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We perturb the differential system 𝑥̇

1
= −𝑥

2
(1 + 𝑥

1
), 𝑥̇
2
= 𝑥

1
(1 + 𝑥

1
), and 𝑥̇

𝑘
= 0 for 𝑘 = 3, . . . , 𝑑 inside the class of all polynomial

differential systems of degree 𝑛 in R𝑑, and we prove that at most 𝑛𝑑−1 limit cycles can be obtained for the perturbed system using
the first-order averaging theory.

1. Introduction

One of themain problems in the theory of differential systems
is the study of their periodic orbits, their existence, their
number, and their stability. As usual, a limit cycle of a
differential system is a periodic orbit isolated in the set of all
periodic orbits of the differential system.

In [1], the authors studied the differential system

𝑥̇ = −𝑦 + 𝜀 (𝑎𝑥 + 𝑃 (𝑥, 𝑦)) ,

𝑦̇ = 𝑥 + 𝜀 (𝑎𝑦 + 𝑄 (𝑥, 𝑦)) ,

(1)

where𝑃(𝑥, 𝑦) and𝑄(𝑥, 𝑦) are arbitrary polynomials of degree
𝑛 starting with terms of degree 2, 𝑎 is a real parameter, and 𝜀 is
small parameter.They proved that for 𝜀 ̸= 0 sufficiently small,
the maximum number of limit cycles bifurcating from the
periodic orbits of the linear center 𝑥̇ = −𝑦, 𝑦̇ = 𝑥, obtained
using the averaging theory of first order, is (𝑛 − 1)/2 if 𝑛 is
odd and (𝑛 − 2)/2 if 𝑛 is even. In the same paper, the authors
studied the limit cycles of the differential system

𝑥̇ = −𝑦 + 𝜀 (𝑎𝑥 + 𝑃 (𝑥, 𝑦, 𝑧)) ,

𝑦̇ = 𝑥 + 𝜀 (𝑎𝑦 + 𝑄 (𝑥, 𝑦, 𝑧)) ,

𝑧̇ = 𝜀 (𝑏𝑧 + 𝑅 (𝑥, 𝑦, 𝑧)) ,

(2)

where 𝑃(𝑥, 𝑦, 𝑧), 𝑄(𝑥, 𝑦, 𝑧), and 𝑅(𝑥, 𝑦, 𝑧) are arbitrary poly-
nomials of degree 𝑛 starting with terms of degree 2 and 𝑎, 𝑏 ∈
R. Then, there exists 𝜀

0
> 0 sufficiently small such that for

|𝜀| < 𝜀

0
there are systems (2) having at least 𝑛(𝑛 − 1)/2

limit cycles bifurcating from the periodic orbits of the system
𝑥̇ = −𝑦, 𝑦̇ = 𝑥, and 𝑧̇ = 0.

In [2], the authors studied the number of limit cycles of
the differential system

𝑥̇ = −𝑦 (1 + 𝑥) + 𝜀 (𝑎𝑥 + 𝑃 (𝑥, 𝑦, 𝑧)) ,

𝑦̇ = 𝑥 (1 + 𝑥) + 𝜀 (𝑎𝑦 + 𝑄 (𝑥, 𝑦, 𝑧)) ,

𝑧̇ = 𝜀 (𝑏𝑧 + 𝑅 (𝑥, 𝑦, 𝑧)) ,

(3)

where 𝐹(𝑥, 𝑦, 𝑧), 𝐺(𝑥, 𝑦, 𝑧), and 𝑅(𝑥, 𝑦, 𝑧) are polynomials of
degree 𝑛 starting from terms of degree 2. Then, there exists
𝜀

0
> 0 sufficiently small such that for |𝜀| < 𝜀

0
there are

systems (3) having at least 𝑛2 limit cycles bifurcating from the
periodic orbits of the system 𝑥̇ = −𝑦(1+𝑥), 𝑦̇ = 𝑥(1+𝑥), and
𝑧̇ = 0.

In general, to obtain analytically periodic solutions of a
differential system is a very difficult work, usually impossible.
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Here, using the averaging theory of first order, we will study
the number of limit cycles of the differential system

𝑥̇

1
= −𝑥

2
(1 + 𝑥

1
) + 𝜀 (𝑎𝑥

1
+ 𝑃

1
(𝑥

1
, . . . , 𝑥

𝑑
)) ,

𝑥̇

2
= 𝑥

1
(1 + 𝑥

1
) + 𝜀 (𝑎𝑥

2
+ 𝑃

2
(𝑥

1
, . . . , 𝑥

𝑑
)) ,

𝑥̇

𝑘
= 𝜀 (𝑏

𝑘
𝑥

𝑘
+ 𝑃

𝑘
(𝑥

1
, . . . , 𝑥

𝑑
)) , 𝑘 = 3, . . . , 𝑑,

(4)

in R𝑑, where 𝑃
𝑘
(𝑥

1
, . . . , 𝑥

𝑑
) for 𝑘 = 1, . . . , 𝑑 is a polynomial

of degree 𝑛 starting with terms of degree 2, 𝑎, 𝑏
𝑘
∈ R, and 𝜀 is

a small parameter.
The problem of studying the limit cycles of system (4)

is reduced using the averaging theory of first order to find
the zeros of a nonlinear system of 𝑑 − 2 equations with
𝑑 − 2 unknowns. It is known that in general the averaging
theory for finding periodic solutions does not provide all
the periodic solutions of the system; this is due to two main
reasons. First, the averaging theory for studying the periodic
solutions of a differential system is based on the so-called
displacement function, whose zeros provide periodic solu-
tions of the differential system. This displacement function
in general is not global and consequently it cannot control
all the periodic solutions of the differential system, only the
ones which are in its domain of definition and are hyperbolic.
Second, the displacement function is expanded in power
series of a small parameter 𝜀, and the averaging theory only
controls the zeros of the dominant term of this displacement
function. When the dominant term is 𝜀𝑘, we talk about
the averaging theory of order 𝑘. For more details, see, for
instance, [3] and the references quoted there. The averaging
theory of first order necessary for the results of this paper is
summarized in Section 2.

Our main result on the limit cycles of the differential
system (4) is as follows.

Theorem 1. By applying the first-order averaging theory to the
polynomial differential system (4), for 𝜀 ̸= 0 sufficiently small
at most 𝑛𝑑−1 limit cycles bifurcate from the periodic orbits of the
differential system 𝑥̇

1
= −𝑥

2
(1 + 𝑥

1
), 𝑥̇
2
= 𝑥

1
(1 + 𝑥

1
), 𝑥̇
3
= 0,

and 𝑥̇
4
= 0, . . . , 𝑥̇

𝑑
= 0.

Theorem 1 is proved in Section 3.

2. Limit Cycles via Averaging Theory

Roughly speaking, we can say that the averaging theory gives
a quantitative relation between periodic solutions of a nonau-
tonomous periodic differential system and the solutions of
its averaged differential system, which is autonomous. The
next result provides a first-order approximation in 𝜀 for the
limit cycles of a periodic differential system; for a proof, see
Theorem 2.6.1 of [4] andTheorem 11.5 of [5].

Theorem 2. One considers the following two initial-value
problems:

𝑥̇ = 𝜀𝑓 (𝑡, 𝑥) + 𝜀

2
𝑔 (𝑡, 𝑥, 𝜀) , 𝑥 (0) = 𝑥

0
, (5)

𝑦̇ = 𝜀𝑓

0
(𝑦) , 𝑦 (0) = 𝑥

0
, (6)

where 𝑥, 𝑦, 𝑥
0
∈ 𝐷, and𝐷 is an open subset ofR𝑛, 𝑡 ∈ [0,∞),

|𝜀| ≤ 𝜀

0
, 𝑡 ∈ [0,∞), |𝜀| ≤ 𝜀

0
, 𝑓 and 𝑔 are periodic of period 𝑇

in the variable 𝑡, and 𝑓
0
(𝑦) is the averaged function of 𝑓(𝑡, 𝑥)

with respect to 𝑡; that is,

𝑓

0
(𝑦) =

1

𝑇

∫

𝑇

0

𝑓 (𝑡, 𝑦) 𝑑𝑡.
(7)

Assume that

(i) 𝑓, its Jacobian 𝜕𝑓/𝜕𝑥, its Hessian 𝜕2𝑓/𝜕𝑥2, 𝑔, and its
Jacobian 𝜕𝑔/𝜕𝑥 are defined, continuous, and bounded
by a constant independent of 𝜀 in [0,∞) × 𝐷 and |𝜀| ≤
𝜀

0
;

(ii) 𝑇 is a constant independent of |𝜀|;

(iii) 𝑦(𝑡) belongs to𝐷 on the time interval [0, 1/|𝜀|].

Then, the following statements hold:

(a) On the time scale 1/|𝜀|, we have that 𝑥(𝑡)−𝑦(𝑡) = 𝑂(𝜀)
as 𝜀 → 0.

(b) If 𝑝 is a singular point of the averaged system (6) such
that the determinant of the Jacobianmatrix 𝜕𝑓

0
/𝜕𝑦|

𝑦=𝑝

is not zero, then there exists a limit cycle𝜑(𝑡, 𝜀) of period
𝑇 for system (5) such that 𝜑(0, 𝜀) → 𝑝 as 𝜀 → 0.

(c) The stability or instability of the limit cycle 𝜑(𝑡, 𝜀) is
given by the stability or instability of the singular point
𝑝 of the averaged system (6) when 𝑝 is a hyperbolic
singular point.

To proveTheorem 1, we need the following three lemmas
which are proved in [6].

Before doing the proof ofTheorem 1, we recall the Bézout
theorem which will be used later on; for a proof of this result,
see [7].

Theorem 3 (Bézout theorem). Let 𝑞

𝑗
be polynomials in

the variables (𝑥
1
, . . . , 𝑥

𝑑
) of degree 𝑑

𝑗
for 𝑗 = 1, . . . , 𝑑.

Consider the following polynomial system: 𝑞
1
(𝑥

1
, . . . , 𝑥

𝑑
) =

0, . . . , 𝑞

𝑑
(𝑥

1
, . . . , 𝑥

𝑑
) = 0, where (𝑥

1
, . . . , 𝑥

𝑑
) ∈ R𝑑. If the

number of solutions of this system is finite, then it is bounded
by 𝑑
1
⋅ ⋅ ⋅ 𝑑

𝑑
.

Lemma 4. For 𝑖, 𝑗 ∈ N, one defines

𝐼

𝑖,𝑗
=

1

2𝜋

∫

2𝜋

0

cos𝑖𝜃 sin𝑗𝜃
1 + cos 𝜃

𝑑𝜃.
(8)

Then, 𝐼
𝑖,𝑗
= 0 if and only if 𝑗 is even. For 𝑖, 𝑗 ∈ N with 𝑗 even,

one has

𝐼

𝑖,𝑗
=

𝑗

∑

𝑠=0
𝑠 𝑒V𝑒𝑛

(−1)

𝑠/2
(

𝑗

2

𝑠

2

)𝐼

𝑖+𝑠,0
. (9)
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Lemma 5. The following equalities hold. For 𝑘 ∈ N, one has

𝐸

𝑘
=

1

2𝜋

∫

2𝜋

0

cos𝑘𝜃 𝑑𝜃 =
{

{

{

0 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑,

𝐶

𝑘/2

𝑘
2

−𝑘
𝑖𝑓 𝑘 𝑖𝑠 𝑒V𝑒𝑛;

𝐼

0,0
=

1

2𝜋

∫

2𝜋

0

1

1 + 𝑟 cos 𝜃
𝑑𝜃 =

1

√

1 − 𝑟

2
.

(10)

Lemma 6. For 𝑖 ∈ N, one has

𝐼

𝑖,0
=

1

2𝜋

∫

2𝜋

0

cos𝑖𝜃
1 + 𝑟 cos 𝜃

𝑑𝜃

=

(−1)

𝑖

𝑟

𝑖
√

1 − 𝑟

2
+

𝑖

∑

𝑙=1

𝑙≡𝑖(mod 2)

(−1)

𝑙−1
2

𝑙−𝑖
(

𝑖 − 𝑙

(𝑖 − 𝑙)

2

) 𝑟

−𝑙
.

(11)

3. Proof of Theorem 1

Doing the change to polar coordinates 𝑥
1
= 𝑟 cos 𝜃, 𝑥

2
=

𝑟 sin 𝜃, system (4) becomes

̇𝑟 = 𝜀(𝑎𝑟 +

𝑛

∑

𝑖=2

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑑
=𝑖

𝑟

𝑖
1
+𝑖
2

𝑥

𝑖
3

3

⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
(𝑎

𝑖,1

𝑖
1
,𝑖
2
,...,𝑖
𝑑

cos𝑖1+1𝜃 sin𝑖2𝜃 + 𝑎𝑖,2
𝑖
1
,𝑖
2
,...,𝑖
𝑑

cos𝑖1𝜃 sin𝑖2+1𝜃))

̇

𝜃 = 1 + 𝑟 cos 𝜃 + 𝜀

𝑟

(

𝑛

∑

𝑖=2

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑑
=𝑖

𝑟

𝑖
1
+𝑖
2

𝑥

𝑖
3

3

⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
(𝑎

𝑖,2

𝑖
1
,𝑖
2
,...,𝑖
𝑑

cos𝑖1+1𝜃 sin𝑖2𝜃 − 𝑎𝑖,1
𝑖
1
,𝑖
2
,...,𝑖
𝑑

cos𝑖1𝜃 sin𝑖2+1𝜃))

𝑥̇

𝑘
= 𝜀(𝑏

𝑘
𝑥

𝑘
+

𝑛

∑

𝑖=2

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑑
=𝑖

𝑎

𝑖,𝑘

𝑖
1
,𝑖
2
,...,𝑖
𝑑

𝑟

𝑖
1
+𝑖
2

𝑥

𝑖
3

3
⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
cos𝑖1𝜃

⋅ sin𝑖2𝜃) ,

(12)

where 𝑘 = 3, . . . , 𝑑. Taking 𝜃 as the new independent variable
instead of 𝑡, this differential system can be written as

𝑑𝑟

𝑑𝜃

= 𝜀𝐹 (𝜃, 𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) + 𝑂 (𝜀

2
) ,

𝑑𝑥

𝑘

𝑑𝜃

= 𝜀 (𝐺

𝑘
(𝜃, 𝑟, 𝑥

3
, . . . , 𝑥

𝑑
)) + 𝑂 (𝜀

2
) ,

(13)

for 𝑘 = 3, . . . , 𝑑, where

𝐹 (𝜃, 𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) = 𝑎𝑟𝐷

0,0
+

𝑛

∑

𝑖=2

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑑
=𝑖

𝑟

𝑖
1
+𝑖
2

𝑥

𝑖
3

3

⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
(𝑎

𝑖,1

𝑖
1
,𝑖
2
,...,𝑖
𝑑

𝐷

𝑖
1
+1,𝑖
2

+ 𝑎

𝑖,2

𝑖
1
,𝑖
2
,...,𝑖
𝑑

𝐷

𝑖
1
,𝑖
2
+1
) ,

𝐺

𝑘
(𝜃, 𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) = 𝑏

𝑘
𝑥

𝑑
𝐷

0,0

+

𝑛

∑

𝑖=2

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑑
=𝑖

𝑎

𝑖,𝑘

𝑖
1
,𝑖
2
,...,𝑖
𝑑

𝑟

𝑖
1
+𝑖
2

𝑥

𝑖
3

3
⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
𝐷

𝑖
1
,𝑖
2

,

(14)

with

𝐷

𝑖
1
,𝑖
2

=

cos𝑖1𝜃 sin𝑖2𝜃
1 + 𝑟 cos 𝜃

.

(15)

Now, using the notation introduced in Lemma 4 and applying
the first-order averaging method, we must find the zeros of
the system

𝑓 (𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) = 0,

𝑔

𝑘
(𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) = 0, for 𝑘 = 3, . . . , 𝑑,

(16)

where

𝑓 (𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) =

1

2𝜋

∫

2𝜋

0

𝐹 (𝜃, 𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) 𝑑𝜃

= 𝑎𝑟𝐼

0,0
+

𝑛

∑

𝑖=2

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑑
=𝑖

𝑟

𝑖
1
+𝑖
2

𝑥

𝑖
3

3

⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
(𝑎

𝑖,1

𝑖
1
,𝑖
2
,...,𝑖
𝑑

𝐼

𝑖
1
+1,𝑖
2

+ 𝑎

𝑖,2

𝑖
1
,𝑖
2
,...,𝑖
𝑑

𝐼

𝑖
1
,𝑖
2
+1
) ,

𝑔

𝑘
(𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) =

1

2𝜋

∫

2𝜋

0

𝐺

𝑘
(𝜃, 𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) 𝑑𝜃

= 𝑏

𝑘
𝑥

𝑘
𝐼

0,0
+

𝑛

∑

𝑖=2

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑑
=𝑖

𝑎

𝑖,𝑘

𝑖
1
,𝑖
2
,...,𝑖
𝑑

𝑟

𝑖
1
+𝑖
2

𝑥

𝑖
3

3
⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
𝐼

𝑖
1
,𝑖
2

,

(17)

for 𝑘 = 3, . . . , 𝑑, and

𝐼

𝑖,𝑗
=

1

2𝜋

∫

2𝜋

0

𝐷

𝑖
1
,𝑖
2

𝑑𝜃 =

1

2𝜋

∫

2𝜋

0

cos𝑖1𝜃 sin𝑖2𝜃
1 + cos 𝜃

𝑑𝜃.
(18)

Theorem 7. Let 𝑡 = √

1 − 𝑟

2 and 𝑘 = 3, . . . , 𝑑. The function
𝑡𝑔

𝑘
(𝑡, 𝑥

3
, . . . , 𝑥

𝑑
) is a polynomial of degree 𝑛 in the variables 𝑡

and 𝑥
𝑘
, while 𝑟𝑡𝑓(𝑡, 𝑥

3
, . . . , 𝑥

𝑑
) is a polynomial of degree 𝑛 + 1.

Moreover, 𝑟𝑡𝑓(𝑡, 𝑥
3
, . . . , 𝑥

𝑑
) = (𝑡 − 1)𝑄(𝑡, 𝑥

3
, . . . , 𝑥

𝑑
), where

𝑄 is a polynomial in the variables 𝑡 and 𝑥
3
, 𝑥

4
, . . . , 𝑥

𝑑
of the

degree at most 𝑛.

Proof. The function 𝑔
𝑘
is a linear combination of 𝑥

𝑘
𝐼

0,0
and

𝑟

𝑖
1
+𝑖
2
𝑥

𝑖
3

3
⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
𝐼

𝑖
1
,𝑖
2

, where 2 ≤ 𝑖
1
+ 𝑖

2
+ ⋅ ⋅ ⋅ + 𝑖

𝑑
≤ 𝑛.

Lemma 4 claims that

𝑟

𝑚
𝐼

𝑚,0
= (−1)

𝑚
(

√

1 − 𝑟

2
)

−1

+ 𝑋

𝑚
(𝑟) ,

(19)

where𝑋
𝑚
is an even polynomial of the degree𝑚−1 if𝑚 is odd

and of degree𝑚−2 otherwise. Using the variable 𝑡 = √1 − 𝑟2,
we conclude that

𝑟

𝑚
𝐼

𝑚,0
=

(−1)

𝑚
+

̂

𝑋

𝑚
(𝑡)

𝑡

,

(20)

where ̂𝑋
𝑚
(𝑡) is an odd polynomial of degree𝑚 or𝑚−1. Since

𝑟

𝑚
𝐼

𝑚,0
vanishes at 𝑟 = 0, the functions 𝑟𝑘𝐼

𝑘,0
for 𝑘 = 2, . . . , 𝑚

span the space of functions of the form [𝐴+

̂

𝑋(𝑡)]/𝑡 vanishing
at 𝑡 = 1 with deg ̂𝑋(𝑡) = 𝑚 or 𝑚 − 1, respectively. Lemma 4
implies that any function 𝑟𝑖+𝑗𝐼

𝑖,𝑗
is of the form

𝜙

𝑖,𝑗
=

𝑌

𝑖,𝑗
(𝑡) +

̂

𝑋

𝑖+𝑗
(𝑡)

𝑡

,

(21)
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where 𝑌
𝑖,𝑗
(𝑡) is an even polynomial in 𝑡 of the degree 𝑗 (𝑗 is

necessarily even by Lemma 4) and ̂

𝑋

𝑖+𝑗
(𝑡) is a polynomial

in 𝑡 of the degree 𝑖 + 𝑗 or 𝑖 + 𝑗 − 1. We conclude that the
functions 𝑟𝑖1+𝑖2𝐼

𝑖
1
,𝑖
2

, where 2 − (𝑖

3
+ ⋅ ⋅ ⋅ + 𝑖

𝑑
) ≤ 𝑖

1
+ 𝑖

2
≤

𝑛−(𝑖

3
+⋅ ⋅ ⋅+ 𝑖

𝑑
), generate the space of functions𝑍(𝑡)/𝑡, where

deg𝑍 ≤ 𝑛 − (𝑖

3
+ ⋅ ⋅ ⋅ + 𝑖

𝑑
) (and, in addition, 𝑍(1) = 0).

Therefore, {𝑃
𝑘
(𝑡, 𝑥

3
, . . . , 𝑥

𝑑
)/𝑡, deg𝑃

𝑘
≤ 𝑛}, 𝑘 = 3, . . . , 𝑑.

In a similar way, 𝑓 is a linear combination of 𝑟 and terms
𝑟

𝑖
1
+𝑖
2
𝑥

𝑖
3

3
⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
𝐼

𝑖
1
+1,𝑖
2

and 𝑟𝑖1+𝑖2𝑥𝑖3
3
⋅ ⋅ ⋅ 𝑥

𝑖
𝑑

𝑑
𝐼

𝑖
1
,𝑖
2
+1
, where 2 ≤ 𝑖

1
+

𝑖

2
+⋅ ⋅ ⋅+𝑖

𝑑
≤ 𝑛.We conclude that the functions 𝑟𝑖1+𝑖2𝐼

𝑖
1
+1,𝑖
2

and
𝑟

𝑖
1
+𝑖
2
𝐼

𝑖
1
,𝑖
2
+1
, where 2−(𝑖

3
+ ⋅ ⋅ ⋅+ 𝑖

𝑑
) ≤ 𝑖

1
+𝑖

2
≤ 𝑛−(𝑖

3
+ ⋅ ⋅ ⋅+ 𝑖

𝑑
),

generate the space of functions 𝑍(𝑡)/𝑟𝑡, where deg𝑍 ≤ 𝑛 +

1 − (𝑖

3
+ ⋅ ⋅ ⋅ + 𝑖

𝑑
). We have 𝑓(0, 𝑥

3
, . . . , 𝑥

𝑑
) = 0 which implies

𝑍(1) = 0. Therefore, {(𝑡 − 1)𝑄(𝑡, 𝑥
3
, . . . , 𝑥

𝑑
)/𝑟𝑡, deg𝑄 ≤ 𝑛}.

So the polynomials 𝑄(𝑡, 𝑥
3
, . . . , 𝑥

𝑑
) and 𝑡𝑔

𝑘
(𝑡, 𝑥

3
, . . . , 𝑥

𝑑
) in

the variables 𝑡, 𝑥
3
, . . . , 𝑥

𝑑
have at most degree 𝑛. Hence, by

the Bézout theorem, the maximum number of solutions of
𝑡𝑔

𝑘
(𝑡, 𝑥

3
, . . . , 𝑥

𝑑
) = 0 for 𝑘 = 3, . . . , 𝑑 and 𝑄(𝑡, 𝑥

3
, . . . , 𝑥

𝑑
) = 0

is at most 𝑛𝑑−1 for 0 < 𝑡 < 1.

Thus, from Theorems 2 and 3, it follows that the maxi-
mum number of limit cycles bifurcating from the differential
system (4) is 𝑛𝑑−1 obtained using the averaging theory of first
order. This completes the proof of Theorem 1.

4. An Application of Theorem 1

In system (4), we consider the case 𝑛 even and

𝑃

1
(𝑥

1
, . . . , 𝑥

𝑑
) =

𝑛

∑

𝑖=2

𝑎

𝑖,1

0,0,...,𝑖
𝑥

𝑖

𝑑
+ 𝑎

2,1

1,0,...,0,1
𝑥

1
𝑥

𝑑
,

𝑃

2
(𝑥

1
, . . . , 𝑥

𝑑
) = 0,

𝑃

𝑘
(𝑥

1
, . . . , 𝑥

𝑑
) =

𝑛

∑

𝑖=2,𝑖 even
(𝑎

𝑖,𝑘

𝑖,0,...,0
𝑥

𝑖

1
+ 𝑎

𝑖,𝑘

0,𝑖,...,0
𝑥

𝑖

2
)

for 𝑘 = 3, . . . , 𝑑.

(22)

Computing the averaged functions and taking 𝑡 = √

1 − 𝑟

2,
we have

𝑟

√

1 − 𝑟

2
𝑓 (𝑟, 𝑥

3
, 𝑥

4
, . . . , 𝑥

𝑑
)

= 𝑎𝑟

2

+ (𝑎

2,1

1,0,...,0,1
𝑥

𝑑
−

𝑛

∑

𝑖=2

𝑎

𝑖,1

0,0,...,𝑖
𝑥

𝑖

𝑑
)(1 −

√

1 − 𝑟

2
)

= (1 − 𝑡)(𝑎 (1 + 𝑡) + 𝑎

2,1

1,0,...,0,1
𝑥

𝑑
−

𝑛

∑

𝑖=2

𝑎

𝑖,1

0,0,...,𝑖
𝑥

𝑖

𝑑
)

= (1 − 𝑡) (𝑎 (1 + 𝑡) − 𝑄 (𝑥

𝑑
)) ,

(23)

where 𝑄(𝑥
𝑑
) is an arbitrary polynomial in 𝑥

𝑑
of degree 𝑛

such that 𝑄(0) = 0. At the same time, the averaged function
corresponding to 𝑃

𝑘
(𝑥

1
, . . . , 𝑥

𝑑
) satisfies

√

1 − 𝑟

2
𝑔

𝑘
(𝑟, 𝑥

3
, 𝑥

4
, . . . , 𝑥

𝑑
)

= 𝑏

𝑘
𝑥

𝑘
+

√

1 − 𝑟

2

𝑛

∑

𝑖=2
𝑖 even

𝑟

𝑖
(𝑎

𝑖,𝑘

𝑖,0,0,...,0
𝐼

𝑖,0
+ 𝑎

𝑖,𝑘

0,𝑖,0,...,0
𝐼

0,𝑖
) ,

(24)

for 𝑘 = 3, . . . , 𝑑. It is easy to obtain the following relations:

𝑟

𝑘cos𝑘𝜃
1 + 𝑟 cos 𝜃

= (−1)

𝑘 1

1 + 𝑟 cos 𝜃

+

𝑘

∑

V=1
(−1)

𝑘 cos𝑘−V𝜃𝑟𝑘−V,

𝑟

𝑘sin𝑘𝜃
1 + 𝑟 cos 𝜃

=

𝑘

∑

𝑠=0,𝑠 even
(−1)

s/2
(

𝑘

2

𝑠

2

)

⋅ [(−1)

𝑘 𝑟

𝑘−𝑠

1 + 𝑟 cos 𝜃
+

𝑠

∑

V=1
(−1)

V−1 cos𝑠−V𝜃𝑟𝑘−V] .

(25)

Looking at the second term of the first relation and at the first
term of the second relation, we obtain that 𝑟𝑖𝐼

𝑖,0
and 𝑟𝑖𝐼

0,𝑖
for

even 2 ≤ 𝑖 ≤ 𝑛 are independent. In particular, using Lemmas
4, 5, and 6, we obtain

√

1 − 𝑟

2
𝑔

𝑘
(𝑟, 𝑥

3
, 𝑥

4
, . . . , 𝑥

𝑑
)

= 𝑏

𝑘
𝑥

𝑘
+ 𝑔

1,𝑘
(𝑟) + 𝑔

2,𝑘
(𝑟) , for 𝑘 = 3, . . . , 𝑑,

(26)

where

𝑔

1,𝑘
=

𝑛

∑

𝑖=2
𝑖 even

𝑎

𝑖,𝑘

𝑖,0,0,...,0

−

√

1 − 𝑟

2

𝑛−1

∑

𝑚=0
𝑚 even

𝑟

𝑚

𝑛

∑

𝑖=𝑚+1
𝑖 even

𝑎

𝑖,𝑘

𝑖,0,...,0
2

−𝑚
(

𝑚

𝑚

2

) ,

𝑔

2,𝑘
=

𝑛

∑

𝑚=0
𝑚 even

𝐴

𝑚,𝑘
𝑟

𝑚
+

√

1 − 𝑟

2

𝑛−1

∑

𝑚=0
𝑚 even

𝐵

𝑚,𝑘
𝑟

𝑚
,

(27)

where

𝐴

𝑚,𝑘
=

𝑛

∑

𝑖=0
𝑖 even

𝑎

𝑖,𝑘

0,𝑖,0,...,0
𝑑

𝑖−𝑚,𝑖
,

𝐵

𝑚,𝑘
=

𝑛

∑

𝑖=0
𝑖 even

𝑎

𝑖,𝑘

0,𝑖,0,...,0
𝑑

𝑖−𝑚,𝑖

𝑛

∑

𝑙>0
𝑙 even

𝑒

𝑖−𝑚,𝑙
,
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𝑑

𝑖−𝑚,𝑖
= (−1)

(𝑖−𝑚)/2
(

𝑖

2

(𝑖 − 𝑚)

2

) ,

𝑒

𝑖−𝑚,𝑙
= (−1)

𝑙−1
2

𝑙−(𝑖−𝑚)
(

𝑖 − 𝑚 − 𝑙

(𝑖 − 𝑚 − 𝑙)

2

) .

(28)

Writing 𝑡 = √

1 − 𝑟

2, the polynomials 𝑔
𝑠,𝑘
(𝑟) = 𝑃

𝑠,𝑘
(𝑡) satisfy

the conditions 𝑔
𝑠,𝑘
(0) = 𝑃

𝑠,𝑘
(1) = 0 for 𝑠 = 1, 2 and 𝑘 =

3, . . . , 𝑑. Then, we can define a polynomial of degree 𝑛 in 𝑡:

𝑃

𝑘
(𝑡) = 𝑃

1,𝑘
(𝑡) + 𝑃

2,𝑘
(𝑡) = (𝑡 − 1)

̃

𝑃

𝑘
(𝑡) . (29)

Due to the independence of 𝑟𝑖𝐼
𝑖,0
and 𝑟𝑖𝐼

0,𝑖
and the arbitrari-

ness of the coefficients 𝑎𝑖,𝑘
𝑖,0,0,...,0

and 𝑎𝑖,𝑘
0,𝑖,0,...,0

, the polynomial
𝑃

𝑘
(𝑡) is an arbitrary polynomial such that𝑃

𝑘
(1) = 0. In fact, it

is obvious that 𝑔
1,𝑘

and 𝑔
2,𝑘

have 𝑛/2 parameters, respectively,
where 𝑛/2 coefficients 𝑎𝑖,𝑘

0,𝑖,0,...,0
allow choosing the first term of

𝑔

2,𝑘
arbitrarily except for the term with𝑚 = 0, implying that

the even terms of 𝑃
𝑘
(𝑡) are arbitrary except for the constant

term, while the other 𝑛/2 coefficients 𝑎𝑖,𝑘
𝑖,0,0,...,0

allow choosing
the second term in 𝑔

1,𝑘
arbitrarily, implying that the odd

terms of 𝑃
𝑘
(𝑡) are arbitrary. Therefore, the polynomial 𝑃

𝑘
(𝑡)

of the degree 𝑛 satisfies 𝑃
𝑘
(1) = 0 and has 𝑛 arbitrary

coefficients. The number of solutions of 𝑓(𝑟, 𝑥
3
, 𝑥

4
, . . . , 𝑥

𝑑
) =

0, 𝑔
𝑘
(𝑟, 𝑥

3
, 𝑥

4
, . . . , 𝑥

𝑑
) = 0, for 𝑘 = 3, . . . , 𝑑, is equal to the

number of the intersection points of the curves

𝑙

1
: 𝑎 (1 + 𝑡) − 𝑄 (𝑥

𝑑
) = 0.

𝑙

𝑘−1
: 𝑏

𝑘
𝑥

𝑘
+ 𝑃

𝑘
(𝑡) = 0, for 𝑘 = 3, . . . , 𝑑.

(30)

Hence, by the Bézout theorem, the maximum number of the
common solutions of system (30) is atmost 𝑛𝑑−1 for 0 < 𝑡 < 1.
We can find 𝑛𝑑−1 intersection points on 𝑓(𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) = 0

with 𝑔
𝑘
(𝑟, 𝑥

3
, . . . , 𝑥

𝑑
) = 0 for 𝑘 = 3, . . . , 𝑑, 𝑟 ∈ (𝑟

0
, 1), 0 <

𝑟

0
≪ 1, which (using the averaging theory; see Theorem 2)

give rise to 𝑛𝑑−1 limit cycles bifurcating from periodic orbits
of the system 𝑥̇

1
= −𝑥

2
(1 + 𝑥

1
), 𝑥̇
2
= 𝑥

1
(1 + 𝑥

1
), 𝑥̇
3
= 0, and

𝑥̇

4
= 0, . . . , 𝑥̇

𝑑
= 0.
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