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The goal of this paper is to achieve some new results related to integrodifferential inequalities of one independent variable which
can be applied as a study of qualitative and quantitative properties of solutions of some nonlinear integral equations.

1. Introduction

Integral and integrodifferential inequalities play a significant
role in recent years by many authors [1–11], which provide an
explicit bounds on the solutions of a class of differential and
integral equations.

Lemma 1. Pachpatte (1995) studied the following useful
integral inequality: Let 𝑢(𝑡), 𝑓(𝑡), and 𝑔(𝑡) be nonnegative
continuous functions defined on 𝑅+ and 𝑐1 and 𝑐2 be positive
constants. If

𝑢 (𝑡) ≤ (𝑐1 + ∫𝑡
0
𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠) , (1)

for 𝑡 ∈ 𝑅+, where
𝐻(𝑡) = 1 − 𝑐1𝑐2 ∫𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠 > 0, (2)

𝑅 (𝑡) = 𝑔 (𝑡) ∫𝑡
0
𝑓 (𝜎) 𝑑𝜎 + 𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎, (3)

𝑄 (𝑡) = exp(∫𝑡
0
[𝑐1𝑔 (𝜎) + 𝑐2𝑓 (𝜎)] 𝑑𝜎) , (4)

for 𝑡 ∈ 𝑅+, then
𝑢 (𝑡) ≤ [ 1𝐻 (𝑡)] 𝑐1𝑐2𝑄 (𝑡) , (5)

for all 𝑡 ∈ 𝑅+.

2. Main Results

Here by using Lemma 1, we establish some new results in
the form of integrodifferential inequalities instead of integral
inequality.

Theorem 2. Let 𝑥(𝑡), 𝑥∙(𝑡), 𝑓(𝑡), and 𝑔(𝑡) be nonnegative real
valued continuous functions defined for 𝑅+ = [0,∞). Let 𝑐1
and 𝑐2 be positive constants. If𝑥∙2 (𝑡)

≤ (𝑐1 + ∫𝑡
0
𝑓 (𝑠) 𝑥∙2 (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙2 (𝑠) 𝑑𝑠) , (6)

for all 𝑡 ∈ 𝑅+, then
𝑥∙ (𝑡) ≤ [ 1√𝐻 (𝑡)]√(𝑐1𝑐2)√𝑄 (𝑡), (7)

where 𝑐1𝑐2 ≥ 1.𝐻(𝑡), 𝑅(𝑡), and 𝑄(𝑡) are defined as in (2), (3), and (4),
respectively, for all 𝑡 ∈ 𝑅+.
Proof. Define a function 𝑧2(𝑡) by the right-hand side of (6),
such that𝑧2 (𝑡)

= (𝑐1 + ∫𝑡
0
𝑓 (𝑠) 𝑥∙2 (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙2 (𝑠) 𝑑𝑠) , (8)
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where

𝑧2 (0) = 𝑐1𝑐2. (9)

From (6) and (8), we get

𝑥∙2 (𝑡) ≤ 𝑧2 (𝑡) . (10)

By differentiating (8) and using the fact that

𝑥∙ (𝑡) ≤ 𝑧 (𝑡) (11)

we observe

2𝑧 (𝑡) 𝑧 (𝑡)
≤ (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) 𝑧2 (𝑡)
+ (𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎 + 𝑔 (𝑡) ∫𝑡

0
𝑓 (𝜎) 𝑑𝜎) 𝑧4 (𝑡)

(12)

or

2𝑧−3 (𝑡) 𝑧 (𝑡) − (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) 𝑧−2 (𝑡)
≤ (𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎 + 𝑔 (𝑡) ∫𝑡

0
𝑓 (𝜎) 𝑑𝜎) . (13)

Let

V (𝑡) = 𝑧−2 (𝑡) . (14)

Differentiating (14) with respect to 𝑥, we get
V (𝑡) = −2𝑧−3 (𝑡) 𝑧 (𝑡) , (15)

where

V (0) = (𝑐1𝑐2)−1 . (16)

By substituting (14) and (15) in (13), we have

V (𝑡) + (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) V (𝑡) ≥ −𝑅 (𝑡) . (17)

Inequality (17) implies the estimation for V(𝑡) and by using
(16), we observe that

V (𝑡)
≥ (𝑐1𝑐2)−1 𝑄−1 (𝑡) (1 − (𝑐1𝑐2) ∫𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠) 𝑑𝑠, (18)

where 𝑅(𝑡) and 𝑄(𝑡) are defined as in (3) and (4) and by
applying (11) and (14) it is noticed that

𝑥∙ (𝑡) ≤ [ 1√𝐻 (𝑡)]√(𝑐1𝑐2)√𝑄 (𝑡), (19)

where𝐻(𝑡) is defined as in (2).This completes the proof.

Theorem 3. Let 𝑥(𝑡), 𝑥∙(𝑡), 𝑓(𝑡), 𝑔(𝑡), 𝑐1, and 𝑐2 be defined as
in Theorem 2 for 𝑅+ = [0,∞). If
𝑥∙2 (𝑡)
≤ (𝑐1 + ∫𝑡

0
𝑓 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙2 (𝑠) 𝑑𝑠) , (20)

for all 𝑡 ∈ 𝑅+, then
𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)]√(𝑐1𝑐2)𝑄 (𝑡) , (21)

where 𝑐1𝑐2 ≥ 1 and
𝐻(𝑡) = 1 − √(𝑐1𝑐2)2 ∫𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠 > 0, (22)

𝑄 (𝑡) = exp((12)∫𝑡0 [𝑐1𝑔 (𝜎) + 𝑐2𝑓 (𝜎)] 𝑑𝜎) (23)

for all 𝑡 ∈ 𝑅+.
Proof. Define a function 𝑧2(𝑡) by the right-hand side of (20),
such that

𝑧2 (𝑡)
= (𝑐1 + ∫𝑡

0
𝑓 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙2 (𝑠) 𝑑𝑠) , (24)

where

𝑧2 (0) = 𝑐1𝑐2. (25)

From (20) and (24), we get

𝑥∙2 (𝑡) ≤ 𝑧2 (𝑡) . (26)

By differentiating (24) and since 𝑧(𝑡) is monotone nonde-
creasing function for 𝑡 ∈ 𝑅+ and using the fact that

𝑥∙ (𝑡) ≤ 𝑧 (𝑡) (27)

we observe that

2𝑧 (𝑡) 𝑧 (𝑡)
≤ (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) 𝑧2 (𝑡)
+ (𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎 + 𝑔 (𝑡) ∫𝑡

0
𝑓 (𝜎) 𝑑𝜎) 𝑧3 (𝑡)

(28)

or

2𝑧−2 (𝑡) 𝑧 (𝑡) − (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) 𝑧−1 (𝑡)
≤ (𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎 + 𝑔 (𝑡) ∫𝑡

0
𝑓 (𝜎) 𝑑𝜎) . (29)
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Let

V (𝑡) = 𝑧−1 (𝑡) ;
V (0) = (𝑐1𝑐2)−1/2 . (30)

By repeating the same steps from (14)–(18) in (29) with
suitable modifications, the estimation for V(𝑡) implies

V (𝑡) ≥ (𝑐1𝑐2)−1/2 𝑄−1 (𝑡)
⋅ (1 − √(𝑐1𝑐2)2 ∫𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠)𝑑𝑠. (31)

From (27) and (30) in (31), we get

𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)]√(𝑐1𝑐2) 𝑄 (𝑡) (32)

for all 𝑡 ∈ 𝑅+, where 𝑅(𝑡),𝐻(𝑡), and𝑄(𝑡) are defined as in (3),
(22), and (23), respectively. This completes the proof.

Theorem 4. Let 𝑥(𝑡), 𝑥∙(𝑡), 𝑓(𝑡), 𝑔(𝑡), 𝑐1, and 𝑐2 be defined as
in Theorem 2 for 𝑅+ = [0,∞). If
𝑥∙𝑝 (𝑡)
≤ (𝑐1 + ∫𝑡

0
𝑓 (𝑠) 𝑥∙𝑝 (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (33)

for all 𝑡 ∈ 𝑅+, then
𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)] (𝑐1𝑐2)1/𝑝 𝑄 (𝑡) , (34)

where 𝑐1𝑐2 ≥ 1 and 𝑝 > 0.
𝐻(𝑡) = 1 − (𝑐1𝑐2)1/𝑝𝑝 ∫𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠 > 0, (35)

𝑄 (𝑡) = exp(( 1𝑝)∫𝑡0 [𝑐1𝑔 (𝜎) + 𝑐2𝑓 (𝜎)] 𝑑𝜎) (36)

for all 𝑡 ∈ 𝑅+.
Proof. Define a function 𝑧𝑝(𝑡) by the right-hand side of (33),
such that

𝑧𝑝 (𝑡)
= (𝑐1 + ∫𝑡

0
𝑓 (𝑠) 𝑥∙𝑝 (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (37)

where

𝑧𝑝 (0) = 𝑐1𝑐2. (38)

From (33) and (37), we get

𝑥∙𝑝 (𝑡) ≤ 𝑧𝑝 (𝑡) (39)
or

𝑥∙ (𝑡) ≤ 𝑧 (𝑡) . (40)

By differentiating (37) and since 𝑧(𝑡) is monotone nonde-
creasing function for 𝑡 ∈ 𝑅+, we observe that
𝑝𝑧𝑝−1 (𝑡) 𝑧 (𝑡)
≤ (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) 𝑧𝑝 (𝑡)
+ (𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎 + 𝑔 (𝑡) ∫𝑡

0
𝑓 (𝜎) 𝑑𝜎) 𝑧𝑝+1 (𝑡)

(41)

or

𝑝𝑧−2 (𝑡) 𝑧 (𝑡) − (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) 𝑧−1 (𝑡)
≤ (𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎 + 𝑔 (𝑡) ∫𝑡

0
𝑓 (𝜎) 𝑑𝜎) . (42)

Let

V (𝑡) = 𝑧−1 (𝑡) ;
V (0) = (𝑐1𝑐2)−1/𝑝 . (43)

By repeating the same steps from (14)–(18) in (42) with
suitable modifications, the estimation for V(𝑡) implies

V (𝑡) ≥ (𝑐1𝑐2)−1/𝑝 𝑄−1 (𝑡)
⋅ (1 − (𝑐1𝑐2)1/𝑝𝑝 ∫𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠)𝑑𝑠. (44)

From (40) and (43) in (44), we get

𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)] (𝑐1𝑐2)1/𝑝 𝑄 (𝑡) , (45)

for all 𝑡 ∈ 𝑅+, where 𝑅(𝑡),𝐻(𝑡), and𝑄(𝑡) are defined as in (3),
(35), and (36), respectively. This completes the proof.

Theorem 5. Let 𝑥(𝑡), 𝑥∙(𝑡), 𝑓(𝑡), 𝑔(𝑡), 𝑐1, and 𝑐2 be defined as
in Theorem 2 for 𝑅+ = [0,∞). If

𝑥∙𝑝 (𝑡) ≤ (𝑐1 + ∫𝑡
0
𝑓 (𝑠) [𝑥∙ (𝑡) + 𝑥∙𝑝 (𝑠)] 𝑑𝑠)

⋅ (𝑐2 + ∫𝑡
0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (46)

for all 𝑡 ∈ 𝑅+, then
𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)] (𝑐1𝑐2)1/𝑝 𝑄 (𝑡) , (47)

where 𝑐1𝑐2 ≥ 1 and 𝑝 > 0.
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𝐻(𝑡) = 1 − (𝑐1𝑐2)1/𝑝𝑝 ∫𝑡
0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠 > 0, (48)

𝑄 (𝑡) = exp(( 1𝑝)∫𝑡0 [𝑐1𝑔 (𝜎) + 2𝑐2𝑓 (𝜎) + 𝑓 (𝜎) ∫𝑠0 𝑔 (𝜂) 𝑑𝜂 + 𝑔 (𝜎) ∫𝑠0 𝑓 (𝜂) 𝑑𝜂] 𝑑𝜎) (49)

for all 𝑡 ∈ 𝑅+.
Proof. Define a function 𝑧𝑝(𝑡) by the right-hand side of (46),
such that

𝑧𝑝 (𝑡) = (𝑐1 + ∫𝑡
0
𝑓 (𝑠) [𝑥∙ (𝑡) + 𝑥∙𝑝 (𝑠)] 𝑑𝑠)

⋅ (𝑐2 + ∫𝑡
0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (50)

where 𝑧𝑝 (0) = 𝑐1𝑐2. (51)

From (46) and (50), we get𝑥∙𝑝 (𝑡) ≤ 𝑧𝑝 (𝑡) (52)

or 𝑥∙ (𝑡) ≤ 𝑧 (𝑡) . (53)

By differentiating (50) and since 𝑧(𝑡) is monotone nonde-
creasing function for 𝑡 ∈ 𝑅+, we observe that

𝑝𝑧𝑝−1 (𝑡) 𝑧 (𝑡) ≤ (𝑐1𝑔 (𝜎) + 2𝑐2𝑓 (𝜎)
+ 𝑓 (𝜎) ∫𝑠

0
𝑔 (𝜂) 𝑑𝜂 + 𝑔 (𝜎) ∫𝑠

0
𝑓 (𝜂) 𝑑𝜂) 𝑧𝑝 (𝑡)

+ 𝑅 (𝑡) 𝑧𝑝+1 (𝑡)
(54)

or

𝑝𝑧−2 (𝑡) 𝑧 (𝑡) − (𝑐1𝑔 (𝜎) + 2𝑐2𝑓 (𝜎)
+ 𝑓 (𝜎) ∫𝑠

0
𝑔 (𝜂) 𝑑𝜂 + 𝑔 (𝜎) ∫𝑠

0
𝑓 (𝜂) 𝑑𝜂) 𝑧−1 (𝑡)

≤ 𝑅 (𝑡) .
(55)

Let
V (𝑡) = 𝑧−1 (𝑡) ;
V (0) = (𝑐1𝑐2)−1/𝑝 . (56)

By repeating the same steps from (14)–(18) in (55) with
suitable modifications, the estimation for V(𝑡) implies

V (𝑡) ≥ (𝑐1𝑐2)−1/𝑝 𝑄−1 (𝑡)
⋅ (1 − (𝑐1𝑐2)1/𝑝𝑝 ∫𝑡

0
𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠)𝑑𝑠. (57)

From (53) and (56) in (57), we get

𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)] (𝑐1𝑐2)1/𝑝 𝑄 (𝑡) , (58)

for all 𝑡 ∈ 𝑅+, where 𝑅(𝑡),𝐻(𝑡), and𝑄(𝑡) are defined as in (3),
(48), and (49), respectively. This completes the proof.

Theorem 6. Let 𝑥(𝑡), 𝑥∙(𝑡), 𝑓(𝑡), 𝑔(𝑡), 𝑐1, and 𝑐2 be defined as
in Theorem 2 for 𝑅+ = [0,∞). If
𝑥∙𝑝 (𝑡)
≤ (𝑐1 + ∫𝑡

0
𝑓 (𝑠) 𝑥∙𝑞 (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (59)

for all 𝑡 ∈ 𝑅+, then
𝑥∙ (𝑡) ≤ [ 1𝑄 (𝑡)]1/(𝑝−𝑞) [(𝑐1𝑐2)𝑝−𝑞/𝑝

+ (𝑝 − 𝑞𝑝 )∫𝑡
0
(𝑐1𝑓 (𝑠) + 𝑐2𝑔 (𝑠)) 𝑄 (𝑠) 𝑑𝑠]1/(𝑝−𝑞) , (60)

where 𝑐1𝑐2 ≥ 1, 𝑝 > 𝑞 ≥ 1, and 𝑝 − 𝑞 ≥ 1.
𝑄 (𝑡) = exp(− (𝑝 − 𝑞)𝑝 ∫𝑡

0
𝑅 (𝑠) 𝑑𝑠) (61)

for all 𝑡 ∈ 𝑅+.
Proof. Define a function 𝑧𝑝(𝑡) by the right-hand side of (59),
such that𝑧𝑝 (𝑡)

= (𝑐1 + ∫𝑡
0
𝑓 (𝑠) 𝑥∙𝑞 (𝑠) 𝑑𝑠)(𝑐2 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (62)

where

𝑧𝑝 (0) = 𝑐1𝑐2. (63)

From (59) and (62), we get

𝑥∙𝑝 (𝑡) ≤ 𝑧𝑝 (𝑡) (64)

or

𝑥∙ (𝑡) ≤ 𝑧 (𝑡) . (65)
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By differentiating (62) and since 𝑧(𝑡) is monotone nonde-
creasing function for 𝑡 ∈ 𝑅+, we observe that
𝑝𝑧𝑝−1 (𝑡) 𝑧 (𝑡)
≤ (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) 𝑧𝑞 (𝑡)
+ (𝑓 (𝑡) ∫𝑡

0
𝑔 (𝜎) 𝑑𝜎 + 𝑔 (𝑡) ∫𝑡

0
𝑓 (𝜎) 𝑑𝜎) 𝑧1+𝑞 (𝑡)

(66)

or

𝑝𝑧𝑝−𝑞−1 (𝑡) 𝑧 (𝑡) − 𝑅 (𝑡) 𝑧𝑝−𝑞 (𝑡) ≤ (𝑐1𝑔 (𝑡) + 𝑐2𝑓 (𝑡)) . (67)

Let

V (𝑡) = 𝑧𝑝−𝑞 (𝑡) ;
V (0) = (𝑐1𝑐2)(𝑝−𝑞)/𝑝 . (68)

By repeating the same steps from (14)–(18) in (67) with
suitable modifications, the estimation for V(𝑡) implies

V (𝑡) ≤ [ 1𝑄 (𝑡)]1/(𝑝−𝑞) [(𝑐1𝑐2)𝑝−𝑞/𝑝
+ (𝑝 − 𝑞𝑝 )∫𝑡

0
(𝑐1𝑓 (𝑠) + 𝑐2𝑔 (𝑠)) 𝑄 (𝑠) 𝑑𝑠]1/(𝑝−𝑞) . (69)

From (65) and (68) in (69), we get

𝑥∙ (𝑡) ≤ [ 1𝑄 (𝑡)]1/(𝑝−𝑞) [(𝑐1𝑐2)𝑝−𝑞/𝑝
+ (𝑝 − 𝑞𝑝 )∫𝑡

0
(𝑐1𝑓 (𝑠) + 𝑐2𝑔 (𝑠)) 𝑄 (𝑠) 𝑑𝑠]1/(𝑝−𝑞) , (70)

for all 𝑡 ∈ 𝑅+, where 𝑅(𝑡) and 𝑄(𝑡) are defined as in (3) and
(61), respectively. This completes the proof.

3. Application

As an application, the explicit bounds of some of the integral
inequalities can be found by some examples.

Example 1. Let us consider the explicit bound on the solution
of the nonlinear integrodifferential equation

𝑥∙2 (𝑡)
≤ (1 + ∫𝑡

0
𝑓 (𝑠) 𝑥∙2 (𝑠) 𝑑𝑠)(1 + ∫𝑡

0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (71)

where 𝑥∙(𝑠) is a nonnegative real valued continuous function
and every solution of 𝑥∙(𝑠) of (71) exists for 𝑅+.

By using the application ofTheorem 4 to (71), we observe
that

𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)]𝑄 (𝑡) , (72)

where

𝑅 (𝑡) = ∫𝑡
0
𝑑𝑠 + ∫𝑡

0
𝑑𝑠 = 2𝑡, (73)

𝐻(𝑡) = 1 − 12 ∫𝑡0 𝑅 (𝑠) 𝑄 (𝑠) 𝑑𝑠 > 0 = 1 − 12 ∫𝑡0 2𝑠𝑒𝑠𝑑𝑠
= 1 − ∫𝑡

0
𝑠𝑒𝑠𝑑𝑠 = −𝑡𝑒𝑡 + 𝑒𝑡, (74)

𝑄 (𝑡) = exp((12)∫𝑡0 2 𝑑𝑠) = exp(∫𝑡
0
𝑑𝑠) = 𝑒𝑡. (75)

Therefore the right-hand side of (74) provides the bound of
the solution of (75) of known quantities

𝑥∙𝑡 ≤ 𝑒𝑡𝑒𝑡 + 𝑡𝑒𝑡 ≤ 11 − 𝑡 (76)

for 0 ≤ 𝑡 < 1.
Example 2. Let us consider the nonlinear integrodifferential
equation of the form

𝑥∙𝑝 (𝑡) ≤ (1 + ∫𝑡
0
𝑓 (𝑠) [𝑥∙ (𝑡) + 𝑥∙2 (𝑠)] 𝑑𝑠)

⋅ (1 + ∫𝑡
0
𝑔 (𝑠) 𝑥∙ (𝑠) 𝑑𝑠) , (77)

where 𝑥∙(𝑠) is a nonnegative real valued continuous function
and every solution of 𝑥∙(𝑠) of (77) exists for 𝑅+.

By using the application ofTheorem 5 to (77), we observe
that

𝑥∙ (𝑡) ≤ [ 1𝐻 (𝑡)]𝑄 (𝑡) , (78)

where

𝑅 (𝑡) = ∫𝑡
0
𝑑𝑠 + ∫𝑡

0
𝑑𝑠 = 2𝑡, (79)

𝐻(𝑡) = 1 − 12 ∫𝑡0 𝑅 (𝑠)𝑄 (𝑠) 𝑑𝑠 > 0
= 1 − 12 ∫𝑡0 2𝑠𝑒(3/2)𝑠+(1/2)𝑠2𝑑𝑠
= 1 − ∫𝑡

0
𝑠𝑒((3/2)𝑠+(1/2)𝑠2)𝑑𝑠,

(80)

𝑄 (𝑡) = exp((12)∫𝑡0 (1 + 2 + ∫𝑡0 𝑑𝜎 + ∫𝑡0 𝑑𝜎)𝑑𝑠)
= exp 12 (3𝑡 + 𝑡2) = 𝑒((3/2)𝑡+(1/2)𝑡2). (81)

Therefore the right-hand side of (80) provides the bound of
the solution of (77) of known quantities

𝑥∙ (𝑡) ≤ 𝑒((3/2)𝑡+(1/2)𝑡2)1 − ∫𝑡
0
𝑠𝑒((3/2)𝑠+(1/2)𝑠2)𝑑𝑠 (82)

for 0 ≤ 𝑡 < 1.
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Example 3. Now let us consider the boundedness and
asymptotic behaviour of the solutions of nonlinear Volterra
integrodifferential inequality of the form

𝑥∙𝑝 (𝑡) = (𝑎1 (𝑡) + ∫𝑡
0
𝐴 (𝑡 − 𝑠) 𝑥∙𝑞 (𝑠) 𝑑𝑠)

⋅ (𝑎2 (𝑡) + ∫𝑡
0
𝐵 (𝑡 − 𝑠) 𝑥∙ (𝑠) 𝑑𝑠) ; (83)

𝑥∙(𝑡) is nonnegative real valued continuous function defined
on 𝑅+ and 𝑎1, 𝑎2, 𝐴, 𝐵 are real valued continuous function
defined on 𝑅+.

We assume that every solution of𝑥∙(𝑡) in (81) exists on𝑅+,
and 𝑝 and 𝑞 are defined as inTheorem 6. Define the following
hypotheses on the function of (81) as𝑎1 (𝑡) ≤ 𝑐1,𝑎2 (𝑡) ≤ 𝑐2. (84)

Also|𝐴 (𝑡 − 𝑠)| ≤ 𝑀1𝑓1 (𝑠) , (85)

|𝐵 (𝑡 − 𝑠)| ≤ 𝑁1𝑔1 (𝑠) , (86)

𝐷(𝑡) = [ 1𝑄 (𝑡)]1/(𝑝−𝑞) [(𝑐1𝑐2)𝑝−𝑞/𝑝
+ (𝑝 − 𝑞𝑝 )∫𝑡

0
(𝑐1𝑔 (𝑠) + 𝑐2𝑓 (𝑠)) 𝑄 (𝑠) 𝑑𝑠]1/(𝑝−𝑞)

< ∞
(87)

for all 0 ≤ 𝑠 ≤ 𝑡, 𝑠, 𝑡 ∈ 𝑅+. 𝑀, 𝑁, 𝑐1, 𝑐2 are nonnegative real
constants and 𝑓1, 𝑔1 are nonnegative real valued continuous
function defined on 𝑅+.
Proof. For the boundedness of the solution of nonlinear
integrodifferential equation (83), let us suppose that the
hypotheses (84), (85), and (86) are satisfied and let 𝑥∙(𝑡) be
a solution of (83); then we observe that𝑥∙𝑝 (𝑡) ≤ (𝑎1 (𝑡) + ∫𝑡

0
|𝐴 (𝑡 − 𝑠)| 𝑥∙𝑞 (𝑠) 𝑑𝑠)

⋅ (𝑎2 (𝑡) + ∫𝑡
0
|𝐵 (𝑡 − 𝑠)| 𝑥∙ (𝑠) 𝑑𝑠) . (88)

Replacing 𝑓 by 𝑀1𝑓1 and 𝑔 by 𝑁1𝑔1 and applying the same
proof with somemodifications ofTheorem 6 in (88) and with𝑅(𝑡) and 𝑄(𝑡) being the same as defined in Theorem 6, we
noticed that every solution of 𝑥∙(𝑡) of (88) that exists on 𝑅+ is
bounded; that is, 𝑥∙𝑝 (𝑡) ≤ 𝐷 (𝑡) . (89)

For the asymptotic behaviour of the solution of nonlin-
ear integrodifferential equation (83), assume the following
hypotheses 𝑎1 (𝑡) ≤ 𝑐1𝑒−𝜇𝑡,𝑎2 (𝑡) ≤ 𝑐2𝑒−𝜇𝑡. (90)

Also |𝐴 (𝑡 − 𝑠)| ≤ 𝑀1𝑓1 (𝑠) 𝑒−𝜇(𝑡−2𝑠),
|𝐵 (𝑡 − 𝑠)| ≤ 𝑁1𝑔1 (𝑠) 𝑒−𝜇(𝑡−2𝑠) (91)

are satisfied. Let 𝑥∙(𝑡) be a solution of (83); then

𝑥∙𝑝 (𝑡) ≤ 𝑒−2𝜇𝑡 (𝑐1 + ∫𝑡
0
𝑀1𝑓1 (𝑠) 𝑥∙𝑞 (𝑠) 𝑒2𝜇𝑠𝑑𝑠)

⋅ (𝑐2 + ∫𝑡
0
𝑁1𝑔1 (𝑠) 𝑥∙ (𝑠) 𝑒2𝜇𝑠𝑑𝑠) . (92)

Let 𝑧𝑚(𝑡) be |𝑥∙𝑝(𝑡)|𝑒2𝜇𝑡 for𝑚 > 0 in (92) and by applying the
same proof with some changes of Theorem 6 in (92), we get

𝑧 (𝑡) ≤ 𝐷 (𝑡) ⇒ 𝑥∙ (𝑡) ≤ 𝐷 (𝑡) 𝑒−2𝜇𝑡. (93)

Therefore the solution 𝑥∙(𝑡) of (83) is asymptotically stable.
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