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We discuss the Hankel determinants 𝐻
2
(𝑛) = 𝑎

𝑛
𝑎
𝑛+2

− (𝑎
𝑛+1

)
2 for typically real functions, that is, analytic functions which satisfy

the condition Im𝑧Im𝑓(𝑧) ≥ 0 in the unit disk Δ. Main results are concerned with 𝐻
2
(2) and 𝐻

2
(3). The sharp upper and lower

bounds are given. In general case, for 𝑛 ≥ 4, the results are not sharp. Moreover, we present some remarks connected with typically
real odd functions.

1. Introduction

Let Δ be the unit disk {𝑧 ∈ C : |𝑧| < 1} and let A be the
family of all functions 𝑓 analytic in Δ that have the Taylor
series expansion 𝑓(𝑧) = 𝑧 + ∑

∞

𝑛=2
𝑎
𝑛
𝑧
𝑛. In [1, 2] Pommerenke

defined 𝑞th Hankel determinant for a function 𝑓 as

𝐻
𝑞
(𝑛) =



𝑎
𝑛

𝑎
𝑛+1

⋅ ⋅ ⋅ 𝑎
𝑛+𝑞−1

𝑎
𝑛+1

𝑎
𝑛+2

⋅ ⋅ ⋅ 𝑎
𝑛+𝑞

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑎
𝑛+𝑞−1

𝑎
𝑛+𝑞

⋅ ⋅ ⋅ 𝑎
𝑛+2𝑞−2



, (1)

where 𝑛, 𝑞 ∈ N.
Recently, the Hankel determinant has been studied inten-

sively by many mathematicians.The research was focused on
𝐻
2
(2) for various classes of univalent functions. The papers

by Janteng et al. [3, 4], Lee et al. [5], Vamshee Krishna
and Ramreddy [6], and Selvaraj and Kumar [7] are worth
mentioning here. Janteng et al. derived the exact bounds of
|𝐻
2
(2)| for the classes: 𝑆∗ of star-like functions (|𝐻

2
(2)| ≤ 1),

K of convex functions (|𝐻
2
(2)| ≤ 1/8), and R of functions

whose derivative has a positive real part (|𝐻
2
(2)| ≤ 4/9). Lee

et al. [5] investigated the Hankel determinant in the general
class 𝑆

∗
(𝜑) of star-like functions with respect to a given

function 𝜑. This class was defined by Ma and Minda in [8].
In particular, Lee et al. obtained the results for the following
classes: 𝑆∗(𝛼) of star-like functions of order 𝛼 (|𝐻

2
(2)| ≤ (1 −

𝛼)
2), SL∗ of lemniscate star-like functions (|𝐻

2
(2)| ≤ 1/16;

for the definition of SL∗, see [9]), and 𝑆
∗

𝛽
of strongly star-

like functions of order 𝛽 (|𝐻
2
(2)| ≤ 𝛽

2). Vamshee Krishna
and Ramreddy [6] generalized the result of Janteng et al.
They gave the bound of |𝐻

2
(2)| in the class K(𝛼) of convex

functions of order 𝛼. Selvaraj and Kumar [7] proved that the
estimate of the second Hankel determinant for the classC of
close-to-convex functions is the same as that for the class 𝑆∗.
The question whether this bound is good for the class 𝑆 of
all univalent functions has no answer yet. One can find some
other results in this direction in [10–14].

Taking different set of parameters 𝑞 and 𝑛, the research
on the Hankel determinant is much more difficult. In [15]
Hayami and Owa discussed 𝐻

2
(𝑛) for functions 𝑓 satisfying

Re𝑓(𝑧)/𝑧 > 𝛼 or Re𝑓(𝑧) > 𝛼. On the other hand, Babalola
[16] tried to estimate |𝐻

3
(1)| for 𝑆∗,K, andR. Shanmugam

et al. [17] discussed |𝐻
3
(1)| for the class 𝑀

𝛼
of 𝛼-star-like

functions defined by Mocanu in [18].
In particular, if 𝑞 = 2 and 𝑛 = 1 then𝐻

2
(1) is known as a

classical functional of Fekete-Szegö. A lot of papers have been
devoted to the studies concerning this functional. Because
𝐻
2
(1) is not related to the subject of this paper, we omit

recalling results obtained in this direction.
The majority of results concerning the Hankel determi-

nants were obtained for univalent functions. In this paper
we discuss functions which, in general, are not univalent. We
focus our investigation on typically real functions.
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2. Class 𝑇 and the Hankel Determinants for
a Selected Functions in 𝑇

A function 𝑓 ∈ A that satisfies the condition Im 𝑧 Im𝑓(𝑧) ≥

0 for 𝑧 ∈ Δ is called a typically real function. Let 𝑇 denote
the class of all typically real functions. Robertson [19] proved
that 𝑓 ∈ 𝑇 if and only if there exists a probability measure 𝜇
on [−1, 1] such that the following formula holds:

𝑓 (𝑧) = ∫

1

−1

𝑧

1 − 2𝑧𝑡 + 𝑧2
𝑑𝜇 (𝑡) . (2)

The coefficients of a function 𝑓(𝑧) = 𝑧 + ∑
∞

𝑛=2
𝑎
𝑛
𝑧
𝑛
∈ 𝑇 can

be written as follows:

𝑎
𝑛
= ∫

1

−1

sin (𝑛 arccos 𝑡)
sin (arccos 𝑡)

𝑑𝜇 (𝑡) = ∫

1

−1

𝑈
𝑛−1

(𝑡) 𝑑𝜇 (𝑡) ,

𝑛 = 1, 2, . . . .

(3)

The functions 𝑈
𝑛
(𝑡), 𝑛 = 1, 2, . . ., which appear in the above

formula, are the well-known Chebyshev polynomials of the
second kind.

Since all coefficients of 𝑓 ∈ 𝑇 are real we look for the
lower and the upper bounds of𝐻

2
(2) instead of the bound of

|𝐻
2
(2)|. At the beginning, let us look at a few examples.

Example 1. All the functions 𝑓
𝑡
(𝑧) = 𝑧/(1 − 2𝑧𝑡 + 𝑧

2
), 𝑡 ∈

[−1, 1], are in 𝑆∗. Since 𝑓
𝑡
(𝑧) = 𝑧 + 2𝑡𝑧

2
+ (4𝑡
2
− 1)𝑧
3
+ (8𝑡
3
−

4𝑡)𝑧
4
+⋅ ⋅ ⋅ , we have𝐻

2
(2) = −1 for each 𝑡 ∈ [−1, 1].Moreover,

𝐻
2
(𝑛) = 𝑈

𝑛−1
(𝑡)𝑈
𝑛+1

(𝑡) − 𝑈
𝑛
(𝑡)
2. This and the Turan identity

for Chebyshev polynomials 𝑈
𝑛
(𝑡) result in 𝐻

2
(𝑛) = −1 for

each 𝑛 = 2, 3, . . ..

Example 2. For a function 𝑓(𝑧) = 𝑧(1 + 𝑧
2
)/(1 − 𝑧

2
)
2 having

the Taylor series expansion 𝑓(𝑧) = 𝑧 + 3𝑧
3
+ 5𝑧
5
+ ⋅ ⋅ ⋅ there

is𝐻
2
(𝑛) = −(𝑛 + 1)

2 for even 𝑛 and𝐻
2
(𝑛) = (𝑛 + 1)

2
− 1 for

odd 𝑛. In this case, the function 𝑓 is not univalent; the bound
of |𝐻
2
(2)| is much greater than 1, the value of the second

Hankel determinant for star-like functions or close-to-convex
functions.

Example 3. EveryHankel determinant𝐻
2
(𝑛), 𝑛 = 1, 2, . . ., for

a function 𝑓(𝑧) = log(1/(1 − 𝑧)) = 𝑧+ (1/2)𝑧
2
+ (1/3)𝑧

3
+ ⋅ ⋅ ⋅

is positive. Namely,𝐻
2
(𝑛) = 1/𝑛(𝑛 + 1)

2
(𝑛 + 2).

For a given class 𝐴 ⊂ A, we denote by Ω
𝑛
(𝐴), 𝑛 ≥ 1,

the region of variability of three succeeding coefficients of
functions in 𝐴, that is, the set {(𝑎

𝑛
(𝑓), 𝑎
𝑛+1

(𝑓), 𝑎
𝑛+2

(𝑓)) :

𝑓 ∈ 𝐴}. As it is seen in (3), the coefficients of typically
real functions are the Stieltjes integrals of the Chebyshev
polynomials of the second kind with respect to a probability
measure. Hence,Ω

𝑛
(𝑇) is the closed convex hull of the curve

𝛾 : [−1, 1] ∋ 𝑡 → (𝑈
𝑛−1

(𝑡), 𝑈
𝑛
(𝑡), 𝑈
𝑛+1

(𝑡)) (see, e.g., [20]).

Lemma 4. The functional 𝑇 ∋ 𝑓 → 𝐻
2
(𝑛), 𝑛 ≥ 2, attains its

extreme values on the boundary of Ω
𝑛
(𝑇).

Proof. The only critical point of ℎ(𝑥, 𝑦, 𝑧) = 𝑥𝑧 − 𝑦
2, where

𝑥 = 𝑎
𝑛
, 𝑦 = 𝑎

𝑛+1
, and 𝑧 = 𝑎

𝑛+2
, is (0, 0, 0). But ℎ(0, 0, 0) = 0.

Since ℎ may be positive as well as negative for (𝑥, 𝑦, 𝑧) ∈

Ω
𝑛
(𝑇), (see Examples 1 and 3), it means that the extreme

values of ℎ are attained on the boundary ofΩ
𝑛
(𝑇).

3. Bounds of 𝐻
2
(2) in 𝑇

In [21] Ma proved so-called generalized Zalcman conjecture
for the class 𝑇:

𝑎𝑛𝑎𝑚 − 𝑎
𝑛+𝑚−1



≤

{{{{

{{{{

{

𝑛 + 1, 𝑚 = 2, 𝑛 = 2, 4, 6, . . . ,

𝑚 + 1, 𝑛 = 2, 𝑚 = 2, 4, 6, . . . ,

(𝑛 − 1) (𝑚 − 1) , otherwise.

(4)

We apply this result to prove the following.

Theorem 5. If 𝑓 ∈ 𝑇 then |𝐻
2
(2)| ≤ 9.

Proof. The result of Ma and the triangle inequality result in

𝑎
2
𝑎
4
− 𝑎
3

2
≤
𝑎2𝑎4 − 𝑎

5

 +

𝑎
5
− 𝑎
3

2
≤ 5 + 4 = 9. (5)

This result is sharp; the equality holds for 𝑓(𝑧) = 𝑧(1 +

𝑧
2
)/(1 − 𝑧

2
)
2. Furthermore, we can see the following.

Corollary 6. For 𝑇 one has

min {𝐻
2
(2) : 𝑓 ∈ 𝑇} = −9. (6)

For our next theorem let us cite two results. First one is
the obvious conclusion from the Carathéodory theorem and
the Krein-Milman theorem. We assume that 𝑋 is a compact
Hausdorff space and

𝐽
𝜇
= ∫
𝑋

𝐽 (𝑡) 𝑑𝜇 (𝑡) . (7)

Theorem A (see [22, Thm. 1.40]). If 𝐽 : 𝑋 → R𝑛 is continu-
ous then the convex hull of 𝐽(𝑋) is a compact set and it coincides
with the set {𝐽

𝜇
: 𝜇 ∈ 𝑃

𝑋
, |supp(𝜇)| ≤ 𝑛}.

In the above, the symbols 𝑃
𝑋
and |supp(𝜇)| stand for the

set of probability measures on 𝑋 and the cardinality of the
support of 𝜇, respectively.

It means that 𝜇 is atomic measure having at most 𝑛 steps.
More precise information about the relation between the
measure and the convex hull is presented in the following
theorem. In what follows, ⟨ ⃗𝑎, �⃗�⟩ means the scalar product of
⃗𝑎 and �⃗�.

Theorem B (see [22, Thm. 1.49]). Let 𝐽 : [𝛼, 𝛽] → R𝑛 be
continuous. Suppose that there exists a positive integer 𝑘, such
that for each nonzero 𝑝 in R𝑛 the number of solutions of any
equation ⟨

→
𝐽(𝑡), �⃗�⟩ = const, 𝛼 ≤ 𝑡 ≤ 𝛽, is not greater than 𝑘.



Abstract and Applied Analysis 3

Then, for every 𝜇 ∈ 𝑃
[𝛼,𝛽]

such that 𝐽
𝜇
belongs to the boundary

of the convex hull of 𝐽([𝛼, 𝛽]) the following statements are
true:

(1) If 𝑘 = 2𝑚 then

(a) |supp(𝜇)| ≤ 𝑚, or
(b) |supp(𝜇)| = 𝑚 + 1 and {𝛼, 𝛽} ⊂ supp(𝜇).

(2) If 𝑘 = 2𝑚 + 1 then

(a) |supp(𝜇)| ≤ 𝑚, or
(b) |supp(𝜇)| = 𝑚 + 1 and one of the points 𝛼 and 𝛽

belongs to supp(𝜇).

This theorem, in slightly modified version, was published
in [23] as Lemma 2.

Putting 𝐽(𝑡) = [𝑈
1
(𝑡), 𝑈
2
(𝑡), 𝑈
3
(𝑡)], 𝑡 ∈ [−1, 1], and �⃗� =

[𝑝
1
, 𝑝
2
, 𝑝
3
], we can see that any equation of the form

𝑝
1
𝑈
1
(𝑡) + 𝑝

2
𝑈
2
(𝑡) + 𝑝

3
𝑈
3
(𝑡) = const, 𝑡 ∈ [−1, 1] (8)

is equivalent to 𝑊
3
(𝑡) = const, where 𝑊

3
(𝑡) is a polynomial

of degree 3. Hence, (8) has at most 3 solutions. According to
Theorem B, the boundary of the convex hull of 𝐽([−1, 1]) is
determined by atomic measures 𝜇 for which support consists
of at most 2 points. Moreover, one of them has to be −1 or 1.
We have proved the following.

Lemma7. Theboundary ofΩ
2
(𝑇) consists of points (𝑎

2
, 𝑎
3
, 𝑎
4
)

that correspond to the following functions:

𝑓 (𝑧) = 𝛼
𝑧

1 − 2𝑧𝑡 + 𝑧2
+ (1 − 𝛼)

𝑧

(1 − 𝑧)
2
,

𝛼 ∈ [0, 1] , 𝑡 ∈ [−1, 1]

(9)

or

𝑓 (𝑧) = 𝛼
𝑧

1 − 2𝑧𝑡 + 𝑧2
+ (1 − 𝛼)

𝑧

(1 + 𝑧)
2
,

𝛼 ∈ [0, 1] , 𝑡 ∈ [−1, 1] .

(10)

Now, we are ready to prove the following.

Theorem 8. For 𝑇 one has

max {𝐻
2
(2) : 𝑓 ∈ 𝑇} = 1. (11)

Proof. By Lemma 7, it is enough to take functions given by
(9) or (10). Consider the following:

(I) Function (9) has the series expansion

𝑓 (𝑧) = 𝑧 + 2 (1 − 𝛼 + 𝛼𝑡) 𝑧
2

+ [3 (1 − 𝛼) + (4𝑡
2
− 1) 𝛼] 𝑧

3

+ 4 [1 − 𝛼 + (2𝑡
3
− 𝑡) 𝛼] 𝑧

4
+ ⋅ ⋅ ⋅ .

(12)

Hence,𝐻
2
(2) = 𝑔

1
(𝛼, 𝑡), where

𝑔
1
(𝛼, 𝑡) = 8 (1 − 𝛼 + 𝛼𝑡) [1 − 𝛼 + (2𝑡

3
− 𝑡) 𝛼]

− (4𝑡
2
𝛼 − 4𝛼 + 3)

2

𝛼 ∈ [0, 1] , 𝑡 ∈ [−1, 1] .

(13)

From

𝜕𝑔
1

𝜕𝛼
= 8 (1 − 𝑡

2
) (2 (2 − 𝛼) 𝑡

2
+ 1 − 2𝛼) ,

𝜕𝑔
1

𝜕𝑡
= 16𝛼 (𝛼 − 1) (4𝑡

2
− 3𝑡 + 3) ,

(14)

it follows that the critical points of 𝑔
1
are as follows: (0, −1),

(0, 1), (1, −1), (1, 1), (1, −1/√2), (1, 1/√2), and (1/2, 0).
Among these points, only (1/2, 0) lies inside the set [0, 1] ×
[−1, 1].

If 𝛼 = 0 or 𝛼 = 1 then functions (9) coincide with 𝑓
𝑡

from Example 1. If 𝑡 = 1 then 𝑓(𝑧) = 𝑧/(1 − 𝑧)
2. In each

case 𝐻
2
(2) = −1. For 𝑡 = −1, function (9) takes the form

𝑓(𝑧) = 𝛼(𝑧/(1 + 𝑧)
2
) + (1 − 𝛼)(𝑧/(1 − 𝑧)

2
). Then 𝐻

2
(2) =

8(1 − 2𝛼)
2
− 9 ≤ −1.

If 𝛼 = 1/2 and 𝑡 = 0 we have𝐻
2
(2) = 1. It means that the

greatest value of𝐻
2
(2) for functions given by (9) is equal to 1.

The extremal function is

𝑓 (𝑧) =
1

2
[

𝑧

1 + 𝑧2
+

𝑧

(1 − 𝑧)
2
]

= 𝑧 + 𝑧
2
+ 𝑧
3
+ 2𝑧
4
+ 3𝑧
5
+ ⋅ ⋅ ⋅ .

(15)

(II) For functions (10),𝐻
2
(2) is equal to 𝑔

2
(𝛼, 𝑡), where

𝑔
2
(𝛼, 𝑡) = 8 (−1 + 𝛼 + 𝛼𝑡) [−1 + 𝛼 + (2𝑡

3
− 𝑡) 𝛼]

− (4𝑡
2
𝛼 − 4𝛼 + 3)

2

𝛼 ∈ [0, 1] , 𝑡 ∈ [−1, 1] .

(16)

Moreover, 𝑔
2
(𝛼, 𝑡) = 𝑔

1
(𝛼, −𝑡). Taking into account the sym-

metry of the range of variability of 𝑡, we obtain the same
result as above also for functions defined by (10).The extremal
function is

𝑓 (𝑧) =
1

2
[

𝑧

1 + 𝑧2
+

𝑧

(1 + 𝑧)
2
]

= 𝑧 − 𝑧
2
+ 𝑧
3
− 2𝑧
4
+ 3𝑧
5
+ ⋅ ⋅ ⋅ .

(17)

4. Bounds of 𝐻
2
(3) in 𝑇

The proof of the following theorem is obvious.

Theorem 9. If 𝑛 is odd then

max {𝐻
2
(𝑛) : 𝑓 ∈ 𝑇} = 𝑛 (𝑛 + 2) . (18)

Hence, one has the following.
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Corollary 10. For 𝑇 one has

max {𝐻
2
(3) : 𝑓 ∈ 𝑇} = 15. (19)

In similar way, as it was done for Lemma 7, one can prove
the following.

Lemma 11. The boundary of Ω
3
(𝑇) consists of points (𝑎

3
,

𝑎
4
, 𝑎
5
) that correspond to the following functions:

𝑓 (𝑧) = 𝛼
𝑧

1 − 2𝑧𝑡
1
+ 𝑧2

+ (1 − 𝛼)
𝑧

1 − 2𝑧𝑡
2
+ 𝑧2

,

𝛼 ∈ [0, 1] , 𝑡1, 𝑡2 ∈ [−1, 1]

(20)

or

𝑓 (𝑧) = 𝛼
𝑧

(1 + 𝑧)
2
+ 𝛽

𝑧

(1 − 𝑧)
2

+ (1 − 𝛼 − 𝛽)
𝑧

1 − 2𝑧𝑡 + 𝑧2
,

𝛼, 𝛽 ∈ [0, 1] , 𝛼 + 𝛽 ≤ 1, 𝑡 ∈ [−1, 1] .

(21)

Theorem 12. For 𝑇 one has

min {𝐻
2
(3) : 𝑓 ∈ 𝑇} = −

4

3
+
8

9

√6 = −3.51 . . . . (22)

Proof. By Lemma 11, it suffices to discuss functions given by
(20) or (21). Consider the following:

(I) For functions (20), we have

𝑎
3
= (4𝑡
1

2
− 1) 𝛼 + (4𝑡

2

2
− 1) (1 − 𝛼) ,

𝑎
4
= (8𝑡
1

3
− 4𝑡
1
) 𝛼 + (8𝑡

2

3
− 4𝑡
2
) (1 − 𝛼) ,

𝑎
5
= (16𝑡

1

4
− 12𝑡
1

2
+ 1) 𝛼

+ (16𝑡
2

4
− 12𝑡
2

2
+ 1) (1 − 𝛼) ,

(23)

and, hence, applying the Turan identity,𝐻
2
(3) = 𝑔

3
(𝛼, 𝑡
1
, 𝑡
2
),

where

𝑔
3
(𝛼, 𝑡
1
, 𝑡
2
)

= −𝛼
2
− (1 − 𝛼)

2

+ 2𝛼 (1 − 𝛼) [8 (𝑡
1
− 𝑡
2
)
2

(1 − 𝑡
1

2
) (1 − 𝑡

2

2
) − 1] ,

𝛼 ∈ [0, 1] , 𝑡1, 𝑡2 ∈ [−1, 1] .

(24)

The expression in brackets is greater than or equal to −1
for all 𝑡

1
, 𝑡
2
∈ [−1, 1]. Hence,

𝐻
2
(3) ≥ −𝛼

2
− (1 − 𝛼)

2
− 2𝛼 (1 − 𝛼) = −1. (25)

(II) If function 𝑓 is given by (21) then

𝑎
3
= 3 (𝛼 + 𝛽) + (4𝑡

2
− 1) (1 − 𝛼 − 𝛽) ,

𝑎
4
= 4 (𝛽 − 𝛼) + (8𝑡

3
− 4𝑡) (1 − 𝛼 − 𝛽) ,

𝑎
5
= 5 (𝛼 + 𝛽) + (16𝑡

4
− 12𝑡
2
+ 1) (1 − 𝛼 − 𝛽) .

(26)

Using the Turan identity, it follows that 𝐻
2
(3) = 𝑔

4
(𝛼, 𝛽, 𝑡),

where

𝑔
4
(𝛼, 𝛽, 𝑡) = −1 + 2 (𝛼 + 𝛽) − 2 (𝛼 + 𝛽)

2

+ 64𝛼𝛽

+ 2 (1 − 𝛼 − 𝛽) 𝑞 (𝑡) ,

𝑞 (𝑡) = (𝛼 + 𝛽) (24𝑡
4
− 8𝑡
2
− 1)

+ (𝛼 − 𝛽) (32𝑡
3
− 16𝑡) ,

(27)

under the assumptions 𝛼, 𝛽 ∈ [0, 1], 𝛼+𝛽 ≤ 1, and 𝑡 ∈ [−1, 1].
Let 𝛼 and 𝛽 be fixed. Since

𝜕𝑞

𝜕𝑡
= 8 (6𝑡

2
− 1) [𝑡 (𝛼 + 𝛽) + 𝛼 − 𝛽] , (28)

the critical points of 𝑞 are as follows: −1/√6, 1/√6, and (𝛽 −

𝛼)/(𝛼 + 𝛽). It is easily seen that all these points are in [−1, 1].
Therefore,

min {𝑞 (𝑡) : 𝑡 ∈ [−1, 1]} = min{𝑞 (−1) , 𝑞 ( −1

√6

) ,

𝑞 (
1

√6

) , 𝑞 (1) , 𝑞 (
𝛽 − 𝛼

𝛼 + 𝛽
)} .

(29)

For 𝑡 = −1 or 𝑡 = 1, the functions given by (21) have the
form

𝑓 (𝑧) = �̃�
𝑧

(1 + 𝑧)
2
+ 𝛽

𝑧

(1 − 𝑧)
2
, �̃� + 𝛽 = 1. (30)

One can show directly from formula (30) that

𝐻
2
(3) = −1 + 64�̃� (1 − �̃�) ≥ −1. (31)

For 𝑡 = (𝛽 − 𝛼)/(𝛼 + 𝛽), there is

𝐻
2
(3) = −1 +

64𝛼𝛽 [4 (𝛼 + 𝛽) 𝛼𝛽 + (𝛽 − 𝛼)
2

]

(𝛼 + 𝛽)
3

; (32)

hence,

𝐻
2
(3) ≥ −1. (33)

If 𝑡 = −1/√6 or 𝑡 = 1/√6 then𝐻
2
(3) is equal to

𝐻
2
(3)

= −1 + 2 (𝛼 + 𝛽) − 2 (𝛼 + 𝛽)
2

+ 64𝛼𝛽

+ (1 − 𝛼 − 𝛽) [−
10

3
(𝛼 + 𝛽) −

64

3√6

(𝛼 − 𝛽)]

(34)

or

𝐻
2
(3)

= −1 + 2 (𝛼 + 𝛽) − 2 (𝛼 + 𝛽)
2

+ 64𝛼𝛽

+ (1 − 𝛼 − 𝛽) [−
10

3
(𝛼 + 𝛽) +

64

3√6

(𝛼 − 𝛽)] ,

(35)
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respectively. Without loss of generality, we can assume that
𝛼 ≥ 𝛽. Then, while looking for the minimum value of𝐻

2
(3),

we can restrict the research to the first stated above case (since
expression (35) is not less than expression (34)).

Transforming (35), we obtain

𝐻
2
(3) = −1 + 64𝛼𝛽 −

4

3
(𝛼 + 𝛽) (1 − 𝛼 − 𝛽)

+
64

3√6

(𝛽 − 𝛼) (1 − 𝛼 − 𝛽) .

(36)

Taking the smallest possible 𝛽 (i.e., 𝛽 = 0) the second and
the forth component of this expression will not increase. The
value of the third component does not depend only on 𝛽; in
fact, it depends on 𝛼 + 𝛽. For this reason, we can take 𝛽 = 0.
Combining these facts, it yields that

𝐻
2
(3) ≥ −1 −

4

3
𝛼 (1 − 𝛼) −

64

3√6

𝛼 (1 − 𝛼) . (37)

The smallest value of the right hand side of this inequality is
achieved for 𝛼 = 1/2. In this case,

𝐻
2
(3) ≥ −1 −

1

3
−

16

3√6

= −
4

3
−
8

9

√6 = −3.51 . . . . (38)

Combining two parts of the proof we obtain the conclu-
sion of the theorem. Furthermore, the above shows that the
extremal functions are

𝑓 (𝑧) =
1

2
[

𝑧

(1 + 𝑧)
2
+

𝑧

1 − 2𝑧𝑡
0
+ 𝑧2

] ,

𝑓 (𝑧) =
1

2
[

𝑧

(1 − 𝑧)
2
+

𝑧

1 + 2𝑧𝑡
0
+ 𝑧2

] ,

(39)

where 𝑡
0
= 1/√6.

5. Bounds of 𝐻
2
(𝑛), 𝑛 ≥ 4, in 𝑇

It is easily seen that 𝐻
2
(𝑛) ≤ 𝑛(𝑛 + 2) for any typically real

function. ByTheorem 9, this estimate is sharp providing that
𝑛 is an odd integer. At the beginning of this section we will
prove the following.

Theorem 13. For 𝑇 one has

min {𝑎
𝑛
𝑎
𝑛+2

: 𝑓 ∈ 𝑇} = −1. (40)

Proof. Thecoefficients of the series expansion of function𝑓 ∈

𝑇 can be written as follows:

𝑎
𝑛
= ∫

𝜋

0

sin (𝑛𝜃)
sin 𝜃

𝑑] (𝜃) , ] ∈ 𝑃
[0,𝜋]

. (41)

Hence,

𝑎
𝑛
𝑎
𝑛+2

= ∫

𝜋

0

sin ((𝑛 + 1) 𝜃 − 𝜃)

sin 𝜃
𝑑] (𝜃)

⋅ ∫

𝜋

0

sin ((𝑛 + 1) 𝜃 + 𝜃)

sin 𝜃
𝑑] (𝜃)

= (∫

𝜋

0

sin (𝑛 + 1) 𝜃

sin 𝜃
cos 𝜃 𝑑] (𝜃))

2

− (∫

𝜋

0

cos (𝑛 + 1) 𝜃 𝑑] (𝜃))
2

.

(42)

Since

∫

𝜋

0

cos (𝑛 + 1) 𝜃 𝑑] (𝜃) ≤ ∫

𝜋

0

𝑑] (𝜃) = 1, (43)

we obtain

𝑎
𝑛
𝑎
𝑛+2

≥ −1. (44)

In order to prove that the estimate is sharp, let us take the
measure ] for which support satisfies condition (𝑛 + 1)𝜃 =

𝜋. This measure corresponds to the function 𝑓(𝑧) = 𝑧/(1 −

2𝑧cos(𝜋/(𝑛 + 1)) + 𝑧
2
).

Observe that 𝑎
𝑛
𝑎
𝑛+2

= −1 holds not only for the measure
stated above. Namely, the value −1 in (42) is taken also if (𝑛 +
1)𝜃 = 𝑘𝜋, where 𝑘 is any positive integer less than or equal to
𝑛. From this we conclude that the support of the measure has
𝑛 points 𝜃

𝑘
= 𝑘𝜋/(𝑛 + 1) with weights 𝛼

𝑘
, 𝑘 = 1, 2, . . . , 𝑛, such

that ∑𝑛
𝑘=1

𝛼
𝑘
= 1.

The weights satisfy

(

𝑛

∑

𝑘=1

𝛼
𝑘
(−1)
𝑘
)

2

= 1. (45)

Indeed, if the support of ] consists of 𝑛 points then 𝑓 takes
the form

𝑓 (𝑧) =

𝑛

∑

𝑘=1

𝛼
𝑘

𝑧

1 − 2𝑧 cos 𝜃
𝑘
+ 𝑧2

. (46)

Using trigonometric identities we obtain

𝑎
𝑛
=

𝑛

∑

𝑘=1

𝛼
𝑘
(−1)
𝑘+1

,

𝑎
𝑛+2

=

𝑛

∑

𝑘=1

𝛼
𝑘
(−1)
𝑘
,

(47)

which results in (45).
Connecting (45) and∑𝑛

𝑘=1
𝛼
𝑘
= 1we conclude that𝑓 is of

the form

𝑓 (𝑧) =

𝑛

∑

𝑘=1,𝑘 is odd
𝛼
𝑘

𝑧

1 − 2𝑧 cos (𝑘𝜋/ (𝑛 + 1)) + 𝑧2
(48)
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Table 1: The bounds of the Hankel determinants for functions defined by (51).

Bounds of𝐻
2
(𝑛) Equality in the lower bound for Equality in the upper bound for

−9 ≤ 𝐻
2
(2) ≤ 1 𝑡 = 1 𝑡 = 0

−3.51 . . . ≤ 𝐻
2
(3) ≤ 15 𝑡 = 0, 40 . . . 𝑡 = 1

−25 ≤ 𝐻
2
(4) ≤ 4.46 . . . 𝑡 = 1 𝑡 = 0.61 . . .

−7.84 . . . ≤ 𝐻
2
(5) ≤ 35 𝑡 = 0, 72 . . . 𝑡 = 1

−49 ≤ 𝐻
2
(6) ≤ 9.67 . . . 𝑡 = 1 𝑡 = 0.79 . . .

or

𝑓 (𝑧) =

𝑛

∑

𝑘=1,𝑘 is even
𝛼
𝑘

𝑧

1 − 2𝑧 cos (𝑘𝜋/ (𝑛 + 1)) + 𝑧2
. (49)

Itmeans that for even 𝑛 the support of ] consists of 𝑛/2 points,
and for even 𝑛 the number of points of the support of ] is equal
to (𝑛 + 1)/2 or (𝑛 − 1)/2.

Taking into account |𝑎
𝑛+1

| ≤ 𝑛 + 1 and Theorem 13, we
obtain the following.

Theorem 14. For 𝑇 one has

𝐻
2
(𝑛) ≥ − (𝑛 + 1)

2
− 1. (50)

Unfortunately, this bound is not sharp. However, the
following can be conjectured.

Conjecture 15. For any positive integer 𝑛, the following esti-
mate 𝐻

2
(𝑛) ≥ −(𝑛 + 1)

2 holds. Moreover, this bound is sharp
for even 𝑛.

This conjecture is supported by the facts that in the
theorems concerning𝐻

2
(2) and𝐻

2
(3) the extremal functions

are of the form

𝑓 (𝑧) =
1

2
[

𝑧

(1 + 𝑧)
2
+

𝑧

1 − 2𝑧𝑡 + 𝑧2
] ,

𝑓 (𝑧) =
1

2
[

𝑧

(1 − 𝑧)
2
+

𝑧

1 − 2𝑧𝑡 + 𝑧2
] ,

(51)

for appropriately taken 𝑡 ∈ [−1, 1]. The exact bounds of
the Hankel determinants for these functions are collected in
Table 1. They were obtained numerically.

6. Remarks Concerning 𝐻
2
(𝑛) in 𝑇

(2)

In class 𝑇 we discuss subclass 𝑇(2) consisting of the functions
which are odd. The definition of this class is

𝑇
(2)

= {𝑓 ∈ 𝑇 : 𝑓 (−𝑧) = −𝑓 (𝑧) , 𝑧 ∈ Δ} . (52)

For 𝑓 ∈ 𝑇
(2) the representation formula, similar to (2), is

valid. Namely,

𝑓 (𝑧) = ∫

1

−1

𝑧 (1 + 𝑧
2
)

(1 + 𝑧2)
2

− 4𝑧2𝑡2
𝑑] (𝑡) , ] ∈ 𝑃

[−1,1]
. (53)

Function 𝑓 has the Taylor series expansion

𝑓 (𝑧) = ∑

𝑛 is odd
𝑎
𝑛
𝑧
𝑛
, 𝑎
𝑛
= ∫

1

−1

𝑈
𝑛−1

(𝑡) 𝑑] (𝑡) . (54)

The following inequalities are obvious:

− (𝑛 + 1)
2
≤ 𝐻
2
(𝑛) ≤ 0 for even 𝑛,

𝐻
2
(𝑛) ≤ (𝑛 + 1)

2
− 1 for odd 𝑛;

(55)

equalities hold for 𝑓(𝑧) = 𝑧(1 + 𝑧
2
)/(1 − 𝑧

2
)
2.

For a given class 𝐴 ⊂ A, let us denote by Ψ
𝑛
(𝐴), 𝑛 ≥ 1,

the set {(𝑎
𝑛
, 𝑎
𝑛+2

) : 𝑓 ∈ 𝐴}. From (53) it follows that Ψ
𝑛
(𝑇) is

the closed convex hull of the curve

𝜆 : [−1, 1] ∋ 𝑡 → (𝑈
𝑛−1

(𝑡) , 𝑈
𝑛+1

(𝑡)) . (56)

FromTheorem 13 and from the equivalence

(𝑎
𝑛
, 𝑎
𝑛+2

) ∈ Ψ
𝑛
(𝑇) ⇐⇒ (𝑎

𝑛
, 𝑎
𝑛+2

) ∈ Ψ
𝑛
(𝑇
(2)
) , (57)

we get

min {𝑎
𝑛
𝑎
𝑛+2

: 𝑓 ∈ 𝑇
(2)
} = −1. (58)

Hence, for odd 𝑛, we know that

min {𝐻
2
(𝑛) : 𝑓 ∈ 𝑇

(2)
} ≥ −1. (59)

The equality holds for functions (48) or (49) providing that
𝛼
𝑘

= 𝛼
𝑛+1−𝑘

. Then, connecting the components of these
formulae in pairs, we obtain

𝛼
𝑘

𝑧

1 − 2𝑧 cos (𝑘𝜋/ (𝑛 + 1)) + 𝑧2

+ 𝛼
𝑛+1−𝑘

𝑧

1 − 2𝑧 cos ((𝑛 + 1 − 𝑘) 𝜋/ (𝑛 + 1)) + 𝑧2

= 2𝛼
𝑘

𝑧 (1 + 𝑧
2
)

(1 + 𝑧2)
2

− 4𝑧2cos2 (𝑘𝜋/ (𝑛 + 1))

.

(60)

With help of the argument given in the proof of Theorem 13,
we eventually obtain the odd functions for which 𝑎

𝑛
𝑎
𝑛+2

=

−1.
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