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An effective method for generating linear ordinary differential equations of maximal symmetry in their most general form is found,
and an explicit expression for the point transformation reducing the equation to its canonical form is obtained. New expressions
for the general solution are also found, as well as several identification and other results and a direct proof of the fact that a linear
ordinary differential equation is iterative if and only if it is reducible to the canonical form by a point transformation. New classes
of solvable equations parameterized by an arbitrary function are also found, together with simple algebraic expressions for the
corresponding general solution.

1. Introduction

Linear ordinary differential equations (lodes) are quite prob-
ably the most common type of differential equations that
occur in physics and in many other mathematically based
fields of science. However, their most important properties
such as their transformation properties, their general solu-
tions, and even their symmetry properties remain largely
unknown.

In a short paper published by Krause and Michel [1] in
1988 certain specific properties of lodes of maximal sym-
metry were established. In particular, the said paper shows
that such equations are precisely the iterative ones, and equiv-
alently those which can be reduced by an invertible point
transformation to the trivial equation 𝑦(𝑛) = 0, which we
shall refer to as the canonical form. However that short paper
left a number of important questions unanswered. It does not
provide, for instance, any expression for the point transfor-
mation mapping a given equation of maximal symmetry to
the canonical form.

Almost at the same time the problem of generating lodes
of maximal symmetry was considered by Mahomed and
Leach [2] who found an algorithm for obtaining expres-
sions for the most general normal form of these equations
based on the direct computation of the symmetry algebra.

Computations with this algorithm remain however quite
tedious and the authors managed to provide a general ex-
pression for the lodes of maximal symmetry only up to the
order eight. In fact the expression of the corresponding eight-
order equation of maximal symmetry found in that paper is
incorrect.

A more direct algorithm for generating this class of equa-
tions based on the simple fact that they are iterative was pro-
posed recently in [3]. Nevertheless, some of the main results
of the latter paper concerning in particular the generation and
the point transformations of the class of lodes of maximal
symmetry still have room for improvements.

It is worthwhile to mention that in recent years the
study of ordinary differential equations (odes) of maximal
symmetry algebra has given rise to a considerable number of
research papers in the scientific literature. Examples of such
studies include the determination of various types of symme-
try subalgebras and some of their applications for systems of
second-order odes [4, 5]. Momoniat and collaborators also
studied the algebraic properties of first integrals of scalar
second-order and third-order odes as well as for systems
of second-order odes of maximal symmetry [6, 7]. On the
other hand a solution algorithm for second-order and third-
order odes of maximal symmetry based on Janet bases and
Loewy decompositionswas obtained in [8, 9]. A similar study
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of second-order lodes of maximal Lie point symmetry and
third-order lodes of maximal contact symmetry was carried
out in [10] for equations in canonical form (𝑦 = 0 and𝑦 = 0) to investigate amongst others the properties of their
first integrals and exceptional symmetries.

In this paper, we provide a much simpler differential
operator than that found in [3] for generating linear iterative
equations of a general order. This gives rise to a simple
algorithm for testing lodes for maximal symmetry based
solely on their coefficients. The operator thus found corrects
the wrong one obtained in [2, Equations (3.20) and (3.21)] as
one of themain conclusions of that paper. On the other hand,
we give a more direct proof than that of Krause and Michel
[1] to the fact that lodes reducible by an invertible point
transformation to the canonical form 𝑦(𝑛) = 0 are precisely
those which are iterative.

We also establish several results concerning the solutions
of this class of equations and in particular their transforma-
tion to canonical form. In contrast to the very well-known
paper by Ermakov [11] who managed to find only some very
specific cases from a restricted class for which the second-
order source equation is solvable, we provide large families
of second-order equations for which the general solution
is given by simple algebraic formulas. All such families are
parameterized by an entirely arbitrary nonzero function and
the general solutions thus found for the second-order source
equation yield through a very simple quadratic formula that
for the whole corresponding class of equations of maximal
symmetry of a general order.

2. Iterations of Linear Equations

Let 𝑟 ̸= 0 and 𝑠 be two smooth functions of 𝑥, and consider
the differential operator Ψ = 𝑟(𝑑/𝑑𝑥) + 𝑠. We shall often
denote by 𝐹[𝑥1, . . . , 𝑥𝑚] a differential function of the vari-
ables 𝑥1, . . . , 𝑥𝑚. Linear iterative equations are the iterationsΨ𝑛[𝑦] = 0 of the first-order lode Ψ[𝑦] ≡ 𝑟𝑦 + 𝑠𝑦 = 0, given
by

Ψ𝑛 [𝑦] = Ψ𝑛−1 (Ψ [𝑦]) , for 𝑛 ≥ 1 with Ψ0 = 𝐼, (1)

where 𝐼 is the identity operator. A linear iterative equation of
a general order 𝑛 thus has the form
Ψ𝑛 [𝑦] ≡ 𝐾0𝑛𝑦(𝑛) + 𝐾1𝑛𝑦(𝑛−1) + 𝐾2𝑛𝑦(𝑛−2) + ⋅ ⋅ ⋅ + 𝐾𝑛−1𝑛 𝑦

+ 𝐾𝑛𝑛𝑦 = 0. (2)

Setting

𝐾𝑗𝑚 = 0, for 𝑗 < 0 or 𝑗 > 𝑚,
𝐾𝑗𝑚 = 1, for 𝑚 = 𝑗 = 0 (3)

and applying (1) show that the coefficients 𝐾𝑗𝑛 in the general
expression (2) of an iterative equation satisfy the recurrence
relation

𝐾𝑗𝑛 = 𝑟𝐾𝑗𝑛−1 + Ψ𝐾j−1
𝑛−1, for 0 ≤ 𝑗 ≤ 𝑛, 𝑛 ≥ 1. (4)

Moreover, setting 𝑗 = 0 or 𝑗 = 𝑛 in (4) shows by induction on𝑛 that
𝐾0𝑛 = 𝑟𝑛,
𝐾𝑛𝑛 = Ψ𝑛−1 [𝑠] ,

∀𝑛 ≥ 1,
(5)

and applying (4) recursively and using the conventions set in
(3) give the new recurrence relation

𝐾𝑗𝑛 =
𝑛∑
𝑘=𝑗

𝑟𝑛−𝑘Ψ𝐾𝑗−1𝑘−1, for 𝑗 = 0, . . . , 𝑛, 𝑛 ≥ 1. (6)

We note that (6) provides an algorithm for the computation
of the coefficients𝐾𝑗𝑛 in terms of the parameters 𝑟 and 𝑠 of the
source equation and the operatorΨ, and the resulting formula
has effectively been obtained in [3, Theorem 2.2]. Moreover,
it is of course also possible to compute𝐾𝑗𝑛 directly in terms of𝑛 and the parameters 𝑟 and 𝑠, and for 𝑗 = 1, 2 one finds that

𝐾1𝑛 = 𝑟𝑛−1 [𝑛𝑠 + (𝑛2) 𝑟] , (7a)

𝐾2𝑛 = 𝑟𝑛−2 [(𝑛2)Ψ [𝑠]

+ (𝑛3)(3𝑠𝑟 + 𝑟𝑟 + 3𝑛 − 5
4 𝑟2)] .

(7b)

If we divide through the general 𝑛th order linear iterative
equation Ψ𝑛[𝑦] = 0 in (2) by 𝐾0𝑛 = 𝑟𝑛, it takes the form

0 = 𝑦(𝑛) + 𝐵1𝑛𝑦(𝑛−1) + ⋅ ⋅ ⋅ + 𝐵𝑗𝑛𝑦(𝑛−𝑗) + ⋅ ⋅ ⋅ + 𝐵𝑛𝑛𝑦, (8a)

𝐵𝑗𝑛 = 𝐾𝑗𝑛𝑟𝑛 . (8b)

It is clear that this equation represents the standard form of
the general linear iterative equation with leading coefficient
one.Moreover, the well-known change of the dependent vari-
able 𝑦 → 𝑦 exp((1/𝑛) ∫𝑥𝑥0 𝐵1𝑛(𝑡)𝑑𝑡) maps (8a) into its normal
form in which the coefficient of the term of second highest
order has vanished. This transformation however simply
amounts to choosing 𝑟 and 𝑠 such that 𝐵1𝑛 = 0; that is,𝐾1𝑛 = 0.
Therefore, for given parameters 𝑟 and 𝑠 of the operator Ψ, an𝑛th order lode in normal form

𝑦(𝑛) + 𝐴2𝑛𝑦(𝑛−2) + ⋅ ⋅ ⋅ + 𝐴𝑗𝑛𝑦(𝑛−𝑗) + ⋅ ⋅ ⋅ + 𝐴𝑛𝑛𝑦 = 0 (9a)

is iterative if and only if

𝐴𝑗𝑛 = 𝐾𝑗𝑛𝑟𝑛
𝐾1𝑛=0 , (2 ≤ 𝑗 ≤ 𝑛) , (9b)

where𝐾𝑗𝑛 is given by (6). It follows from (7a) that the require-
ment that𝐾1𝑛 = 0 holds is equivalent to having

𝑠 = −12 (𝑛 − 1) 𝑟, (10)
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and this shows in particular that any iterative equation in nor-
mal form can be expressed in terms of the parameter 𝑟 alone;
that is, it depends on a single arbitrary function. Clearly, the
coefficients 𝐴𝑗𝑛 can also be expressed solely in terms of 𝑛, 𝑟,
and the derivatives of 𝑟. For instance, by setting for any given
function 𝜉,

A (𝜉) (𝑥) = [𝜉 (𝑥)]2 − 2𝜉 (𝑥) 𝜉 (𝑥)
4 [𝜉 (𝑥)]2 , (11)

it follows from (7b) that in (9a)-(9b) we have

𝐴22 = A (𝑟) ,
and more generally 𝐴2𝑛 = (𝑛 + 1

3 )A (𝑟) . (12)

In fact, as already noted in [2, 3], the coefficients 𝐴𝑗𝑛 depend
only on the function A(𝑟) = 𝐴22 and its derivatives. For
simplicity, it will often be convenient to denote the coefficient𝐴22 of the term of third highest order in (9a) simply by q.

Having noted that the coefficients of every lode of
maximal symmetry in normal form depend solely on q and
its derivatives, an important problem considered in [2] was
to find a linear ordinary differential operator Γ𝑛[𝑦] depending
solely on q and its derivatives, and which generates the most
general form of the linear 𝑛th order equation of maximal
symmetry in the dependent variable 𝑦 = 𝑦(𝑥). In a recent
paper [3], it was established that, for an arbitrary parameter 𝑟
of the source equation, the operator

Φ𝑛 = 1
𝑟𝑛Ψ𝑛

𝐾1𝑛=0 (13)

generates the linear iterative equation of an arbitrary order𝑛 in normal form and in its most general form (9a)-(9b).
Therefore, although the operator (13) and the equation it
generates depend explicitly on 𝑟 (and not on q = 𝐴22) and its
derivatives, on the basis of the result of [1] identifying linear
iterative equations with lodes of maximal symmetry, the two
equations Γ𝑛[𝑦] = 0 and Φ𝑛[𝑦] = 0 should always be the
same for all 𝑛 ≥ 3, although such an operator Γ𝑛[𝑦] has not
yet been found. This is due in part to the fact that a general
expression for 𝐴𝑗𝑛 = 𝐴𝑗𝑛[q] is not available for all 𝑛 and 𝑗.
Nonetheless, we showhere that it is naturally possible tomake
use of the differential operatorΦ𝑛 to generate directly a lode
of maximal symmetry of the general form (9a) in which the
coefficients 𝐴𝑗𝑛 depend only on q and its derivatives.

Indeed, for any value of 𝑛 ≥ 2 it follows from (6) and (9a),
(9b), (11), and (12) and a simple induction on 𝑗 ≥ 2 that each
coefficient𝐴𝑗𝑛 in (9a)-(9b) depends linearly on 𝑟(𝑗). Moreover,
it follows from (11)-(12) that

𝑟(𝑗) = 𝐷𝑗−2𝑥 (𝑟2 − 4q𝑟2
2𝑟 ) fl 𝐹𝑗 [𝑟, q] , for 𝑗 ≥ 2, (14)

where 𝐷𝑥 = 𝑑/𝑑𝑥. Therefore, applying the substitution (14)
to Φ𝑛[𝑦] yields the desired equation, that is, the lode of the

form (9a)-(9b) in which 𝐴𝑗𝑛 = 𝐴𝑗𝑛[q] depends only on q
and its derivatives. More formally, the resulting differential
operator can be represented as

Φ𝑟𝑛 = 1
𝑟𝑛Ψ𝑛

𝐾1𝑛=0, 𝑟(𝑗)=𝐹𝑗[𝑟,q], 𝑗≥2 = Φ𝑛𝑟(𝑗)=𝐹𝑗[𝑟,q], 𝑗≥2 . (15)

For example, for 𝑛 = 3 or 4, evaluating Φ𝑛[𝑦] yields the
following expressions directly in terms of 𝑟 and its derivatives
alone.

Φ3 [𝑦]
= −𝑦 (𝑟

3 − 2𝑟𝑟𝑟 + 𝑟2𝑟(3))
𝑟3 + 𝑦 (𝑟2 − 2𝑟𝑟)

𝑟2 + 𝑦(3),
Φ4 [𝑦]
= 3𝑦 (27𝑟4 − 68𝑟𝑟2𝑟 + 24𝑟2𝑟𝑟(3) + 4𝑟2 (7𝑟2 − 2𝑟𝑟(4)))

16𝑟4
− 5𝑦 (𝑟3 − 2𝑟𝑟𝑟 + 𝑟2𝑟(3))

𝑟3 + 5 (𝑟2 − 2𝑟𝑟) 𝑦
2𝑟2

+ 𝑦(4).

(16)

However, if in addition we also apply to these expressions
for Φ𝑛[𝑦] the substitution (14), which amounts to applying
directly the operatorΦ𝑟𝑛 to 𝑦 we obtain

Φ𝑟3 [𝑦] = 2q𝑦 + 4q𝑦 + 𝑦, (17a)

Φ𝑟4 [𝑦] = 3𝑦 (3q2 + q
) + 10𝑦q + 10q𝑦 + 𝑦(4). (17b)

Comparing this with the known expressions for lodes of
maximal symmetry expressed solely in terms of q and its
derivatives [2, 3] shows that Φ𝑟3 and Φ𝑟4 yield indeed the
indicated expressions.

Another important observation made in this paper is
that if we set 𝑟 = 𝑢2 for a certain nonzero function 𝑢, the
expression for A(𝑟) = A(𝑢2) in (11) is much simpler and
reduces to −𝑢/𝑢. Setting q = A(𝑟) is thus equivalent to
letting 𝑢 be a solution of the equation

𝑦 + q𝑦 = 0, (18)

which is referred to as the second-order source equation for
(9a)-(9b).Thus, if we expressΦ𝑛[𝑦]with 𝑟 replaced by 𝑢2, the
substitution rule for 𝑢(𝑗) similar to that given for 𝑟(𝑗) in (14)
takes the much simpler form

𝑢(𝑗) = 𝐷𝑗−2𝑥 (−𝑢q) fl 𝐻𝑗 [𝑢, q] , for 𝑗 ≥ 2. (19)

Denote byΘ𝑢𝑛 the operatorΦ𝑛 in which 𝑟 is replaced with𝑢2 and to which the substitution (19) is applied. That is,

Θ𝑢𝑛 = Φ𝑛𝑟=𝑢2 , 𝑢(𝑗)=𝐻𝑗[𝑢,q], 𝑗≥2 . (20)

In other words Θ𝑢𝑛 is just Φ𝑛 as in (13), in which the source
parameter 𝑟 has been replaced by 𝑢2 and to which the sub-
stitution (19) is then applied. Then for the same reasons that
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Φ𝑟𝑛[𝑦, q] generates the most general form of linear iterative
equations, Θ𝑢𝑛[𝑦, q] also does the same. However, in view of
the much simpler substitution rule (19), the computational
cost for generating these equations is much lower using Θ𝑢𝑛
rather than Φ𝑟𝑛. Indeed for arbitrary values of q, generating
equations of maximal symmetry of order greater than ten
has been up to now a very tedious task using the original
algorithm of [2], but it is now easy to generate such equations
at much higher orders in most standard computers using
computing systems such as mathematica. For instance, the
coefficient 𝐴1515 of 𝑦 = 𝑦(0) which is the largest expression in
size in the equation Θ𝑢15[𝑦] = 0 is given by

𝐴1515 = 14 (2 (52022476800q6q + 2132810240q5
+ 6656237568q5q(3) + 341232100q3q(4)
+ 1024q4 (73853676qq + 286397q(5))
+ 32q3 (2646561024q3 + 207959056qq(3)
+ 123346720qq(4) + 184297q(7)) + 2q2 (863911980qq(3)
+ 784597q(7)) + 8q2 (2094143648q2q(3)
+ 33615550q(3)q(4) + 22652990qq(5)
+ q
 (2835404512q2 + 9750858q(6)) + 7323q(9))

+ 13 (457296 [q(3)]3 + q
(5) (740970q2 + 2717q(6))

+ 2068q(4)q(7) + 2q(3) (1100540qq(4) + 591q(8))
+ 491qq(9)) + q

 (780095196q3 + 8478360 [q(4)]2

+ 14231306q(3)q(5) + 8279146qq(6) + 1793q(10))
+ 2q (12696730880q3q + 151883460q2q(5)
+ 2519682q(4)q(5) + 2q(3) (257461378q2 + 913529q(6))
+ 937436qq(7) + 139q(11)
+ 4q (95070193 [q(3)]2 + 152580285qq(4) + 79587q(8))))
+ q
(13)) .

(21)

Of course, if one can generate a lode of maximal
symmetry of a general order and in its most general form,
then the identification of any given lode as a member or not
in the class of linear equations of maximal symmetry is also
achieved.This is due to the fact that, in their normal form, 𝑛th
order lodes (9a) of maximal symmetry are completely and
uniquely determined by the coefficients 𝐴2𝑛. Indeed, suppose
that

L [𝑦] ≡ 𝑦(𝑛) + 𝐹2𝑛𝑦(𝑛−2) + ⋅ ⋅ ⋅ + 𝐹𝑗𝑛𝑦(𝑛−𝑗) + ⋅ ⋅ ⋅ + 𝐹𝑛𝑛𝑦
= 0 (22)

is a given lode in normal form that we wish to test
for the maximality of its symmetry algebra, where 𝐹𝑗𝑛 are

given functions of 𝑥. If this equation is indeed of maximal
symmetry, then by (12) the coefficient q of the corresponding
second-order source equation should satisfy q = 𝐹2𝑛/ ( 𝑛+13 ).
Consequently,L[𝑦] = 0 is of maximal symmetry if and only
if it coincides with the corresponding generated equationΘ𝑢𝑛[𝑦, q] = 0.

Using the operator Θ𝑢𝑛 , we shall give in the next section
a much simpler and direct proof than that of [1] to the fact
that a lode is iterative if and only if it is reducible by a point
transformation to the canonical form. To close this section,
we note that by Abel’s Identity the Wronskian of any two
linearly independent solutions 𝑢 and V of the source equation
(18) is a nonzero constant and will be normalized to one. It
should be noted that linearly independent solutions of the
second-order equation (18) are not known for arbitrary values
of the coefficient q.

There are of course many other obvious criteria that can
be used to identify expressions L[𝑦] which do not corre-
spond to lodes of maximal symmetry. For example, the coef-
ficients 𝐴𝑗𝑛 = 𝐴𝑗𝑛[q] are in fact differential polynomials in q.
This implies in particular that if, for instance, q is polynomial
(in 𝑥), then all 𝐴𝑗𝑛 must be polynomials, and if it is a sine
function, then the 𝐴𝑗𝑛 must all be polynomials of sine and
cosine functions.

3. Reduction to Canonical Form and
General Solution

The equivalence group of linear 𝑛th order equations in nor-
mal form (9a) is well known to be given by invertible point
transformations of the form

𝑥 = 𝑓 (𝑧) ,
𝑦 = 𝜆 [𝑓 (𝑥)](𝑛−1)/2 𝑤, (23)

where 𝑓 is an arbitrary locally invertible function and 𝜆 an
arbitrary nonzero constant [9, 12, 13]. In otherwords, an equa-
tion of the form (9a) is reducible by a point transformation to
the canonical form if and only if there exists a transformation
of the form (23) that maps such an equation to the canonical
form.

Let us denote by

𝑆 (𝜉) (𝑧) = (−3𝜉2 + 2𝜉𝜉(3))
2𝜉2 (24)

the Schwarzian derivative of the function 𝜉 = 𝜉(𝑧). By stud-
ying the expression of the source parameter of the trans-
formed equation under equivalence transformations, a sim-
ple characterization of the point transformation that maps
an iterative equation to the canonical form was found in [3,
Theorem 4.3]. This result states that a point transformation
reduces a given iterative equation, which without loss of
generality may be assumed to be of the form (9a), to the
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canonical form𝑤(𝑛)(𝑧) = 0 if and only if it is of the form (23),
where 𝑓 is the inverse of the function 𝑧 = ℎ(𝑥) satisfying

𝐴22 (𝑥) = 1
2𝑆 (ℎ) (𝑥) ,

or equivalently, A (𝑟) (𝑥) = 1
2𝑆 (ℎ) (𝑥) ,

(25)

on account of (12), assuming that 𝑟 is the source parameter
of the equation. By making use of this result of [3], we can
now provide a more direct proof than that given in [1] for the
following result.

Theorem 1. A linear ordinary differential equation is iterative
if and only if it can be reduced to the canonical form by an
invertible point transformation.

Proof. As usual one may assume that the iterative equation is
in its normal form and has source parameter 𝑟. On the basis of
the above stated result fromTheorem 4.3 of [3], it follows that
the transformation (23) where𝑓 is the inverse of the functionℎ = ∫(𝑑𝑥/𝑟) maps the iterative equation to its canonical
form, as the latter expression for ℎ solves (25). More directly,
one can prove that the class of iterative equations and that of
equations reducible by an invertible point transformation to
the canonical form are the same. Indeed, let Ω𝑛[𝑓, 𝜆, 𝑥, 𝑦] ≡Ω𝑛[𝑓, 𝜆] represent the element of the equivalence group of
linear 𝑛th order odes Δ ≡ Δ 𝑛[𝑦] = 0 in normal form,
acting on the space of independent variable 𝑥 and dependent
variable 𝑦, and given by (23). Denoting by Ω𝑛[𝑓, 𝜆] ⋅ Δ = 0
the transformed equation, it follows that we have exactly

Φ𝑛 [𝑦] = 𝐾𝑛 (𝜆, 𝑟)Ω𝑛 [∫ 𝑑𝑥
𝑟 , 𝜆, 𝑧, 𝑤] ⋅ 𝑤(𝑛) (𝑧) , (26a)

where

𝐾𝑛 (𝜆, 𝑟) = 1
(𝜆 [𝑟 (𝑥)](𝑛+1)/2) . (26b)

In other words, generating a linear iterative equation in 𝑦 =𝑦(𝑥) for any given value of 𝑟 using the differential operator
Φ𝑛 and transforming the canonical equation 𝑤(𝑛)(𝑧) = 0 in
the new variables 𝑥 and 𝑦 using the point transformation
operator 𝐾𝑛(𝜆, 𝑟)Ω𝑛[∫(𝑑𝑥/𝑟), 𝜆, 𝑧, 𝑤] yield exactly the same
equations, and this proves the result.

In [1] Krause and Michel proved this theorem indirectly
as a consequence of equivalence relations, by proving the
equivalence between equations of maximal symmetry and
iterative equations on one hand and between equations
reducible by invertible point transformations and equations
of maximal symmetry on the other hand. The part in that
proof stating that an ode (linear or nonlinear) is reducible to
the canonical form if and only if it hasmaximal symmetrywas
however already proved by Lie [14–16].The direct proof given
here will allow us to construct various point transformations
of practical importance for iterative equations as well as
various forms of their general solutions.

It should first be noted that the right hand side of (26a)
gives other methods for generating linear iterative equations
with source parameter 𝑟. In practice, however, linear iterative
equations arise generally with no reference to any source
parameter but are expressed solely in terms of the coefficient
q = 𝐴22(𝑥) and its derivatives. In this case, on the basis of
a remark made in the previous section, a solution ℎ to
the equation q = (1/2)𝑆(ℎ)(𝑥) in (25) is simply given byℎ = ∫(𝑑𝑥/𝑢2), where 𝑢 is a solution of the second-order
source equation (18). Consequently, if we denote by Ω𝑢𝑛 the
transformation operator given by

Ω𝑢𝑛 [∫ 𝑑𝑥
𝑢2 , 𝜆, 𝑧, 𝑤]

= 𝐾𝑛 (𝜆, 𝑢2)Ω𝑛 [∫ 𝑑𝑥
𝑢2 , 𝜆, 𝑧, 𝑤]

𝑢(𝑗)=𝐻𝑗[𝑢,q], 𝑗≥2 ,
(27)

where 𝐻𝑗[𝑢, q] = 𝐷𝑗−2𝑥 (−𝑢q) as in (19), then Θ𝑢𝑛[𝑦] and
Ω𝑢𝑛 ⋅𝑤(𝑛)(𝑧) generate exactly the same linear iterative equation
expressed solely in terms of q and its derivatives.

On the other hand, since the transformation operatorΩ𝑢𝑛[∫(𝑑𝑥/𝑢2), 𝜆, 𝑧, 𝑤] maps the trivial equation to the most
general form (9a) of the iterative equation, its explicit expres-
sion can be used to derive the general solution of (9a). Indeed,
under this operator we have

𝑦 = 1
𝜆𝑢𝑛−1𝑤,

𝑧 = ∫ 𝑑𝑥
𝑢2 .

(28)

Consequently, 𝑛 linearly independent solutions to the general𝑛th order iterative equation (9a) are given by

𝑦𝑘 = 𝑢𝑛−1 (∫ 𝑑𝑥
𝑢2 )
𝑘 , 𝑘 = 0, . . . , 𝑛 − 1. (29)

In particular, if 𝑢 and V are two linearly independent solutions
of the source equation (18), then ∫(𝑑𝑥/𝑢2) = V/𝑢. Con-
sequently, in terms of 𝑢 and V, the 𝑛 linearly independent
solutions to (9a) in (29) above can be rewritten as

𝑦𝑘 = 𝑢𝑛−1−𝑘V𝑘, 𝑘 = 0, . . . , 𝑛 − 1. (30)

Formula (30) is well known and was cited without proof
in [1], and it is an important result for which we have not been
able to find the proof in the recent literature.Wenaturally also
found formula (28) only in this paper.Moreover, formula (29)
established above provides a much simpler result by showing
that linearly independent solutions of (9a) can be expressed
solely in terms of a single nonzero solution of the second-
order source equation. Indeed, the solutions 𝑦𝑘 in (29) are
clearly linearly independent as their Wronskian equals the
nonzero constant∏𝑛−1𝑗=1𝑗!.
Theorem 2. A linear ordinary differential equation is iterative
if and only if it has 𝑛 linearly independent solutions 𝑦𝑘 of the
form (30), where 𝑢 and V are two linearly independent solutions
of the corresponding second-order source equation (18).



6 Abstract and Applied Analysis

Proof. The fact that a linear iterative equation has linearly
independent solutions of the stated form is established
in (30). Conversely, if a lode has 𝑛 linearly independent
solutions of the form (30), then since the second-order
source equation is reducible to the canonical form 𝑤 =0 by a point transformation, without loss of generality we
may assume that such a transformation reduces 𝑢 to 1 and V
to 𝑧. Consequently, the corresponding linearly independent
solutions of the lode are polynomials of degree at most 𝑛 −1, and thus the transformed equation is in canonical form.
It then clearly follows from Theorem 1 that the equation is
iterative.

Recall that the𝑚th symmetric power of a lode Δ[𝑦] = 0
is the lodeΩ[𝑦] = 0 of minimal order such that for every set
of 𝑚 solutions 𝑦1, . . . , 𝑦𝑚 of Δ[𝑦] = 0 the product 𝑦1 . . . 𝑦𝑚
is a solution of Ω[𝑦] = 0. Moreover, it is well known that
the 𝑚th symmetric power of a second-order lode has order𝑚 + 1 (see [17] and the references therein). It thus follows
from Theorem 2 that for 𝑚 ≥ 1 an (𝑚 + 1)th order lode is
of maximal symmetry if and only if it is the symmetric power
of a second-order lode. It has in fact been established in [17,
Theorems 1 and 2] that the symmetric power of a lode is an
iterative lode.

4. Solvability of Equations of
Maximal Symmetry

The results obtained thus far in this paper will be used in
this section to show amongst others that lodes of maximal
symmetry are highly solvable and that it is indeed the case
for the second-order source equation (18) whose solutions
completely determine those of the corresponding lodes of
maximal symmetry. In a very popular paper published in
Russian in 1880 and recently translated into English [11],
Ermakov stated that the majority of second-order linear
homogeneous odes for which it is possible to find conditions
for their solvability are of the form

(𝛼1𝑥2 + 𝛼2𝑥 + 𝛼3) 𝑦 + (𝛼4𝑥 + 𝛼5) 𝑦 + 𝛼6𝑦 = 0, (31)

where the 𝛼𝑗 are some arbitrary constants. He thenmoved on
in the paper to obtain some very specific cases of equations
which are solvable from this class, together with their general
solutions.

A couple of years later in the same decade Hill [18]
considered in the study of lunar stability the most general
form of the second-order lode in normal form, that is, in
the form (18), but in which the coefficient q is a periodic
function. Hill’s equation and its important variants such as
Meissner Equation and Mathieu Equation have been amply
studied [19], and it is well known that its solutions and their
related properties can be described by means of Floquet
theory.These solutions can also be expressed in terms ofHill’s
determinant [20]. It should be mentioned that, in the context
of the present paper, a differential equation is called solvable
if the closed form expression of its general solution is known,
regardless of the type of functions in terms of which this
solution is expressed.

The results of this paper extend the scope of solvability of
linear second-order equations obtained byErmakov,Hill, and
others such as Loewy [21] not only to more larger families of
the coefficient function q in (18), but moreover to all lodes of
maximal symmetry of a general order. This statement holds
provided that the parameter 𝑟 of the source equation (18)
is known. Indeed, it follows from (29) and the condition𝑟 = 𝑢2 relating the parameter of the source equation and the
solution of the corresponding second-order equation, that for
arbitrary values 𝑟 = 𝑟(𝑥) of the source parameter, two linearly
independent solutions of the second-order equation of the
form

𝑦 +A (𝑟) 𝑦 = 0 (32a)

are given by

𝑦𝑗 = √𝑟(∫ 𝑑𝑥
𝑟 )𝑗 , for 𝑗 = 0, 1. (32b)

Therefore, 𝑛 linearly independent solutions of the corre-
sponding (𝑛−2)th iteration of (32a) can also be obtained from
(29) through the substitution 𝑟 = 𝑢2. More directly in terms
of 𝑟, we have the following result which follows immediately
from (32a)-(32b) and (30).

Theorem 3. Let 𝑟 be a given nonzero function considered as
the source parameter of the differential operator generating an𝑛th order lode Δ 𝑛[𝑦] = 0 of maximal symmetry and in
normal form. Then 𝑛 linearly independent solutions 𝑠𝑘 ofΔ 𝑛[𝑦] = 0 are given by

𝑠𝑘 = (√𝑟)𝑛−1 (∫ 𝑑𝑥
𝑟 )𝑘 , 𝑘 = 0, . . . , 𝑛 − 1. (33)

On one hand and on the basis of the results obtained in
the previous section, it follows fromTheorem 3 that not only
can we generate a lode of maximal symmetry of any order
and for any nonzero function 𝑟, but also the general solution
of any such equation is given in closed form in terms of the
source parameter 𝑟 by (33). On the other hand, for any given
lode of maximal symmetry, as long as its corresponding
source parameter 𝑟 is known, its general solution is given also
by (33).

Now, to make a more direct comparison with the class of
equations (31) considered by Ermakov, we note that linearly
independent solutions can also be found for the standard
form of (32a) which in terms of the arbitrary coefficient 𝐵 =𝐵(𝑥) of 𝑦 takes the form

𝑦 + 𝐵𝑦 + 1
4 (4A (𝑟) + 𝐵2 + 2𝐵) 𝑦 = 0. (34)

The two linearly independent solutions of (34) are then given
by

𝑦𝑗 = √𝑟(∫ 𝑑𝑥
𝑟 )𝑗 𝑒−(1/2) ∫ 𝐵(𝑥)𝑑𝑥, 𝑗 = 0, 1. (35)

We note that as opposed to the very specific cases of solvable
equations found by Ermakov from the restricted class of
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equations (31), not only does (34) depend intrinsically on one
arbitrary function, but also its general solution is given by the
simple formula (35) in terms of the source parameter 𝑟.

We further clarify the application of Theorem 3 by an
example.

Example 4. Let 𝛼 be a nonzero real number and consider the
particular case where the source equation (18) is given by

𝑦 + q𝑦 = 0, with q = 𝛼2 + [ln (𝑥𝛼)]2
4𝑥2 [ln (𝑥𝛼)]2 . (36)

Then it is not obvious how to solve (36) using standardmeth-
ods. However, the latter coefficient q is an expression of the
formA(𝑟) as defined in (11) and (12) and more precisely with𝑟 = 𝑥 ln(𝑥𝛼). Therefore, since we know the source parameter𝑟 of the differential operator generating (36), it follows that
an explicit expression of its general solution is given in closed
form by (32b). Moreover, it also follows from Theorem 3
that the closed form expression of the general solution of
any equation of arbitrary order 𝑛 generated by the same
differential operator with source parameter 𝑟 is given by (33).

In practice, a lode occurs however with no reference to
a source parameter of the differential operator that generated
it, but rather in terms of its coefficients. As already indicated
any lode can always be assumed to be of the normal form
(9a)-(9b), and even in such a case the results of Theorem 3
can also be used to find the general solution of lodes of
maximal symmetry, in virtually all known solvable cases, in
addition to those cases which can be solved only with the
proposed method. It follows from Theorem 3 that to find
the general solution it suffices to find the parameter 𝑟 of the
source equation and by (12) this amounts to solving for 𝑟 the
nonlinear second-order equation.

𝐴2𝑛 = (𝑛 + 1
3 )A (𝑟) , (37)

where𝐴2𝑛 is the coefficient appearing in (9a)-(9b) whileA(𝑟)
is given by (11).

This approach for solving linear differential equations
has some similarities with the Loewy decomposition method
[21, 22] in which the solution of a linear differential equation
is known once a factorization of the differential operator
generating the equation has been computed. In this approach,
finding the coefficients of each factor in the factorization is
also achieved for second- and third-order lodeswith rational
coefficients by solving certain Riccati equations. We illustrate
the comparison of these two methods by considering a very
simple example.

Example 5. Consider the second-order equation

0 = 𝑦 + (2 + 1
𝑥)𝑦 + 𝑦, (38a)

whose solution by Loewy decomposition is discussed in [22].
This equation has Loewy decomposition

0 = Lclm( 𝑑
𝑑𝑥 + 𝑎2, 𝑑

𝑑𝑥 + 𝑎1) [𝑦] = 0, (38b)

where Lclm stands for least common left multiple [22] and
the coefficients 𝑎1 and 𝑎2 given by

𝑎1 = 2 + 2
𝑥 − 1

𝑥 + 3/2 ,
𝑎2 = 2

𝑥 − 2𝑥 − 2
𝑥2 − 2𝑥 + 3/2

(38c)

are rational nonequivalent solutions of the Riccati equation

𝑎 − 𝑎2 + (2 + 1
𝑥) 𝑎 +

4
𝑥2 = 0. (39)

It then follows from a result of Loewy [22, Lemma 2.4] that a
fundamental set of solutions of (38a) is given by

𝑦1 = 2
3 − 4

3𝑥 + 1
𝑥2 ,

𝑦2 = 𝑒−2𝑥 (3 + 2𝑥)
𝑥2 .

(40)

Given that every second-order lode is ofmaximal symmetry,
to solve (38a) with the method proposed in this paper, we
first reduce it to its normal form (although from (34) this
is not necessary), through the usual transformation given in
Section 2. The reduced equation takes the simpler form

0 = 𝑦 + q (𝑥) 𝑦, with q (𝑥) = −[15 + 4𝑥 (1 + 𝑥)]
4𝑥2 . (41)

The nonlinear equation (37) for finding the source parameter𝑟 reduces toA(𝑟) = q(𝑥), where q(𝑥) is given here by (41). It
has general solution

𝑟 = 𝑒−2𝑥 (3𝑒2𝑥 − 4𝑒2𝑥𝑥 + 2𝑒2𝑥𝑥2 + 6𝑘1 + 4𝑥𝑘1)2 𝑘2
𝑥3 (42)

for some constants of integration 𝑘1 and 𝑘2. Therefore, by
(32b) linearly independent solutions of (41) are given by

𝑠𝑗 = 𝑒𝑥 (3 + 2𝑥 (−2 + 𝑥))
√𝑥3 [− 𝑒−2𝑥 (3 + 2𝑥)

8 (3 + 2𝑥 (−2 + 𝑥))]
𝑗

,
𝑗 = 0, 1.

(43)

The inverse of the transformation mapping (38a)–(38c) to
(41) then shows that a fundamental system of solutions of
(38a)–(38c) is given by

𝑦1 = 3 + 2𝑥 (−2 + 𝑥)
𝑥2 ,

𝑦2 = 𝑒−2𝑥 (3 + 2𝑥)
𝑥2 ,

(44)

which is the same as that obtained in (40).

The drawback with these two methods for solving lodes
is that they require the solutions of nonlinear odes which, in
general, are more difficult to solve than the original lode.
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However, for the method proposed in this paper, equation
(37) for finding 𝑟 turns out to be linearizable and the
linearized equation might be much easier to solve than the
original equation.

As far as odes are concerned, the Loewy decomposition
method is designed in principle for lodes of all orders. How-
ever, that method does not seem to be accessible because its
scope is quite limited, due in particular to the fact that the
implementation of its algorithm involves a very high compu-
tational cost.The Loewy decomposition theory has also quite
a large and very specific vocabulary of its own taken from
differential algebra. Moreover, there are too many types of
Loewydecompositions for a given linear differential operator,
and there are in particular 12 such types for third-order linear
operators alone.On the other hand the Loewy decomposition
method is limited only to equations with rational coefficients
for which the solutions of the corresponding (nonlinear)
Riccati equations for finding the coefficients of the factorized
operator are available.

Of course the method proposed in this paper for find-
ing solutions of lodes is limited to the case of equations
of maximal symmetry. The determining nonlinear second-
order equation (37) for finding the source parameter 𝑟 is
however the same for equations of all orders since 𝐴2𝑛 is
an arbitrary coefficient in (37), and it is also linearizable as
already indicated. Moreover, as Theorem 3 shows, it is easily
applicable to equations of all orders as long as (37) can be
solved for 𝑟.

Nevertheless, it should be emphasized that the most im-
portant result obtained in this section is not a method for
solving a given lode. It is rather the fact that to any arbitrary
smooth function 𝑟 we have associated a lode of maximal
symmetry and arbitrary order and for which the closed form
solution is given by (33). This shows that such equations are
highly solvable, because traditionallymost solvable lodes are
limited to those having rational coefficients.

5. Concluding Remarks

In this paper, we found a cost effective algorithm for gener-
ating lodes of maximal symmetry. This algorithm corrects
the wrong one proposed in [2], as quoted in the paper. We
have also shown how such an algorithm can be used to easily
identify linear odes of maximal symmetry and proved some
fundamental results concerning the reduction of odes of
maximal symmetry to canonical form.We also found general
and optimal expressions for their general solutions.

Clearly, the source equation (18) is hardly solvable for
arbitrary values of the corresponding coefficient q. We have
however shown that for every given nonzero smooth function𝑟, where the function 𝑟 may include in particular any kind
of special function, the general solution of any 𝑛th order
lode of maximal symmetry in normal form generated by the
differential operator having 𝑟 as coefficient is given by the
closed form expression (33).

On the other hand, the inverse problem of finding 𝑟 for
a given value of q turns out to be equivalent to solving a
different lode of the form (18), because the nonlinear second-
order ode A(𝑟) = q is linearizable. Nevertheless, it seems

quite possible to describe all possible values of the arbitrary
coefficient function q by an appropriate choice of a source
parameter 𝑟.This in turnwould thenmean that all linear odes
of maximal symmetry are exactly solvable.
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