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We obtain characterizations of compactness for resolvent families of operators and as applications we study the existence of mild
solutions to nonlocal Cauchy problems for fractional derivatives in Banach spaces. We discuss here simultaneously the Caputo and
Riemann-Liouville fractional derivatives in the cases 0 < 𝛼 < 1 and 1 < 𝛼 < 2.

1. Introduction

The nonlocal initial conditions were introduced to extend
the classical theory of initial value problems. Nonlocal condi-
tions describe more appropriately some natural phenomena
because they consider additional information in the initial
conditions.

The existence of mild solutions to semilinear Cauchy
problems with nonlocal conditions has been studied by
several authors in the last two decades. See, for instance, [1–4]
and the references cited therein.

On the other hand, many authors have studied recently
the existence of mild solutions to abstract fractional differen-
tial equations with nonlocal conditions by using the theory
of resolvent families of operators as well as some fixed point
results. See [5–18] and the references therein for more details.

Let𝐴 be a closed and linear operator defined on a Banach
space 𝑋, 𝑢

0
, 𝑢
1
∈ 𝑋, and 𝑇 > 0 and suppose that 𝑓, 𝑝,

and 𝑞 are suitable continuous functions. In what follows, we
will denote by𝐷𝛼

𝑡
and𝐷𝛼 the Caputo and Riemann-Liouville

fractional derivatives, respectively. Now, for 𝑡 ∈ [0, 𝑇],
we consider the following nonlinear fractional differential
equations with nonlocal conditions

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑢 (0) = 𝑝 (𝑢) + 𝑢
0
,

(1)

𝐷
𝛼
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) ,

(𝑔
1−𝛼

∗ 𝑢) (0) = 𝑝 (𝑢) + 𝑢
0
,

(2)

in case 0 < 𝛼 < 1; and
𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑢 (0) = 𝑝 (𝑢) + 𝑢
0
,

𝑢

(0) = 𝑞 (𝑢) + 𝑢

1
,

(3)

𝐷
𝛼
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) ,

(𝑔
2−𝛼

∗ 𝑢) (0) = 𝑝 (𝑢) + 𝑢0,

(𝑔
2−𝛼

∗ 𝑢)


(0) = 𝑞 (𝑢) + 𝑢
1
,

(4)

in case 1 < 𝛼 < 2.
By using the Laplace transform, it is easy to see that the

mild solutions to problems (1)–(4) are, respectively, given by

𝑢 (𝑡) = 𝑆𝛼,1 (𝑡) (𝑢0 + 𝑝 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(5)

𝑢 (𝑡) = 𝑆𝛼,𝛼 (𝑡) (𝑢0 + (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(6)
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in case 0 < 𝛼 < 1; and

𝑢 (𝑡) = 𝑆
𝛼,1
(𝑡) (𝑢
0
+ 𝑝 (𝑢)) + 𝑆

𝛼,2
(𝑡) (𝑢
1
+ 𝑞 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑢 (𝑡) = 𝑆𝛼,𝛼−1 (𝑡) (𝑢0 + 𝑝 (𝑢)) + 𝑆𝛼,𝛼 (𝑡) (𝑢1 + 𝑞 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(7)

in case 1 < 𝛼 < 2. Here, for 𝛼, 𝛽 > 0, {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

is
the resolvent family generated by 𝐴 (see definition below,
Section 2).

The existence of mild solutions to problems (1)–(4) has
been studied by many authors in the last years. For example,
in case 0 < 𝛼 < 1, we refer the reader to [8, 9, 17, 18] (for the
Caputo fractional derivative) and to [10] (for the Riemann-
Liouville fractional derivative), that is, problems (1) and (2),
respectively. On the other hand, in case 1 < 𝛼 < 2, the
existence of mild solutions to the Caputo fractional Cauchy
problems with nonlocal conditions (3) has been considered
in [12, 19] and the references therein, and, to the best of our
knowledge, nonlocal Riemann-Liouville fractional Cauchy
problem (4) has not been addressed in the existing literature.

A common assumption in many of the above-mentioned
papers to obtain the existence of mild solutions to problems
(1)–(4) is that 𝐴 generates a compact analytic semigroup
{𝑇(𝑡)}

𝑡≥0
, or 𝐴 generates a compact fractional resolvent

family {𝑆
𝛼,1
(𝑡)}
𝑡≥0

(see the definition below) because the
compactness of {𝑇(𝑡)}

𝑡≥0
(or {𝑆

𝛼,1
(𝑡)}
𝑡≥0

) allows applying, for
example, the Krasnoselskii fixed point theorem.

According to the variation of constants formulas (5)–(7),
we observe that if we have compactness criteria of 𝑆

𝛼,𝛽
(𝑡)

(for suitable 𝛼 and 𝛽), we will be able to apply some fixed
point techniques to obtain the existence of mild solutions to
problems (1)–(4). For example, to prove the existence of mild
solutions to problem (3), the authors in [12, Theorem 1.2]
assume that the operators 𝑆

𝛼,1
(𝑡), 𝑆
𝛼,2
(𝑡), and 𝑆

𝛼,𝛼
(𝑡) generated

by 𝐴 are compact for all 𝑡 > 0. However, there are not
completely clear conditions on 𝐴 implying the compactness
of 𝑆
𝛼,1
(𝑡), 𝑆
𝛼,2
(𝑡), and 𝑆

𝛼,𝛼
(𝑡) for all 𝑡 > 0, because there are no

compactness criteria for 𝑆
𝛼,𝛽
(𝑡), when 𝛼, 𝛽 > 0. Therefore, we

notice that the compactness of 𝑆
𝛼,𝛽
(𝑡) gives a powerful tool to

obtain existence of mild solutions to problems (1)–(4).
The compactness of 𝑆

𝛼,𝛽
(𝑡) is well known in some special

cases. For example, if 𝛼 = 𝛽 = 1, then 𝑆
1,1
(𝑡) is compact for all

𝑡 > 0 if and only if 𝑆
1,1
(𝑡) is norm continuos and (𝜆 − 𝐴)−1 is

compact for all 𝜆 ∈ 𝜌(𝐴), because {𝑆
1,1
(𝑡)}
𝑡≥0

corresponds to a
𝐶
0
-semigroup. See [20,Theorem 3.3, Chapter 2]. If𝛼 = 𝛽 = 2,

then 𝑆
2,2
(𝑡) is compact for all 𝑡 > 0 if and only if (𝜆2 − 𝐴)−1

is compact 𝜆 ∈ 𝜌(𝐴), because {𝑆
2,2
(𝑡)}
𝑡≥0

is the sine family
generated by𝐴; see [21]. In case 0 < 𝛼 < 1, the compactness of
𝑆
𝛼,1
(𝑡) has been studied by using subordinationmethods; that

is, the operator 𝐴 is supposed to be a generator of a compact
semigroup; see [22]. On the other hand, if 𝐴 is an almost
sectorial operator and the resolvent (𝜆𝛼 − 𝐴)

−1 is compact
for all 𝜆 ∈ 𝜌(𝐴), then 𝑆

𝛼,1
(𝑡) is compact for all 𝑡 > 0 (see

[23]), and, very recently, it was proved that if 𝑆
𝛼,1
(𝑡) is norm

continuous, then 𝑆
𝛼,1
(𝑡) is compact for all 𝑡 > 0 if and only if

(𝜆
𝛼
−𝐴)
−1 is compact for all 𝜆 ∈ 𝜌(𝐴). See [24, 25]. Finally, in

case 1 < 𝛼 < 2, the characterization of compactness asserts
that 𝑆

𝛼,𝛼
(𝑡) is compact for all 𝑡 > 0 if and only if (𝜆𝛼 − 𝐴)−1 is

compact for all 𝜆 ∈ 𝜌(𝐴); see [25, Theorem 3.5].
In this paper, we study the existence of mild solution to

nonlocal fractional Cauchy problems (1)–(4). Our approach
relies on the compactness of resolvent family {𝑆

𝛼,𝛽
(𝑡)}
𝑡≥0

for
suitable 𝛼, 𝛽 > 0, as well as some fixed point techniques. We
remark that we study simultaneously the nonlocal fractional
Cauchy problem for the Caputo and Riemann-Liouville
fractional derivatives.

The paper is organized as follows. Section 2 gives the
preliminaries. Section 3 is devoted to the normcontinuity and
compactness of 𝑆

𝛼,𝛽
(𝑡) for 𝑡 > 0. Here, we give characteriza-

tions of the compactness of 𝑆
𝛼,𝛽
(𝑡) for 𝑡 > 0 for suitable 𝛼, 𝛽 >

0. In Section 4 we study nonlocal fractional Cauchy problems
for the Caputo fractional derivative. We give some results
on the existence of mild solutions to problems (1) and (3).
Section 5 treats nonlocal fractional Cauchy problems for the
Riemann-Liouville fractional derivative. Here, we study the
existence of mild solutions to problems (2) and (4). Finally,
Section 6 is devoted to some applications.

2. Preliminaries

Let (𝑋, ‖ ⋅ ‖) be a Banach space. We denote byB(𝑋) the space
of all bounded linear operators from𝑋 into𝑋. If𝐴 is a closed
linear operator on 𝑋, we denote by 𝜌(𝐴) the resolvent set of
𝐴 and𝑅(𝜆, 𝐴) = (𝜆−𝐴)−1 the resolvent operator of𝐴 defined
for all 𝜆 ∈ 𝜌(𝐴).

We recall that a strongly continuous family {𝑆(𝑡)}
𝑡≥0

⊂

B(𝑋) is said to be of type (𝑀, 𝜔) or is exponentially bounded,
if there exist two constants 𝑀 > 0 and 𝑤 ∈ R such that
‖𝑆(𝑡)‖ ≤ 𝑀𝑒

𝑤𝑡 for all 𝑡 > 0.
Now, we review some results on fractional calculus. For

𝜇 > 0, define

𝑔
𝜇 (𝑡) =

{{

{{

{

𝑡
𝜇−1

Γ (𝜇)
, 𝑡 > 0

0, 𝑡 ≤ 0,

(8)

where Γ(⋅) is the Gamma function. We define 𝑔
0
≡ 𝛿
0
, the

Dirac delta. For 𝜇 > 0, 𝑛 = ⌈𝜇⌉ denotes the smallest integer 𝑛
greater than or equal to 𝜇. As usual, the finite convolution of
𝑓 and 𝑔 is defined by (𝑓 ∗ 𝑔)(𝑡) = ∫𝑡

0
𝑓(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠.

Definition 1. Let 𝛼 > 0. The 𝛼-order Riemann-Liouville
fractional integral of 𝑢 is defined by

𝐽
𝛼
𝑢 (𝑡) fl ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (9)

Also, we define 𝐽0𝑢(𝑡) = 𝑢(𝑡). Because of the convolution
properties, the integral operators {𝐽𝛼}

𝛼≥0
satisfy the semi-

group law: 𝐽𝛼𝐽𝛽 = 𝐽𝛼+𝛽 for all 𝛼, 𝛽 ≥ 0.
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Definition 2. Let 𝛼 > 0. The 𝛼-order Caputo fractional
derivative is defined as

𝐷
𝛼

𝑡
𝑢 (𝑡) fl ∫

𝑡

0

𝑔
𝑛−𝛼

(𝑡 − 𝑠) 𝑢
(𝑛)
(𝑠) 𝑑𝑠, (10)

where 𝑛 = ⌈𝛼⌉.

Definition 3. Let 𝛼 > 0. The 𝛼-order Riemann-Liouville
fractional derivative of 𝑢 is defined as

𝐷
𝛼
𝑢 (𝑡) fl

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

𝑔
𝑛−𝛼

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠, (11)

where 𝑛 = ⌈𝛼⌉.

We notice that if 𝛼 = 𝑚 ∈ N, then𝐷𝑚
𝑡
= 𝐷
𝑚
= 𝑑
𝑚
/𝑑𝑡
𝑚.

Throughout this paper we use the notation of 𝐷𝛼
𝑡
and

𝐷
𝛼 to the 𝛼-fractional derivative of Caputo and Riemann-

Liouville, respectively.

Example 4. If 𝛼, 𝛽 > 0, then

(i) 𝐽𝛼𝑡𝛽 = (Γ(𝛽 + 1)/Γ(𝛼 + 𝛽 + 1))𝑡𝛼+𝛽,
(ii) 𝐷𝛼𝑡𝛽 = (Γ(𝛽 + 1)/Γ(𝛼 + 𝛽 + 1))𝑡𝛽−𝛼 = 𝐷𝛼

𝑡
𝑡
𝛽.

(iii) 𝐷𝛼
𝑡
𝑒
𝜌𝑡
= 𝜌
2
𝑡
2−𝛼

𝑒
1,3−𝛼

(𝜌𝑡).

We observe that the Riemann-Liouville derivative opera-
tor 𝐷𝛼 is a left inverse operator of 𝐽𝛼 but not a right inverse,
that is,

𝐷
𝛼
𝐽
𝛼
𝑢 (𝑡) = 𝑢 (𝑡) ,

(𝐽
𝛼
𝐷
𝛼
) 𝑢 (𝑡) = 𝑢 (𝑡)

−

𝑛−1

∑

𝑘=0

(𝑔
𝑛−𝛼

∗ 𝑢)
(𝑘)

(0) 𝑔
𝛼+1+𝑘−𝑛

(𝑡) ,

(12)

𝑛 = ⌈𝛼⌉. On the other hand, the Caputo derivative operator
𝐷
𝛼

𝑡
satisfies

𝐷
𝛼

𝑡
𝐽
𝛼
𝑢 (𝑡) = 𝑢 (𝑡) ,

(𝐽
𝛼
𝐷
𝛼

𝑡
) 𝑢 (𝑡) = 𝑢 (𝑡) −

𝑛−1

∑

𝑘=0

𝑢
(𝑘)
(0) 𝑔
𝑘+1

(𝑡) .

(13)

If we denote by �̂� (or L(𝑓)) the Laplace transform of 𝑓, we
have the following properties for the fractional derivatives:

̂
𝐷
𝛼
𝑢 (𝜆) = 𝜆

𝛼
�̂� (𝜆) −

𝑛−1

∑

𝑘=0

(𝑔
𝑛−𝛼

∗ 𝑢)
(𝑘)

(0) 𝜆
𝑛−1−𝑘

, (14)

̂
𝐷
𝛼

𝑡
𝑢 (𝜆) = 𝜆

𝛼
�̂� (𝜆) −

𝑛−1

∑

𝑘=0

𝑢
(𝑘)
(0) 𝜆
𝛼−1−𝑘

, (15)

where 𝑛 = ⌈𝛼⌉ and 𝜆 ∈ C. For 𝛼, 𝛽 > 0 and 𝑧 ∈ C, the
generalized Mittag-Leffler function is defined by

𝑒
𝛼,𝛽

(𝑧) fl
∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
. (16)

The Laplace transform L of the Mittag-Leffler function
satisfies

L (𝑡
𝛽−1

𝑒
𝛼,𝛽

(𝜌𝑡
𝛼
)) (𝜆) =

𝜆
𝛼−𝛽

𝜆𝛼 − 𝜌
,

𝜌 ∈ C, Re 𝜆 > 𝜌


1/𝛼
.

(17)

Definition 5. Let 𝐴 be closed linear operator with domain
𝐷(𝐴), defined on a Banach space 𝑋, and 𝛼, 𝛽 > 0. We
say that 𝐴 is the generator of an (𝛼, 𝛽)-resolvent family, if
there exist 𝜔 ≥ 0 and a strongly continuous function 𝑆

𝛼,𝛽
:

[0,∞) → B(𝑋) such that {𝑆
𝛼,𝛽
(𝑡)} is exponentially bounded,

{𝜆
𝛼
: Re 𝜆 > 𝜔} ⊂ 𝜌(𝐴), and, for all 𝑥 ∈ 𝑋,

𝜆
𝛼−𝛽

(𝜆
𝛼
− 𝐴)
−1
𝑥 = ∫

∞

0

𝑒
−𝜆𝑡
𝑆
𝛼,𝛽

(𝑡) 𝑥 𝑑𝑡, Re 𝜆 > 𝜔. (18)

In this case, {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

is called the (𝛼, 𝛽)-resolvent family
generated by 𝐴.

We notice that Definition 5 corresponds to the concept of
(𝑎, 𝑘)-regularized families introduced in [26]. In fact, if 𝑎 =

𝑔
𝛼
and 𝑏 = 𝑔

𝛽
, then the function 𝑡 → 𝑆

𝛼,𝛽
(𝑡) is a (𝑔

𝛼
, 𝑔
𝛽
)-

regularized family. Moreover, the function 𝑆
𝛼,𝛽
(𝑡) satisfies the

following functional equation (see [27, 28]):

𝑆
𝛼,𝛽

(𝑠) (𝑔
𝛼
∗ 𝑆
𝛼,𝛽
) (𝑡) − (𝑔

𝛼
∗ 𝑆
𝛼,𝛽
) (𝑠) 𝑆

𝛼,𝛽
(𝑠)

= 𝑔
𝛽
(𝑠) (𝑔
𝛼
∗ 𝑆
𝛼,𝛽
) (𝑡) − 𝑔

𝛽
(𝑡) (𝑔
𝛼
∗ 𝑆
𝛼,𝛽
) (𝑠) ,

(19)

for all 𝑡, 𝑠 ≥ 0. On the other hand, if an operator 𝐴 with
domain 𝐷(𝐴) is the infinitesimal generator of the (𝛼, 𝛽)-
resolvent family 𝑆

𝛼,𝛽
(𝑡), then for all 𝑥 ∈ 𝐷(𝐴) we have

𝐴𝑥 = lim
𝑡→0
+

𝑆
𝛼,𝛽

(𝑡) 𝑥 − 𝑔
𝛽
(𝑡) 𝑥

𝑔
𝛼+𝛽

(𝑡)
. (20)

For example, the case 𝑆
1,1
(𝑡) corresponds to a 𝐶

0
-semigroup

and 𝑆
2,1
(𝑡) is a cosine family, whereas 𝑆

2,2
(𝑡) is a sine family.

Finally, if 𝛽 = 1, then 𝑆
𝛼,1
(𝑡) is the 𝛼-resolvent family (also

called the 𝛼-times resolvent family) for fractional differential
equations.We notice that, in the scalar case, that is, when𝐴 =

𝜌𝐼, where 𝜌 ∈ C and 𝐼 denotes the identity operator, then by
the uniqueness of the Laplace transform 𝑆

𝛼,𝛽
(𝑡) corresponds

to the function 𝑡𝛽−1𝑒
𝛼,𝛽
(𝜌𝑡
𝛼
). Finally, let 0 < 𝛼 < 1 and 𝛽 ≥ 𝛼.

Define {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

by

𝑆
𝛼,𝛽

(𝑡) 𝑓 (𝑠) fl ∫

𝑠

0

𝑓 (𝑠 − 𝑟) 𝜑
𝛼,𝛽−𝛼

(𝑡, 𝑟) 𝑑𝑟, (21)

where 𝑠 ∈ R
+
, 𝑓 ∈ 𝐿

1
(R
+
), and the function 𝜑

𝑎,𝑏
(𝑡, 𝑟) is

defined by

𝜑
𝑎,𝑏
(𝑡, 𝑟) fl 𝑡

𝑏−1
𝑊
−𝑎,𝑏

(−𝑟𝑡
−𝑎
) , 𝑎 > 0, 𝑏 ≥ 0, (22)

where 𝑊
−𝑎,𝑏

(𝑧) fl ∑
∞

𝑛=0
(𝑧
𝑛
/𝑛!Γ(−𝑎𝑛 + 𝑏)) (𝑧 ∈ C) denotes

the Wright function. Then, {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

is an (𝛼, 𝛽)-resolvent
family on the Banach space 𝑋 = 𝐿

1
(R
+
) generated by 𝐴 =

−𝑑/𝑑𝑡. See [29, Example 11].
The proof of the next result follows as in [26, 27].
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Proposition 6. Let 𝛼, 𝛽 > 0 and let {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

⊂ B(𝑋) be
an (𝛼, 𝛽)-resolvent family generated by 𝐴. Then the following
holds:

(1) 𝑆
𝛼,𝛽
(𝑡)𝑥 ∈ 𝐷(𝐴) and 𝑆

𝛼,𝛽
(𝑡)𝐴𝑥 = 𝐴𝑆

𝛼,𝛽
(𝑡)𝑥 for all

𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0.

(2) If 𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0, then

𝑆
𝛼,𝛽

(𝑡) 𝑥 = 𝑔
𝛽
(𝑡) 𝑥 + ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝐴𝑆

𝛼,𝛽
(𝑠) 𝑥 𝑑𝑠. (23)

(3) If 𝑥 ∈ 𝑋 and 𝑡 ≥ 0, then∫𝑡
0
𝑔
𝛼
(𝑡−𝑠)𝑆

𝛼,𝛽
(𝑠)𝑥 𝑑𝑠 ∈ 𝐷(𝐴),

and

𝑆
𝛼,𝛽

(𝑡) 𝑥 = 𝑔
𝛽
(𝑡) 𝑥 + 𝐴∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑆

𝛼,𝛽
(𝑠) 𝑥 𝑑𝑠. (24)

In particular, 𝑆
𝛼,𝛽
(0) = 𝑔

𝛽
(0)𝐼.

Finally, we recall the following results.

Theorem 7 (Mazur theorem). If 𝐾 is a compact subset of a
Banach space𝑋, then its convex closure conv(𝐾) is compact.

Theorem 8 (Krasnoselskii theorem). Let𝐶 be a closed convex
and nonempty subset of a Banach space 𝑋. Let 𝑄

1
and 𝑄

2
be

two operators such that

(i) if 𝑢, V ∈ 𝐶, then 𝑄
1
𝑢 + 𝑄

2
V ∈ 𝐶,

(ii) 𝑄
1
is a mapping contraction,

(iii) 𝑄
2
is compact and continuous.

Then, there exists 𝑧 ∈ 𝐶 such that 𝑧 = 𝑄
1
𝑧 + 𝑄

2
𝑧.

Theorem 9 (Schauder’s fixed point theorem). Let 𝐶 be a
nonempty, closed, bounded, and convex subset of a Banach
space 𝑋. Suppose that Γ : 𝐶 → 𝐶 is a compact operator. Then
Γ has at least a fixed point in 𝐶.

Theorem 10 (Leray-Schauder alternative theorem). Let 𝐶 be
a convex subset of a Banach space 𝑋. Suppose that 0 ∈ 𝐶. If
Γ : 𝐶 → 𝐶 is a completely continuous map, then either Γ has
a fixed point or the set {𝑥 ∈ 𝐶 : 𝑥 = 𝜆Γ(𝑥), 0 < 𝜆 < 1} is
unbounded.

3. Continuity and Compactness of 𝑆
𝛼,𝛽
(𝑡)

In this section we study, for all 𝑡 > 0, the norm continuity
(continuity inB(𝑋)) and the compactness of 𝑆

𝛼,𝛽
(𝑡) for given

𝛼, 𝛽 > 0.

Proposition 11. Let 𝛼 > 0 and 1 < 𝛽 ≤ 2. Suppose
that {𝑆

𝛼,𝛽
(𝑡)}
𝑡≥0

is the (𝛼, 𝛽)-resolvent family of type (𝑀, 𝜔)

generated by 𝐴. Then the function 𝑡 → 𝑆
𝛼,𝛽
(𝑡) is continuous

inB(𝑋) for all 𝑡 > 0.

Proof. Let 1 < 𝛽 < 2. Observe that, for all Re 𝜆 > 0,

L (𝑆
𝛼,𝛽
) (𝜆) = 𝜆

𝛼−𝛽
(𝜆
𝛼
− 𝐴)
−1

=
1

𝜆𝛽−1
𝜆
𝛼−1

(𝜆
𝛼
− 𝐴)
−1

= L (𝑔
𝛽−1

∗ 𝑆
𝛼,1
) (𝜆) .

(25)

We conclude by the uniqueness of the Laplace transform that
𝑆
𝛼,𝛽
(𝑡) = (𝑔

𝛽−1
∗ 𝑆
𝛼,1
)(𝑡), for all 𝑡 > 0. Take 0 < 𝑡

0
< 𝑡
1
. Then

𝑆
𝛼,𝛽

(𝑡
1
) − 𝑆
𝛼,𝛽

(𝑡
0
)

= (𝑔
𝛽−1

∗ 𝑆
𝛼,1
) (𝑡
1
) − (𝑔

𝛽−1
∗ 𝑆
𝛼,1
) (𝑡
0
)

= ∫

𝑡
1

𝑡
0

𝑔
𝛽−1

(𝑡
1
− 𝑟) 𝑆

𝛼,1 (𝑟) 𝑑𝑟

+ ∫

𝑡
0

0

[𝑔
𝛽−1

(𝑡
1
− 𝑟) − 𝑔

𝛽−1
(𝑡
0
− 𝑟)] 𝑆

𝛼,1
(𝑟) 𝑑𝑟

š 𝐼
1
+ 𝐼
2
.

(26)

Since 𝛽 > 1, we have 𝑔
𝛽
(0) = 0 and we obtain

𝐼1
 ≤ ∫

𝑡
1

𝑡
0

𝑔
𝛽−1

(𝑡
1
− 𝑟)

𝑆𝛼,1 (𝑟)
 𝑑𝑟

≤ 𝑀∫

𝑡
1

𝑡
0

𝑔
𝛽−1

(𝑡
1
− 𝑟) 𝑒
𝜔𝑟
𝑑𝑟 = 𝑀𝑒

𝜔𝑡
1𝑔
𝛽
(𝑡
1
− 𝑡
0
) ,

(27)

and therefore ‖𝐼
1
‖ → 0 as 𝑡

1
→ 𝑡
0
.

On the other hand,

𝐼2
 ≤ ∫

𝑡
0

0


𝑔
𝛽−1

(𝑡
1
− 𝑟) − 𝑔

𝛽−1
(𝑡
0
− 𝑟)



𝑆𝛼,1 (𝑟)
 𝑑𝑟

≤ 𝑀𝑒
𝜔𝑡
1 ∫

𝑡
0

0


𝑔
𝛽−1

(𝑡
1
− 𝑟) − 𝑔

𝛽−1
(𝑡
0
− 𝑟)


𝑑𝑟

= 𝑀𝑒
𝜔𝑡
1 ∫

𝑡
0

0


𝑔
𝛽−1

(𝑡
1
− 𝑡
0
+ 𝑟) − 𝑔

𝛽−1
(𝑟)

𝑑𝑟.

(28)

Since 1 < 𝛽 < 2 we obtain that the function 𝑟 → 𝑔
𝛽−1

(𝑟) is
decreasing in [0,∞) and therefore 𝑔

𝛽−1
(𝑟)−𝑔

𝛽−1
(𝑡
1
−𝑡
0
+𝑟) >

0, for all 𝑟 > 0, obtaining

𝐼2
 ≤ 𝑀𝑒

𝜔𝑡
1 ∫

𝑡
0

0

[𝑔
𝛽−1

(𝑟) − 𝑔
𝛽−1

(𝑡
1
− 𝑡
0
+ 𝑟)] 𝑑𝑟

= 𝑀𝑒
𝜔𝑡
1 [𝑔
𝛽
(𝑡
0
) − 𝑔
𝛽
(𝑡
1
) + 𝑔
𝛽
(𝑡
1
− 𝑡
0
)] .

(29)

Therefore, ‖𝐼
2
‖ → 0 as 𝑡

1
→ 𝑡
0
. We conclude that 𝑆

𝛼,𝛽
(𝑡) is

norm continuous, for 1 < 𝛽 < 2.
On the other hand, if 𝛽 = 2, then, by the uniqueness of

the Laplace transform, we obtain that

𝑆
𝛼,2
(𝑡) 𝑥 = (𝑔

1
∗ 𝑆
𝛼,1
) (𝑡) 𝑥 = ∫

𝑡

0

𝑆
𝛼,1
(𝑟) 𝑥 𝑑𝑟, (30)
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for all 𝑥 ∈ 𝑋. Take 0 < 𝑡
0
< 𝑡
1
. Then

𝑆𝛼,2 (𝑡1) 𝑥 − 𝑆𝛼,2 (𝑡0) 𝑥
 ≤ ∫

𝑡
1

𝑡
0

𝑆𝛼,1 (𝑟) 𝑥
 𝑑𝑟

≤ 𝑀𝑒
𝜔𝑡
1

‖𝑥‖ (𝑡1 − 𝑡0) ,

(31)

for all 𝑥 ∈ 𝑋. Therefore ‖𝑆
𝛼,2
(𝑡
1
) − 𝑆
𝛼,2
(𝑡
0
)‖ → 0 as 𝑡

1
→

𝑡
0
.

Lemma 12. Suppose that 𝐴 generates an (𝛼, 𝛽)-resolvent
family {𝑆

𝛼,𝛽
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). If 𝛾 > 0, then 𝐴 generates
an (𝛼, 𝛽 + 𝛾)-resolvent family of type (𝑀/𝜔

𝛾
, 𝜔).

Proof. By hypothesis we get, for all 𝑡 ≥ 0,


(𝑔
𝛾
∗ 𝑆
𝛼,𝛽
) (𝑡)


≤ 𝑀∫

𝑡

0

𝑔
𝛾
(𝑡 − 𝑠) 𝑒

𝜔𝑠
𝑑𝑠

≤ 𝑀𝑒
𝜔𝑡
∫

𝑡

0

𝑔
𝛾 (𝑠) 𝑒
−𝜔𝑠

𝑑𝑠

≤ 𝑀𝑒
𝜔𝑡
∫

∞

0

𝑔
𝛾 (𝑠) 𝑒
−𝜔𝑠

𝑑𝑠 =
𝑀𝑒
𝜔𝑡

𝜔𝛾
.

(32)

Therefore (𝑔
𝛾
∗ 𝑆
𝛼,𝛽
)(𝑡) is Laplace transformable and, for all

𝜆 > 𝜔, we have

L (𝑔
𝛾
∗ 𝑆
𝛼,𝛽
) (𝜆) =

1

𝜆𝛾
𝜆
𝛼−𝛽

(𝜆
𝛼
− 𝐴)
−1

= 𝜆
𝛼−(𝛽+𝛾)

(𝜆
𝛼
− 𝐴)
−1

= L (𝑆
𝛼,𝛽+𝛾

) (𝜆) .

(33)

We conclude that 𝐴 generates an (𝛼, 𝛽 + 𝛾)-resolvent family
of type (𝑀/𝜔

𝛾
, 𝜔).

Definition 13. We say that the resolvent family {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

⊂

B(𝑋) is compact if, for every 𝑡 > 0, the operator 𝑆
𝛼,𝛽
(𝑡) is a

compact operator.

Inwhat follows, wewill assume that {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

is strongly
continuous for all 𝛼, 𝛽 > 0.

Theorem 14. Let 𝛼 > 0, 1 < 𝛽 ≤ 2, and {𝑆
𝛼,𝛽
(𝑡)}
𝑡≥0

be an
(𝛼, 𝛽)-resolvent family of type (𝑀, 𝜔) generated by𝐴. Then the
following assertions are equivalent:

(i) 𝑆
𝛼,𝛽
(𝑡) is a compact operator for all 𝑡 > 0.

(ii) (𝜇 − 𝐴)−1 is a compact operator for all 𝜇 > 𝜔1/𝛼.

Proof. (i) ⇒ (ii) Suppose that the resolvent family {𝑆
𝛼,𝛽
(𝑡)}
𝑡>0

is compact. Let 𝜆 > 𝜔 be fixed. Then we have

𝜆
𝛼−𝛽

(𝜆
𝛼
− 𝐴)
−1
= ∫

∞

0

𝑒
−𝜆𝑡
𝑆
𝛼,𝛽

(𝑡) 𝑑𝑡, (34)

where the integral in the right-hand side exists in the Bochner
sense. Because {𝑆

𝛼,𝛽
(𝑡)}
𝑡>0

is continuous in the uniform
operator topology (by Proposition 11), we conclude that (𝜆𝛼−
𝐴)
−1 is a compact operator by [30, Corollary 2.3].

(ii) ⇒ (i) Let 𝑡 > 0 be fixed. Assume that 1 < 𝛽 < 2. Since
𝛽 > 1, it follows that 𝑔

𝛽−1
∈ 𝐿
1

loc[0,∞) and therefore, by [31,
Proposition 2.1], we obtain

lim
𝑁→∞

1

2𝜋𝑖
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
𝜆𝑡 ̂
(𝑔
𝛽−1

∗ 𝑆
𝛼,1
) (𝜆) 𝑑𝜆

= (𝑔
𝛽−1

∗ 𝑆
𝛼,1
) (𝑡) = 𝑆

𝛼,𝛽
(𝑡) ,

(35)

inB(𝑋). Therefore,

1

2𝜋𝑖
∫

Γ

𝑒
𝜆𝑡
𝜆
𝛼−𝛽

(𝜆
𝛼
− 𝐴)
−1
𝑑𝜆 = 𝑆

𝛼,𝛽 (𝑡) , 𝑡 > 0, (36)

where Γ is the path consisting of the vertical line {𝜔 + 𝑖𝑠 : 𝑠 ∈
R}. By hypothesis and [30, Corollary 2.3], we conclude that
𝑆
𝛼,𝛽
(𝑡) is compact for all 𝛼 > 0 and 1 < 𝛽 < 2. Now, we take

𝛽 = 2. Observe that inB(𝑋) we have

lim
𝑁→∞

1

2𝜋𝑖
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
𝜆𝑡 ̂
(𝑔
1
∗ 𝑆
𝛼,1
) (𝜆) 𝑑𝜆 = (𝑔1 ∗ 𝑆𝛼,1) (𝑡)

= 𝑆
𝛼,2 (𝑡) ,

(37)

by [31, Proposition 2.1], and as in case 1 < 𝛽 < 2we conclude
that 𝑆

𝛼,2
(𝑡) is compact for all 𝑡 > 0.

By Theorem 14 we have the following corollary.

Corollary 15. Let 1 < 𝛼 ≤ 2 and {𝑆
𝛼,𝛼
(𝑡)}
𝑡≥0

be an (𝛼, 𝛼)-
resolvent family of type (𝑀, 𝜔) generated by 𝐴. Then the
following assertions are equivalent:

(i) 𝑆
𝛼,𝛼
(𝑡) is a compact operator for all 𝑡 > 0.

(ii) (𝜇 − 𝐴)−1 is a compact operator for all 𝜇 > 𝜔1/𝛼.

Proposition 16. Let 1 < 𝛼 < 2, and {𝑆
𝛼,1
(𝑡)}
𝑡≥0

be the (𝛼, 1)-
resolvent family of type (𝑀, 𝜔) generated by 𝐴. Suppose that
𝑆
𝛼,1
(𝑡) is continuous in the uniform operator topology for all

𝑡 > 0. Then the following assertions are equivalent:

(i) 𝑆
𝛼,1
(𝑡) is a compact operator for all 𝑡 > 0.

(ii) (𝜇 − 𝐴)−1 is a compact operator for all 𝜇 > 𝜔1/𝛼.

Proof. (i) ⇒ (ii) Suppose that that the resolvent family
{𝑆
𝛼,1
(𝑡)}
𝑡>0

is compact. Let 𝜆 > 𝜔 be fixed. Then we have

𝜆
𝛼−1

(𝜆
𝛼
− 𝐴)
−1
= ∫

∞

0

𝑒
−𝜆𝑡
𝑆
𝛼,1
(𝑡) 𝑑𝑡, (38)
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where the integral in the right-hand side exists in the Bochner
sense, because {𝑆

𝛼,1
(𝑡)}
𝑡>0

is continuous in the uniform
operator topology, by hypothesis. Then, by [30, Corollary
2.3], we conclude that (𝜆𝛼 − 𝐴)−1 is a compact operator.

(ii) ⇒ (i) Let 𝑡 > 0 be fixed. Since 1 < 𝛼 < 2, it follows
that 𝑔

2−𝛼
∈ 𝐿
1

loc[0,∞) and therefore, by [31, Proposition 2.1],
we obtain

lim
𝑁→∞

1

2𝜋𝑖
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
𝜆𝑡 ̂
(𝑔
2−𝛼

∗ 𝑆
𝛼,𝛼−1

) (𝜆) 𝑑𝜆

= (𝑔
2−𝛼

∗ 𝑆
𝛼,𝛼−1

) (𝑡) = 𝑆
𝛼,1
(𝑡) ,

(39)

inB(𝑋). Therefore,

1

2𝜋𝑖
∫

Γ

𝑒
𝜆𝑡
𝜆
𝛼−1

(𝜆
𝛼
− 𝐴)
−1
𝑑𝜆 = 𝑆

𝛼,1 (𝑡) , 𝑡 > 0, (40)

where Γ is the path consisting of the vertical line {𝜔 + 𝑖𝑠 : 𝑠 ∈
R}. By hypothesis and [30, Corollary 2.3], we conclude that
𝑆
𝛼,1
(𝑡) is compact.

Proposition 17. Let 3/2 < 𝛼 < 2 and {𝑆
𝛼,𝛼−1

(𝑡)}
𝑡≥0

be the
(𝛼, 𝛼 − 1)-resolvent family of type (𝑀, 𝜔) generated by 𝐴.
Suppose that 𝑆

𝛼,𝛼−1
(𝑡) is continuous in the uniform operator

topology for all 𝑡 > 0. Then the following assertions are
equivalent:

(i) 𝑆
𝛼,𝛼−1

(𝑡) is a compact operator for all 𝑡 > 0.

(ii) (𝜇 − 𝐴)−1 is a compact operator for all 𝜇 > 𝜔1/𝛼.

Proof. (i) ⇒ (ii) It follows as in the proof of Proposition 16.
(ii) ⇒ (i) Let 𝑡 > 0 be fixed. Since 𝛼 > 3/2, it follows that

𝑔
𝛼−3/2

∈ 𝐿
1

loc[0,∞) and therefore, by [31, Proposition 2.1], we
obtain

lim
𝑁→∞

1

2𝜋𝑖
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
𝜆𝑡 ̂
(𝑔
𝛼−3/2

∗ 𝑆
𝛼,1/2

) (𝜆) 𝑑𝜆

= (𝑔
𝛼−3/2

∗ 𝑆
𝛼,1/2

) (𝑡) = 𝑆
𝛼,𝛼−1

(𝑡) ,

(41)

inB(𝑋). Therefore,

1

2𝜋𝑖
∫

Γ

𝑒
𝜆𝑡
𝜆
𝛼−1

(𝜆
𝛼
− 𝐴)
−1
𝑑𝜆 = 𝑆

𝛼,𝛼−1
(𝑡) , (42)

where Γ is the path consisting of the vertical line {𝜔 + 𝑖𝑠 : 𝑠 ∈
R}. By hypothesis and [30, Corollary 2.3], we conclude that
𝑆
𝛼,𝛼−1

(𝑡) is compact.

The proof of the next result follows similarly to Proposi-
tion 16, because for 1/2 < 𝛼 < 1 we have

lim
𝑁→∞

1

2𝜋𝑖
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
𝜆𝑡 ̂
(𝑔
𝛼−1/2

∗ 𝑆
𝛼,1/2

) (𝜆) 𝑑𝜆

= (𝑔
𝛼−1/2

∗ 𝑆
𝛼,1/2

) (𝑡) = 𝑆𝛼,𝛼 (𝑡) ,

(43)

inB(𝑋) and 𝑡 > 0 by [31, Proposition 2.1].

Proposition 18. Let 1/2 < 𝛼 < 1 and {𝑆
𝛼,𝛼
(𝑡)}
𝑡≥0

be the (𝛼, 𝛼)-
resolvent family of type (𝑀, 𝜔) generated by 𝐴. Suppose that
𝑆
𝛼,𝛼
(𝑡) is continuous in the uniform operator topology for all

𝑡 > 0. Then, the following assertions are equivalent:

(i) 𝑆
𝛼,𝛼
(𝑡) is a compact operator for all 𝑡 > 0.

(ii) (𝜇 − 𝐴)−1 is a compact operator for all 𝜇 > 𝜔1/𝛼.

Remark 19. Let 𝜀
0
> 0 be fixed. If 𝜀

0
< 𝛼 < 1, then by [31,

Proposition 2.1] we have

lim
𝑁→∞

1

2𝜋𝑖
∫

𝜔+𝑖𝑁

𝜔−𝑖𝑁

𝑒
𝜆𝑡 ̂
(𝑔
𝛼−𝜀
0

∗ 𝑆
𝛼,𝜀
0

) (𝜆) 𝑑𝜆

= (𝑔
𝛼−𝜀
0

∗ 𝑆
𝛼,𝜀
0

) (𝑡) = 𝑆
𝛼,𝛼

(𝑡) ,

(44)

in B(𝑋). Therefore, as is Proposition 18, if 𝛼 > 𝜀
0
, where

𝜀
0
> 0, 𝐴 generates the (𝛼, 𝛼)-resolvent family {𝑆

𝛼,𝛼
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔), and 𝑆
𝛼,𝛼
(𝑡) is norm continuous for all 𝑡 > 0,

then 𝑆
𝛼,𝛼
(𝑡) is a compact operator for all 𝑡 > 0 if and only if

(𝜆
𝛼
− 𝐴)
−1 is a compact operator for all 𝜆 > 𝜔

1/𝛼. The same
conclusion holds if 𝜀

0
< 𝛼 < 2, where 𝜀

0
> 1 is fixed and

{𝑆
𝛼,𝛼−1

(𝑡)}
𝑡≥0

is the (𝛼, 𝛼 − 1)-resolvent family of type (𝑀, 𝜔)

generated by 𝐴, which is norm continuous for all 𝑡 > 0.

4. Nonlocal Fractional Cauchy Problems:
The Caputo Case

In this section we consider the nonlocal problem for the
Caputo fractional derivative

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐼 fl [0, 𝑇] ,

𝑢 (0) + 𝑝 (𝑢) = 𝑢0,

𝑢

(0) + 𝑞 (𝑢) = 𝑢

1
,

(45)

𝑢
0
, 𝑢
1
∈ 𝑋, 1 < 𝛼 < 2, 𝑇 > 0, and 𝐴 is a closed linear

operator defined on 𝑋 which generates the (𝛼, 1)-resolvent
family {𝑆

𝛼,1
(𝑡)}
𝑡≥0

.The nonlinear function𝑓 : [0, 𝑇]×𝑋 → 𝑋

is continuous and the nonlocal conditions 𝑝, 𝑞 : 𝐶(𝐼, 𝑋) →

𝐶(𝐼, 𝑋) are also continuous functions. We recall also that the
derivative𝐷𝛼

𝑡
denotes the Caputo fractional derivative.

The mild solution to problem (45) is given by

𝑢 (𝑡) = 𝑆
𝛼,1
(𝑡) (𝑢
0
− 𝑝 (𝑢)) + 𝑆

𝛼,2
(𝑡) (𝑢
1
− 𝑞 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(46)

By the uniqueness of the Laplace transform, it is easy to see
that themild solution to fractional nonlocal problem (45) can
be written as
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𝑢 (𝑡) = 𝑆𝛼,1 (𝑡) (𝑢0 − 𝑝 (𝑢))

+ (𝑔
1
∗ 𝑆
𝛼,1
) (𝑡) (𝑢

1
− 𝑞 (𝑢))

+ ∫

𝑡

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(47)

for all 𝑡 ∈ [0, 𝑇].
We assume the following:

(H1) The function 𝑓 satisfies the Carathéodory condition;
that is, 𝑓(⋅, 𝑢) is strongly measurable for each 𝑢 ∈ 𝑋

and 𝑓(𝑡, ⋅) is continuous for each 𝑡 ∈ 𝐼 fl [0, 𝑇].

(H2) There exists a continuous function 𝜇 : 𝐼 → R
+
such

that

𝑓 (𝑡, 𝑢)
 ≤ 𝜇 (𝑡) ‖𝑢‖ , ∀𝑡 ∈ 𝐼, 𝑢 ∈ 𝐶 (𝐼, 𝑋) . (48)

(H3) The functions 𝑝, 𝑞 : 𝐶(𝐼, 𝑋) → 𝐶(𝐼,𝑋) are continu-
ous and there exist 𝐿

𝑝
, 𝐿
𝑞
> 0 such that

𝑝 (𝑢) − 𝑝 (V)
 < 𝐿𝑝 ‖𝑢 − V‖ ,

𝑞 (𝑢) − 𝑞 (V)
 < 𝐿𝑞 ‖𝑢 − V‖ ,

∀𝑢, V ∈ 𝐶 (𝐼, 𝑋) .

(49)

We have the following existence results.

Theorem 20. Let 1 < 𝛼 < 2. Let 𝐴 be the generator of an
(𝛼, 1)-resolvent family {𝑆

𝛼,1
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Suppose that
(𝜆
𝛼
−𝐴)
−1 is compact for all𝜆 > 𝜔1/𝛼. If (𝑀𝑒

𝜔𝑇
/𝜔
𝛼−1

)‖𝜇‖
∞
𝑇 <

1 and (𝑀𝑒
𝜔𝑇
𝐿
𝑝
+ (𝑀/𝜔)𝑒

𝜔𝑇
𝐿
𝑞
) < 1, then, under assumptions

(H1)–(H3), problem (45) has at least one mild solution.

Proof. Let 𝐵
𝑟
fl {𝑢 ∈ 𝐶(𝐼, 𝑋) : ‖𝑢‖ ≤ 𝑟}, where

𝑟

fl
𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

) + (𝑀/𝜔) 𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

)

1 − (𝑀𝑒𝜔𝑇/𝜔𝛼−1)
𝜇
∞

𝑇
.

(50)

On 𝐵
𝑟
we define the operators Γ

1
, Γ
2
by

(Γ
1
𝑢) (𝑡) fl 𝑆

𝛼,1
(𝑡) [𝑢
0
− 𝑝 (𝑢)]

+ (𝑔
1
∗ 𝑆
𝛼,1
) (𝑡) (𝑢

1
− 𝑞 (𝑢)) ,

𝑡 ∈ [0, 𝑇] ,

(Γ
2
𝑢) (𝑡) fl ∫

𝑡

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] ,

(51)

and 𝑢 ∈ 𝐵
𝑟
. We shall prove that Γ fl Γ

1
+ Γ
2
has at least one

fixed point by the Krasnoselskii fixed point theorem. We will
consider several steps in the proof.

Step 1. We will see that if 𝑢, V ∈ 𝐵
𝑟
, then Γ

1
𝑢 + Γ
2
V ∈ 𝐵

𝑟
. In

fact, by Lemma 12 we have

(Γ1𝑢) (𝑡) + (Γ2V) (𝑡)


≤
𝑆𝛼,1 (𝑡)



𝑢0 − 𝑝 (𝑢)


+
(𝑔1 ∗ 𝑆𝛼,1) (𝑡)



𝑢1 − 𝑞 (𝑢)


+ ∫

𝑡

0

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − 𝑠)


𝑓 (𝑠, V (𝑠))
 𝑑𝑠

≤ 𝑀𝑒
𝜔𝑡
(
𝑢0

 +
𝑝 (𝑢)

) +
𝑀

𝜔
𝑒
𝜔𝑡
(
𝑢1

 +
𝑞 (𝑢)

)

+ ∫

𝑡

0

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − 𝑠)


𝑓 (𝑠, V (𝑠))
 𝑑𝑠

≤ 𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

)

+
𝑀

𝜔
𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

)

+
𝑀

𝜔𝛼−1
∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)

𝜇 (𝑠) ‖V (𝑠)‖ 𝑑𝑠

≤ 𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

)

+
𝑀

𝜔
𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

)

+
𝑀𝑟𝑒
𝜔𝑡

𝜔𝛼−1
∫

𝑡

0

𝑒
−𝜔𝑠

𝜇 (𝑠) 𝑑𝑠

≤ 𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

)

+
𝑀

𝜔
𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

) +
𝑀𝑟𝑒
𝜔𝑇

𝜔𝛼−1

𝜇
∞

𝑇

= 𝑟.

(52)

Hence Γ
1
𝑢 + Γ
2
V ∈ 𝐵
𝑟
for all 𝑢, V ∈ 𝐵

𝑟
.

Step 2. Γ
1
is a contraction on 𝐵

𝑟
. In fact, if 𝑢, V ∈ 𝐵

𝑟
, then

Γ1𝑢 (𝑡) − Γ1V (𝑡)
 ≤

𝑆𝛼,1 (𝑡)


𝑝 (𝑢) − 𝑝 (V)


+
(𝑔1 ∗ 𝑆𝛼,1) (𝑡)



𝑞 (𝑢) − 𝑞 (V)


≤ 𝑀𝑒
𝜔𝑡
𝐿
𝑝 ‖𝑢 − V‖

+
𝑀

𝜔
𝑒
𝜔𝑡
𝐿
𝑞 ‖𝑢 − V‖

≤ (𝑀𝑒
𝜔𝑇
𝐿
𝑝
+
𝑀

𝜔
𝑒
𝜔𝑇
𝐿
𝑞
) ‖𝑢 − V‖ .

(53)

Since (𝑀𝑒
𝜔𝑇
𝐿
𝑝
+ (𝑀/𝜔)𝑒

𝜔𝑇
𝐿
𝑞
) < 1, we conclude that Γ

1
is a

contraction.
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Step 3. Γ
2
is completely continuous.

Firstly, we prove that Γ
2
is a continuous operator on 𝐵

𝑟
.

Let 𝑢
𝑛
, 𝑢 ∈ 𝐵

𝑟
such that 𝑢

𝑛
→ 𝑢 in 𝐵

𝑟
. By Lemma 12 we get

Γ2𝑢𝑛 (𝑡) − Γ2𝑢 (𝑡)
 ≤ ∫

𝑡

0

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − 𝑠)


⋅
𝑓 (𝑠, 𝑢𝑛 (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠))

 𝑑𝑠 ≤
𝑀𝑒
𝜔𝑡

𝜔𝛼−1

⋅ ∫

𝑡

0

𝑒
−𝜔𝑠 𝑓 (𝑠, 𝑢𝑛 (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠))

 𝑑𝑠 ≤
𝑀𝑒
𝜔𝑇

𝜔𝛼−1

⋅ ∫

𝑡

0

𝜇 (𝑠) (
𝑢𝑛 (𝑠)

 + ‖𝑢 (𝑠)‖) 𝑑𝑠 ≤
2𝑟𝑀𝑒

𝜔𝑇

𝜔𝛼−1

⋅ ∫

𝑡

0

𝜇 (𝑠) 𝑑𝑠.

(54)

We notice that the function 𝑠 → 𝜇(𝑠) is integrable on 𝐼. By
Lebesgue’s dominated convergence theorem, ∫𝑡

0
‖𝑓(𝑠, 𝑢

𝑛
(𝑠))−

𝑓(𝑠, 𝑢(𝑠))‖𝑑𝑠 → 0 as 𝑛 → ∞. Since 𝑢
𝑛
→ 𝑢 we obtain that Γ

2

is continuous in 𝐵
𝑟
.

Now, we will prove that {Γ
2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is relatively

compact. By the Ascoli-Arzela theorem, we need to show
that the family {Γ

2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is uniformly bounded and

equicontinuous, and the set {Γ
2
𝑢(𝑡) : 𝑢 ∈ 𝐵

𝑟
} is relatively

compact in 𝑋 for each 𝑡 ∈ [0, 𝑇]. In fact, for each 𝑢 ∈ 𝐵
𝑟

we have (as in Step 3) that ‖Γ
2
𝑢‖ ≤ (𝑟𝑀𝑒

𝜔𝑇
/𝜔
𝛼−1

)‖𝜇‖
∞

and
therefore {Γ

2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is uniformly bounded.

In order to prove the equicontinuity, let 𝑢 ∈ 𝐵
𝑟
, and take

0 ≤ 𝑡
2
< 𝑡
1
≤ 𝑇. Observe that

Γ2𝑢 (𝑡1) − Γ2𝑢 (𝑡2)
 ≤ ∫

𝑡
1

𝑡
2

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠 + ∫

𝑡
2

0

((𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − 𝑠)

− (𝑔
1
∗ 𝑆
𝛼,1
) (𝑡
2
− 𝑠)) 𝑓 (𝑠, 𝑢 (𝑠))

 𝑑𝑠 fl 𝐼
1

+ 𝐼
2
.

(55)

Observe that, for 𝐼
1
, by Lemma 12 we have

𝐼
1
≤
𝑀𝑒
𝜔𝑇

𝜔𝛼−1
∫

𝑡
1

𝑡
2

𝑒
−𝜔𝑠

𝜇 (𝑠) ‖𝑢 (𝑠)‖ 𝑑𝑠

≤
𝑀𝑟𝑒
𝜔𝑇

𝜔𝛼−1

𝜇
∞

(𝑡
1
− 𝑡
2
) ,

(56)

and therefore lim
𝑡
1
→𝑡
2

𝐼
1
= 0. For 𝐼

2
, we have

𝐼
2
≤ ∫

𝑡
2

0

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − 𝑠)

− (𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡
2
− 𝑠)



𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

≤ ∫

𝑡
2

0

𝜇 (𝑠)
(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − 𝑠)

− (𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡
2
− 𝑠)

 ‖𝑢 (𝑠)‖ 𝑑𝑠 ≤ 𝑟∫

𝑡
2

0

𝜇 (𝑠)

⋅
(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − 𝑠)

− (𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡
2
− 𝑠)

 𝑑𝑠.

(57)

Observe that
𝜇 (⋅)

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − ⋅) − (𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡2 − ⋅)


≤ 2
𝑀𝑒
𝜔𝑇

𝜔𝛼−1
𝜇 (⋅) ∈ 𝐿

1
(𝐼,R) ,

(58)

and, by Lemma 12, (𝑔
𝛼−1

∗ 𝑆
𝛼,1
)(𝑡) = 𝑆

𝛼,𝛼
(𝑡) for all 𝑡 ≥ 0.

Moreover, by Proposition 11 we have that 𝑆
𝛼,𝛼
(𝑡) is norm

continuous and therefore if 𝑡
1
→ 𝑡
2
, then (𝑔

𝛼−1
∗ 𝑆
𝛼,1
)(𝑡
1
−

𝑠) − (𝑔
𝛼−1

∗ 𝑆
𝛼,1
)(𝑡
2
− 𝑠) → 0 in B(𝑋). We obtain by

Lebesgue’s dominated convergence theorem that lim
𝑡
1
→𝑡
2

𝐼
2
=

0. Therefore, {Γ
2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is an equicontinuous family.

Finally, we prove that𝐻(𝑡) fl {Γ
2
𝑢(𝑡) : 𝑢 ∈ 𝐵

𝑟
} is relatively

compact in𝑋 for each 𝑡 ∈ [0, 𝑇]. Obviously,𝐻(0) is relatively
compact in𝑋. Now, we take 𝑡 > 0. For 0 < 𝜀 < 𝑡 we define on
𝐵
𝑟
the operator

(Γ
𝜀

2
𝑢) (𝑡) fl ∫

𝑡−𝜀

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠. (59)

The hypotheses implies the compactness of (𝑔
𝛼−1

∗ 𝑆
𝛼,1
)(𝑡) =

𝑆
𝛼,𝛼
(𝑡) for all 𝑡 > 0 (by Lemma 12 and Theorem 14) and

therefore the set K
𝜀
fl {(𝑔

𝛼−1
∗ 𝑆
𝛼,1
)(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠)) : 𝑢 ∈

𝐵
𝑟
, 0 ≤ 𝑠 ≤ 𝑡 − 𝜀} is compact for all 𝜀 > 0. Then conv(K

𝜀
)

is also a compact set by Theorem 7. By using the mean-value
theorem for the Bochner integrals (see [32, Corollary 8, page
48]), we obtain that

(Γ
𝜀

2
𝑢) (𝑡) ∈ 𝑡conv (K𝜀), ∀𝑡 ∈ [0, 𝑇] . (60)

Therefore, the set 𝐻
𝜀
(𝑡) fl {(Γ

𝜀

2
𝑢)(𝑡) : 𝑢 ∈ 𝐵

𝑟
} is relatively

compact in𝑋 for all 𝜀 > 0. Now, observe that
(Γ2𝑢) (𝑡) − (Γ

𝜀

2
𝑢) (𝑡)



≤ ∫

𝑡

𝑡−𝜀

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

≤
𝑀𝑟𝑒
𝜔𝑇

𝜔𝛼−1
∫

𝑡

𝑡−𝜀

𝑒
−𝜔𝑠

𝜇 (𝑠) 𝑑𝑠.

(61)

Since the function 𝑠 → 𝑒
−𝜔𝑠

𝜇(𝑠) belongs to 𝐿1([𝑡 − 𝜀, 𝑡],R
+
),

we conclude by the Lebesgue dominated convergence theo-
rem that

lim
𝜀→0

(Γ2𝑢) (𝑡) − (Γ
𝜀

2
𝑢) (𝑡)

 = 0. (62)
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Therefore the set {Γ
2
𝑢(𝑡) : 𝑢 ∈ 𝐵

𝑟
} is relatively compact in

𝑋 for each 𝑡 ∈ (0, 𝑇]. By the Ascoli-Arzela theorem, the set
{Γ
2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is relatively compact. We conclude that Γ

2

is a completely continuous operator. Hence, by Krasnoselskii
Theorem 8 we have that Γ = Γ

1
+ Γ
2
has a fixed point on 𝐵

𝑟
,

which means that nonlocal problem (45) has a mild solution
and the proof of the theorem is finished.

The proof of the following result uses the Schauder fixed
point theorem.We notice that here we will assume that 𝑆

𝛼,1
(𝑡)

is continuous in the uniform operator topology for all 𝑡 > 0.
Moreover, we have a weaker condition on the parameters𝑀,
𝜔, and 𝑇.

Theorem21. Let 1 < 𝛼 < 2. Let𝐴 be the generator of an (𝛼, 1)-
resolvent family {𝑆

𝛼,1
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Suppose that (𝜆𝛼 −
𝐴)
−1 is compact for all 𝜆 > 𝜔

1/𝛼, 𝑆
𝛼,1
(𝑡) is continuous in the

uniform operator topology for all 𝑡 > 0, and𝑀𝑒
𝜔𝑇
‖𝜇‖
∞
𝑇 < 1.

Then, under assumptions (H1)–(H3), problem (45) has at least
one mild solution.

Proof. We define the operator Γ : 𝐶(𝐼, 𝑋) → 𝐶(𝐼,𝑋) by

(Γ𝑢) (𝑡) fl 𝑆
𝛼,1
(𝑡) [𝑢
0
− 𝑝 (𝑢)]

+ (𝑔
1
∗ 𝑆
𝛼,1
) (𝑡) (𝑢

1
− 𝑞 (𝑢))

+ ∫

𝑡

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ∈ 𝐼 = [0, 𝑇] .

(63)

Choose
𝑟

=
𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

) + (𝑀/𝜔) 𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

)

1 − (𝑀𝑒𝜔𝑇/𝜔𝛼−1)
𝜇
∞

𝑇
.

(64)

Let 𝐵
𝑟
fl {𝑢 ∈ 𝐶(𝐼, 𝑋) : ‖𝑢‖ ≤ 𝑟}. We shall prove that Γ :

𝐵
𝑟
→ 𝐵
𝑟
has at least one fixed point by the Schauder fixed

point theorem. As in the proof ofTheorem 20 it is easy to see
that Γ sends 𝐵

𝑟
into 𝐵

𝑟
, and Γ : 𝐵

𝑟
→ 𝐵
𝑟
is a continuous

operator.
We claim that {Γ𝑢 : 𝑢 ∈ 𝐵

𝑟
} is relatively compact.

Indeed, as in the proof ofTheorem 20, it is easy to see that
{Γ𝑢 : 𝑢 ∈ 𝐵

𝑟
} is uniformly bounded. On the other hand, to

see the equicontinuity, let 𝑢 ∈ 𝐵
𝑟
, and take 𝑡

1
, 𝑡
2
∈ 𝐼 with

0 ≤ 𝑡
2
< 𝑡
1
≤ 𝑇. We have

Γ𝑢 (𝑡1) − Γ𝑢 (𝑡2)
 ≤

(𝑆𝛼,1 (𝑡1) − 𝑆𝛼,1 (𝑡2)) (𝑢0

− 𝑝 (𝑢))
 +

((𝑔1 ∗ 𝑆𝛼,1) (𝑡1) − (𝑔1 ∗ 𝑆𝛼,1) (𝑡2))

⋅ (𝑢
1
− 𝑞 (𝑢))

 + ∫

𝑡
1

𝑡
2

(𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠 + ∫

𝑡
2

0

((𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡1 − 𝑠)

− (𝑔
1
∗ 𝑆
𝛼,1
) (𝑡
2
− 𝑠)) 𝑓 (𝑠, 𝑢 (𝑠))

 𝑑𝑠 fl 𝐼
1
+ 𝐼
2

+ 𝐼
3
+ 𝐼
4
.

(65)

Observe that for 𝐼
1
we have

𝐼
1
≤
𝑆𝛼,1 (𝑡1) − 𝑆𝛼,1 (𝑡2)



(𝑢0 − 𝑔 (𝑢))
 . (66)

By hypothesis, using the norm continuity of 𝑆
𝛼,1
(𝑡), we obtain

that lim
𝑡
1
→𝑡
2

𝐼
1
= 0.

Lemma 12 implies (𝑔
1
∗ 𝑆
𝛼,1
)(𝑡) = 𝑆

𝛼,2
(𝑡) for all 𝑡 ≥ 0 and

by Proposition 11 we have that (𝑔
1
∗ 𝑆
𝛼,1
)(𝑡) is continuous in

B(𝑋), and hence

𝐼
2
≤
(𝑔1 ∗ 𝑆𝛼,1) (𝑡1) − (𝑔1 ∗ 𝑆𝛼,1) (𝑡2)



(𝑢0 − 𝑔 (𝑢))


→ 0,

(67)

as 𝑡
1
→ 𝑡
2
. On the other hand, 𝐼

3
, 𝐼
4
→ 0 as 𝑡

1
→ 𝑡
2
as in the

proof of Step 3 inTheorem 20.Therefore, the set {Γ𝑢 : 𝑢 ∈ 𝐵
𝑟
}

is equicontinuous.
Finally, we will prove that {Γ𝑢(𝑡) : 𝑢 ∈ 𝐵

𝑟
} is relatively

compact for all 𝑡 ∈ [0, 𝑇]. Clearly, {Γ𝑢(0) : 𝑢 ∈ 𝐵
𝑟
} is relatively

compact. Now, we take 𝑡 > 0. For each 0 < 𝜀 < 𝑡, we define
the operator

(Γ
𝜀
𝑢) (𝑡)

fl 𝑆
𝛼,1
(𝜀) ∫

𝑡−𝜀

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠.

(68)

The hypothesis and Proposition 16 show that 𝑆
𝛼,1
(𝑡) is

compact for all 𝑡 > 0 and therefore the set𝐻
𝜀
(𝑡) fl {(Γ

𝜀

2
𝑢)(𝑡) :

𝑢 ∈ 𝐵
𝑟
} is relatively compact in 𝑋 for all 𝜀 > 0. Now, observe

that


𝑆
𝛼,1
(𝜀) ∫

𝑡−𝜀

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− ∫

𝑡−𝜀

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠



≤ 𝑟∫

𝑡−𝜀

0

𝑆𝛼,1 (𝜀) (𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − 𝑠 − 𝜀)

− (𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠)

 𝜇 (𝑠) 𝑑𝑠.

(69)

By Proposition 11, (𝑔
𝛼−1

∗ 𝑆
𝛼,1
)(𝑡) is norm continuous for all

𝑡 > 0 and therefore
𝑆𝛼,1 (𝜀) (𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − 𝑠 − 𝜀)

− (𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠)

 → 0, as 𝜀 → 0.

(70)

On the other hand, since
𝑆𝛼,1 (𝜀) (𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − ⋅ − 𝜀) − (𝑔𝛼−1 ∗ 𝑆𝛼,1) (𝑡 − ⋅)



≤
𝑀
2
𝑒
2𝜔𝑇

𝜔𝛼−1
𝑒
−𝜔(⋅+𝜀)

+
𝑀𝑒
𝜔𝑇

𝜔𝛼−1
𝑒
−𝜔⋅

(71)

and the function 𝑠 → (𝑀
2
𝑒
2𝜔𝑇

/𝜔
𝛼−1

)𝑒
−𝜔(𝑠+𝜀)

+ (𝑀𝑒
𝜔𝑇
/

𝜔
𝛼−1

)𝑒
−𝜔𝑠 belongs to 𝐿1(𝐼,R

+
), we conclude by the Lebesgue

dominated convergence theorem that

lim
𝜀→0



𝑆
𝛼,1
(𝜀) ∫

𝑡−𝜀

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− ∫

𝑡−𝜀

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠



= 0.

(72)
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As in the proof of [24, Theorem 4.1], we get

lim
𝜀→0



𝑆
𝛼,1 (𝜀) ∫

𝑡−𝜀

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠 − 𝜀) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− ∫

𝑡

0

(𝑔
𝛼−1

∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠



= 0,

(73)

and therefore the set {∫𝑡
0
(𝑔
𝛼−1

∗ 𝑆
𝛼,1
)(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 : 𝑢 ∈

𝐵
𝑟
} is relatively compact for all 𝑡 ∈ (0, 𝑇]. The compactness

of 𝑆
𝛼,1
(𝑡) and (𝑔

1
∗ 𝑆
𝛼,1
)(𝑡) = 𝑆

𝛼,2
(𝑡) (by Lemma 12 and

Theorem 14) imply that {Γ𝑢(𝑡) : 𝑢 ∈ 𝐵
𝑟
} is relatively compact

in 𝑋 for each 𝑡 ∈ (0, 𝑇]. By the Ascoli-Arzela theorem, the
set {Γ𝑢 : 𝑢 ∈ 𝐵

𝑟
} is relatively compact. We conclude that Γ

is a compact operator on 𝐵
𝑟
. Hence, by Schauder Theorem 9

we have that Γ has a fixed point on 𝐵
𝑟
and therefore nonlocal

problem (45) has a mild solution.

Remark 22. We notice that the norm continuity of 𝑆
𝛼,1
(𝑡) for

0 < 𝛼 < 1 and 𝑡 > 0 follows, for example, if {𝑆
𝛼,1
(𝑡)}
𝑡≥0

is
analytic (see [24, Lemma 3.8]) or if 𝐴 is an almost sectorial
operator (see [23, Theorem 3.2]).

Now, we consider the nonlocal problem for the Caputo
fractional derivative

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐼 fl [0, 𝑇] ,

𝑢 (0) + 𝑝 (𝑢) = 𝑢0,

(74)

𝑢
0
∈ 𝑋, 1/2 < 𝛼 < 1, 𝑇 > 0, and 𝐴 is a closed linear

operator defined on 𝑋 which generates the (𝛼, 𝛼)-resolvent
family {𝑆

𝛼,𝛼
(𝑡)}
𝑡≥0

.
The mild solution to problem (74) is given by

𝑢 (𝑡) = 𝑆𝛼,1 (𝑡) (𝑢0 − 𝑝 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(75)

It is easy to see (by using the uniqueness of the Laplace
transform) that the mild solution to problem (74) can be also
written as

𝑢 (𝑡) = (𝑔
1−𝛼

∗ 𝑆
𝛼,𝛼
) (𝑡) (𝑢

0
− 𝑝 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(76)

The proof of the following result follows similarly to
Theorem 20 and therefore we omit it.

Theorem 23. Let 1/2 < 𝛼 < 1. Let 𝐴 be the generator of an
(𝛼, 𝛼)-resolvent family {𝑆

𝛼,𝛼
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Suppose that
(𝜆
𝛼
−𝐴)
−1 is compact for all 𝜆 > 𝜔1/𝛼, and 𝑆

𝛼,𝛼
(𝑡) is continuous

in the uniform operator topology for all 𝑡 > 0. If𝑀𝑒
𝜔𝑇
‖𝜇‖
∞
𝑇 <

1 and (𝑀/𝜔
1−𝛼

)𝑒
𝜔𝑇
𝐿
𝑝
< 1, then, under assumptions (H1)–

(H3), problem (74) has at least one mild solution.

5. Nonlocal Fractional Cauchy Problems:
The Riemann-Liouville Case

In this section we consider the nonlocal problem for the
Riemann-Liouville fractional derivative

𝐷
𝛼
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

(𝑔
2−𝛼

∗ 𝑢) (0) + 𝑝 (𝑢) = 𝑢
0
,

(𝑔
2−𝛼

∗ 𝑢)


(0) + 𝑞 (𝑢) = 𝑢
1
,

(77)

where 𝑢
0
, 𝑢
1
∈ 𝑋, 1 < 𝛼 < 2, and𝐴 is a closed linear operator

defined on𝑋. Assume that𝐴 generates an (𝛼, 𝛼−1)-resolvent
family given by {𝑆

𝛼,𝛼−1
(𝑡)}
𝑡≥0

. Taking Laplace transform in
(77) we obtain by (14) that

𝑢 (𝑡) = 𝑆𝛼,𝛼−1 (𝑡) (𝑢0 − 𝑝 (𝑢)) + 𝑆𝛼,𝛼 (𝑡) (𝑢1 − 𝑞 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(78)

Theuniqueness of the Laplace transform implies that themild
solution 𝑢 to problem (77) is also given by

𝑢 (𝑡) = 𝑆
𝛼,𝛼−1

(𝑡) (𝑢
0
− 𝑝 (𝑢))

+ (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡) (𝑢
1
− 𝑞 (𝑢))

+ ∫

𝑡

0

(𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(79)

for all 𝑡 ∈ [0, 𝑇].

Theorem 24. Let 1 < 𝛼 < 2. Let 𝐴 be the generator of an
(𝛼, 𝛼−1)-resolvent family {𝑆

𝛼,𝛼−1
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Assume
that the resolvent (𝜆𝛼 − 𝐴)

−1 is compact for all 𝜆 > 𝜔
1/𝛼. If

(𝑀𝑒
𝜔𝑇
𝐿
𝑝
+ (𝑀/𝜔)𝑒

𝜔𝑇
𝐿
𝑞
) < 1 and (𝑀𝑒

𝜔𝑇
/𝜔)‖𝜇‖

∞
𝑇 < 1,

then, under assumptions (H1)–(H3), problem (77) has at least
one mild solution.

Proof. Let 𝐵
𝑟
fl {𝑢 ∈ 𝐶(𝐼, 𝑋) : ‖𝑢‖ ≤ 𝑟}, where

𝑟

fl
𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

) + (𝑀/𝜔) 𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

)

1 − (𝑀𝑒𝜔𝑇/𝜔)
𝜇
∞

𝑇
.

(80)

On 𝐵
𝑟
we define the operators Γ

1
, Γ
2
by

(Γ
1
𝑢) (𝑡) fl 𝑆

𝛼,𝛼−1
(𝑡) [𝑢
0
− 𝑝 (𝑢)]

+ (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡) (𝑢
1
− 𝑞 (𝑢)) ,

𝑡 ∈ [0, 𝑇] ,

(Γ
2
𝑢) (𝑡) fl ∫

𝑡

0

(𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] ,

(81)
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and 𝑢 ∈ 𝐵
𝑟
. We shall prove that Γ fl Γ

1
+ Γ
2
has at least one

fixed point by the Krasnoselskii fixed point theorem. We will
consider several steps in the proof.

Step 1. We will see that if 𝑢, V ∈ 𝐵
𝑟
, then Γ

1
𝑢 + Γ
2
V ∈ 𝐵

𝑟
. In

fact, by Lemma 12 we have

(Γ1𝑢) (𝑡) + (Γ2V) (𝑡)


≤
𝑆𝛼,𝛼−1 (𝑡)



𝑢0 − 𝑝 (𝑢)


+
(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡)



𝑢1 − 𝑞 (𝑢)


+ ∫

𝑡

0

(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡 − 𝑠)


𝑓 (𝑠, V (𝑠))
 𝑑𝑠

≤ 𝑀𝑒
𝜔𝑡
(
𝑢0

 +
𝑝 (𝑢)

) +
𝑀

𝜔
𝑒
𝜔𝑡
(
𝑢1

 +
𝑞 (𝑢)

)

+
𝑀𝑟𝑒
𝜔𝑡

𝜔
∫

𝑡

0

𝑒
−𝜔𝑠

𝜇 (𝑠) 𝑑𝑠

≤ 𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

)

+
𝑀

𝜔
𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

) +
𝑀𝑟𝑒
𝜔𝑇

𝜔

𝜇
∞

𝑇

= 𝑟.

(82)

Hence Γ
1
𝑢 + Γ
2
V ∈ 𝐵
𝑟
for all 𝑢, V ∈ 𝐵

𝑟
.

Step 2. Γ
1
is a contraction on 𝐵

𝑟
. In fact, if 𝑢, V ∈ 𝐵

𝑟
, then

Γ1𝑢 (𝑡) − Γ1V (𝑡)


≤
𝑆𝛼,𝛼−1 (𝑡)



𝑝 (𝑢) − 𝑝 (V)


+
(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡)



𝑞 (𝑢) − 𝑞 (V)


≤ 𝑀𝑒
𝜔𝑡
𝐿
𝑝 ‖𝑢 − V‖ +

𝑀

𝜔
𝑒
𝜔𝑡
𝐿
𝑞 ‖𝑢 − V‖

≤ (𝑀𝑒
𝜔𝑇
𝐿
𝑝
+
𝑀

𝜔
𝑒
𝜔𝑇
𝐿
𝑞
) ‖𝑢 − V‖ .

(83)

Since (𝑀𝑒
𝜔𝑇
𝐿
𝑝
+ (𝑀/𝜔)𝑒

𝜔𝑇
𝐿
𝑞
) < 1, we conclude that Γ

1
is a

contraction.

Step 3. Γ
2
is completely continuous.

As in the proof of Theorem 20 it is easy to see that Γ
2
is a

continuous operator and the set {Γ
2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is uniformly

bounded.
To prove the equicontinuity, let 𝑢 ∈ 𝐵

𝑟
, and take 0 ≤ 𝑡

2
<

𝑡
1
≤ 𝑇. Observe that

Γ2𝑢 (𝑡1) − Γ2𝑢 (𝑡2)
 ≤ ∫

𝑡
1

𝑡
2

(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡1 − 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠 + ∫

𝑡
2

0

((𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡1 − 𝑠)

− (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡
2
− 𝑠)) 𝑓 (𝑠, 𝑢 (𝑠))

 𝑑𝑠 fl 𝐼
1

+ 𝐼
2
.

(84)

To estimate 𝐼
1
we notice that

𝐼
1
≤
𝑀𝑒
𝜔𝑇

𝜔
∫

𝑡
1

𝑡
2

𝑒
−𝜔𝑠

𝜇 (𝑠) ‖𝑢 (𝑠)‖ 𝑑𝑠

≤
𝑀𝑟𝑒
𝜔𝑇

𝜔

𝜇
∞

(𝑡
1
− 𝑡
2
) ,

(85)

and therefore lim
𝑡
1
→𝑡
2

𝐼
1
= 0. For 𝐼

2
we have

𝐼
2
≤ ∫

𝑡
2

0

(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡1 − 𝑠)

− (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡
2
− 𝑠)



𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

≤ ∫

𝑡
2

0

𝜇 (𝑠)
(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡1 − 𝑠)

− (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡
2
− 𝑠)

 ‖𝑢 (𝑠)‖ 𝑑𝑠 ≤ 𝑟∫

𝑡
2

0

𝜇 (𝑠)

⋅
(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡1 − 𝑠)

− (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡
2
− 𝑠)

 𝑑𝑠.

(86)

Observe that

𝜇 (⋅)
(𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡1 − ⋅) − (𝑔1 ∗ 𝑆𝛼,𝛼−1) (𝑡2 − ⋅)



≤ 2
𝑀𝑒
𝜔𝑇

𝜔
𝜇 (⋅) ∈ 𝐿

1
(𝐼,R) ,

(87)

and, by Lemma 12, (𝑔
1
∗ 𝑆
𝛼,𝛼−1

)(𝑡) = 𝑆
𝛼,𝛼
(𝑡) for all 𝑡 ≥ 0.

Moreover, by Proposition 11 we have that 𝑆
𝛼,𝛼
(𝑡) is norm

continuous and therefore if 𝑡
1
→ 𝑡
2
, then (𝑔

1
∗ 𝑆
𝛼,𝛼−1

)(𝑡
1
−

𝑠) − (𝑔
1
∗ 𝑆
𝛼,𝛼−1

)(𝑡
2
− 𝑠) → 0 in B(𝑋). We obtain by

Lebesgue’s dominated convergence theorem that lim
𝑡
1
→𝑡
2

𝐼
2
=

0. Therefore, {Γ
2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is an equicontinuous family.

Finally, the compactness of (𝑔
1
∗ 𝑆
𝛼,𝛼−1

)(𝑡) = 𝑆
𝛼,𝛼
(𝑡) for

all 𝑡 > 0 (by Lemma 12 andTheorem 14) implies that {Γ
2
𝑢(𝑡) :

𝑢 ∈ 𝐵
𝑟
} is relatively compact in𝑋 for each 𝑡 ∈ [0, 𝑇] (as in the

proof of Theorem 20). We conclude that Γ
2
is a completely

continuous operator and, by the Krasnoselskii theorem, the
operator Γ = Γ

1
+Γ
2
has a fixed point on 𝐵

𝑟
, whichmeans that

nonlocal problem (77) has at least one mild solution.

In the next result, we consider a weaker condition on the
parameters 𝑀, 𝜔, and 𝑇. However, we need to assume here
the norm continuity of 𝑆

𝛼,𝛼−1
(𝑡) for 3/2 < 𝛼 < 2.

Theorem 25. Let 3/2 < 𝛼 < 2. Let 𝐴 be the generator of an
(𝛼, 𝛼−1)-resolvent family {𝑆

𝛼,𝛼−1
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Assume
that (𝜆𝛼 − 𝐴)

−1 is compact for all 𝜆 > 𝜔
1/𝛼 and 𝑆

𝛼,𝛼−1
(𝑡) is

continuous in the uniform operator topology for all 𝑡 > 0. If
(𝑀𝑒
𝜔𝑇
/𝜔)‖𝜇‖

∞
𝑇 < 1, then, under assumptions (H1)–(H3),

problem (77) has at least one mild solution.
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Proof. On 𝐵
𝑟
we define the operator

Γ𝑢 (𝑡) fl 𝑆
𝛼,𝛼−1

(𝑡) (𝑢
0
− 𝑝 (𝑢))

+ (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡) (𝑢
1
− 𝑞 (𝑢))

+ ∫

𝑡

0

(𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(88)

where 𝑡 ∈ [0, 𝑇] and

𝑟

fl
𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

) + (𝑀/𝜔) 𝑒
𝜔𝑇
(
𝑢1

 +
𝑞 (𝑢)

)

1 − (𝑀𝑒𝜔𝑇/𝜔)
𝜇
∞

𝑇
.

(89)

The proof follows the same lines ofTheorem 21. We give here
only the details on the relative compactness of {Γ

2
𝑢(𝑡) : 𝑢 ∈

𝐵
𝑟
} in 𝑋 for each 𝑡 ∈ [0, 𝑇]. Theorem 14 implies that (𝑔

1
∗

𝑆
𝛼,𝛼−1

)(𝑡) = 𝑆
𝛼,𝛼
(𝑡) is compact for all 𝑡 > 0 and therefore the

set {∫𝑡
0
(𝑔
1
∗ 𝑆
𝛼,𝛼−1

)(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠 : 𝑢 ∈ 𝐵
𝑟
} is relatively

compact for all 𝑡 ∈ [0, 𝑇] (as in the proof ofTheorem 20). On
the other hand, the hypothesis and Proposition 17 imply that
𝑆
𝛼,𝛼−1

(𝑡) is compact for all 𝑡 > 0 and thus the set {Γ𝑢(𝑡) : 𝑢 ∈
𝐵
𝑟
} is relatively compact for all 𝑡 ∈ [0, 𝑇]. The existence of a

fixed point to Γ, and therefore of a mild solution to problem
(77), follows from the Schauder theorem.

Nowwediscuss the existence ofmild solutions to the non-
local fractional Cauchy problem for the Riemann-Liouville
fractional derivative in case 0 < 𝛼 < 1:

𝐷
𝛼
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

(𝑔
1−𝛼

∗ 𝑢) (0) + 𝑝 (𝑢) = 𝑢
0
,

(90)

where 𝑢
0
∈ 𝑋 and 𝐴 is a closed linear operator defined on𝑋.

We assume that 𝐴 generates an (𝛼, 𝛼)-resolvent family given
by {𝑆
𝛼,𝛼
(𝑡)}
𝑡≥0

. By using the Laplace transform in (90), it is
easy to see that

𝑢 (𝑡) = 𝑆
𝛼,𝛼

(𝑡) (𝑢
0
− 𝑝 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,𝛼

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(91)

Theorem 26. Let 1/2 < 𝛼 < 1. Let 𝐴 be the generator of
an (𝛼, 𝛼)-resolvent family {𝑆

𝛼,𝛼
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Assume
that (𝜆𝛼 − 𝐴)

−1 is compact for all 𝜆 > 𝜔
1/𝛼, and 𝑆

𝛼,𝛼
(𝑡) is

continuous in the uniform operator topology for all 𝑡 > 0. If
𝑀𝑒
𝜔𝑇
‖𝜇‖
∞
𝑇 < 1 and𝑀𝑒

𝜔𝑇
𝐿
𝑝
< 1, then, under assumptions

(H1)–(H3), problem (90) has at least one mild solution.

Proof. Let

𝑟 fl
𝑀𝑒
𝜔𝑇
(
𝑢0

 +
𝑝 (𝑢)

)

1 −𝑀𝑒𝜔𝑇
𝜇
∞

𝑇
. (92)

If we define on 𝐵
𝑟
the operators Γ

1
, Γ
2
by

(Γ
1
𝑢) (𝑡) fl 𝑆

𝛼,𝛼
(𝑡) [𝑢
0
− 𝑝 (𝑢)] , 𝑡 ∈ [0, 𝑇] ,

(Γ
2
𝑢) (𝑡) fl ∫

𝑡

0

𝑆
𝛼,𝛼

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

(93)

for 𝑢 ∈ 𝐵
𝑟
, then, as in the proof of the previous theorems,

it is easy to see that if 𝑢, V ∈ 𝐵
𝑟
, then Γ

1
𝑢 + Γ
2
V ∈ 𝐵

𝑟
, and

Γ
1
is a contraction on 𝐵

𝑟
. Moreover, Γ

2
is continuous on 𝐵

𝑟
,

{Γ
2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is uniformly bounded, and {Γ

2
𝑢 : 𝑢 ∈ 𝐵

𝑟
} is an

equicontinuous family. Finally, by the compactness of 𝑆
𝛼,𝛼
(𝑡)

(see Proposition 18) and by using a similar method as we did
in the proof of Theorem 20 (Step 3), we prove that 𝐻(𝑡) fl
{Γ
2
𝑢(𝑡) : 𝑢 ∈ 𝐵

𝑟
} is relatively compact in𝑋 for each 𝑡 ∈ [0, 𝑇].

Thus, by the Ascoli-Arzela theorem, the set {Γ
2
𝑢 : 𝑢 ∈ 𝐵

𝑟
}

is relatively compact and hence Γ
2
is a completely continuous

operator. By the Krasnoselskii theorem, we conclude that Γ =
Γ
1
+Γ
2
has a fixed point on𝐵

𝑟
, and therefore nonlocal problem

(90) has at least one mild solution.

6. Applications

In this section, we give some applications. As consequence of
the previous results, we have the following results.

Consider the semilinear problem

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐽

2−𝛼
𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ 𝐼 fl [0, 𝑇] ,

𝑢 (0) + 𝑝 (𝑢) = 𝑢
0
,

𝑢

(0) + 𝑞 (𝑢) = 𝑢1,

(94)

where 𝑢
0
, 𝑢
1

∈ 𝑋, 𝐽2−𝛼 denotes the Riemann-Liouville
fractional integral operator, 𝑓 : [0, 𝑇] × 𝑋 → 𝑋, and 𝑝, 𝑞 :

𝐶(𝐼, 𝑋) → 𝐶(𝐼,𝑋) are continuous.
Let 𝐴 be the generator of an (𝛼, 1)-resolvent family

{𝑆
𝛼,1
(𝑡)}
𝑡≥0

. Then it is well known that the mild solution of
(94) is defined by means of the variation of constant formula

𝑢 (𝑡) = 𝑆
𝛼,1
(𝑡) [𝑢
0
− 𝑝 (𝑢)]

+ (𝑔
1
∗ 𝑆
𝛼,1
) (𝑡) [𝑢

1
− 𝑞 (𝑢)]

+ ∫

𝑡

0

(𝑔
1
∗ 𝑆
𝛼,1
) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼.

(95)

We remark that the case 0 < 𝛼 < 1was recently studied in [25,
Section 4]. On the other hand, we notice that the case 𝑢(0) =
0 and 𝑞 ≡ 0 has been recently studied in [33, Section 4] by
assuming the relative compactness of the set K fl {𝑆

𝛼,1
(𝑡 −

𝑠)𝑓(𝑠, 𝑢(𝑠)) : 𝑢 ∈ 𝐶(𝐼, 𝑋), 0 ≤ 𝑠 ≤ 𝑡}. Proposition 16 shows
that 𝑆

𝛼,1
(𝑡) is compact for all 𝑡 > 0 and by using the Leray-

Schauder alternative theorem (see Theorem 10) it is easy to
prove (as inTheorem 21 and [33,Theorem 4.4]) the following
result. We omit the details.
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Theorem 27. Let 1 < 𝛼 < 2. Let 𝐴 be the generator of an
(𝛼, 1)-resolvent family {𝑆

𝛼,1
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Suppose that
(𝜆
𝛼
−𝐴)
−1 is compact for all 𝜆 > 𝜔1/𝛼, and 𝑆

𝛼,1
(𝑡) is continuous

in the uniform operator topology for all 𝑡 > 0. Then, under
assumptions (H1)–(H3), problem (94) has at least one mild
solution.

Now, we consider the Riemann-Liouville fractional
Cauchy problem

𝐷
𝛼
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐽

2−𝛼
𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

(𝑔
2−𝛼

∗ 𝑢) (0) + 𝑝 (𝑢) = 𝑢
0
,

(𝑔
2−𝛼

∗ 𝑢)


(0) + 𝑞 (𝑢) = 𝑢
1
,

(96)

where 𝑢
0
, 𝑢
1
∈ 𝑋, 1 < 𝛼 < 2, and𝐴 is a closed linear operator

defined on𝑋. Assume that𝐴 generates an (𝛼, 𝛼−1)-resolvent
family given by {𝑆

𝛼,𝛼−1
(𝑡)}
𝑡≥0

. The mild solution to problem
(96) is given by

𝑢 (𝑡) = 𝑆𝛼,𝛼−1 (𝑡) (𝑢0 − 𝑝 (𝑢)) + 𝑆𝛼,𝛼 (𝑡) (𝑢1 − 𝑞 (𝑢))

+ ∫

𝑡

0

𝑆
𝛼,2 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

(97)

which is equivalent (by the uniqueness of the Laplace trans-
form) to

𝑢 (𝑡) = 𝑆
𝛼,𝛼−1

(𝑡) (𝑢
0
− 𝑝 (𝑢))

+ (𝑔
1
∗ 𝑆
𝛼,𝛼−1

) (𝑡) (𝑢1 − 𝑞 (𝑢))

+ ∫

𝑡

0

(𝑔
3−𝛼

∗ 𝑆
𝛼,𝛼−1

) (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(98)

for all 𝑡 ∈ [0, 𝑇].
Proposition 17 shows that 𝑆

𝛼,𝛼−1
(𝑡) is compact for all 𝑡 >

0 (and 3/2 < 𝛼 < 2) and by using the Leray-Schauder
alternative theorem it is easy to prove (as in Theorem 25
and [33, Theorem 4.4] and [25, Theorem 4.1]) the following
existence result. We omit the proof.

Theorem 28. Let 3/2 < 𝛼 < 2. Let 𝐴 be the generator of an
(𝛼, 𝛼−1)-resolvent family {𝑆

𝛼,𝛼−1
(𝑡)}
𝑡≥0

of type (𝑀, 𝜔). Assume
that the resolvent (𝜆𝛼 − 𝐴)−1 is compact for all 𝜆 > 𝜔

1/𝛼 and
𝑆
𝛼,𝛼−1

(𝑡) is continuous in the uniform operator topology for all
𝑡 > 0. Then, under assumptions (H1)–(H3), problem (96) has
at least one mild solution.

We end this section with an example.

Example 29. Consider the following problem:

𝐷
𝛼

𝑡
𝑢 (𝑡, 𝑥) =

𝜕
2

𝜕𝑥2
𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡, 𝑥)) ,

(𝑡, 𝑥) ∈ [0, 1] × [0, 𝜋] ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ [0, 1] ,

𝑢 (0, 𝑥) +

𝑛

∑

𝑘=1

𝑎
𝑘
𝑢 (𝑡, 𝑥) = 𝑢

0
(𝑥) , 𝑥 ∈ [0, 𝜋] ,

(99)

where 1/2 < 𝛼 < 1, 𝑎
𝑘
∈ R, and 𝑛 ∈ N. Let 𝑋 = 𝐿

2
([0, 𝜋])

and consider the operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 defined by
𝐷(𝐴) fl {V ∈ 𝑋 : V ∈ 𝐻

2
([0, 𝜋]), V(0) = V(𝜋)} and, for

𝑢 ∈ 𝐷(𝐴), 𝐴𝑢 fl 𝜕
2
𝑢/𝜕𝑥
2.

It is well known that 𝐴 generates a compact and analytic
(and hence norm continuous for all 𝑡 > 0) 𝐶

0
-semigroup

{𝑇(𝑡)}
𝑡≥0

on 𝑋 such that ‖𝑇(𝑡)‖ ≤ 1 for all 𝑡 ≥ 0. Since 𝐴
generates a 𝐶

0
-semigroup, that is, an (1, 1)-resolvent family,

we obtain by [29, Corollary 14 and Theorem 3] that 𝐴
generates the (𝛼, 𝛼)-resolvent family {𝑆

𝛼,𝛼
(𝑡)}
𝑡≥0

defined by

𝑆
𝛼,𝛼 (𝑡) 𝑥 fl ∫

∞

0

𝜑
𝛼,0 (𝑡, 𝑠) 𝑇 (𝑠) 𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝑋, (100)

where 𝜑
𝛼,0

is the stable Lévy process of order 𝛼 defined by
(22). Since𝑇(𝑡) is normcontinuous, it is easy to see that 𝑆

𝛼,𝛼
(𝑡)

is norm continuous for all 𝑡 > 0 and the positivity of 𝜑
𝛼,0

(see
[29, Theorem 3]) implies that 𝑆

𝛼,𝛼
(𝑡) is of type (1, 1). On the

other hand, the compactness of 𝑇(𝑡) implies that (𝜆𝛼 − 𝐴) is
compact.

We notice that problem (99) can be written in the abstract
form of (74). Define the functions 𝑓 : [0, 1] × 𝐷(𝐴) → 𝑋 and
𝑝 : 𝐷(𝐴) → 𝑋 by

𝑓 (𝑡, 𝑢 (𝑡, 𝑥)) fl
𝑒
−𝑡
𝑢 (𝑡, 𝑥)

(4 + 𝑡) (1 + 𝑢 (𝑡, 𝑥))
,

𝑝 (𝑢) (𝑥) fl
𝑛

∑

𝑘=1

𝑎
𝑘
𝑢 (𝑡, 𝑥) .

(101)

Assume that∑𝑛
𝑘=1

|𝑎
𝑘
| < 1/4. We observe also that in this case

we have 𝜇(𝑡) = 𝑒−𝑡/(4 + 𝑡), 𝑇 = 𝑀 = 𝜔 = 1, and 𝐿
𝑝
= ‖𝜇‖

∞
=

1/4 (see Theorem 23).
It is easy to check assumptions (H1)–(H3) and the

hypotheses in Theorem 23 and therefore problem (99) has a
mild solution.

Analogously, we can consider the Riemann-Liouville case

𝐷
𝛼
𝑢 (𝑡, 𝑥) =

𝜕
2

𝜕𝑥2
𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑢 (𝑡, 𝑥)) ,

(𝑡, 𝑥) ∈ [0, 1] × [0, 𝜋] ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ [0, 1] ,

(𝑔
1−𝛼

∗ 𝑢) (0, 𝑥) +

𝑛

∑

𝑘=1

𝑎
𝑘
𝑢 (𝑡, 𝑥) = 𝑢

0
(𝑥) ,

𝑥 ∈ [0, 𝜋] .

(102)
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Under the same assumptions, we have by Theorem 26 that
problem (102) has a mild solution.

6.1. Conclusions. In this paper, we obtain conditions implying
the compactness of the family {𝑆

𝛼,𝛽
(𝑡)}
𝑡≥0

. As a consequence,
we obtain several results on the existence of mild solutions
to nonlocal fractional Cauchy problems to the Caputo and
Riemann-Liouville fractional derivatives.
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