢1, −𝑢0 + 𝑢1, 𝑘−1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢𝑡, . . . , 𝑢𝑡)

− 𝑉2𝑘+1 (−𝑢0 + 𝑢1, 𝑘⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢𝑡, . . . , 𝑢𝑡)] ⩽ 0,

(25)

where the last inequality uses (20); thus 𝐹 is a concave func-
tion on [0, 1]. The equality condition is checked easily.

Proposition 14 (general Brunn-Minkowski inequality). Sup-
posing 𝑢0, 𝑢1 > 0 are 𝑘-convex, then

∫
S𝑛

𝑢1𝜎𝑘 ((𝑢0)𝑖𝑗 + 𝑢0𝛿𝑖𝑗) 𝑑𝑠
⩾ 𝑉1/(𝑘+1)𝑘+1 (𝑢1) 𝑉1−1/(𝑘+1)𝑘+1 (𝑢0) ,

(26)

with equality if and only if 𝑢0 = 𝑎𝑢1 + ∑𝑛+1𝑖=1 𝑎𝑖𝑥𝑖 for some
constants 𝑎, 𝑎1, . . . , 𝑎𝑛+1.
Proof. Setting

𝐹 (𝑡) = 𝑉1/(𝑘+1)𝑘+1 ((1 − 𝑡) 𝑢0 + 𝑡𝑢1)
− (1 − 𝑡) 𝑉1/(𝑘+1)𝑘+1 (𝑢0) − 𝑡𝑉1/(𝑘+1)𝑘+1 (𝑢1) ,

(27)

then 𝐹(0) = 𝐹(1) = 0. By (21), 𝐹(𝑡) ⩾ 0; thus 𝐹(0) ⩾ 0;
namely,

𝑉1/(𝑘+1)−1𝑘+1 (𝑢0) 𝑉𝑘+1 (−𝑢0 + 𝑢1, 𝑘⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢0, . . . , 𝑢0)
+ 𝑉1/(𝑘+1)𝑘+1 (𝑢0) − 𝑉1/(𝑘+1)𝑘+1 (𝑢1) ⩾ 0.

(28)
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Then

𝑉1/(𝑘+1)−1𝑘+1 (𝑢0) ∫
S𝑛

(−𝑢0 + 𝑢1) 𝜎𝑘 ((𝑢0)𝑖𝑗 + 𝑢0𝛿𝑖𝑗) 𝑑𝑠
+ 𝑉1/(𝑘+1)𝑘+1 (𝑢0) ⩾ 𝑉1/(𝑘+1)𝑘+1 (𝑢1) .

(29)

By (19),

𝑉1/(𝑘+1)−1𝑘+1 (𝑢0) ∫
S𝑛

𝑢1𝜎𝑘 ((𝑢0)𝑖𝑗 + 𝑢0𝛿𝑖𝑗) 𝑑𝑠
⩾ 𝑉1/(𝑘+1)𝑘+1 (𝑢1) ,

(30)

and then

∫
S𝑛

𝑢1𝜎𝑘 ((𝑢0)𝑖𝑗 + 𝑢0𝛿𝑖𝑗) 𝑑𝑠
⩾ 𝑉1/(𝑘+1)𝑘+1 (𝑢1) 𝑉1−1/(𝑘+1)𝑘+1 (𝑢0) .

(31)

4. Proof of Theorem 2

Nowwe proveTheorem 2.Themainmethods are from [7, 12].

Proof. Assuming that (9) has two solutions 𝑢 and V, then we
consider the equation in the following three cases.

Case 1 (𝑝0 > 𝑘). Supposing 𝑥0 is the maximum value point of𝐺 = 𝑢/V, then at 𝑥0, we have
0 = ∇ ln𝐺 = ∇𝑢

𝑢 − ∇V
V

,

0 ⩾ ∇2 ln𝐺 = (∇2𝑢
𝑢 − (∇𝑢)2

𝑢2 ) − (∇2V
V

− (∇V)2
V2

)

= ∇2𝑢
𝑢 − ∇2V

V
;

(32)

that is,

∇2𝑢
𝑢 ⩽ ∇2V

V
. (33)

Hence

𝑓𝑢𝑝0 (𝑥0) = 𝑢𝑘 (𝑥0) 𝜎𝑘 (𝑢𝑖𝑗
𝑢 + 𝛿𝑖𝑗) (𝑥0)

⩽ 𝑢𝑘 (𝑥0) 𝜎𝑘 (V𝑖𝑗V + 𝛿𝑖𝑗) (𝑥0)

= 𝑢𝑘 (𝑥0)
V𝑘 (𝑥0) 𝑓V

𝑝0 (𝑥0) ;
(34)

therefore

𝑢𝑝0−𝑘 (𝑥0) ⩽ V𝑝0−𝑘 (𝑥0) ⇒ 𝐺 (𝑥0) = 𝑢 (𝑥0)
V (𝑥0) ⩽ 1; (35)

then
𝑢
V

⩽ 1. (36)

Similarly, we have V/𝑢 ⩽ 1. Thus 𝑢 ≡ V.

Case 2 (0 < 𝑝0 < 𝑘). We have

𝑢−𝑝0𝜎𝑘 (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) = V−𝑝0𝜎𝑘 (V𝑖𝑗 + V𝛿𝑖𝑗) ; (37)

then

𝑉𝑘+1 (𝑢) = ∫
S𝑛

𝑢𝜎𝑘 (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) 𝑑𝑠

= ∫
S𝑛

(𝑢
V
)𝑝0+1 V𝜎𝑘 (V𝑖𝑗 + V𝛿𝑖𝑗) 𝑑𝑠

⩾ [∫
S𝑛

𝑢𝜎𝑘 (V𝑖𝑗 + V𝛿𝑖𝑗) 𝑑𝑠]𝑝0+1

⋅ [∫
S𝑛
V𝜎𝑘 (V𝑖𝑗 + V𝛿𝑖𝑗) 𝑑𝑠]−𝑝0 ⩾ 𝑉(𝑝0+1)/(𝑘+1)

𝑘+1 (𝑢)
⋅ 𝑉(𝑘𝑝0+𝑘)/(𝑘+1)
𝑘+1 (V) 𝑉−𝑝0𝑘+1 (V) = 𝑉(𝑝0+1)/(𝑘+1)

𝑘+1 (𝑢)
⋅ 𝑉1−(𝑝0+1)/(𝑘+1)
𝑘+1 (V) ,

(38)

where we have used Hölder inequality in the first inequality
and used (26) in the second one. Hence 𝑉𝑘+1(𝑢) = 𝑉𝑘+1(V),
which forces both the equalities to hold. By the equality
condition, there exists a constant 𝑎 ∈ R such that V = 𝑎𝑢.
By (9), we know 𝑎 = 1. Therefore, 𝑢 ≡ V.
Case 3 (𝑝0 = 𝑘). According to Case 2, when 𝑝0 = 𝑘, we have

𝑉𝑘+1 (𝑢) = ∫
S𝑛

𝑢𝜎𝑘 (𝑢𝑖𝑗 + 𝑢𝛿𝑖𝑗) 𝑑𝑠 = ∫
S𝑛

(𝑢
V
)𝑘+1

⋅ V𝜎𝑘 (V𝑖𝑗 + V𝛿𝑖𝑗) 𝑑𝑠 ⩾ [∫
S𝑛

𝑢𝜎𝑘 (V𝑖𝑗 + V𝛿𝑖𝑗) 𝑑𝑠]𝑘+1

⋅ [∫
S𝑛
V𝜎𝑘 (V𝑖𝑗 + V𝛿𝑖𝑗) 𝑑𝑠]−𝑘 ⩾ 𝑉𝑘+1 (𝑢) 𝑉𝑘𝑘+1 (V)

⋅ 𝑉−𝑘𝑘+1 (V) = 𝑉𝑘+1 (𝑢) ;

(39)

then all the equalities hold.Thus there exists 𝑎 ∈ R, such that
V = 𝑎𝑢. Therefore {𝑎𝑢 : ∀𝑎 ∈ R+} are the whole solutions of
(9).

Now we complete the proof of Theorem 2.

Competing Interests

The author declares no competing interests.

References

[1] L. Nirenberg, “The Weyl and Minkowski problems in differen-
tial geometry in the large,”Communications on Pure andApplied
Mathematics, vol. 6, no. 3, pp. 337–394, 1953.



Journal of Applied Mathematics 5

[2] A. V. Pogorelov, “On existence of a convex surface with a given
sum principal radii of curvature,” Uspekhi Matematicheskikh
Nauk, vol. 8, no. 3, pp. 127–130, 1953 (Russian).

[3] A. V. Pogorelov, The Multidimensional Minkowski Problem,
Winston, Washington, DC, USA, 1978.

[4] S. Y. Cheng and S. T. Yau, “On the regularity of the solution
of the n-dimensionalMinkowski problem,”Communications on
Pure and Applied Mathematics, vol. 29, no. 5, pp. 495–516, 1976.

[5] P. Guan, X.-N. Ma, and F. Zhou, “The Christofel-Minkowski
problem. III. Existence and convexity of admissible solutions,”
Communications on Pure and Applied Mathematics, vol. 59, no.
9, pp. 1352–1376, 2006.

[6] W. J. Firey, “𝑝-means of convex bodies,” Mathematica Scandi-
navica, vol. 10, pp. 17–24, 1962.

[7] E. Lutwak, “The Brunn-Minkowski-Firey theory I: mixed
volumes and the Minkowski problem,” Journal of Differential
Geometry, vol. 38, no. 1, pp. 131–150, 1993.

[8] H. Jian, J. Lu, and X.-J. Wang, “Nonuniqueness of solutions to
the L𝑝-Minkowski problem,”Advances inMathematics, vol. 281,
pp. 845–856, 2015.

[9] C. Q. Hu, X.-N. Ma, and C. Shen, “On the Christoffel-
Minkowski problem of Firey’s p-sum,” Calculus of Variations
and Partial Differential Equations, vol. 21, no. 2, pp. 137–155,
2004.

[10] P. F. Guan, X.-N. Ma, N. Trudinger, and X. Zhu, “A form of
Alexandrov-Fenchel inequality,” Pure and Applied Mathematics
Quarterly, vol. 6, no. 4, pp. 999–1012, 2010.

[11] R. Schneider, Convex Bodies: the Brunn-Minkowski Theory,
Cambridge University Press, Cambridge, UK, 2013.

[12] K.-S. Chou and X.-J. Wang, “The L𝑝-Minkowski problem and
the Minkowski problem in centroaffine geometry,” Advances in
Mathematics, vol. 205, no. 1, pp. 33–83, 2006.


