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We study extension of 𝑝-trigonometric functions sin𝑝 and cos𝑝 and of 𝑝-hyperbolic functions sinh𝑝 and cosh𝑝 to complex domain.
Our aim is to answer the question under what conditions on 𝑝 these functions satisfy well-known relations for usual trigonometric
and hyperbolic functions, such as, for example, sin(𝑧) = −𝑖⋅sinh(𝑖⋅𝑧). In particular, we prove in the paper that for𝑝 = 6, 10, 14, . . . the
𝑝-trigonometric and 𝑝-hyperbolic functions satisfy very analogous relations as their classical counterparts. Our methods are based
on the theory of differential equations in the complex domain using the Maclaurin series for 𝑝-trigonometric and 𝑝-hyperbolic
functions.

1. Introduction

The 𝑝-trigonometric functions are generalizations of regular
trigonometric functions sine and cosine and arise from the
study of the eigenvalue problem for the one-dimensional 𝑝-
Laplacian.

In recent years, the 𝑝-trigonometric functions were
intensively studied from various points of views by many
researchers; see, for example, monograph [1] for systematic
survey and further references. The purpose of this paper is
twofold. We begin with a short survey of results from [2, 3].
Then, we extend the ideas from [3] to define corresponding
generalization of hyperbolic functions and study relations of
𝑝-trigonometric and 𝑝-hyperbolic functions on a disc in the
complex domain.

More precisely, our goal is to generalize the hyperbolic
functions such that the relations

sin 𝑧 = −𝑖 ⋅ sinh (𝑖 ⋅ 𝑧) ,
cos 𝑧 = cosh (𝑖 ⋅ 𝑧) ,

(1)

cos 𝑧 = sin𝑧,

cosh 𝑧 = sinh𝑧,
(2)

cos2𝑧 + sin2𝑧 = 1,

cosh2𝑧 − sinh2𝑧 = 1,
(3)

where 𝑧 ∈ C, have their counterparts for generalized 𝑝-
trigonometric and 𝑝-hyperbolic functions. It turns out that
this goal can be achieved only for even integer 𝑝 > 2.

The 𝑝-trigonometric functions in the real domain R

originate naturally from the study of the nonlinear eigenvalue
problem

− (

𝑢


𝑝−2

𝑢

)


− 𝜆 |𝑢|
𝑝−2

𝑢 = 0 in (0, 𝜋𝑝) ,

𝑢 (0) = 𝑢 (𝜋𝑝) = 0,

(4)

where 𝑝 > 1, 𝜆 ∈ R is a parameter, and

𝜋𝑝 = 2∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠 = 2𝜋

𝑝 sin (𝜋/𝑝)
. (5)

It was shown in Elbert [4] that all eigenfunctions of (4) can be
expressed in terms of solutions of the initial-value problem

− (

𝑢


𝑝−2

𝑢

)


− (𝑝 − 1) |𝑢|
𝑝−2

𝑢 = 0, 𝑥 ∈ R,

𝑢 (0) = 0,

𝑢

(0) = 1.

(6)
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2 Abstract and Applied Analysis

Indeed, (6) has the unique solution inR; see, for example,
[5, LemmaA.1], [6, Section 3], and [4]. Denoting the solution
of (6) by sin𝑝𝑥, the set of all eigenvalues 𝜆𝑘 ∈ R and
eigenfunctions 𝑢𝑘 ∈ 𝑊

1,𝑝

0
(0, 𝜋𝑝) of (4) can be written as

𝜆𝑘 = (𝑝 − 1) 𝑘
𝑝
,

𝑢𝑘 (𝑥) = sin𝑝 (𝑘 ⋅ 𝑥) ,

where 𝑘 ∈ N.

(7)

A piecewise construction of the solution of (6) was
provided in [4]. At first, one sets

arcsin𝑝𝑥
def
= ∫

𝑥

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠, 𝑥 ∈ [0, 1] . (8)

Then, the restriction of sin𝑝𝑥 on [0, 𝜋𝑝/2] is the inverse
function to arcsin𝑝𝑥. For 𝑥 ∈ (𝜋𝑝/2, 𝜋𝑝], sin𝑝𝑥 satisfies
sin𝑝𝑥 = sin𝑝(𝜋𝑝 − 𝑥), where clearly 𝜋𝑝 − 𝑥 ∈ [0, 𝜋𝑝/2), and
sin𝑝𝑥 = −sin𝑝(−𝑥) for 𝑥 ∈ [−𝜋𝑝, 0). Finally, sin𝑝𝑥 is a 2𝜋𝑝-
periodic function on R.

We also extend arcsin𝑝𝑥 from (8) to [−1, 1] as an odd
function. Then, it is the inverse function to the restriction of
sin𝑝𝑥 to [−𝜋𝑝/2, 𝜋𝑝/2], and we have

sin𝑝 (arcsin𝑝𝑥) = 𝑥, ∀𝑥 ∈ [−1, 1] . (9)

Finally, let us define cos𝑝𝑥
def
= sin

𝑝
𝑥 for all 𝑥 ∈ R.

Then, the functions sin𝑝𝑥 and cos𝑝𝑥 satisfy the so-called 𝑝-
trigonometric identity


cos𝑝𝑥



𝑝

+

sin𝑝𝑥



𝑝

= 1 (10)

for all 𝑥 ∈ R; see, for example, [4–6].
Note that there is an alternative definition of “cos𝑝𝑥”

in [7] and/or [8] which leads to different “𝑝-trigonometric”
identity. Yet another alternative generalization of trigono-
metric and hyperbolic functions motivated by geometrical
point of view was introduced in [9]. Studies of relations
between their respective generalizations of 𝑝-trigonometric
and 𝑝-hyperbolic functions were suggested in [7] and in [9],
respectively.

Remark 1. In the paper, we use Gauss’ hypergeometric func-
tion
2
𝐹1(𝑎, 𝑏, 𝑐, 𝑧), where 𝑎, 𝑏, 𝑐 ∈ C are parameters and 𝑧 ∈ C

is variable (for definition see [10, 15.1.1. p. 556]), to express
integrals of the type

∫

𝑥

0

1

(1 ± 𝑠𝑝)
1/𝑝

d𝑠,

∫

𝑧

0

1

(1 ± 𝑠𝑝)
1/𝑝

d𝑠,
(11)

for 𝑝 > 1, 𝑥 ∈ R, and 𝑧 ∈ C (by 𝑧1/𝑝 we understand the
principal branch thereof). Indeed,

𝑧
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, ∓𝑧
𝑝
) = ∫

𝑧

0

1

(1 ± 𝑠𝑝)
1/𝑝

d𝑠 (12)

for |𝑧| < 1 (by comparing respective series expansions). By
the uniqueness of analytic extension, the equation is valid for
𝑧 ∈ C \ {𝑥 + 𝑖𝑦 : 𝑥 > 1 and 𝑦 = 0} (for analytic continuation
of 2𝐹1 see, e.g., [10, 15.3.1, p. 558] and [11, Theorem 2.2.1, p.
65]).

In the definition of 𝜋𝑝 (i.e., (5)) and in (8), we need to
evaluate integral

∫

1

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠. (13)

By [11, Theorem 2.2.2, p. 66], this is possible, sinceR[𝑐 − 𝑎 −
𝑏] = 1 + 1/𝑝 − 1/𝑝 − 1/𝑝 = 1 − 1/𝑝 > 0 for 𝑝 > 1.

Notation 1. This paper combines real variable and complex
variable approach to the 𝑝-trigonometric and 𝑝-hyperbolic
functions. Each of these approaches has its own natural way
of how to define the functions sin𝑝 and sinh𝑝. Thus, we need
to distinguish between real and complex definitions. By sin𝑝𝑥
and sinh𝑝𝑥, we mean functions defined by the real variable
approach and by sin𝑝𝑧 and sinh𝑝𝑧wemean functions defined
by the complex variable approach, throughout the paper.

2. Real Analyticity Results for sin𝑝𝑥 and cos𝑝𝑥

It is well known that the 𝑝-trigonometric functions are not
real analytic functions in general; see, for example, [12, 13].
Very detailed study of the degree of smoothness of the
restriction of sin𝑝𝑥 to (−𝜋𝑝/2, 𝜋𝑝/2) was performed in [2]
including the following two results. The first one concerns
“generic” 𝑝 > 1.

Proposition 2 (see [2], Theorem 3.2 on p. 105). Let 𝑝 ∈ R \

{2𝑚}, 𝑚 ∈ N, 𝑝 > 1. Then,

sin𝑝𝑥 ∈ 𝐶
⌈𝑝⌉
(−
𝜋𝑝

2
,
𝜋𝑝

2
) , (14)

but

sin𝑝𝑥 ∉ 𝐶
⌈𝑝⌉+1

(−
𝜋𝑝

2
,
𝜋𝑝

2
) . (15)

Here, ⌈𝑝⌉ def
= min{𝑘 ∈ N: 𝑘 ≥ 𝑝}.

The second result treats only the even integers 𝑝 > 2 and
differs significantly from the previous case in an unexpected
way.

Proposition 3 (see [2],Theorem 3.1 on p. 105). Let 𝑝 = 2(𝑚+
1), 𝑚 ∈ N. Then,

sin𝑝𝑥 ∈ 𝐶
∞
(−
𝜋𝑝

2
,
𝜋𝑝

2
) . (16)

Thus, the Maclaurin series of sin𝑝𝑥

𝑀𝑝 (𝑥)
def
=

∞

∑

𝑛=1

1

𝑛!
sin(𝑛)
𝑝
(0) ⋅ 𝑥

𝑛 (17)

is well defined for 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N. Moreover,
the following result establishes an explicit expression for the
radius of convergence of𝑀𝑝.
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Proposition 4 (see [2], Theorem 3.3 on p. 106). Let 𝑝 =

2(𝑚+1) for𝑚 ∈ N. Then, theMaclaurin series𝑀𝑝(𝑥) of sin𝑝𝑥
converges on (−𝜋𝑝/2, 𝜋𝑝/2).

Thus, for 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N, we can compute
approximate values of sin𝑝𝑥 using Maclaurin series. It turns
out that the most effective method of computing coefficients
in (17) is to use formal inversion of the Maclaurin series of

arcsin𝑝𝑥 = ∫
𝑥

0

1

(1 − 𝑠𝑝)
1/𝑝

d𝑠

= 𝑥 ⋅
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, 𝑥
𝑝
)

=

∞

∑

𝑘=0

Γ (𝑘 + 1/𝑝)

(𝑘𝑝 + 1) 𝑘!Γ (1/𝑝)
𝑥
𝑘𝑝+1

,

(18)

where 𝑝 = 2(𝑚 + 1) for some 𝑚 ∈ N. The procedure
of inverting power series is well known; see, for example,
[14]. This task can be easily performed using computer
algebra systems. In Pseudocode 1, we provide an example of
computing the partial sum of 𝑀4 up to terms of order 32
in Mathematica� v. 9.0. In this way, we can easily get partial
sums of 𝑀𝑝 and get approximations of sin𝑝 for any 𝑝 =

2(𝑚+1), 𝑚 ∈ N, up to terms of orders of hundreds. Note that
this formal inverse can be applied also for𝑝 = 2𝑚+1, 𝑚 ∈ N.
Thequestion iswhat is themathematical sense of the resulting
formal series. Let

𝑇𝑝 (𝑥)
def
=

∞

∑

𝑛=1

𝑎𝑛 ⋅ 𝑥
𝑛 (19)

denote the series that is the formal inverse of (18) for 𝑝 =

2𝑚 + 1, 𝑚 ∈ N. For 𝑝 = 2𝑚 + 1, 𝑚 ∈ N, let us also define

𝑀𝑝 (𝑥)
def
=

∞

∑

𝑛=1

1

𝑛!
( lim
𝑥→0+

sin(𝑛)
𝑝
𝑥) ⋅ 𝑥

𝑛
, (20)

which is a formal Maclaurin series of some unknown func-
tion. It turns out that this unknow function is not sin𝑝𝑥 as
the following result holds.

Proposition 5 (see [2], Theorem 3.4 on p. 106). Let 𝑝 =

2𝑚+1,𝑚 ∈ N.Then, the formalMaclaurin series𝑀𝑝 converges
on (−𝜋𝑝/2, 𝜋𝑝/2). Moreover, the formal Maclaurin series 𝑀𝑝
converges towards sin𝑝𝑥 on [0, 𝜋𝑝/2) but does not converge
towards sin𝑝𝑥 on (−𝜋𝑝/2, 0).

In Appendix A, we prove that 𝑇𝑝 and𝑀𝑝 are identical.

Theorem 6. Let 𝑝 = 2𝑚 + 1,𝑚 ∈ N. Then,

𝑎𝑛 =
1

𝑛!
( lim
𝑥→0+

sin(𝑛)
𝑝
𝑥) , ∀𝑛 ∈ N, (21)

and 𝑇𝑝(𝑥) = 𝑀𝑝(𝑥) for all 𝑥 ∈ (−𝜋𝑝/2, 𝜋𝑝/2).

It turns out that the pattern of zero coefficients of𝑀𝑝 is
the same as in theMaclaurin series of arcsin𝑝𝑥; compare (18).

Theorem 7. Let 𝑝 > 2 be an integer. Then, 𝑎𝑖 = 0 for all 𝑖 ∈ N

such that 𝑖 − 1 is not divisible by 𝑝.

Theproof is technical and thus postponed to Appendix B.
It is based on the formal inversion of (18). Note that the
structure of powers in (18) does not allow any substitution
that will transform it into a power series of new variable
without zero coefficients. This makes the proof technically
complicated.

Using Theorem 7, we can omit zero entries and rewrite
the series𝑀𝑝:

𝑀𝑝 (𝑥) =

∞

∑

𝑙=0

𝛼𝑙 ⋅ 𝑥
𝑙𝑝+1

, (22)

where 𝛼𝑙 can be obtained by formal inversion of the Maclau-
rin series of arcsin𝑝𝑥 in (18). In particular,

𝛼0 = 1,

𝛼1 = −
1

𝑝 (𝑝 + 1)
,

𝛼2 = −
𝑝
2
− 2𝑝 − 1

2𝑝2 (𝑝 + 1) (2𝑝 + 1)
, . . . .

(23)

3. Extension of sin𝑝𝑧 and cos𝑝𝑧 to the Complex
Domain for Integer 𝑝 > 1

The conclusion of this theorem follows from the discussion
in [2].

Theorem 8. Let 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N. Then, the Maclaurin
series of sin𝑝𝑥 converges on the open disc

𝐵𝑝
def
= {𝑧 ∈ C : |𝑧| <

𝜋𝑝

2
} . (24)

Proof. In fact, the Maclaurin series ∑∞
𝑙=0
𝛼𝑙 ⋅ 𝑥
𝑙⋅𝑝+1 converges

towards the values of sin𝑝𝑥 on (−𝜋𝑝/2, 𝜋𝑝/2) absolutely for
𝑝 = 2(𝑚 + 1),𝑚 ∈ N.

For 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N, the expressions with powers
in the initial-value problem (6) can be written without the
absolute values. Thus, the resulting initial-value problem

(𝑢

)
𝑝−2

𝑢

+ 𝑢
𝑝−1

= 0,

𝑢 (0) = 0,

𝑢

(0) = 1

(25)

makes sense also in the complex domain (the derivatives
are understood in the sense of the derivative with respect to
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In[1] := Series[s*Hypergeometric2F1[1/4, 1/4, 5/4, s∧4],

{s, 0, 32}]

(* computes the Maclaurin series of arcsin 4 *)

Out[1] = 𝑠 +
𝑠
5

20
+
5𝑠
9

288
+
15𝑠
13

1664
+
195𝑠
17

34816
+
221𝑠
21

57344
+
4641𝑠

25

1638400
+
16575𝑠

29

7602176
+ 𝑂(𝑠

33
)

In[2] := InverseSeries[%]
(* computes the inverse series *)

Out[2] = 𝑠 −
𝑠
5

20
−
7𝑠
9

1440
−
463𝑠
13

374400
−
211741𝑠

17

509184000
−
104361161𝑠

21

641571840000
−

8978996213𝑠
25

128314368000000
−

7995735867463𝑠
29

248783228928000000
+ 𝑂(𝑠

33
)

(*which is M 4 up to terms of order 32*)

Pseudocode 1:Mathematica v. 9.0 code.

complex variable). Let us observe that, using the substitution
𝑢

= V, we get the following first-order system:

𝑢

= V,

V = −
𝑢
𝑝−1

V𝑝−2
,

𝑢 (0) = 0,

V (0) = 1.

(26)

By [15, Theorem 9.1, p. 76], there exists 𝛿𝑝 > 0 such that
problems (26) and hence (25) have the unique solution on
the open disc |𝑧| < 𝛿𝑝.

Nowwewill consider initial-value problems (25) and (26)
also for 𝑝 = 2𝑚 + 1,𝑚 ∈ N.

Theorem 9. Let 𝑝 = 2𝑚+1, 𝑚 ∈ N. The unique solution 𝑢(𝑧)
of (25) restricted to open disc 𝐵𝑝 is the Maclaurin series𝑀𝑝.

Proof. Let 𝑢(𝑧) = ∑∞
𝑘=1

𝑏𝑘𝑧
𝑘 be the unique solution of (25) in

any point of the open disc |𝑧| < 𝛿𝑝. Observe that the solution
𝑢(𝑧) = ∑

∞

𝑘=1
𝑏𝑘𝑧
𝑘 solves also the real-valued Cauchy problem

(6) for 𝑥 > 0 (where there is no need for | ⋅ |). On the other
hand, sin𝑝𝑥 is the unique solution of the real-valued Cauchy
problem (6). Since𝑀𝑝 given by (20) converges towards sin𝑝𝑥
in [0, 𝜋𝑝/2), we find that𝑀𝑝 satisfies (6) in [0, 𝜋𝑝/2). Thus,
𝑀𝑝(𝑥) = 𝑢(𝑥 + 𝑖 ⋅ 𝑦) for 𝑥 ∈ [0, 𝛿𝑝) and 𝑦 = 0. In particular,
taking a sequence of points 𝑧𝑛 = 𝛿𝑝/(𝑛 + 1) + 0 ⋅ 𝑖, 𝑛 ∈ N,
we have𝑀𝑝(𝑧𝑛) = 𝑢(𝑧𝑛); thus, we infer from Proposition A.2
that

𝑏𝑘 =
1

𝑘!
( lim
𝑥→0+

sin(𝑘)
𝑝
𝑥) . (27)

𝑀𝑝 has radius of convergence 𝜋𝑝/2 by Proposition 5, and so
does 𝑢(𝑧). Thus, 𝛿𝑝 = 𝜋𝑝/2.

Theorems 8 and 9 enable us to extend the range of
definition of the function sin𝑝𝑥 to the complex open disc 𝐵𝑝
by 𝑀𝑝 for 𝑝 = 2(𝑚 + 1) and for 𝑝 = 2𝑚 + 1, 𝑚 ∈ N,
respectively.Thus, we can consider 𝑝 = 𝑚+2 in the following
definition. Note that all the powers of 𝑧 are of positive-integer
order 𝑙 ⋅ 𝑝 + 1 and the function sin𝑝𝑧 is an analytic complex
function on 𝐵𝑝 and thus is single-valued.

Definition 10. Let 𝑝 = 𝑚 + 2, 𝑚 ∈ N, and 𝑧 ∈ 𝐵𝑝. Then,

sin𝑝𝑧
def
=

∞

∑

𝑙=0

𝛼𝑙 ⋅ 𝑧
𝑙⋅𝑝+1

,

cos𝑝𝑧
def
= sin
𝑝
𝑧 =

d
d𝑧

sin𝑝𝑧,

(28)

where the derivative d/d𝑧 is considered in the sense of
complex variables.

The following fundamental results were proved in [3]
(providing explicit value for 𝛿𝑝).

Proposition 11 (see [3], Theorem 2.1 on p. 226). Let 𝑝 =

2(𝑚 + 1), 𝑚 ∈ N; then, the unique solution of the initial-value
problem (25) on 𝐵𝑝 is the function sin𝑝𝑧.

Proposition 12 (see [3],Theorem 3.1 on p. 229). Let𝑝 = 2𝑚+
1,𝑚 ∈ N.Then, the unique solution 𝑢(𝑧) of the complex initial-
value problem (25) differs from the solution sin𝑝𝑥 of the Cauchy
problem (6) for 𝑧 = 𝑥 ∈ (−𝜋𝑝/2, 0).

In [3], it was shown that there is no hope for solutions of
(25) to be entire functions for 𝑝 = 𝑚 + 2, 𝑚 ∈ N. This result
follows from the complex analogy of the 𝑝-trigonometric
(10).

Lemma 13. Let 𝑝 = 𝑚 + 1,𝑚 ∈ N, and 𝑟 > 0 be such that the
solution 𝑢 of (25) is holomorphic on a disc 𝐷𝑟 = {𝑧 ∈ C : |𝑧| <

𝑟}. Then, 𝑢 satisfies the complex 𝑝-trigonometric identity

(𝑢

(𝑧))
𝑝

+ (𝑢 (𝑧))
𝑝
= 1 (29)

on the disc 𝐷𝑟.

Proof. Multiplying (25) by 𝑢 and integrating from 0 to 𝑧 ∈
𝐷𝑟, we obtain

(𝑢

(𝑧))
𝑝

− (𝑢

(0))
𝑝

+ (𝑢 (𝑧))
𝑝
− (𝑢 (0))

𝑝
= 0. (30)

Now using the initial conditions of (25), we get (29), which is
the first integral of (25) and we can think of it as complex 𝑝-
trigonometric identity for holomorphic solutions of (25) for
𝑝 = 𝑚 + 1, 𝑚 ∈ N.
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Now we state the very classical result from complex
analysis.

Proposition 14 (see [16], Theorem 12.20 on p. 433). Let 𝑓
and 𝑔 be entire functions and for some positive integer 𝑛 satisfy
identity

𝑓
𝑛
+ 𝑔
𝑛
= 1. (31)

(i) If 𝑛 = 2, then there is an entire function ℎ such that
𝑓 = cos ∘ ℎ and 𝑔 = sin ∘ ℎ.

(ii) If 𝑛 > 2, then 𝑓 and 𝑔 are each constant.

The following interesting connection between complex
analysis (including the classical reference [16, Theorem
12.20]) and 𝑝-trigonometric functions was studied in [3]. We
should point out that it was an interesting internet discussion
[17] that called our attention towards this connection. It
seems to us that this connection was overlooked by the “𝑝-
trigonometric community.”Thus, we provide itsmore precise
proof here.

Theorem 15. The solution 𝑢 of complex initial-value problem
(25) cannot be entire function for any 𝑝 = 𝑚 + 2, 𝑚 ∈ N.

Proof. Assume by contradiction that the solution 𝑢 of (25)
is entire function. Then, we can choose 𝑟 > 0 arbitrarily
large in Lemma 13. Thus, 𝑢 and 𝑢 must satisfy (29) at any
point 𝑧 ∈ C. Note that 𝑢 is an entire function too. Thus,
by Proposition 14 𝑢 and 𝑢 are constant which contradicts
𝑢

(0) = 1. This concludes the proof.

In particular, the solution of (25) is 𝑢(𝑧) = sin𝑝𝑧 with
𝑢

(𝑧) = cos𝑝𝑧. Thus, (29) becomes

cos𝑝
𝑝
𝑧 + sin𝑝

𝑝
𝑧 = 1 (32)

and we see that sin𝑝 and cos𝑝 cannot be entire functions for
𝑝 = 𝑚 + 2,𝑚 ∈ N.

4. Generalized Hyperbolometric Function
argsinh

𝑝
𝑥 and Generalized Hyperbolic

Function sinh𝑝𝑥 in the Real Domain for
Real 𝑝 > 1

In analogy to𝑝 = 2, we define sinh𝑝𝑥 for𝑝 > 1 as the solution
to the initial-value problem:

− (

𝑢


𝑝−2

𝑢

)


+ (𝑝 − 1) |𝑢|
𝑝−2

𝑢 = 0, 𝑥 ∈ R,

𝑢 (0) = 0,

𝑢

(0) = 1.

(33)

The uniqueness of the solution of this problem can be proved
in the sameway as in the case of (6) using the first integral (see

[4]). Note that the first integral of the real-valued initial-value
problem (33) is the real 𝑝-hyperbolic identity

1 + |𝑢|
𝑝
=

𝑢


𝑝

, (34)

for 𝑝 > 1; compare [4]. Thus, |𝑢| ≥ 1 on the domain of
definition of solution to (33). Since 𝑢(0) = 1 and 𝑢 must
be absolutely continuous, we find that 𝑢 > 0 on the domain
of definition of solution to (33) and the real 𝑝-hyperbolic
identity can be rewritten in equivalent form

𝑢

= (1 + |𝑢|

𝑝
)
1/𝑝
, (35)

which is a separable first-order ODE in R. By the standard
integration procedure, we obtain inverse function of the
solution 𝑢 (cf. [4]).

Therefore, it is natural to define

argsinh
𝑝
𝑥

def
= ∫

𝑥

0

1

(1 + |𝑠|
𝑝
)
1/𝑝

d𝑠, 𝑥 ∈ R, (36)

for any 𝑝 > 1, in the real domain (cf., e.g., [18–21]). Note
that the integral on the right-hand side can be evaluated in
terms of the analytic extension of Gauss’s

2
𝐹1 hypergeometric

function to C \ {𝑠 + 𝑖𝑡 : 𝑠 > 1, 𝑡 = 0} (see, e.g., [10, § 15.3.1, p.
558] and [11,Theorem 2.2.1, p. 65]); thus, (taking into account
that integrand in (36) is even)

argsinh
𝑝
𝑥

=

{{

{{

{

𝑥 ⋅
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, −𝑥
𝑝
) , 𝑥 ∈ [0, +∞)

−argsinh
𝑝
(−𝑥) , 𝑥 ∈ (−∞, 0) .

(37)

Since argsinh
𝑝
: R → R is strictly increasing function

on R, its inverse exists and it is, in fact, sinh𝑝𝑥 by the same
reasoning as in [4] (cf., e.g., [20]).

5. Generalized Hyperbolic Functions
sinh𝑝𝑧 and cosh𝑝𝑧 in Complex Domain for
Integer 𝑝 > 1

In the previous section, we introduced real-valued general-
ization of sinh𝑥 called sinh𝑝𝑥. Our aim is to extend this
function to complex domain. It is important to observe that,
for 𝑝 = 2, the following relations between complex functions
sin 𝑧 and sinh 𝑧 are known:

sin 𝑧 sinh 𝑧
𝑢

+ 𝑢 = 0 𝑢


− 𝑢 = 0

𝑢 (0) = 0 𝑢 (0) = 0

𝑢

(0) = 1 𝑢


(0) = 1

sin 𝑧 = −𝑖 ⋅ sinh (𝑖 ⋅ 𝑧) ,

(38)

where 𝑧 ∈ C and the equations are understood in the sense
of ordinary differential equations in the complex domain.
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Since the function | ⋅ | : C→ [0, +∞) (complex modulus)
is not analytic at 0 ∈ C, we cannot work with (6) and (33), but
we need to consider (25) and

(𝑢

)
𝑝−2

𝑢

− 𝑢
𝑝−1

= 0,

𝑢 (0) = 0,

𝑢

(0) = 1

(39)

in our discussion in the complex domain. Thus, the direct
analogy of the classical relations summarized in the table
above for 𝑝 ̸= 2 is stated in the following table:

sin𝑝𝑧 sinh𝑝𝑧
(𝑢

)
𝑝−2

𝑢

+ 𝑢
𝑝−1

= 0 (𝑢

)
𝑝−2

𝑢

− 𝑢
𝑝−1

= 0

𝑢 (0) = 0 𝑢 (0) = 0

𝑢

(0) = 1 𝑢


(0) = 1

sin𝑝𝑧
?
= −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) ,

(40)

where 𝑧 belongs to some complex disc centred at 0 ∈ C with
radius small enough such that both complex initial-value
problems are solvable. However, it turns out (see below) that
if we define sinh𝑝𝑧 as the solution (39), then the “𝑝-analogies”
of (2)-(3) are satisfied, but the “𝑝-analogy” of the identity (1),
that is,

sin𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) , (41)

is not satisfied in general. Our aim is to provide conditions
when (41) holds as well.

Let us formalize the above-stated ideas. Denote

𝐷𝑝
def
= {𝑧 ∈ C : |𝑧| < 𝛾𝑝} (42)

an open disc in C, where 𝛾𝑝 > 0 is given radius. At first we
prove unique solvability of (39) in𝐷𝑝.

Lemma 16. Let𝑝 = 𝑚+2, 𝑚 ∈ N.Then, there exists a complex
disc𝐷𝑝 such that the initial-value problem in complex domain
(39) has a unique solution on𝐷𝑝.

Proof. Using the substitution 𝑢 = V, we get the following
first-order system:

𝑢

= V,

V =
𝑢
𝑝−1

V𝑝−2
,

𝑢 (0) = 0,

V (0) = 1.

(43)

By [15, Theorem 9.1] on page 76, the statement of the lemma
follows.

Nowwe can define sinh𝑝 : 𝐷𝑝 → C for any integer 𝑝 > 2.

Definition 17. Let 𝑝 = 𝑚 + 2, 𝑚 ∈ N. The complex function
sinh𝑝𝑧 is defined on 𝐷𝑝 as the unique solution of the initial-

value problem (39) and cosh𝑝𝑧
def
= sinh

𝑝
𝑧 for all 𝑧 ∈ 𝐷𝑝.

Lemma 18. Let 𝑝 = 𝑚 + 1,𝑚 ∈ N, and 𝑟 > 0 be such that the
solution 𝑢 of (25) is holomorphic on a disc 𝐷𝑟 = {𝑧 ∈ C : |𝑧| <

𝑟}. Then, 𝑢 satisfies the complex “𝑝-hyperbolic” identity

(𝑢

(𝑧))
𝑝

− (𝑢 (𝑧))
𝑝
= 1 (44)

on the disc 𝐷𝑟.

The proof of Lemma 18 is analogous to the proof of
Lemma 13 and thus it is omitted.

Remark 19. Les us note that the real-valued identity

(𝑢 (𝑥)

)
𝑝

− (𝑢 (𝑥))
𝑝
= 1 (45)

for general 𝑝 > 0 already appeared in [22], where the
formal Maclaurin power series expansion of the solution to
this identity was treated. Interesting recurrence formula for
the coefficients of the Maclaurin power series can be found
there. It will be very interesting to use the following relations
between sin𝑝𝑧 and sinh𝑝𝑧 to find the analogous recurrence
formulas for sin𝑝𝑧.

Now we are ready to state main results of Section 5.

Theorem 20. Let 𝑝 = 4𝑙 + 2, 𝑙 ∈ N. Then,

sin𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) , (46)

cos𝑝𝑧 = cosh𝑝 (𝑖 ⋅ 𝑧) (47)

for all 𝑧 ∈ 𝐵𝑝. Moreover,

sinh𝑝𝑧 =
∞

∑

𝑘=0

(−1)
𝑘
⋅ 𝛼𝑘 ⋅ 𝑧

𝑘𝑝+1
. (48)

On the other hand, we have also the following surprising
result.

Theorem 21. Let 𝑝 = 4𝑙, 𝑙 ∈ N. Then,

sin𝑝𝑧 = −𝑖 ⋅ sin𝑝 (𝑖 ⋅ 𝑧) ,

cos𝑝𝑧 = cos𝑝 (𝑖 ⋅ 𝑧)
(49)

for all 𝑧 ∈ 𝐵𝑝.

The statement of the previous theorem is closely related
to similar result for 𝑝-hyperbolic functions.

Theorem 22. Let 𝑝 = 4𝑙, 𝑙 ∈ N. Then,

sinh𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) , (50)

cosh𝑝𝑧 = cosh𝑝 (𝑖 ⋅ 𝑧) (51)

for all 𝑧 ∈ 𝐷𝑝.
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Proof of Theorem 20. Let 𝑝 = 4𝑙 + 2, 𝑙 ∈ N, and 𝑢(𝑧) = sinh𝑝𝑧
be the unique solution of the initial-value problem (39) on
𝐷𝑝.

We show that𝑤(𝑧) = −𝑖 ⋅ 𝑢(𝑖 ⋅ 𝑧) satisfies (25) on𝐷𝑝 ∩𝐵𝑝.
Due to uniqueness of solution of (25), the identity (46) must
hold on𝐷𝑝 ∩ 𝐵𝑝.

Indeed, plugging into the left-hand side of (25), we get

(𝑤

(𝑧))
𝑝−2

𝑤

(𝑧) + 𝑤 (𝑧)

𝑝−1

= (
d
d𝑧
𝑤 (𝑧))

𝑝−2 d2

d𝑧2
𝑤 (𝑧) + 𝑤 (𝑧)

𝑝−1

= [
d
d𝑧
(−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))]

𝑝−2 d2

d𝑧2
(−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))

+ (−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))
𝑝−1

= 𝑖 ⋅ [
d

d (𝑖 ⋅ 𝑧)
𝑢 (𝑖 ⋅ 𝑧)]

𝑝−2 d2

d (𝑖 ⋅ 𝑧)2
𝑢 (𝑖 ⋅ 𝑧)

+ (−𝑖 ⋅ 𝑢 (𝑖 ⋅ 𝑧))
𝑝−1

= 𝑖 ⋅ [
d
d𝑠
𝑢 (𝑠)]

𝑝−2 d2

d𝑠2
𝑢 (𝑠) − 𝑖 ⋅ (−𝑖)

𝑝−2
⋅ 𝑢 (𝑠)
𝑝−1

= 𝑖 ⋅ ([
d
d𝑠
𝑢 (𝑠)]

𝑝−2 d2

d𝑠2
𝑢 (𝑠) − (−𝑖)

𝑝−2
⋅ 𝑢 (𝑠)
𝑝−1
)

= 𝑖 ⋅ ([
d
d𝑠
𝑢 (𝑠)]

𝑝−2 d2

d𝑠2
𝑢 (𝑠) − 𝑢 (𝑠)

𝑝−1
) = 0.

(52)

Note that for 𝑝 = 4𝑙 + 2, 𝑙 ∈ N, (−𝑖)𝑝−2 = 1. The last equality
then follows from (39). The right-hand side of (25) is zero.
So we have verified that 𝑤(𝑧) = −𝑖 ⋅ sinh𝑝(𝑖 ⋅ 𝑧) satisfies the
differential equation in (39).The initial conditions of (25) are
also satisfied by 𝑤(𝑧) = −𝑖 ⋅ sinh𝑝(𝑖 ⋅ 𝑧), since 𝑢(𝑧) = sinh𝑝𝑧
satisfies the initial conditions of (39).

Now it remains to show that 𝐷𝑝 = 𝐵𝑝 and hence sin𝑝𝑧 =
−𝑖⋅sinh𝑝(𝑖⋅𝑧) on𝐵𝑝. To this end, let us write sinh𝑝𝑧 = ∑

∞

𝑛=1
𝑐𝑛 ⋅

𝑧
𝑛 for yet unknown 𝑐𝑛 ∈ C. Then,
∞

∑

𝑛=1

𝑎𝑛 ⋅ 𝑧
𝑛
= sin𝑝𝑧 = −𝑖 ⋅ sinh𝑝 (𝑖 ⋅ 𝑧) =

∞

∑

𝑛=1

𝑐𝑛 ⋅ 𝑖
𝑛−1

⋅ 𝑧
𝑛 (53)

on𝐷𝑝 ∩ 𝐵𝑝. From here,

𝑐𝑛 =
𝑎𝑛

𝑖𝑛−1
= 𝑖
3𝑛+1

⋅ 𝑎𝑛. (54)

Since |𝑖3𝑛+1| = 1,𝐷𝑝 = 𝐵𝑝.
Now taking into account that 𝑎𝑛 = 0 for 𝑛−1 not divisible

by 𝑝, we immediately get 𝑐𝑛 = 0 for 𝑛 − 1 not divisible by 𝑝.
Now using our notation 𝛼𝑘 = 𝑎𝑘𝑝+1, 𝑘 ∈ N, we find that

𝑐𝑘𝑝+1 = (𝑖)
3(𝑘𝑝+1)+1

𝛼𝑘 = (−1)
𝑘
𝛼𝑘 (55)

which establishes (48).
Equation (47) follows directly from cosh𝑝𝑧 = sinh

𝑝
𝑧 and

(46).

Proof of Theorem 21. Let 𝑝 = 4𝑙, 𝑙 ∈ N, and 𝑢(𝑧) = sin𝑝𝑧.
Now, plugging𝑤(𝑧) = −𝑖⋅𝑢(𝑖⋅𝑧) into the left-hand side of (25),
we proceed in the sameway as in the proof ofTheorem20.The
most important difference is that for 𝑝 = 4𝑙, 𝑙 ∈ N, (−𝑖)𝑝−2 =
−1. Then, all following steps are analogous to those in proof
of Theorem 20 with several obvious changes.

Proof of Theorem 22. The proof is almost identical to the
proof of Theorem 20 with obvious changes (cf. the proof of
Theorem 21).

6. Real Restrictions of the Complex Valued
Solutions of (25) and (39) and Their
Maximal Domains of Extension as Real
Initial-Value Problems

Let us denote the restriction of the complex valued solution
of (25) and (39) to the real axis by ŝ𝑝(𝑥) and by ŝh𝑝(𝑥),
respectively. Since the equation in (25) and (39) contains
only integer powers of the solution and its derivatives, all
coefficients in the equation are real, and the initial conditions
in (25) and (39) are real, the value of sin𝑝𝑧 and sinh𝑝𝑧 must
be a real number for 𝑧 = 𝑥 + 𝑖𝑦 with −𝜋𝑝/2 < 𝑥 < 𝜋𝑝/2

and −𝛾𝑝 < 𝑥 < 𝛾𝑝 and 𝑦 = 0, respectively. Hence, ŝ𝑝(𝑥) and
ŝh𝑝(𝑥) attain only real values.

We start with the slightly more complicated case, which
is ŝh𝑝(𝑥). Moreover, since the solution of (39) is an analytic
function, it has the series representation

sinh𝑝𝑧 =
∞

∑

𝑘=1

𝑐𝑘𝑧
𝑘
, 𝑧 ∈ 𝐷𝑝, (56)

where 𝑐𝑘 ∈ R, 𝑘 ∈ N (note that sinh𝑝𝑧must be a real number
for any 𝑧 = 𝑥 + 𝑖𝑦 with −𝛾𝑝 < 𝑥 < 𝛾𝑝 and 𝑦 = 0).

Now we show that ŝh𝑝(𝑥) solves (33) (in the sense of
differential equations in real domain) for 𝑝 = 2(𝑚 + 1), 𝑚 ∈

N, and does not solve (33) (in the sense of differential
equations in real domain) for 𝑝 = 2𝑚 + 1, 𝑚 ∈ N, and
𝑥 < 0. For this purpose, we use an interesting consequence
of omitting of the modulus function.

Theorem 23. Let 𝑝 = 2𝑚+1, 𝑚 ∈ N, and 𝑥 ∈ (−𝜋𝑝/2, 𝜋𝑝/2).
Then,

ŝh𝑝 (𝑥) =
{{{

{{{

{

sinh𝑝𝑥, 𝑥 ∈ [0,
𝜋𝑝

2
) ,

sin𝑝𝑥 𝑥 ∈ (−
𝜋𝑝

2
, 0) .

(57)

Proof. For 𝑥 ∈ [0, 𝛾𝑝), the statement of Theorem follows
directly from the definition of real function sinh𝑝𝑥 and the
facts that sinh𝑝𝑥 ≥ 0 and sinh

𝑝
𝑥 ≥ 0 on [0, 𝛾𝑝).
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By the definition, the function sin𝑝𝑥 is the unique
solution of (6); that is,

− (

𝑢


𝑝−2

𝑢

)


− (𝑝 − 1) |𝑢|
𝑝−2

𝑢 = 0,

𝑢 (0) = 0,

𝑢

(0) = 1.

(58)

Assume that 𝑥 ∈ (−𝜋𝑝/2, 0). Then, sin𝑝𝑥 < 0 and sin
𝑝
𝑥 > 0.

Hence, we can rewrite (6) as

(𝑢

)
𝑝−2

𝑢

− 𝑢
𝑝−1

= 0,

𝑢 (0) = 0,

𝑢

(0) = 1,

(59)

which is formally (39) but here considered in real domain.
By Lemma 16, (39) has the unique solution on 𝐷𝑝. Its

restriction to (−𝛾𝑝, 0)∩(−𝜋𝑝/2, 0) clearly satisfies (59). Hence,

sin𝑝𝑥 =
∞

∑

𝑘=1

𝑐𝑘𝑥
𝑘
= ŝh𝑝 (𝑥) ,

𝑥 ∈ (−𝛾𝑝, 0) ∩ (−
𝜋𝑝

2
, 0) .

(60)

Moreover, sin𝑝𝑥 = ∑
∞

𝑘=0
𝛼𝑘 ⋅ 𝑥 ⋅ |𝑥|

𝑘𝑝, which is generalized
Maclaurin series of sin𝑝𝑥 (see [2, Remark 6.6, p. 125])
convergent on (−𝜋𝑝/2, 𝜋𝑝/2). For (−𝜋𝑝/2, 0), we obtain

∞

∑

𝑘=0

𝛼𝑘 ⋅ 𝑥 ⋅ |𝑥|
𝑘𝑝
=

∞

∑

𝑘=0

𝛼𝑘 ⋅ (−1)
𝑘𝑝
⋅ 𝑥
𝑘𝑝+1

=: 𝐺 (𝑥) . (61)

Hence, theMaclaurin series𝐺(𝑥) converges on (−𝜋𝑝/2, 𝜋𝑝/2)
(but not towards sin𝑝𝑥 for 𝑥 > 0). From (60) we get

∞

∑

𝑘=1

𝑐𝑘𝑥
𝑘
= 𝐺 (𝑥) on (−𝛾𝑝, 0) (62)

and using Proposition A.2 we obtain 𝛾𝑝 = 𝜋𝑝/2.

Corollary 24. Let 𝑝 = 2𝑚 + 1,𝑚 ∈ N. Then, ŝh𝑝(𝑥) does not
solve (33) for 𝑥 ∈ (−𝜋𝑝/2, 0).

Proof. Since sin𝑝𝑥 ̸= sinh𝑝𝑥 for 𝑥 ̸= 0, the statement
of Corollary follows directly from Theorem 23 and the
uniqueness of solution of (33).

Theorem 25. Let 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N. Then, ŝh𝑝(𝑥) solves
(33) for 𝑥 ∈ (−𝛾𝑝, 𝛾𝑝). In particular, 𝛾𝑝 = 𝜋𝑝/2 for 𝑝 = 4𝑚+ 2,
𝑚 ∈ N.

Proof. Since 𝑝 is even, we can drop the absolute values in (33)
obtaining (59), which is formally (39) but here considered in
real domain. Since sinh𝑝(𝑧) solves (39) on 𝐷𝑝, its restriction
ŝh𝑝(𝑥) to (−𝛾𝑝, 𝛾𝑝)must solve (59) on (−𝛾𝑝, 𝛾𝑝).

For 𝑝 = 4𝑚 + 2, 𝑚 ∈ N, we get 𝛾𝑝 = 𝜋𝑝/2 by (46) in
Theorem 20.

Theorem 26. Let 𝑝 = 2𝑚+1, 𝑚 ∈ N, and 𝑥 ∈ (−𝜋𝑝/2, 𝜋𝑝/2).
Then,

ŝ𝑝 (𝑥) =
{{

{{

{

sin𝑝𝑥, 𝑥 ∈ [0,
𝜋𝑝

2
) ,

sinh𝑝𝑥, 𝑥 ∈ (−
𝜋𝑝

2
, 0) .

(63)

Proof. The proof follows the same steps as the proof of
Theorem 23 with obvious modifications.

Now we will consider (25) and (39) as real-valued prob-
lems and find their maximal domains of extension. Let

↔s
𝑝(𝑥)

and
↔

sh𝑝(𝑥) denote solutions with maximal domains of (25)

and (39), respectively. We also define
↔c
𝑝(𝑥)

def
= (d/d𝑥)

↔s
𝑝(𝑥)

and
↔

ch𝑝(𝑥)
def
= (d/d𝑥)

↔

sh𝑝(𝑥).

Theorem 27. Let 𝑝 = 2𝑚 + 1,𝑚 ∈ N. Then,

↔s
𝑝𝑥 =

{{

{{

{

sinh𝑝𝑥, 𝑥 ∈ (−∞, 0) ,

sin𝑝𝑥, 𝑥 ∈ [0,
𝜋𝑝

2
) ,

↔

sh𝑝𝑥 =
{

{

{

sin𝑝𝑥, 𝑥 ∈ (−
𝜋𝑝

2
, 0) ,

sinh𝑝𝑥, 𝑥 ∈ [0, +∞) .

(64)

Theorem 28. Let 𝑝 = 2(𝑚 + 1),𝑚 ∈ N. Then,

↔s
𝑝𝑥 = sin𝑝𝑥, 𝑥 ∈ R,

↔

sh𝑝𝑥 = sinh𝑝𝑥, 𝑥 ∈ R.

(65)

Proof of Theorems 27 and 28. The solutions with maximal
domain of extension are known for (6) and (33). The proof
uses uniqueness of the solutions of real initial-value problems
(6) and (33) and initial-value problems (25) and (39) con-
sidered in real domain and the fact that (6) and (33) can be
rewritten as (25) and (39) depending on 𝑢(𝑥) ≶ 0, 𝑢(𝑥) ≶ 0,
and the parity of the positive integer𝑝.Themain ideas of how
to combine these ingredients are contained in the proof of
Theorem 23.

It easily follows from Theorems 27 and 28 that
↔c
𝑝(𝑥) is

defined on (−∞, 𝜋𝑝/2) for 𝑝 = 2𝑚 + 1 and on R for 𝑝 =

2(𝑚+1), 𝑚 ∈ N. Similarly,
↔

ch𝑝(𝑥) is defined on (−𝜋𝑝/2, +∞)

for 𝑝 = 2𝑚 + 1 and on R for 𝑝 = 2(𝑚 + 1), 𝑚 ∈ N.
Moreover, functions

↔s
𝑝(𝑥) and

↔c
𝑝(𝑥) satisfy the complex 𝑝-

trigonometric identity (29); that is,

(
↔s
𝑝 (𝑥))

𝑝

+ (
↔c
𝑝 (𝑥))

𝑝

= 1. (66)
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In[1] := pip[p ] =

Integrate[1/(1 - s∧p)∧(1/p), {s, 0, 1},

Assumptions -> p > 1]

(* assigns definition to function pip which returns pi p/2 *)

Out[1] =
𝜋csc(𝜋/𝑝)

𝑝

In[2] := s3[x ] = (u[x]/.

NDSolve[

{u'[x] == (v[x])∧(1/2), v'[x] == - 2 u[x]∧2,

u[0] == 0, v[0] == 1},

{u, v}, {x, -5, pip[3]}][[1]])

(* assigns definition to auxiliar function s3 *)

In[3] := sh3[x ] = (u[x]/.

NDSolve[

{u'[x] == (v[x])∧(1/2), v'[x] == 2 u[x]∧2,

u[0] == 0, v[0] == 1},

{u, v}, {x, -pip[3], 5}][[1]])

(* assigns definition to auxiliar function sh3 *)

In[4] := sin3[x ] = (u[x]/.

NDSolve[{u'[x] == (Abs[v[x]])∧(1/2) Sign[v[x]],

v'[x] == -2 Abs[u[x]]*u[x],

u[0] == 0, v[0] == 1},

{u,v}, {x, -4 pip[3], 4 pip[3]}][[1]])

(* assigns definition to auxiliar function sin3 *)

Pseudocode 2: Mathematica, v. 9.0 code. Code for pip[p ] computes 𝜋𝑝/2 for given argument 𝑝. Code for s3[x ] computes
↔

𝑠
3(𝑥) for

𝑥 ∈ (−5, 𝜋3/2) ⊊ (−∞, 𝜋3/2), code for sh3[x ] computes
↔

sh3(𝑥) for 𝑥 ∈ (𝜋3/2, 5) ⊊ (𝜋3/2, +∞), and code for sin3[x ] computes real-valued
function sin3(𝑥) for 𝑥 ∈ (−2𝜋3, 2𝜋3) ⊊ R.

Analogously, functions
↔

sh𝑝(𝑥) and
↔

ch𝑝(𝑥) satisfy the complex
𝑝-hyperbolic identity (44); that is,

(
↔

ch𝑝 (𝑥))
𝑝

− (
↔

sh𝑝 (𝑥))
𝑝

= 1. (67)

7. Visualizations

In this section, we provide visualizations of theoretical results
from previous sections. To generate graphical output, we
need to approximate special functions from previous sections
numerically. Note that the standard numerical methods
(available in Mathematica or Matlab�) can handle only
initial-value problems on real intervals. Thus, in our numeri-
cal calculations we need to consider initial-value problems in
real domain. This is not a problem for (6) and (33). For (25)
and (39), we calculate either the partial sum of the Maclaurin
series of solutions or we calculate functions

↔s
𝑝(𝑥) and

↔

sh𝑝(𝑥) which come from real initial-value problems. In our
graphical outputs, the solutions of real initial-value problems
are numerically approximated by the NDSolve command of
Mathematica, version 9.0. For the convenience of the reader,
we provide some source code. In Pseudocode 2, we list source

code for approximation of functions
↔s
3(𝑥),
↔

sh3(𝑥), and sin3𝑥.
Figure 1 compares graphs of sin3𝑥 and

↔s
3(𝑥) for 𝑥 ∈

(−𝜋3/2, 𝜋3/2). Figure 2 compares graphs of
↔s
3(𝑥) and

�̂�3;28(𝑥) for 𝑥 ∈ (−𝜋3/2, 𝜋3/2). Here, �̂�3;28(𝑥) is partial sum
of𝑀3(𝑥) up to the order 28, which is

�̂�3;28 (𝑥) = 𝑥 −
𝑥
4

12
−
𝑥
7

252
−
83 𝑥
10

90 720
−
1 817 𝑥

13

7 076 160

−
199 691 𝑥

16

2 377 589 760
−
12 324 719 𝑥

19

406 567 848 960

−
22 008 573 061 𝑥

22

1 878 343 462 195 200

−
107 355 387 043 𝑥

25

22 540 121 546 342 400

−
89 152 153 354 993 𝑥

28

44 304 862 911 490 621 440
.

(68)

Since the difference |
↔s
3(𝑥) − �̂�3;28(𝑥)| varies in order of

several magnitudes throughout the radius of convergence
𝜋3/2, we use logarithmic scale on the vertical axis.

We can also compute the functions
↔s
𝑝(𝑥) and

↔

sh𝑝(𝑥) by
inverting formulas (8) and (36) for arcsin𝑝𝑥 and argsinh𝑝𝑥,
respectively. It turns out that this approach provides more
precision than solving differential equation and enables

computing values of
↔c
𝑝(𝑥) and

↔

ch𝑝(𝑥) using identity (66)
and identity (67), respectively. We provide sample code for

computing
↔

sh3(𝑥) for 𝑥 ∈ (𝜋3/2, 5) ⊊ (𝜋3/2, +∞) in
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𝜋3/4 𝜋3/2−𝜋3/2 −𝜋3/4

−1.5

−1.0

−0.5

0.5

1.0

1.5

(a)

𝜋3/4 𝜋3/2−𝜋3/2 −𝜋3/4

0.1

0.2

−0.2

−0.1

(b)

Figure 1: (a) Real function sin3𝑥 (short-dashed line) versus
↔s
3(𝑥) (dashed line). (b) Plot of sin3𝑥 −

↔s
3(𝑥).

𝜋3/4 𝜋3/2−𝜋3/2 −𝜋3/4

0.5

1.0

−1.0

−0.5

(a)

0 𝜋3/4−𝜋3/4 𝜋3/2

10
−15

10
−10

10
−5

10
−1

(b)

Figure 2: (a)
↔s
3(𝑥) versus �̂�3;28 (the partial sum of𝑀3(𝑥) up to the order 28, which is (68)). (b) The logarithmic plot of |

↔s
3(𝑥) − 𝑀3(𝑥)|.

Pseudocode 3. Analogously, we wrote a code for computing
↔

sh4(𝑥),
↔

sh30(𝑥),
↔

sh31(𝑥),
↔s
3(𝑥),
↔s
4(𝑥),
↔s
30(𝑥), and

↔s
31(𝑥).

In the same way, as we defined real function argsinh𝑝𝑥 by
(36), we can define complex valued function argsinh𝑝𝑧 by

argsinh
𝑝
𝑧

def
= ∫

𝑧

0

1

(1 + 𝑠𝑝)
1/𝑝

d𝑠

= 𝑧
2
𝐹1 (

1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, − 𝑧
𝑝
) , 𝑧 ∈ D ⊊ C

(69)

for any 𝑝 = 𝑚 + 2. Note that the integrand has poles at 𝑧
satisfying 1 + 𝑧𝑝 = 0. Thus, the function argsinh𝑝𝑧 is not an
entire function. In particular, for 𝑝 = 2𝑚 + 1, there is a pole
at 𝑧 = −1. In Figure 3, we compare graphs of argsinh𝑝𝑥 for
𝑝 = 2, 3, 31 and 𝑥 ∈ (−3, 3) ⊊ R, with the restriction of the
complex valued function argsinh𝑝𝑧 for 𝑝 = 2, 3, 31, where
𝑧 = 𝑥 + 𝑖𝑦, where 𝑦 = 0, 𝑥 ∈ (−3, 3) for 𝑝 = 2 and 𝑥 ∈ (−1, 3)
for𝑝 = 3, 31, andwith argsinh𝑝𝑥 = argsinh𝑝𝑧 for𝑝 = 2, 4, 30,
𝑥 ∈ (−3, 3), 𝑦 = 0, and 𝑧 = 𝑥 + 𝑖𝑦.

In Figures 4, 5, and 6, we compare graphs of real-valued
functions: sinh𝑥, sinh4𝑥, sinh30𝑥, cosh𝑥, cosh4𝑥, cosh30𝑥
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−2

−1

1

2

1 2 3−2 −1−3

(a)

1 2 3−2 −1−3

1

2

−1

(b)

1 2 3−2 −1−3

1

2

−2

−1

(c)

Figure 3: (a) argsinh𝑝𝑥(= 𝑥 2𝐹1(1/𝑝, 1/𝑝, 1 + 1/𝑝, −|𝑥|
𝑝
)) for 𝑝 = 2, 3, 31, and 𝑥 ∈ (−3, 3). (b) argsinh𝑝𝑧(= 𝑧 2𝐹1(1/𝑝, 1/𝑝, 1 + 1/𝑝, −𝑧

𝑝
)) for

𝑝 = 2, 3, 31. Here, 𝑧 = 𝑥 + 𝑖𝑦, where 𝑦 = 0, 𝑥 ∈ (−3, 3) for 𝑝 = 2, and 𝑥 ∈ (−1, 3) for 𝑝 = 3, 31. (c) argsinh𝑝𝑥 = argsinh𝑝𝑧 for 𝑝 = 2, 4, 30,
𝑥 ∈ (−3, 3), 𝑦 = 0, and 𝑧 = 𝑥 + 𝑖𝑦.

In[2] := auxAgSh3[s ?NumberQ] :=

s Hypergeometric2F1[1/3, 1/3, 1 + 1/3, -s∧3]

(* assigns definition to auxiliar function auxAgSh3 *)

In[3] := sh3inv[x ?NumericQ] :=

(s/. FindRoot[auxAgSh3[s] - x, {s, 0, -1, 20}])

(* assigns definition to function sh3inv *)

In[4] := Plot[

sh3inv[x], {x, -pip[3], 2},

PlotStyle -> Thick, PlotRange -> {-2, 7}]

(* plots the graph *)

Pseudocode 3: Mathematica v. 9.0 code. Function sh3inv returns values of
↔

sh3(𝑥) for 𝑥 ∈ (𝜋3/2, 5) ⊊ (𝜋3/2, +∞) using inversion of the
formula (36) for argsinh3𝑥. This approach provides more precision than solving differential equation.
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1 2−2 −1

−3

−2

−1

1

2

3

(a)

1 2−2 −1

−3

−2

−1

1

2

3

(b)

Figure 4: (a) sinh𝑥 (short-dashed line), sinh4𝑥 (dashed line), and sinh30𝑥 (solid line). (b) cosh𝑥 (short-dashed line), cosh4𝑥 (dashed line),
and cosh30𝑥 (solid line).

1 2−2 −1

−3

−2

−1

1

2

3

(a)

1 2−2 −1

−3

−2

−1

1

2

3

(b)

Figure 5: (a) sinh𝑥 (short-dashed line), sinh3𝑥 (dashed line), and sinh31𝑥 (solid line). (b) cosh𝑥 (short-dashed line), cosh3𝑥 (dashed line),
and cosh31𝑥 (solid line).

(see Figure 4), sinh𝑥, sinh3𝑥, sinh31𝑥, cosh𝑥, cosh3𝑥,

cosh31𝑥 (see Figure 5),
↔

sh3(𝑥),
↔

sh31(𝑥),
↔

ch3(𝑥), and
↔

ch31(𝑥)
(see Figure 6).

Figure 7 illustrates the relation between sin3𝑥, sinh3𝑥,
↔s
3(𝑥), and

↔

sh3(𝑥), which are due toTheorem 27.
It follows from identity (66) and identity (67) that

the pairs of functions (
↔s
𝑝(𝑥),
↔c
𝑝(𝑥)) and (

↔

sh𝑝(𝑥),
↔

ch𝑝(𝑥)),
respectively, are parametrizations of Lamé curves restricted
to the first and fourth quadrant, see [23, Book V, Chapter V,

pp. 384–407] and [24]. Since the Lamé curves are frequently
used in geometrical modeling, we provide graphical compar-
ison of the Lamé curves and phase portraits of initial-value
problems (25) and (39) in real domain on Figures 8 and 9,
respectively.

8. Conclusion

We have discussed real and complex approaches of how to
define generalized trigonometric and hyperbolic functions.
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−3
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(b)

Figure 6: (a) sinh𝑥 (short-dashed line),
↔

sh3(𝑥) (dashed line), and
↔

sh31(𝑥) (solid line). (b) cosh𝑥 (short-dashed line),
↔

ch3(𝑥) (dashed line),

and
↔

ch31(𝑥) (solid line). Note that
↔

sh𝑝(𝑥) and
↔

ch𝑝(𝑥) are defined on (−𝜋𝑝/2, +∞) for integer 𝑝 > 1 odd.

2 4−4 −2

−3

−2

−1

1

2

3

(a)

42−4 −2

−3

−2

−1

1

2

3

(b)

Figure 7: (a) sin3𝑥, sinh3𝑥, and
↔s
3(𝑥). (b) sin3𝑥, sinh3𝑥, and

↔

sh3(𝑥).

The real approach is motivated by minimization of Rayleigh
quotient (see, e.g., [1, Equation (3.4), p. 51] and references
therein):

∫
𝜋𝑝

0


𝑢


𝑝

d𝑥

∫
𝜋𝑝

0
|𝑢|
𝑝 d𝑥

(70)

in 𝑊
1,𝑝

0
(0, 𝜋𝑝). This leads to (4) with 𝜆 = 𝑝 − 1 and

to initial-value problem (6) in turn. Thus, from this point
of view, the solution of (6) and its derivative can be seen
as natural generalizations of the functions sine and cosine.
Unfortunately, presence of absolute value in (6) does not
allow for extension to complex domain for general 𝑝 > 1.
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Figure 8: Bold lines: dependence of 𝑢 =
↔s
𝑝(𝑥) on 𝑢


=
↔c
𝑝(𝑥). Both bold and thin lines: dependence of restriction to real axes of derivative

of solution of (29) on the restriction to real axes of the solution itself (Lamé curves).
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Figure 9: Bold lines: dependence of 𝑢 =
↔

sh𝑝(𝑥) on 𝑢

=
↔

ch𝑝(𝑥). Both bold and thin lines: dependence of restriction to real axes of derivative
of solution of (44) on the restriction to real axes of the solution itself (Lamé curves).
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Table 1: Summary of results according to discussed functions and their domain.

𝑝 ∈ Function Domain IVP Results

(1, +∞) sin𝑝𝑥 R (6) Propositions 2–5;
Theorems 6, 7, 8, 23, and 26–28

(1, +∞) sinh𝑝𝑥 R (33) Theorems 23 and 26–28

N\{1} sin𝑝𝑧 𝐵𝑝 (25) Propositions 11 and 12; Lemma 13;
Theorems 6, 7, 8, 9, 15, 20, and 21

N\{1} sinh𝑝𝑧 𝐷𝑝 (39) Lemmas 16 and 18;
Theorems 20 and 22

Table 2: Interrelations between 𝑝-trigonometric and 𝑝-hyperbolic
functions. Note that the relations must be symmetric.

sin𝑝𝑥 sinh𝑝𝑥 sin𝑝𝑧 sinh𝑝𝑧
sin𝑝𝑥 — (57), (63)–(64) — —
sinh𝑝𝑥 sym. — — —
sin𝑝𝑧 sym. sym. (49) (46)
sinh𝑝𝑧 sym. sym. sym. (50)

It was shown in [2] that functions sin𝑝𝑥 are real analytic
functions for any even integer 𝑝 > 2. Moreover, there is no
need to write absolute value in (6) for 𝑥 ∈ [−𝜋𝑝/2, 𝜋𝑝/2]

provided 𝑝 > 2 is an even integer.
It turns out that the relation between the real and complex

approach is not as smooth as in the classical case 𝑝 = 2. Thus,
we summarize our results in Tables 1 and 2.

We also discussed the Lamé curves, which are important
curves in geometrical modeling. We hope this will stimu-
late interest in 𝑝-trigonometric and 𝑝-hyperbolic functions
among the geometric-modeling community.

Appendix

A. Proof of Theorem 6

We will use the following result to proveTheorem 6.

Proposition A.1 (see [15], Theorem 2.4b on p. 97). Let the
formal power series 𝐹 def

= 𝑎1𝑥 + 𝑎2𝑥
2
+ ⋅ ⋅ ⋅ , 𝑎1 ̸= 0, have a

positive radius of convergence. The inversion 𝐹−1 of 𝐹 then also
has positive radius of convergence.

Let us note that the term reversion of series is used in [15]
instead of inversion of series (see [15], p. 46).

Proposition A.2 (see [25], Theorem 16.6 on p. 352). If the
sum of two power series in the variable 𝑧 − 𝑧0 coincides on a
set of points 𝐸 for which 𝑧0 is a limit point and 𝑧0 ∉ 𝐸, then
identical powers of 𝑧 − 𝑧0 have identical coefficients; that is,
there is a unique power series in the variable 𝑧 − 𝑧0 which has
given sum on the set 𝐸.

Proof of Theorem 6. Let us remember that 𝑇𝑝(𝑥) is given by
(19), which is the formal inverse of arcsin𝑝𝑥 and 𝑀𝑝(𝑥) is
given by formula (20). The idea is to prove that there exists
𝛿𝑝 > 0 small enough such that both series 𝑇𝑝(𝑥) and𝑀𝑝(𝑥)
have the sum equal to uniquely defined value sin𝑝𝑥 at any 𝑥 ∈
[0, 𝛿𝑝). Then, 𝑇𝑝(𝑥) = 𝑀𝑝(𝑥) on [0, 𝛿𝑝) and the assumptions
of Proposition A.2 are satisfied on 𝑧𝑛 = 𝛿𝑝/(𝑛 + 1). It follows
that𝑇𝑝(𝑥)has identical coefficients as𝑀𝑝(𝑥)has and so𝑇𝑝(𝑥)
also converges on (−𝜋𝑝/2, 𝜋𝑝/2).

By Propositions 4 and 5, 𝑀𝑝(𝑥) converges to sin𝑝𝑥 for
𝑝 > 2 even on (−𝜋𝑝/2, 𝜋𝑝/2) and for 𝑝 > 1 odd on [0, 𝜋𝑝/2),
respectively. It remains to show that there exists 𝜎𝑝 > 0 such
that

𝑇𝑝 (𝑥) = sin𝑝𝑥 (A.1)

on [0, 𝜎𝑝). Since 𝑇𝑝(𝑥) is defined as formal inverse of
arcsin𝑝𝑥, (A.1) holds on domain of convergence of 𝑇𝑝(𝑥).
Since for 𝑥 ∈ [0, 1]

arcsin𝑝𝑥 = 𝑥 ⋅ 2𝐹1 (
1

𝑝
,
1

𝑝
, 1 +

1

𝑝
, 𝑥
𝑝
)

=

∞

∑

𝑘=0

Γ (𝑘 + 1/𝑝)

(𝑘 ⋅ 𝑝 + 1) ⋅ 𝑘! ⋅ Γ (1/𝑝)
𝑥
𝑘𝑝+1

,

(A.2)

where right-hand side series has radius of convergence equal
to 1, hence the existence of 𝜎𝑝 ≤ 𝜋𝑝/2 is provided by
Proposition A.1 and 𝛿𝑝 = 𝜎𝑝.

B. Proof of Theorem 7

By Theorem 6,𝑀𝑝 = 𝑇𝑝. Hence, we can prove the statement
of Theorem 7 for 𝑇𝑝 instead of𝑀𝑝.

Assume by contradiction that there exists 𝑎𝑛 ̸= 0 for some
𝑛 such that 𝑛 − 1 is not divisible by 𝑝. For this purpose, let
us denote by 𝑏𝑗 the 𝑗th coefficient of the Maclaurin series of
arcsin𝑝 corresponding to 𝑗th power. From (18), we get

𝑏𝑗 =

{{

{{

{

Γ (𝑙 + 1/𝑝)

(𝑙𝑝 + 1) ⋅ 𝑙! ⋅ Γ (1/𝑝)
if 𝑗 = 𝑙 ⋅ 𝑝 + 1 for some 𝑙 ∈ N ∪ {0} ,

0 otherwise.
(B.1)
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Since 𝑇𝑝 is the formal inverse series of

arcsin𝑝𝑥 =
∞

∑

𝑗=1

𝑏𝑗 ⋅ 𝑥
𝑗
, (B.2)

the coefficients 𝑎𝑛 can be computed from the formula

𝑎𝑛 =
1

𝑛 ⋅ 𝑏𝑛
1

∑
𝑚1 ,𝑚2,...,𝑚𝑛−1

(−1)
𝑚1+𝑚2+⋅⋅⋅+𝑚𝑛−1 ⋅

𝑛 (𝑛 + 1) ⋅ . . . ⋅ (𝑛 − 1 + 𝑚1 + 𝑚2 + 𝑚3 + ⋅ ⋅ ⋅ + 𝑚𝑖 + ⋅ ⋅ ⋅ + 𝑚𝑛−1)

𝑚1!𝑚2!𝑚3! . . .
⋅ (
𝑏2

𝑏1
)

𝑚1

⋅ (
𝑏3

𝑏1
)

𝑚2

(
𝑏4

𝑏1
)

𝑚3

⋅ ⋅ ⋅ (
𝑏𝑖+1

𝑏1
)

𝑚𝑖

⋅ ⋅ ⋅ (
𝑏𝑛

𝑏1
)

𝑚𝑛−1

,

(B.3)

where the summation is taken over all 𝑚1, 𝑚2, 𝑚3, . . . ∈ N ∪

{0} such that

𝑚1 + 2𝑚2 + 3𝑚3 + ⋅ ⋅ ⋅ + 𝑖𝑚𝑖 ⋅ ⋅ ⋅ (𝑛 − 1)𝑚𝑛−1 = 𝑛 − 1, (B.4)

and if 𝑚𝑖 = 0, then the corresponding term (𝑏𝑖+1/𝑏1)
𝑚𝑖 is

dropped from the product on the last line of (B.3).
Let us note that this procedure is fully described in [14],

p. 411–413 and it requires that 𝑏1 ̸= 0. Note that

𝑏1 =
Γ (1/𝑝)

1 ⋅ 1! ⋅ Γ (1/𝑝)
= 1 (B.5)

by (B.1).
Now, let us fix𝑚1, 𝑚2, 𝑚3, . . . , 𝑚𝑛−1 satisfying (B.4). If 𝑏𝑖 =

0 and𝑚𝑖 ̸= 0 for at least one 𝑖 = 1, 2, 3, . . . , 𝑛−1, the summand
of sum (B.3) corresponding to𝑚1, 𝑚2, 𝑚3, . . . equals 0. Taking
into account (B.1), 𝑏𝑖 = 0whenever 𝑖 ̸= 𝑙𝑝+1 for any 𝑙 ∈ N∪{0}.
This leads us to conclusion that nonzero terms in (B.3) can be
formed only from 𝑚𝑖’s where 𝑖 is divisible by 𝑝. Thus, (B.4)
implies that the following equation must be satisfied:

𝑝 ⋅ 𝑚𝑝 + 2𝑝 ⋅ 𝑚2𝑝 + 3𝑝 ⋅ 𝑚3𝑝 + ⋅ ⋅ ⋅ + 𝑙 ⋅ 𝑝 ⋅ 𝑚𝑙⋅𝑝 + ⋅ ⋅ ⋅

+ 𝑘 ⋅ 𝑝 ⋅ 𝑚𝑘⋅𝑝 = 𝑛 − 1,

(B.6)

where

𝑘 = ⌊
𝑛 − 1

𝑝
⌋ . (B.7)

But here the left-hand side is a multiple of 𝑝 while the right-
hand side 𝑛 − 1 is not divisible by 𝑝 by our assumption. This
is a contradiction.
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Librairie Scientifique A. Hermann. Libraire de S. M. Le Roi de
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