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We study the split common fixed point problem (SCFP) for a class of total asymptotically pseudocontractive mappings. We obtain
some important properties of our class of mappings including the demiclosedness property and the closedness and convexity of the
fixed point set. We then propose an algorithm and prove weak and strong convergence theorems for the approximation of solutions

of the SCFP for certain class of these mappings.

1. Introduction

Let H, and H, be two real Hilbert spaces, K and Q nonempty
closed convex subsets of H, and H,, respectively, and A :
H, — H, a bounded linear operator. The split feasibility
problem (SEP) (see, e.g., [1-9]) is

find x" € H,
such that x" € K, 1
Ax" € Q.

If Q = {b}, a singleton, we have the convexly constrained linear
inverse problem (CCLIP):

find x* € Hy,
such that x" € K, (2)
Ax" =b.

The split feasibility problem (SFP) has various important
applications in several disciplines (see, e.g., [2-9]).

LetS: H, — H,and T : H, — H, be mappings such
that K == F(S) = {x e H; : Sx = x} # 0and Q = F(T) =
{x € H, : Tx = x} # 0. The split common fixed point problem
(SCFP) for S and T is to find a point x* € H, such that x* €

F(S) and Ax™ € F(T). In sequel we use I' to denote the set of
solutions of (SCFP); that is,

I={xeK=F(S), Ax e Q=F(T)}. 3)

Definition 1. Let H be a real Hilbert space, and let C be a
nonempty closed convex subset of H.

A mapping T : C — C is said to be ({g,,}re ), {€,.} 1> P)-
total asymptotically k-strictly pseudocontractive (see, e.g., [3])
if there exist a constant k € [0, 1), a continuous and strictly
increasing function ¢ : [0,00) — [0, 00) with ¢(0) = 0, and
sequences {y,} C [0,00) and {£,} c [0, c0) with 4, — 0 and
&, — 0 such that, forall x, y € C,

|7 =Ty < |2 -y
+k|I-TYx-(I-TYy|F @

+ Aun(/)("x - y”) + En'

T is said to be ({p, )21, {€,} 01> §)-total asymptotically pseu-
docontractive if k = 1 in (4).

Observe that if ¢(t) = t* and &, = 0 Vn > 1in (4), we
obtain

[T =" < K, = 5

i - (5)
+klx-T"x-(y-T"y)|",
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wherek, = 1+, € [1,00) andlim,_,  k, = 1. Mappings sat-
isfying (5) are the well-known class of k-strictly asymptotically
pseudocontractive mappings, while mappings satisfying (5)
for k = 1 are called asymptotically pseudocontractive map-
pings. These classes of mappings are generalizations of the
well-known important class of asymptotically nonexpansive
mappings introduced by Goebel and Kirk [10] (i.e., mappings
T : C — C which satisty |[T"x - T"y|| < k,lx - yl,Vx,y € C
and for some sequence {k,},>, < [1,00) withlim,_, k, = 1).

We consider the following examples.

Example 2 (see [10]). In the real Hilbert space % let C =
{x € €* : |x| < 1} denote the closed unit ball, and define
S:C — CbyS(x;, x5, x3,...) = (0, x],a,%,, a3, . ..), where
{aj}(jfl is a real sequence in (0, 1) such that H(J?Zlaj = 1/2.
Then S is asymptotically nonexpansive and hence asymp-
totically strictly pseudocontractive. It follows that S is total
asymptotically strictly pseudocontractive and hence total
asymptotically pseudocontractive.

Example 3 (see [6,7]). Let D be an orthogonal subspace of the
Euclidean space R", and for each x = (x, x,,x5,...,%,) € D,
defineT: D — Dby

(%1, %95 X35 05 X)) 5
Tx = o (6)
(=x1, =%, —X35. ...

Then T is asymptotically nonexpansive (see, e.g., [7]) and
hence total asymptotically strictly pseudocontractive (see,
e.g., [6]) and hence it is total asymptotically pseudocontrac-
tive.

Example 4 (see [11]). Let R denote the reals with the usual
norm, C = [-6,2], and define T : C — C by

Tx =

X, if x € [-6,1),
7)

2x—x%, if x €[1,2].

It is shown in [11] that ITx—TyI2 < Ix—ylz+|x—Tx—(y—Ty)|2
and |[Tx - Ty| < 6]x - y|, Vx, y € [-6,2]. It is easy to observe
that, for all integers n > 1, we have

X, if x € [-6,1),
T"x = (8)
2x—x%, if x €[L,2].

Thus we easily obtain

|T"x—T"y|2 < |x—y|2 +]x - T"x - (y—T"y)|2, )
Vx,y € [-6,2], Vn> 1.

Hence T is asymptotically pseudocontractive and hence
total asymptotically pseudocontractive. Furthermore, |T"x —
T"y| < 6|lx — y|, Vx,y € [-6,1] so that T is uniformly L-
Lipschitzian.
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The following is an example of a total asymptotically
pseudocontractive map which is not total asymptotically
strictly pseudocontractive.

Example 5. Let R denote the reals with the usual norm, C =
[0,1], and define T': C — C by

Tx = (1 - x2/3)3/2. (10)

Then for all integers n > 1 and for all x € [0, 1] we have

- (1 - x2/3)3/2 , if nis odd, a
X =
X, if n is even.
Thus
|T"x - T"y|2 <|x- y|2 +lx-T"x—(y - T”J’)l2 C W

Vx,y €[0,1], n>1,

and hence T is total asymptotically pseudocontractive. T' is
not total asymptotically strictly pseudocontractive since, in
every real Hilbert space H, every total asymptotically strictly
pseudocontractive mapping T : C € H — C satisfies

(1+\/E)
Tk o 1)
Vx,y € C.

limsup |T"x - T"y|| <
n—00

In [3] the authors studied the split common fixed point
problem (SCFP) for a class of total asymptotically strictly
pseudocontractive mappings in real Hilbert spaces. They
proposed an algorithm and proved weak and strong conver-
gence theorems for finding solutions of SCFP for the class of
mappings studied.

It is our purpose in this work to study the split common
fixed point problem (SCFP) for a class of total asymptotically
pseudocontractive mappings which is much more general
than the class of mappings studied in [3]. We obtain some
important properties of our class of mappings including the
demiclosedness property and then propose an algorithm and
prove weak and strong convergence theorems for the approx-
imation of solutions of the SCFP.

2. Preliminaries

In what follows, we will need the following.

Let E be a real Banach space and C a nonempty closed
convex subset of E. A mapping T' : C — C is said to be
semicompact if, for any bounded sequence {x,} ¢ C with
lim,,_, . [Ix,,—Tx,| = 0, there exists a subsequence {xni} C {x,}
such that {x,, } converges strongly to some point x* € C.

T : C — Cis said to be uniformly L-Lipschitzian if there
exists a constant L > 0, such that, for all x, y € C,

|7 ="y < Llx =] (14)
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E is said to have the Opial property if, for any sequence {x,}
with x,, — x, we have

ll}l;llg)lf [, = x| < llrll’Ilg)lf <, = ¥l >

(15)
Vy € E with y # x.

It is well known that every Hilbert space satisfies the Opial
condition.

Lemma 6 (see [10]). Let H be a real Hilbert space. If {x,} is a
sequence in H weakly convergent to z, then

lim sup |x, - )/||2 = lim sup |x,, - Z||2 +z - y||2 ’
n—oo n—00 (16)
Vy € H.

Lemma 7 (see [11]). Let {a,}, {b,}, and {6,} be sequences of
nonnegative real numbers satisfying the inequality

a,., <(1+68,)a,+b, VYn=1. (17)

If Y28, < ooand Y, b, < oo, then lim,_, a, exists. If
in addition {a,}, | has a subsequence which converges to zero,
then lim,,_, . a, = 0

n—00

3. Main Results

We start with the following important properties of
{ppato2 s 18,21 ¢)-total asymptotically pseudocontractive
mappings.

Proposition 8. Let H be a real Hilbert space, C a nonempty
closed convex subset of H, and T : C — C a uniformly
L-Lipschitzian ({14}, 1€, 1> $)-total asymptotically pseu-
docontractive mapping with F(T) # 0. Let B € (0,1/(1 +
V1 +L2)); and set G, = T"[(1 — B)I + BT"). Then for each
q € F(T) and each x € C, the following equivalent inequalities
hold:

(x - G,x,x - q)>—||x Gx”
~(1+8) Se(x-a)  a®)
e,

2 _
(x - G,x,q - G,x) <

B = Gy
(1B 29 (le-al) 19

+(1+ﬁ)%"

Proof. For arbitrary x € C and g € F(T) we have
|Gx = qll” = |7 [(1 = B) x + BT"x]
<[(1-p)
+(1=B) x+ BT"x = Gux | + b (I - )
+&,
= (1= B) (x-q) + B(T"x - q)|"
+](1-B) (x - G,x) + B(T"x - G,x)|°
+ b (|x = al) + &,
=(1-P)|x-q* +BIT"x -4’
~B=P) |x=T"x| + (1= ) |x - G|’
+ BT"x - Gx|* - B(1- )
+ b (|x = al) + &,
<l —al” + Bl = T + (I - ql) + &,]
=P =" + (1= B) [x = G
+ LB | -1 - (1
+ t$ (|x —al) + &,
= |- ql* + (1= B) |Gy — x|
+(1+ B (|x—af) + (1+B)E
~B(1-28-LF) x|’
< x—ql* +(1-B) |Gox -«
+(1+B) (| —af) + (1+ B) &

It follows from (20) that

-T"q|°

x+ BT"x — q"2

e = 77
(20)

= B) Jx =T

(x - G,x,x — q)>—||x Gx||
-(1+8) 29 (|- ql)

(g
2
2

(21
(x-G,x,q—G,x) <

I = Gl
+(1+8) 2 (|- ql)

+(1+ﬁ)%



Proposition 9. Let H be a real Hilbert space, and let C be a
nonempty closed convex subset of H. Let T : C — C be a uni-
formly L-Lipschitzian ({u,} 01, {€,} e, ¢)-total asymptotically
pseudocontractive mapping with lim,,_, .y, = 0, lim,,_, £, =
0. Then

(i) (I = T) is demiclosed at 0;

(ii) F(T) = {x € C : Tx = x} is closed and convex.
Proof. (i) Let {x,}2, be a sequence in C which converges
weakly to p and {x, — Tx,},_, converges strongly to 0. We

prove that p € F(T). Since {x,},>, converges weakly, it is
bounded. For each x € H, define f: H — [0, co) by

. 2
f (x) = lim sup ||xn - x|| . (22)
Observe that, for arbitrary but fixed integer m > 1, we have

s =770, <l = Tl + [T, = T, + -
+ "Tm*lxn - men” (23)

<mL|x,-Tx,| — 0 asn— oo.

Set G,,x = T™((1 - B)x + BT™"x), where € (0,1/(1 +
VL? + 1)). Then we obtain

"(1 - ﬂ) X, t+ ﬁmen - men"

=(1-B)|x,-T"x,| — 0 asn— oo,

(24)
IT"x, = Gx,|| < LB|x, — Tx,| — 0
as n — oo.
Hence
I(1 = B) x,, + BT, = G,
<|(1=B)x, + pT"x, - T"x,| (25)
+||T"x, - G,x,| — 0 asn— oo.
Furthermore,
%, = Gl < 0 = T x| + [T %, = Gux| — 0
(26)
as n — 00.
Since {|lx,, — pll} is bounded we also obtain
I(t = B) x, + BT™x, = (1 = B) p+ BT™p)|
(27)

<(1+L)|x,-p|<D Vn=1,

for some D > 0.
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From Lemma 6, we obtain f(x) = limsup,_, [ x, - pII2 +
lp—xl? Vx € H. Thus f(x) = f(p)+ p - xI*, Vx € H, and
hence

FGup) = fF(p)+p-Gupl- (28)

Observe that

f(Gyup) = limsup |x, - Gupl = lim sup |x,, — G,yx,
+ Gy = Gupl* = limsup |G,px, - G,
= limsup [ (1 - 8) %, + BT"%,) - T" (1~ ) p
+ BT < limsup [|(1 - B) x, + BT,
~((1=B)p+ BT"p)|* + (1 = B) x, + BT™x,
=Gy = (1=B) p+ BT"p = Gup)|’
+ (|1 = B) x,, + BT, = (1= B) p + BT p)|)
+&,] <timsup [[(1- B) (x, - )
+B("x, = T"p)[" + (1= B) (p - G,up)

+B(T"p = Gup)|* + (D) + &, ] < lim sup (1

Bl ol BT - T - BB, )

~T"x, - (p=T"p)" + (1= B) |p - G,up
+BIT"p - Gupl - B(1-B)|p - T"p|

+ U $ (D) +E,] < lim sup [((1-B) =, - Pl
+B{lx, = pl* + |, - T"x, - (p = T"p)|

+ Mm¢(||xn - Pn) + Em] - ﬂ(l - ﬂ) ”xn - men
~(p-T"p)+(1-B)|p-Gup|* +L*B|p
~T"p* = B =B) |~ T" I + o (D) +&,]

< lim sup [, = p* - B[t -2B8-LB]|p - T"p|’
+(1=B) [P = Gup|* + (1 + B) s (D) + (1 + P)
.gm] .

It follows that

FE)+p-Gupl < F(p)+(1=P)|p - Gppl’
+(1+ B) (D) (30)
+(1+B)E,,
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and thus
Ip -Gl
g%[(l+ﬁ)‘um¢(D)+(l+ﬂ)5m] 0 (31)
as m — co.
It follows that

lp=T"pll < lp = Gupll +Gnp - T"p|

<|p-Gupl +LBp-T"p],

(32)

and hence

1
lp=1"pll < 7273 |P = Gupl — 0
as m — oo.
It now follows that T"p — pasm — oo. Since T is
continuous, we have that T"*'p — Tpasm — oo, and

hence Tp = p.
(i) Let {p,};2, € F(T) be such that p, — p. We prove

n=1 =

that p € F(T'). Consider

lp—Tol < o - pall + P — To
= |- pall + TP, - Tp| (34)

<(1+L)|p,-p| — 0 asn— oo

Hence p € F(T), and F(T) is closed.
Let p;, p, € F(T) and let A € [0, 1] be arbitrary. Set p =
Ap; + (1 = A)p,. We prove that p € F(T). Observe that ||p -

pill= (1 =Mllp; = polland |p — p,ll = Mlp; — ps - Set

Gx=T"'((1-B)x+BT"x), (35)

where 8 € (0,2/(1+ V1 +4L?)). Then G,,p, = p;,and G,,p, =
P, Observe that

lp =Gl = A (py = Gup) + (1= 1) (p, ~ G,p)|]
=1 “pl - an"2 + (1 - A) “Pz - an||2 (36)

-A(1-2) ”Pl - Pz“z'

Observe that
1Gup = pull* = 17" (1= B) p + BT"p) - ]

=[1"((1-B) p+ BT"p)
=1 (1= B) p+ BT"p)I" < (1= B) (p - p1)
+B(Tp-T"p) + (1 =B) p+ BT"p = Gp
—((1=B) pi + BT"p, - G|
+up ([(1=B) (p = 1) + B(T"p = T"p))|) +&,
=(1-Plp-pl’ +BIT"p-T"pI" - B(1
~Blp-1"pI" + (1= B) (p - G,p)
+B(I"p=Gup)[ +u,d ([1- B+ LI | - i)
+&,<(-P)lp-pl*+Blo-pl’+Blp  ©7)
~T"p| + B (Ip - pi) + B, - B(1- B)|p
=T"p|* + (1= B)|p - Gl + BIT"p - G|’
-B-P)lp-1"p|’
+ b ((1-B+BL|p-pil) + & < lp-pil’
+(1=B)lp-Gupl* - B[1-28- L] P
~T"pl + 1, [ ([1- B+ BL |p - i)
+B(lp- D]+ (14 B & =p-pil* + (1
~B)lp-Gupl - B[1-28-FL] |p-T"p)’
‘o,

whereo, = u,[¢([1-B+BLII p—pi D+Bl p—p: D]+(1+B)E,..

Similarly,

1Gup = 2ol < llp = pall* + (1= B) P = Gupl
~pli-28-FL|p-T"p|" 9
+a,
Thus
lp-G.pl’
<Mp-pl+A(1-B)|p-Gupl
~AB[1-28-FL*] [p - T"p| + Ao,
+1=-Np-pf’
+(1-1(1-B)|p-G.pl’



~(1-NB[1-28-pL]|p-T"p|

+(1—A)Un—/\(1_/\)"1’1_quz’

(39)
and it follows that
Blp-Gupl' <0, —0 asnm—oo.  (40)
Hence G,p — p as n — 00. Observe that
lp=1"pl" < llp - Gupll + |Gap = T"p) "
<|lp-Gupl + LBlp-T"p] -
Thus
(1-LB)p-T"p| < |p-G.p| — 0
(42)

as n — o0,

and hence T"p — pasn — oo. Since T is continuous we
have

T"'p —Tp asn— co. (43)
Thus Tp = p. O

We now introduce our algorithm and prove weak and
strong convergence theorems for solving the split common
fixed point problem for a class of total asymptotically pseu-
docontractive mappings in real Hilbert spaces.

Let H, and H, be two real Hilbert spaces, A : H, —
H, a bounded linear operator, S : H; — H, a uniformly
L,-Lipschitzian ({¢}},{€}}, ¢;)-total asymptotically pseudo-
contractive mapping, with K = F(S) # 0, and T
H, — H, a uniformly L,-Lipschitzian ({‘ufl}, {Efl},qbz)—
total asymptotically pseudocontractive mapping, with Q :=
F(T) # 0. We now introduce the following iterative algorithm
for approximating solutions of split common fixed point
problem: x € H,; such that x € F(S) and Ax € F(T) (ie,
xel'={x € H, :x e F(S)and Ax € F(T)}.

For arbitrary x, € H,, the sequence {x,,}, is given by

Uy = %, + YA" [T"((1 = B) I + BT") ~ I] Ax,,

Yn = (1 _ﬁn) Uy, +ﬁnsnuna n>1,

X1 = (1 _(xn) un+(xnsnyn’ nxzl,
where {«, } and {3} are suitable sequences in (0, 1) and fisa
suitable parameter in (0, 1). We prove the following.

Theorem 10. Let H, and H, be two real Hilbert spaces, A :

H, — H, a bounded linear operator, S : H, — H, a
uniformly L,-Lipschitzian ({yﬁl)},{ﬁg)},(pl)—total asymptoti-
cally pseudocontractive mapping, with K = F(S) # 0, and
T : H, — H, a uniformly L,-Lipschitzian ({yflz)}, {Eﬁlz)},qbz)-

total asymptotically pseudocontractive mapping, with Q =
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F(T) + 0; let p, = max{yﬁll),yflz)}, ¢, = max{fill),ff)},
L = max{L,,L,}, and ¢(t) = max{¢,(t),¢,(t)} such that
there exist two positive real constants M and M™ such that
d(t) < M*t*,Vt > M. Let Yoo, u, < 00 and Yoo &, < 00
let {«,} and {B,} be sequences of real numbers satisfying the
condition:

0<é<a,<fB,<P
2 (45)

< b
(2+uM*) + \/4L2 + (2+;4M*)2

where y = sup,., 4, and y € (O,ﬁ/llAIIZ). LetT = {x € H, :
x € F(S) and Ax € F(T)} # 0. Then for arbitrary x, € H,,
the sequence {x,} generated from x, by (44) converges weakly
to a pointin I

Ifin addition S is semicompact, then {x,} and {u, } converge
strongly to a point in T.
Proof. We will divide the proof into four steps.

Step 1. We prove that, for each p € T, the following limits exist
and

lim |x, - p| = lim |u, - p]. (46)

n—00 n—-00

Since ¢ is a continuous and an increasing function, it follows
that ¢(A) < (M) VA < M, and by hypothesis ¢(1) <
M*A* VA > M. In either case, we can obtain that

d\) < p(M)+M*A*, VA0 (47)

Let G,u, = S"((1- B,)u, + ,S"u,), n > 1. Then, for arbitrary
p € F(S), we obtain
|Gt = pI* = IS (1 = B.) thy + BuS"w,) = S|
< (1= B,y + BuS", = p|* + (1 = B,)
+ B8ty = Gyt + i (I(1 = B,) , + B St
=) +& < (1= B,) (= p) + B, (S"u, - PP
+ (1= B,) (s
+py [$ M) + M |(1 - B,) (u, — p)
+ B (S"w, = P)IP] + & = (1= B) . - pI
+ B8, = plI* = By (1= Ba) 1t = S"w]* + (1
= Bo) 4 = Gt + B I8t = G, = B, (1

- ﬁn) ”un - Snunuz + ‘”n(/) (M) + (’lnM* [(1 - ﬁn)

- Gnun) + ﬁn (Snun - Gnun)”z
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! ”un - P"2 + /jn "Snun - p"2 - Bn (1 - /jn) "un + Un] -, (1 - “n) “un - Gnun”z < [1 + (xnsn] "un
- Snunllz] + En < (1 - ﬁn) ||un - P||2 + ﬁn [”un - P"2 -y (ﬁn - “n) "un - Gnun"2 - (Xnﬁn [1

* 272 n 2
= oI+ e = Sl + s VD) + 1, M |t =By @4 M) = Bl [, = " | + 0,
- P"2 + En] - ﬁn (1 - ﬁn) "un - Snun“z + (1 - :Bn)

: ”un - Gnunllz + ﬁszz "un - Sﬂun”2 - ﬁn (1 - ﬁn)

(51)

Observe also that if we let F, = T"((1 — 8)I + SI™), then,

! ”un - Snun"2 + .“n¢ (M) + HnM* [(1 - ﬁn) "un "Mn B p“2
=217+ B (1w = I + 4 = " + pap (1) = [}x, + yA" [T" (1 = B) I + BT") = I] Ax,, - p
= %, = p+yA” (B, - 1) Ax, | (52)

+ .unM* "un - pHZ + En) - ﬁn (1 - ﬁn) "un

~S"u ]+ & = [1+p,MT (1 = lxu = pI* + 9" |47 (F, - D) Ax, |’

2 2y{x,-p, A" (E,- 1) Ax,) .
+/3n(1+#nM*))] "un_p“ +(1_:Bn)||un i y< p ( ) >

G| = B [1 - B (2 + uM) ~ 1] s, bt
— S|P+ (14 B, (14 u,M™))E, + (1+ B, (1 Y A" (F, - 1) Ax, |’
b M)) 1 (V) = [14+8,] e, — pIf + (1 VA B DA A B DA
Bty = Gt = B, [1 = B (24 ") =y (AAT(E, 1) Ax, (B, = 1) Ax,)
B, - S 4o, <VIAFIE, - D Ax
(48)  Furthermore,
where 8, = u, M"*(1 + f8,,(1 + u,M")) and 2y{x, - p, A" (F, - I) Ax,) = 2y (Ax,
0, = (14 B, (1 M), - ap. (B, ~ 1) Ax,) = 2y {(Ax, - 4p)
# (14 B, (14 M) b (M) (49) # (B = D) Ay = (B = D) Axy (B =D Ax) - (54)
=1+ B, (1+ u, MO [E, + b (M)]. = 2y {(F,Ax, - Ap, F,Ax, - Ax,)
Observe that ~||(F, - 1) Ax, [}
e - pllz 11 = o) 4, + ", p||2 Since Ap € F(T), we set x = Ax, and q = Ap in (19) to obtain
= (1 - &), + @, Gyt = 0 (F,Ax, - Ap,F,Ax, - Ax,) - |(F, = T) Ax,|’
= (1) Jun = Pl + 2, |Ga, — < <¥> I(E, - 1) Ax, |

_‘Xn(l _‘xn) "un_Gnunnz' 1 +‘B
2

e P g (s, - apl) + P,

Using (48) in (50) we obtain
I(F, - 1) Ax, |

"xn+1 - p”Z < (1 - (xn) "un - P"Z
+ay, [(1+8n) ||un_p”2+(1_ﬁn) ”un_Gnunnz ﬁ ﬁ
1+ 1+
_ﬁn(l _ﬁn (2+.unM*)_ﬁ5L2) ”un_snunuz i ( 2 >Mn¢("Axn_Ap")+ < 2 )Eﬂ

o
<- §)||FnAxn—Axn||2




<= (8)IEax, - ax

* (#) (M IAI [, = o] + ¢ (1)

(55)
Substituting (55) into (54) yields
2)/ <xn - p’A* (Fn - I) Axn>
<2y [_Tﬁ B, Ax, - Ax,
(56)
1+ N
B 1A I, - o
1+
NUTRET A
and it follows from (52) that
. - ol
< Il = 2I” + ¥ A1 | F,Ax, — Ax, |
- YB|IF,Ax, - Ax, |
+ (14 B) yu (M I1AIP |x, - p|* + ¢ D)
+(1+B) v,
(57)

= [1+ 1+ B) yu M 1AP] |, - pI
-y (B-vIAP) |F,Ax, - Ax,|’
+(1+ ) yund (M) + (1 + B) €,
= [1+,] %, - ol
—y(B-ylAI*)|E,Ax,
where @, = (1 + B)yu, M| AI” and v, = (1 + By, $(M) +

(1+ By,
Substituting (57) in (51) we obtain

- Ax,,||2 +,

I = pl” < (1+ ,8,) [(1 +w,) |, - I’

—y(B-yIAI")|E,Ax,

o, B, [1
- S”unn2 +a,0,<[l+w,

8] I, = plI* -y (B- v 14I°)

a, (B,

- Axn"2 + vn] —Qy (ﬁn

- (xn) "un - (;nun"2 - - ﬁn (2 + AMM*)

_ﬁrzsz] "”n
+(1+w,)

|, Ax, - Axn"z +(1+a,8,)a,v, -
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- Gn”n"2 - (xnﬁn [1 - ﬁn (2 + AuM*)

- ﬁﬁLz] [, S"un”2 +a,0, =

- (xn) "un
[1+6,] [~ - o[’

~y(B-yIAIP) |E,Ax, - Ax,|” -, (B, - t,)

: “un - Gnunllz - “nﬁn [1 - ﬁn (2 + MM*) - ﬁrzle]

: “un - Snun"2 + >
(58)

where 0, = w, + (1 + w,), 8, and 1, = v, + «,,(6,,v,, + 7).
It follows from (58) and condition (45) that

"xn+1 - p“2 < [1 + en] ”xn - p"2 * My (59)

The conditions Yoy < coand Y2 &, < oo imply that

Y20, <ooand ) 2 n, < co.Itnow follows from Lemma 7
that lim,,_,  Ilx,, — pll exists. It now follows from (58) that

Jim lu, = S"u,| = 0; (60)
nh_{{}o "FnAxn - Axn" =0. (61)
Consequently,
[T Ax, — Ax, | = | (T" - ) Ax,|
= |T"Ax, - F,Ax, + F,Ax, — Ax,)|

< |T"Ax, - F,Ax,|

(62)
+ "FnAxn - Axn“
< LB||T"Ax, - Ax,|
+|F,Ax, - Ax,|.
Hence
., 1
[T"Ax, — Ax,|| < |F,Ax, — Ax,|| — 0
as n — 0o.
This together with (61) implies that
lim |T"Ax, - Ax,| = (64)

n—00

Sincelim,,_, Ilx,— pll exists, it follows from (52) and (64) that
lim,_, . llu, — pll exists and
lim fJu, - p|| = lim |x, - p. (65)

Step 2. We prove that

Jlim [lx,..; —x,] =0,

(66)

’}E& ”un+l - un” =0.
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From (44) we obtain

”xnﬂ - xn" = “(1

=|(1-a,)u, + a,G,u,

= 0ty + 4,8y, = x|
=% = (1 - a,)
(e yAT [T (1= B) T+ BT7) ~ 1] Ax,)
n =% = (1 - o)

(x, + yA" (E, - I) Ax,,) + a,G,u, — x|

+a,G,u

= (1 -a,) (yA" (F, - I) Ax,) + &, (G,u,, —u,) (67)

+a, (un n)" “ 1_ n) )/A ( I) Axn)
+a, (Gnun - un)
+a, (x, +yA" (F, - 1) Ax, - x,,)|
= |yA" (F, - I) Ax, + &, (G,u, — u,) |
< |yA* (F, - 1) Ax,| + &, |G, — u| -
Observe that
”un - Gn”n“ S "un - Snun" + ”Snun - Gnun“
< |, = S"u,|| + LB, |t — S"us| (68)
=(1+LB,) |u, — S"u,| -
Using (68) in (67) we obtain
"xn+1 - xn“ < ”yA* (Fn - I) Axn" 69)
+a, (1+LB,)|lu, — S"u,|,
and it follows from (60) and (61) that
,,11_{20 "xn+1 xn“ =0. (70)
Similarly, it follows from (44), (61), and (70) that
"unﬂ - un" = “xn+1
+yA [T (1= B) I+ BT™) — 1] Ax,,,, — x,
—YAT[T" (1= B) I+ BT") — 1] Ax, | = | %1
+ YA ( n+l )Axn+1 (71)
- (xn + VA* (Fn - I) Axn)" < ||xn+1 - xn”
+ ”YA ( n+l Axn+1”
+|lyA" (E,-I) Ax,|| — 0 asn— co.
Step 3. We prove that
||un - Sun" — 0,
|Ax, - TAx,|| — 0 (72)

(as n — 00).

In fact, from (60), we have
4y = |lu, — S"u,|| — 0, (as n — 00). (73)

Since S is uniformly L, -Lipschitzian, it follows from (71) and
(73) that

[, = Su,|| < [ty = S"u|| + [|S" 21, = Stay|
<q,+L "5"7114” - un“
"t + [ e -}

< dn + L2 "un - un—l" (74)

<q, + L{|s" u,

+L "S"_lu,,

17 Upy T Uy — Uy

<q,+L(1+L)|u,-u,,|+Lq,, —0
(as n — 00).
Similarly, from (64), we obtain
= |Ax, - T"Ax,|| — 0, (as n — 00). (75)

Since T is uniformly L,-Lipschitzian, it follows from (70) and
(75) that

|Ax, - TAx,| < |Ax, - T"Ax, | + |T"Ax,, — TAx,|
<w,+L
L

n—1
+ "T Ax,_,

n—1
T° " Ax, - Axn” <w,

"' Ax, -

" Ax, |
- Axn”} <w, + L’ ||Axn - Axn_1|| (76)

+ L|T" Ax,,_, - Ax,, + Ax,,

+L(1+L)|Ax, - Ax,_| + Lw,_;, — 0

(as n — 00).
This implies that

|Ax, - TAx,| — 0, (asn — o). 77)

Step 4. We prove that the sequences {x,} and {u,} converge
weakly to x* € T.

Observe that since {u,} is bounded, then there exists a
subsequence {u, } of {u,,} which converges weakly to a point

x* € H,. Since lim,_, lu,, — Su, || = 0, we obtain
e o
It follows from Proposition 9 that x™ € F(S).
Furthermore, from (44) and (61), we obtain
x, =u, —yA" (F, —I) Ax, — x". (79)

Since A is linear and bounded, we obtain Ax, — Ax", and
it follows from (72) that

lim "Ax -TAx, ” = (80)

i—00
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The demiclosedness of T at zero now yields that Ax™ € F(T),
and thus x* € T. Since every Hilbert space is an Opial space
and {u,} has a subsequence {u, } which converges weakly to
apoint x* € T, it follows from a standard argument that {u,,}
converges weakly to x*.

If S is semicompact, then since {u,} is bounded and
lim,_, llu,—Su,l = 0, we have that there exists a subsequence
{unj} of {u,} which converges strongly to a point u™ € H,.
Since {u,} converges weakly to x*, we have u* = x*. Thus
lim j_mollun]_ —x"|| = 0 and it follows from Lemma 7 that {u, }

(and hence {x,}) converges strongly to x* € T. O

Corollary 11. Let H, and H, be two real Hilbert spaces, A :
H, — H, a bounded linear operator, S : H, — H,
a uniformly L,-Lipschitzian asymptotically pseudocontractive
mapping with sequence {kill)}zil such that Zgzl(kﬁll) -1)< o0
and K = F(S) #+ 0, and T : H, — H, a uniformly L,-
Lipschitzian asymptotically pseudocontractive mapping with
sequence {kflz)}ﬁil such that Zﬁil(kf) -1) < coand Q =
F(T) # 0; let k, = max{k"),k®} and L = max{L,,L,}.
Let {a,,} and {f3,} be sequences of real numbers satisfying the
condition:

2

Q2 +k)+\4L2 + (2 + k)z) @D

where k = sup,.,(k, — 1) and y € (0, /3/||A||2). LetT = {x €
H, : x € F(S) and Ax € F(T)} # 0. Then for arbitrary
x, € H, the sequence {x,} generated from x, by (44) converges
weakly to a point in T.

Ifin addition S is semicompact, then {x,} and {u, } converge
strongly to a point in T.

0<d<a,<B,<PB<

Example 12. Let C and S be as in Example 2, and let D
and T be as in Example 3. Then F(T) = {(0,0,0,...,0)} U
{Gep x5, .5 ,) = [T, %5 < 0}, and F(S) = {(0,0,0,...)}.
Furthermore, C and D are nonempty closed convex subsets
of £* and R", respectively. Define A : C — D by Ax =
(x1, %5, X3,...,%,) for each x = (x,%,,x5,...) € C. Then
A is a bounded linear operator with adjoint operator A"y =
(x1, %5, X35...,%,,0,0,0,...) for y = (x, x5, X3,...,%,) € D.
Furthermore, |A|l = |A®| = 1. Thus using algorithm (44)
with {e,}72, and {B,}2, satisfying the condition 0 < & <
a, < B, < B < 1/(1++/5) andy € (0,p), it follows from
Theorem 10 that x,, — (0,0,0,...) € F(S) and A(0,0,0,...) =
(0,0,0,...,0) € E(T).
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