
Research Article
Assessing Heterogeneity for Factor Analysis Model with
Continuous and Ordinal Outcomes

Ye-Mao Xia and Jian-Wei Gou

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, Jiangsu 210037, China

Correspondence should be addressed to Ye-Mao Xia; ym xia71@163.com

Received 8 December 2015; Revised 23 February 2016; Accepted 2 March 2016

Academic Editor: Wei-Chiang Hong

Copyright © 2016 Y.-M. Xia and J.-W. Gou. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Factor analysis models with continuous and ordinal responses are a useful tool for assessing relations between the latent
variables and mixed observed responses. These models have been successfully applied to many different fields, including
behavioral, educational, and social-psychological sciences. However, within the Bayesian analysis framework, most developments
are constrained within parametric families, of which the particular distributions are specified for the parameters of interest. This
leads to difficulty in dealing with outliers and/or distribution deviations. In this paper, we propose a Bayesian semiparametric
modeling for factor analysis model with continuous and ordinal variables. A truncated stick-breaking prior is used to model
the distributions of the intercept and/or covariance structural parameters. Bayesian posterior analysis is carried out through
the simulation-based method. Blocked Gibbs sampler is implemented to draw observations from the complicated posterior. For
model selection, the logarithm of pseudomarginal likelihood is developed to compare the competing models. Empirical results are
presented to illustrate the application of the methodology.

1. Introduction

Owing to its wide applications in behavioral and social
science researches, analysis of factor analysis models with
mixed data structure has received a lot of attention; see [1–
6]. However, most of these methods are mainly developed
within particular parametric distribution families such as
the exponential family or normal scale mixture family,
which have a limited role in dealing with the distributional
deviations, in particular heterogeneity or multimodality of
the data. Though some robust methods are developed to
downweight the influence of the outliers [7–12], most of them
are still confined to dealing with unimodality and are less
effective for the asymmetric and/or multimodal problems.

Recently, some authors focused on the Bayesian semi-
parametric modeling for latent variables model. For multi-
variate categorical data analysis, Kottas et al. [13] extended
the traditional multivariate probit model [14–16] to a flexible
underlying prior probability model. The usual single mul-
tivariate normal model for the latent variables is replaced
by a mixture of normal priors with infinite number of

components. And, for the latent variable model with fixed
covariates and continuous responses, Lee et al. [17] estab-
lished the semiparametric Bayesian hierarchal model for the
structural equation models (SEMs) by relaxing the common
normal distribution of exogenous factors to follow a finite-
dimensional Dirichlet process [18]. Song et al. [19] developed
a semiparametric Bayesian procedure for analyzing the latent
variable model with unordered categorical data. For some
recent advances in semiparametric analysis for factor analysis
model, see [20–23] among others.

In this paper, we developed a Bayesian semiparametric
approach for analyzing factor analysis model with mixed
continuous and ordinal responses. The methods are twofold.
Firstly, we extended Kottas, Müller, and Quintana’s model
to a more general multivariate model which contains factor
variables. This extension aims to interpret the relationships
between measurements and latent variables and explore cor-
relations among the multiple manifest variables. Moreover,
we treat the threshold parameters as unknown and estimate
them simultaneously with other model parameters, thus
providing a more flexible approach to fit the data. Secondly,
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we introduce the truncated Dirichlet process prior as the
prior of the mean vector and variance-covariance parameters
of unique errors and latent variables.This facilitates the inter-
pretation of heterogeneity in the mean and/or covariance
structure across the subjects.

This paper is organized as follows. We first introduce
the Bayesian semiparametric modeling framework for factor
analysis model with continuous and ordinal variables. We
then present the Markov chain Monte Carlo procedure
for parameters estimation and model selection. Simulation
studies and a real example are provided to illustrate the
performance of the proposed procedure. We close with some
remarks and concluding comments.

2. Model Description

2.1. Factor Analysis Model with Continuous and Ordinal
Responses. Suppose that a 𝑝-dimensional mixed observed
vector 𝑦

𝑖
= (𝑥
𝑇

𝑖
, 𝑧
𝑇

𝑖
)
𝑇 contains 𝑟 continuous variables 𝑥

𝑖
=

(𝑥
𝑖1
, . . . , 𝑥

𝑖𝑟
)
𝑇 and 𝑠 = 𝑝 − 𝑟 ordinal variables 𝑧

𝑖
= (𝑧
𝑖1
,

. . . , 𝑧
𝑖𝑠
)
𝑇 with 𝑧

𝑖𝑗
taking an integral value in S

𝑗
= {0, 1, . . . , 𝑏

𝑗
}

for 𝑗 = 1, . . . , 𝑠, 𝑖 = 1, . . . , 𝑛. We assume that the observed
ordinal vector 𝑧

𝑖
is related to the unobserved continuous

vector 𝑢
𝑖
= (𝑢
𝑖1
, . . . , 𝑢

𝑖𝑠
)
𝑇 through

𝑧
𝑖𝑗
= 𝑙 if 𝜏

𝑗𝑙
< 𝑢
𝑖𝑗
≤ 𝜏
𝑗,𝑙+1

, 𝑙 ∈ S
𝑗
, (1)

where {𝜏
𝑗𝑙
: 𝑙 = 0, . . . , 𝑏

𝑗
, 𝑗 = 1, . . . , 𝑠} is a set of unknown

threshold parameters that define the categories: −∞ = 𝜏
𝑗0
<

𝜏
𝑗1
< ⋅ ⋅ ⋅ < 𝜏

𝑗𝑏𝑗
< 𝜏
𝑗,𝑏𝑗+1

= ∞. Hence, for the 𝑗th variable 𝑧
𝑖𝑗
,

there are 𝑏
𝑗
+ 1 categories.

Let 𝑦∗
𝑖

= (𝑥
𝑇

𝑖
, 𝑢
𝑇

𝑖
)
𝑇 denote the vector of continuous

observed measurements and unobserved variables. For sub-
ject 𝑖, we formulate the dependence among 𝑦∗

𝑖𝑗
’s through the

following measurement model:

𝑦
∗

𝑖
= 𝜇 + Λ𝜔

𝑖
+ 𝜖
𝑖
, (2)

where 𝜇 is a 𝑝 × 1 intercept vector, Λ is a 𝑝 × 𝑚 factor
loading matrix, 𝜔

𝑖
is an 𝑚 × 1 vector of latent variables,

and 𝜖
𝑖
is a 𝑝 × 1 vector of measurement errors which is

independent of𝜔
𝑖
. Inmany applications,𝜔

𝑖
may represent the

hypothesized factors underlying manifest responses and/or
unobserved heterogeneity not explained by covariates.

The latent variable model with mixed continuous and
ordinal responses defined by (1) and (2) faces two sources of
identification problems. The first one is associated with the
determinacy of latent variables 𝑦∗ in modeling of categorical
variables, and the second one is related to the uniqueness of
the factor loadings matrix. To solve the first problem, we use
the common method [24] to fix endpoints 𝜏

𝑗1
and 𝜏
𝑗𝑏𝑗

(𝑗 =

1, . . . , 𝑠) at preassigned values. For the second problem, we
follow the usual practice in structural equation modeling to
identify the covariance matrix of 𝑦∗

𝑖
by fixing appropriate

elements in Λ at preassigned values.
Let 𝜃 be the parametric vector formed by the unknown

parameters contained in {𝜇, Ψ
𝜖
, Φ} and let 𝜗 denote the

free parameters contained in factor loading matrices Λ and

𝜏 = (𝜏
𝑇

1
, . . . , 𝜏

𝑇

𝑠
)
𝑇 with 𝜏

𝑗
= (𝜏

𝑗1
, . . . , 𝜏

𝑗𝑏𝑗
)
𝑇. Based on

the assumptions of (2), the conditional distribution of 𝑦∗
𝑖

given (𝜃, 𝜗) is a normal distribution with mean vector 𝜇 and
covariance matrix Σ(𝜃, 𝜗) = ΛΦΛ

𝑇
+ Ψ
𝜖
.

Note that the latent factors here play an important role
in characterizing the associations between the observed
variables. It can be seen clearly that 𝑧

𝑖
and 𝑥

𝑖
are dependent

when 𝜔
𝑖
is integrated out. The marginal density of 𝑦

𝑖
is given

by

𝑝 (𝑦
𝑖
| 𝜗, 𝜃)

= ∫𝑝 (𝑥
𝑖
| 𝜔
𝑖
, 𝜗, 𝜃) 𝑝 (𝑧

𝑖
| 𝜔
𝑖
, 𝜗, 𝜃) 𝑝 (𝜔

𝑖
| 𝜗, 𝜃) 𝑑𝜔

𝑖

(3)

with

𝑝 (𝑧
𝑖
| 𝜔
𝑖
, 𝜗, 𝜃) =

𝑠

∏

𝑗=1

[

[

Φ
𝑐
(
𝜏
𝑗𝑧𝑖𝑗+1

− 𝜇
𝑟+𝑗

− Λ
𝑇

𝑟+𝑗
𝜔
𝑖

𝜓
𝜖𝑟+𝑗

)

− Φ
𝑐
(
𝜏
𝑗𝑧𝑖𝑗

− 𝜇
𝑟+𝑗

− Λ
𝑇

𝑟+𝑗
𝜔
𝑖

𝜓
𝜖𝑟+𝑗

)]

]

,

(4)

inwhichΦ
𝑐
(⋅) is the standard normal cumulative distribution

function.

2.2. Bayesian Semiparametric Hierarchical Modeling. Let
𝑝(𝑦
∗

𝑖
| 𝜃, 𝜗) be the conditional density of 𝑦∗

𝑖
given (𝜃, 𝜗) and

denote by 𝐹 a prior distribution function of 𝜃. Suppose that 𝐹
is proper; we define the following mixture density:

𝑝 (𝑦
∗

𝑖
| 𝐹, 𝜗) = ∫𝑝 (𝑦

∗

𝑖
| 𝜃, 𝜗) 𝐹 (𝑑𝜃) , (5)

in which𝐹(𝑑𝜃) is the conditional distribution of 𝜃 given𝐹. By
taking a prior for 𝜗 and restricting𝐹 to be a parametric family
of distributions indexed by 𝜃, we complete the Bayesian para-
metric model specification. However, this restriction severely
constrains the estimation of 𝜃 and produces estimators that
shrink data values toward the same points. A more flexible
modeling for 𝑦∗

𝑖
is to treat 𝐹 as random and assign a prior

for it. For this end, we introduce a latent variable vector 𝜃
𝑖
=

{𝜇
𝑖
, Ψ
𝜖𝑖
, Φ
𝑖
} and assume that, given 𝜃

𝑖
, 𝑦∗
𝑖
’s are conditionally

independent and drawn from 𝑝(𝑦
∗

𝑖
| 𝜃
𝑖
, 𝜗). Furthermore, we

suppose that 𝜃
𝑖
’s are independent and identically distributed

(i.i.d.) according to 𝐹 with a prior P on it. As a result, we
break the mixture model 𝑝(𝑦∗

𝑖
| 𝐹, 𝜗) into

[𝑦
∗

𝑖
| 𝜃
𝑖
, 𝜗]

ind
∼ 𝑝 (𝑦

∗

𝑖
| 𝜃
𝑖
, 𝜗) ,

[𝜃
1
, . . . , 𝜃

𝑛
| 𝐹]

iid
∼ 𝐹, 𝐹 ∼ P,

(6)

where “ind” means “independent” andP is a prior of 𝐹.
We consider the following truncated version of Dirichlet

process for 𝐹:

P (⋅) = P
𝐺 (⋅) =

𝐺

∑

𝑘=1

𝜋
𝑘
𝛿
𝜃
∗
𝑘
(⋅) , (7)
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in which 𝛿
𝜃
∗
𝑘
(⋅) denotes a discrete probability measure con-

centrated on atom 𝜃
∗

𝑘
and 𝜋

𝑘
(𝑘 = 1, . . . , 𝐺), independent

of 𝜃∗
𝑘
, are random weights constructed through the following

stick-breaking procedure:

𝜋
1
= 𝑉
1
,

𝜋
𝑘
= (1 − 𝑉

1
) ⋅ ⋅ ⋅ (1 − 𝑉

𝑘−1
) 𝑉
𝑘
, 𝑘 = 2, . . . , 𝐺 − 1,

𝜋
𝐺
= (1 − 𝑉

1
) ⋅ ⋅ ⋅ (1 − 𝑉

𝐺−1
) ,

(8)

with 𝑉
𝑘

i.i.d.
∼ Beta(1, 𝛼); 𝜃∗

𝑘
’s are i.i.d with common distribu-

tion 𝐹
0
.

Truncated Dirichlet process prior (7) can be considered
as a truncation version of Dirichlet process [25–30] in the
nonparametric Bayesian analysis. It can be shown that, under
(7) and (8), for any Borel set 𝐴 in R𝑝,

E𝐹 (𝐴) = 𝐹
0 (𝐴) ,

Var (𝐹 (𝐴)) =
𝐹
0 (𝐴) (1 − 𝐹0 (𝐴))

𝛼 + 1
(1 +

𝛼

𝐺
) .

(9)

This indicates that 𝐹
0
can be served as the starting point or

guess of 𝐹 and 𝛼 determines the concentration of the prior
around 𝐹

0
. In practice, the value of 𝐺 is either set to a large,

predetermined value (e.g., 𝐺 ≥ 100) or chosen empirically.
For instance, Ishwaran and Zarepour [31] suggested that
the adequacy of the truncation level, 𝐺, can be assessed by
evaluating moments of the tail probability. Our simulation
results have shown that 𝐺 = 100 is more than adequate for
the model considered in the present context.

Now, we specify the distribution 𝐹
0
. Recalling that by

convention 𝜃
∗

𝑘
is the collection of {𝜇∗

𝑘
, Ψ
∗

𝜖𝑘
, Φ
∗

𝑘
}, hence, we

assume that
𝐹
0
(𝜇
∗

𝑘
, Ψ
∗

𝜖𝑘
, Φ
∗

𝑘
| ], Σ], 𝑅)

= 𝑁 (𝜇
∗

𝑘
| ], Σ]) ⋅

𝑚

∏

𝑗=1

Gamma−1 (𝜓∗
𝜖𝑘𝑗

| 𝛼
𝜖0𝑗
, 𝛽
𝜖0𝑗
)

⋅Wishart−1 (Φ∗
𝑘
| 𝜌
0
, 𝑅
−1
) ,

(10)

where ], Σ], and 𝑅 are hyperparameters, Σ] = diag{𝜎]1, . . . ,
𝜎]𝑝} is a diagonal matrix with the 𝑘th diagonal ele-
ment 𝜎]𝑘, and 𝑅 is an 𝑚

2
× 𝑚
2
positive definite matrix;

Gamma−1(𝛼
𝜖0𝑗
, 𝛽
𝜖0𝑗
) refers to the inverse gamma distribution

with shaper parameters 𝛼
𝜖0𝑗

and scale parameters 𝛽
𝜖0𝑗
,

respectively, and Wishart−1 denotes the inverse Wishart
distribution [32].

Modeling 𝐹 in (7) into the random probability measure
and incorporating the latent variable 𝜔

𝑖
into (5) generate the

following hierarchical model: for 𝑖 = 1, . . . , 𝑛,

(𝑦
∗

𝑖
| 𝜔
𝑖
, 𝜃
𝑖
, 𝜗)

ind
∼ 𝑁 (𝜇

𝑖
+ Λ𝜔
𝑖
, Ψ
𝜖𝑖
) ,

(𝜔
𝑖
| 𝜃
𝑖
)
ind
∼ 𝑁 (0,Φ

𝑖
) ,

(𝜃
𝑖
| 𝐹)

iid
∼ 𝐹, 𝐹 ∼ P

𝐺 (⋅) ,

(11)

whereP
𝐺
is given by (7) and (8).

3. Parameters Estimation and Model Selection

3.1. Prior Specifications and Estimation via Blocked Gibbs
Sampler. Let Θ∗ = {𝜃

∗

𝑘
: 𝑘 = 1, . . . , 𝐺}. To implement

Bayesian analysis, blocked Gibbs sampler is used to simulate
observations from the posterior. The key for blocked Gibbs
sampler is to recast model (11) completely by introducing
the cluster variables 𝐿 = (𝐿

1
, . . . , 𝐿

𝑛
)
𝑇 such that 𝜃

𝑖
= 𝜃
∗

𝐿 𝑖
.

Consequently, the semiparametric hierarchical model (11)
can be reformulated as the following framework:

(𝑦
∗

𝑖
| 𝜔
𝑖
, 𝜃
𝑖
, 𝜗)

ind
∼ 𝑁 (𝜇

𝑖
+ Λ𝜔
𝑖
, Ψ
𝜖𝑖
) ,

(𝜔
𝑖
| 𝜃
𝑖
)
ind
∼ 𝑁 (0,Φ

𝑖
) ,

(𝐿
𝑖
= ⋅ | 𝜋)

iid
∼

𝐺

∑

𝑘=1

𝜋
𝑘
𝛿
𝑘 (⋅) ,

(𝜋, Θ
∗
) ∼ 𝑝 (𝜋) 𝑝 (Θ

∗
) ,

𝜗 ∼ 𝑝 (𝜗) ,

𝜏 ∼ 𝑝 (𝜏) ,

(12)

where 𝑝(𝜗) is a prior of 𝜗, 𝑝(𝜋) is the stick-breaking prior
given by (8) with [𝑉

𝑖
| 𝛼]

iid
∼ Beta(1, 𝛼), and 𝑝(Θ∗) is the joint

distribution of Θ∗ given by

𝑝 (Θ
∗
| ], Σ], 𝑅) =

𝐺

∏

𝑘=1

𝑝 (𝜃
∗

𝑘
| ], Σ], 𝑅)

=

𝐺

∏

𝑘=1

𝑝 (𝜇
∗

𝑘
, Ψ
∗

𝜖𝑘
, Φ
∗

𝑘
| ], Σ], 𝑅) ,

[𝜇
∗

𝑘
, Ψ
∗

𝜖𝑘
, Φ
∗

𝑘
| ], Σ], 𝑅]

iid
∼ 𝐹
0

(13)

in which 𝐹
0
(⋅ | ], Σ], 𝑅) is given in (10).

For the Bayesian analysis, we need to specify priors for the
parameters involved in the model.The whole parameters can
be divided into two parts: parametric component part {𝜗, 𝜏}
and nonparametric component part {], Σ], 𝑅, 𝛼}. For the
parametric components, we assume that 𝑝(𝜗, 𝜏) = 𝑝(𝜗)𝑝(𝜏)

with

𝑝 (Λ
𝑘
)
𝐷

= 𝑁 (Λ
0𝑘
, 𝐻
𝜖0𝑘
) ,

𝑝 (𝜏) =

𝑠

∏

𝑗=1

𝑝 (𝜏
𝑗
) =

𝑠

∏

𝑗=1

𝑝 (𝜏
𝑗,2
, . . . , 𝜏

𝑗,𝑏𝑗−1
)

∝

𝑠

∏

𝑗=1

𝐼 {𝜏
𝑗,2

< ⋅ ⋅ ⋅ < 𝜏
𝑗,𝑏𝑗−1

} ,

(14)

where Λ
𝑘
is a 𝑝 × 1 column vector that contains unknown

parameters in the 𝑘th row of Λ.
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For the hyperparameter 𝛽 = {], Σ], 𝑅, 𝛼}, we consider the
following conjugate priors:

] ∼ 𝑁 (𝜇
0
, Σ
0
) ,

𝑅 ∼ Wishart−1 (𝜌𝜙
0
, 𝑅
𝜙

0
) ,

𝜎]𝑘 ∼ Gamma−1 (𝜅
1
, 𝜅
2
) ,

𝛼 ∼ Gamma (𝜏
1
, 𝜏
2
) .

(15)

The hyperparameters 𝜇
0
, Σ
0
, Λ
0𝑘
, 𝐻
𝜖0𝑘

, 𝑅𝜙
0
, 𝛼
𝜖0𝑗
, 𝛽
𝜖0𝑗
, 𝜌
0
, 𝜌
𝜙

0
,

𝜅
1
, 𝜅
2
, 𝜏
1
, and 𝜏

2
in (10), (14), and (15) are treated as known.

Let 𝑌(𝑛 × 𝑝) = (𝑦
1
, . . . , 𝑦

𝑛
)
𝑇, Ω = (𝜔

1
, . . . , 𝜔

𝑛
)
𝑇,

and 𝑌
∗

= (𝑦
∗

1
, . . . , 𝑦

∗

𝑛
)
𝑇. Posterior analysis in relation to

the complex 𝑝(𝜗, 𝛽 | 𝑌) is carried out through the data
augmentation technique [33]. Specifically, we treat the latent
quantities {Ω, 𝑌

∗
, 𝜋, Θ
∗
, 𝐿} as missing data and augment

them with the observed data. A sequence of random obser-
vations is generated from the joint posterior distribution
𝑝(Ω, 𝑌

∗
, 𝜗, 𝜋, Θ

∗
, 𝐿, 𝛽 | 𝑌) by the blocked Gibbs sampler [31,

34], coupledwith theMetropolis-Hastings algorithm [35, 36]:
given {Ω(𝑙), 𝑌∗(𝑙), 𝜋(𝑙), Θ∗(𝑙), 𝐿(𝑙)} at the 𝑙th iteration

draw Ω
(𝑙+1) from 𝑝(Ω | 𝑌

∗(𝑙), 𝜗(𝑙), 𝜋(𝑙), Θ∗(𝑙), 𝐿(𝑙), 𝛽(𝑙),
𝑌),

draw (𝜗
(𝑙+1)

, 𝑌
∗(𝑙+1)

) from 𝑝(𝜗, 𝑌
∗
| Ω
(𝑙+1), 𝜋(𝑙), Θ∗(𝑙),

𝐿
(𝑙), 𝛽(𝑙), 𝑌),

draw (𝜋
(𝑙+1)

, Θ
∗(𝑙+1)

) from 𝑝(𝜋,Θ
∗
| Ω
(𝑙+1), 𝑌∗(𝑙+1),

𝜗
(𝑙+1), 𝐿(𝑙), 𝛽(𝑙), 𝑌),

draw 𝐿
(𝑙+1) from 𝑝(𝐿 | Ω

(𝑙+1), 𝑌∗(𝑙+1), 𝜗(𝑙+1), 𝜋(𝑙+1),
Θ
∗(𝑙+1), 𝛽(𝑙), 𝑌),

draw 𝛽
(𝑙+1) from 𝑝(𝛽 | Ω

(𝑙+1), 𝑌∗(𝑙+1), 𝜗(𝑙+1), 𝜋(𝑙+1),
Θ
∗(𝑙+1), 𝐿(𝑙+1), 𝑌),

and form {Ω
(𝑙+1)

, 𝑌
∗(𝑙+1)

, 𝜋
(𝑙+1)

, Θ
∗(𝑙+1)

, 𝐿
(𝑙+1)

}. It can
be shown that as 𝑙 tends to infinity, the empirical
distribution of {Ω

(𝑙)
, 𝑌
∗(𝑙)

, 𝜋
(𝑙)
, Θ
∗(𝑙)

, 𝐿
(𝑙)
} converges to

𝑝(Ω, 𝑌
∗
, 𝜗, 𝜋, Θ

∗
, 𝐿, 𝛽 | 𝑌) at any geometrical rate. The full

conditional distributions and the implementation of the
above algorithm are given in the Appendix.

3.2. Model Selection. Model selection is an important issue in
Bayesian semiparametric modeling for latent variable model
since it is of practical interest to compare different modelings
for factor analytic models. Formal Bayesian model selection
is accomplished by comparing the marginal predictive dis-
tribution of data across models. Consider the problem of
comparing competing models 𝑀

1
and 𝑀

2
. Let 𝑝(𝑌 | 𝑀

1
)

and 𝑝(𝑌 | 𝑀
2
) denote the marginal density of data 𝑌

under𝑀
1
and𝑀

2
, respectively. A popular choice for selecting

models is achieved via Bayes factor (BF) (e.g., [37–39]).
However, in view of the fact that computing BF involves the
high-dimensional density which is hard to estimate well, we

prefer comparing the following logarithm of pseudomarginal
likelihood (LPML) [40, 41]:

LPML (𝑌) =
𝑛

∑

𝑖=1

log (CPO
𝑖
) , (16)

where CPO
𝑖
is known as the conditional predictive ordinate

(CPO) defined as

CPO
𝑖
= 𝑝 (𝑦

𝑖
| 𝑌
(𝑖)
) = [∫

1

𝑝 (𝑦
𝑖
| 𝑌
(𝑖)
, 𝜗, Θ∗, 𝜋)

𝑝 (𝜗,

Θ
∗
, 𝜋 | 𝑌) 𝑑𝜗 𝑑Θ

∗
𝑑𝜋]

−1

= [∫
1

𝑝 (𝑦
𝑖
| 𝜗, Θ∗, 𝜋)

𝑝 (𝜗, Θ
∗
, 𝜋 |

𝑌) 𝑑𝜗 𝑑Θ
∗
𝑑𝜋]

−1

.

(17)

Here, 𝑌
(𝑖)
is the data set 𝑌 with 𝑦

𝑖
removed. Obviously, from

(17), we can see that CPO
𝑖
is themarginal posterior predictive

density of 𝑦
𝑖
given 𝑌

(𝑖)
and can be interpreted as the height of

this marginal density at 𝑦
𝑖
. Thus, small values of LPML imply

that 𝑌 does not support the model.
Based on MCMC sample {(Θ∗(𝑡), 𝜋(𝑡), 𝐿(𝑡), 𝜗(𝑡), 𝛽(𝑡)) : 𝑡 =

1, . . . , 𝑇} already available in the estimation, a consistent
estimate for LPML can be obtained via ergodic average given
by

L̂PML (𝑌) = −

𝑛

∑

𝑖=1

log[ 1
𝑇

𝑇

∑

𝑡=1

1

𝑝 (𝑦
𝑖
| 𝜗(𝑡), Θ∗(𝑡), 𝜋(𝑡))

] . (18)

It is noted that, under our proposed model,

𝑝 (𝑦
𝑖
| 𝜗, Θ
∗
, 𝜋) = ∫𝑝 (𝑦

𝑖
| 𝜔
𝑖
, 𝐿
𝑖
, 𝜗, Θ
∗
)

⋅ 𝑝 (𝜔
𝑖
| 𝐿
𝑖
, 𝜗, Θ
∗
) 𝑝 (𝐿

𝑖
| 𝜋) 𝑑𝜔

𝑖
𝑑𝐿
𝑖

(19)

which is complicated due to the existence of Ω and 𝐿. This
can be solved by Monte Carlo approximation. Specifically,
given the current values {𝜗(𝑙), Θ∗(𝑙), 𝜋(𝑙)} at the 𝑙th iteration,
we draw (i) 𝐿𝑙,ℎ

𝑖
from 𝑝(𝐿

𝑖
| 𝜋
(𝑙)
) and (ii) 𝜔𝑙,ℎ

𝑖
from 𝑝(𝜔

𝑖
|

𝐿
𝑙,ℎ

𝑖
, 𝜗
(𝑙)
, Θ
∗(𝑙)

) for ℎ = 1, . . . , 𝐻 and then evaluate 𝑝(𝑦
𝑖
|

𝜗
(𝑙)
, Θ
∗(𝑙)

, 𝜋
(𝑙)
) at the observation 𝑦

𝑖
through

𝑝̂ (𝑦
𝑖
| 𝜗
(𝑙)
, Θ
∗(𝑙)

, 𝜋
(𝑙)
)

≈
1

𝐻

𝐻

∑

ℎ=1

𝑝 (𝑦
𝑖
| 𝜔
𝑙,ℎ

𝑖
, 𝐿
𝑙,ℎ

𝑖
, 𝜗
(𝑙)
, Θ
∗(𝑙)

) .

(20)

Obviously, the distributions involved in (i) and (ii) are
standard and sampling is rather straightforward and fast.

4. A Simulation Study

In this section, a simulation study to evaluate the per-
formance of the proposed procedure is conducted. The
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goal is to assess the accuracy of estimates under para-
metric, partly exchangeable, and semiparametric modelings
when data take on the multimodality or heterogeneity.
We consider the situation in which each observed vector
consists of three-dimensional continuous vector and three-
dimensional ordinal vector with threshold values 𝜏

𝑗
=

(−1.0
∗
, −0.6, 0.3, 1.0

∗
)
𝑇
(𝑗 = 1, 2, 3). We generate 𝑌 by first

generating 𝑌∗ with 𝑦∗
𝑖
= (𝑥
𝑇

𝑖
, 𝑢
𝑇

𝑖
)
𝑇 from the mixture of two

factor analytic models with weights 0.45 and 0.55 and then
transforming 𝑢

𝑖
into 𝑧

𝑖
(𝑠 = 3) via (1) to create the ordinal

observations, where 𝑥
𝑖
represents a 6×1 observed continuous

random vector and 𝑢
𝑖
is a 3 × 1 latent continuous random

vector. Each component in the mixture model is specified
through the following measurement model: for𝑚 = 1, 2,

𝑦
∗

𝑖
= 𝜇
(𝑚)

+ Λ𝜔
(𝑚)

𝑖
+ 𝜖
(𝑚)

𝑖
, 𝜖
(𝑚)

𝑖
∼ 𝑁(0, Ψ

(𝑚)

𝜖
) . (21)

Theparameters involved in the components ofmixturemodel
are taken as 𝜇(1) = −1.5 × 1

6
, 𝜇(2) = 1.0 × 1

6
, Ψ(1)
𝜖

= 0.36𝐼
6
,

Ψ
(2)

𝜖
= 𝐼
6
,

Λ
𝑇
= [

1
∗
0.8 0.8 0

∗
0
∗

0
∗

0
∗

0
∗

0
∗

1
∗
0.8 0.8

] ,

Φ
(1)

= (
1 −0.3

−0.3 1.0
) ,

Φ
(2)

= (
1 0.6

0.6 1.0
) ,

(22)

in which 1
6
is a 6 × 1 vector with all elements equal

to one and 𝐼
6
is a 6 × 6 identity matrix. The elements

with asterisks involved in loading matrix Λ and threshold
parameters {𝜏

𝑗
}
3

𝑗=1
are treated as fixed for identifying model

(see Section 2.1). Based on these settings, random samplewith
size 500 is generated and 100 replications are completed for
each combination.

Prior inputs in the prior distributions involved in the
parametric components (see (14)) are as follows: 𝐻

𝜖0𝑘
and

𝐻
𝜁0
are diagonal matrices with the diagonal elements 1.0, and

elements in {Λ
0𝑘
, Π
0
} are equal to the true values, while prior

inputs in the prior distribution of superparameter 𝛽 (see (15))
are 𝜇
0
= 0
9
, Σ
0
= 100𝐼

9
, 𝜅
1
= 𝜅
2
= 0.001, 𝑅𝜙

0
= 0.01𝐼

2
,

𝜌
0
= 𝜌
𝜙

0
= 10, 𝛼

𝜖0𝑘
= 𝛽
𝜖0𝑘

= 2.0, and 𝜏
1
= 𝜏
2
= 2.0. Note that

these values ensure approaching noninformative priors.
A few test runs are conducted to explore the effect of

truncated levels on the estimates of unknown parameters
and the convergence of the blocked Gibbs sampler. We take
𝐺 = 50, 60, 70, 80, 90, 100, 200, and 300 and calculate
the total sum of the root mean square (RMS) of estimates
(see below for details).The resulting values are 1.9830, 1.7382,
1.6582, 1.5548, 1.4194, 1.4128, 1.4108, and 1.4101, respectively.
It can be seen that the total sum of the root mean square
(RMS) becomes rather stable when 𝐺 ≥ 80. In the following
analysis, we set 𝐺 = 100 in our data analysis. For the
threshold parameters {𝜏

𝑗𝑘
: 𝑗 = 1, 2, 3, 𝑘 = 2, 3}, we choose

𝜎
2

MH𝑗𝑘 = 0.002 (see Appendix) in MH algorithm to produce
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Figure 1: Plot of the values of EPSR of unknown parameters against
the number of iterations under different starting values for the
simulated data.

the acceptance rate about 0.40. Figure 1 gives the plots of
EPSR (estimated potential scale reduction [42]) values of
unknown free parameters in Λ, 𝜏, and 𝛼 against iterations
for three groups of different starting values. It can be seen
that the estimates converge in less than 1000 iterations. To
be conservative, in the following analysis, we collect 3000
observations after 2000 “burn-in”s deleted to take posterior
analysis. We first consider the performance of the proposed
LMPL in model comparison. We compare the proposed
model with the parametric model (denoted by PARA) and
the partly exchangeable model (denoted by PAEX), which
approximately correspond to 𝛼 = +∞ and 𝛼 = 0 under our
proposal, respectively. The parametric model is defined by

(𝑦
∗

𝑖
| 𝜔
𝑖
, 𝜃)

ind
∼ 𝑁 (𝜇 + Λ𝜔

𝑖
, Ψ
𝜖
) ,

(𝜔
𝑖
| Φ)

iid
∼ 𝑁 (0,Φ) .

(23)

The priors of the parameters are given by 𝑝(𝜇) 𝐷= 𝑁(𝜇
0
, Σ
0
),

𝑝(Λ,Ψ
𝜖
)
𝐷

= ∏
9

𝑘=1
𝑁(Λ
0𝑘
, 𝐻
0𝑘
) ⋅Gamma−1(𝛼

𝜖0𝑘
, 𝛽
𝜖0𝑘
), andΦ ∼

Wishart−1(10, 7.0𝐼
2
).

The partly exchangeable model is given by

(𝑦
∗

𝑖
| 𝜔
𝑖
, 𝜃
𝑖
, 𝜗)

ind
∼ 𝑁 (𝜇

𝑖
+ Λ𝜔
𝑖
, Ψ
𝜖𝑖
) ,

(𝜔
𝑖
| 𝜃
𝑖
)
ind
∼ 𝑁 (0,Φ

𝑖
) ,

(24)

where 𝜃
𝑖
= {𝜇
𝑖
, Ψ
𝜖𝑖
, Φ
𝑖
} are i.i.d. with distribution 𝐹

0
(⋅ |

], Σ], 𝑅) given in (5); the priors for the unknown parameter
vector Λ and hyperparametric vector {], Σ], 𝑅} are, respec-
tively, given in (14) and (15).

Under the foregoing settings for the hyperparameters,
observations obtained through the blockedGibbs sampler are
used to compute the values of LPML for each scenario across
100 replications. For the parametric and partly exchangeable
model, computing values of LPML is very straightforward
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and standard. For the semiparametric model, we draw 50
observations for approximating 𝑝(𝑦

𝑖
| 𝜗, Θ, 𝜋). The values

of LPML under parametric model, semiparametric model,
and partly exchangeable model are, respectively, −6684.740,
−6255.553, and −8487.259 with standard deviations 62.509,
151.480, and 147.742. Based on the LPML criteria, semipara-
metricmodel is selected, which is consistent with the fact that
the truemodel takes on themultimodes.Moreover, according
to our empirical results, the correct rates of LPML selecting
the true model across 100 replications are about 0.93.

Table 1 gives the biases (BIAS), root mean squares (RMS),
and standard deviations (SD) of estimates of unknown
parameters across 100 replications under semiparametric
models and parametric and partly exchangeable model,
respectively. The measures BIAS, RMS, and SD are given as

BIAS (𝜗̂
𝑗
) = (𝜗

𝑗
− 𝜗
𝑗0
) , 𝜗

𝑗
=
1

𝑆

𝑆

∑

𝑟=1

𝜗̂
(𝑟)

𝑗
,

RMS (𝜗̂
𝑗
) = √

1

𝑆

𝑆

∑

𝑟=1

(𝜗̂
(𝑟)

𝑗
− 𝜗
𝑗0
)

2

,

SE (𝜗̂
𝑗
) = √

1

𝑆

𝑆

∑

𝑟=1

(𝜗̂
(𝑟)

𝑗
− 𝜗
𝑗
)

2

,

(25)

where 𝑆 is the number of replications. It can be seen
that estimates obtained through the proposed approach are
reasonably accurate. The values of 𝜆̂

𝑗𝑘
under our approach

are smaller than those under parametric and exchangeable
modelings in terms of the absolute values of BIAS and RMS.
The results show that ignoring heterogeneity among the data
may lead to biased estimates and incorrect interpretation of
the analyzed phenomena. This also reflects that the factor
loadings 𝜆

𝑗𝑘
are not robust against the distributional devia-

tions of inceptor, variance of unique errors, and covariances
of latent factors.

Further simulation study is conducted to assess the
performance of the proposed model and parametric model
as well as the partly exchangeable model when data are
generated from a single normal distribution. The population
values of parameters are taken as 𝜇 = 0

6
, Ψ
𝜖
= 𝐼
6
, and

Φ = (
1 0.3

0.3 1.0
) . (26)

The values of factor loadings and threshold points are the
same as those in previous mixture model. As usual, we take
𝐺 = 100 for truncated levels. The sample size is set to
62 which is analogous to the real example. The inputs for
superparameters involved in priors are set the same as that
in mixture model. The results based on 100 replications are
summarized in Table 2.

Based on Table 2, it can be found that the results obtained
from our proposal are rather reasonable when compared
to normal model, while partly exchangeable model gives
serious biases. Moreover, we consider different inputs of
superparameters in priors and find that the estimates are
rather robust.

5. A Real Example

To illustrate the proposed procedure with a real example, a
political-economic risk data set [43] was analyzed, which is
adopted from Henisz’s [44] political constraint index data
set (POLCON), Marshall et al. [45] state failure problem sets
(PITF), and Alvarez et al.’s [46] ACLP Political and Economic
Database (ACLP).Thedata set is formed by the two economic
indicators and three political variables from 62 countries.The
first index is the log black market premium (BMP). This is a
continuous variablewhich is usually used as a proxy for illegal
economic activity.The second index is log real gross domestic
product (GDP). It is used to measure the productivity of a
country. The third variable is a measure of independence of
the national judiciary.This is a binary variable: it takes 1 if the
judiciary is judged to be independent and 0 otherwise. The
next measurement, measuring the level of lack of expropria-
tion risk threat (LE), is an ordered categorical variable coded
with 0, 1, 2, 3, 4, and 5.The last variable is an expert judgment
of measuring lack of corruption (LC). It is also an ordered
categorical variable scaled with 0 to 5. The total sample size
is 62 and the frequencies of each category occurring are
equal to {34, 28}, {2, 6, 7, 19, 14, 14}, and {5, 11, 18, 11, 8, 9},
respectively. To unify scales of the continuous variables, the
corresponding raw data were standardized.

Let 𝑦𝑇 = (log BMP, logGDP, IJ, LE, LC) be the vector of
the observed variables. Based on the objective of this example,
it is natural to group (i) {log BMP, logGDP} to an endogenous
latent variable that can be interpreted as “economic factor, 𝜉”
and (ii) {IJ, LE, LC} to an exogenous genotype latent variable
that can be interpreted as “political factor, 𝜂.” Hence, the
following loading matrix Λ in the measurement equation
with 𝜔

𝑖
= (𝜂
𝑖
, 𝜉
𝑖
)
𝑇 is considered:

Λ
𝑇
= [

0
∗

0
∗

1
∗
𝜆
41

𝜆
51

1
∗
𝜆
22

0
∗

0
∗

0
∗
] (27)

in which the ones and zeros are treated as known. Although
other structures of Λ could be used, here we consider a
nonoverlapped structure for clear interpretations of the latent
variables: 𝜆

𝑗𝑘
measures the effect of 𝜔

𝑘
on the observed

variable 𝑦
𝑗
. Since the third variable is binary and the last

two variables are measured on a six-point scale with each
involving six thresholds, formodel identification, we fix𝜓

𝜖3
=

1 and endpoints of thresholds 𝜏
31
, 𝜏
35
, 𝜏
41
, and 𝜏

45
at −1.8486,

0.7527,−1.4007, and 1.0574, respectively.These fixed threshold
values were chosen via 𝜏

𝑗𝑘
= Φ

−1
(𝑝̂
𝑗𝑘
), where 𝑝̂

𝑗𝑘
are

observed marginal proportions of the categories with 𝑧
𝑗
< 𝑘.

By primary data analysis, we find that the skewness and
kurtosis of the first two variables are {−0.1340, −0.4319} and
{2.0892, 2.0958}, respectively. We also evaluate the predictive
density function for continuous variables. Figure 2 gives
the contours of posterior predictive density of pair (𝑦

1
, 𝑦
2
)

under parametric model and semiparametric model𝑀𝜖 (see
below) based on 60 × 60 grids. It can be seen that the data
for pair (𝑦

1
, 𝑦
2
) are heavy-tailed and the predictive density

under semiparametric model captures the high frequency
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Table 1: Summary of the estimates under the parametric, partly exchangeable, and semiparametric approaches in analyzing simulated data:
mixture data.

Para. PARA PAEX SEMI
BIAS RMS SD BIAS RMS SD BIAS RMS SD

𝜆
21

0.130 0.136 0.043 0.216 0.171 0.047 −0.022 0.066 0.070
𝜆
31

0.131 0.138 0.043 0.212 0.181 0.047 −0.026 0.080 0.070
𝜆
52

0.140 0.147 0.046 0.263 0.164 0.072 −0.015 0.093 0.092
𝜆
62

0.144 0.150 0.046 0.266 0.152 0.071 −0.012 0.098 0.092
𝜏
12

0.060 0.091 0.040 −0.110 0.014 0.052 0.007 0.062 0.038
𝜏
13

0.070 0.085 0.033 −0.216 0.050 0.060 0.007 0.067 0.040
𝜏
22

0.070 0.098 0.040 −0.113 0.016 0.051 0.008 0.056 0.038
𝜏
23

0.077 0.095 0.032 −0.186 0.038 0.059 0.013 0.062 0.042
𝜏
32

0.062 0.092 0.040 −0.118 0.016 0.051 0.013 0.069 0.038
𝜏
33

0.083 0.098 0.032 −0.184 0.037 0.059 0.018 0.070 0.042

Table 2: Summary of the estimates under the parametric, partly exchangeable, and semiparametric approaches in analyzing simulated data:
normal data.

Para. PARA PAEX SEMI
BIAS RMS SD BIAS RMS SD BIAS RMS SD

𝜆
21

0.109 0.103 0.068 0.216 0.201 0.147 0.152 0.125 0.130
𝜆
31

−0.114 0.108 0.066 0.212 0.201 0.207 0.138 0.137 0.120
𝜆
52

−0.122 0.116 0.101 0.253 0.134 0.172 0.146 0.139 0.141
𝜆
62

−0.123 0.114 0.102 0.366 0.136 0.271 0.144 0.118 0.176
𝜏
12

−0.012 0.004 0.052 −0.151 0.036 0.126 0.005 0.002 0.052
𝜏
13

−0.018 0.002 0.056 −0.153 0.041 0.126 −0.013 0.003 0.060
𝜏
22

−0.001 0.003 0.046 −0.110 0.014 0.052 −0.035 0.004 0.045
𝜏
23

0.016 0.003 0.051 −0.216 0.050 0.060 −0.022 0.004 0.055
𝜏
32

−0.001 0.003 0.046 −0.113 0.016 0.051 −0.001 0.002 0.048
𝜏
33

−0.018 0.002 0.051 −0.186 0.038 0.059 −0.012 0.003 0.058

region successfully while parametric model fails. For model
comparison, we consider the following competing models:

𝑀
𝜇: 𝑦∗
𝑖
= 𝜇
𝑖
+ Λ𝜔
𝑖
+ 𝜖
𝑖
,

𝜖
𝑖
∼ 𝑁 (0, Ψ

𝜖
) , 𝜔
𝑖
∼ 𝑁 (0, 𝜙) ;

𝑀
𝜖: 𝑦∗
𝑖
= 𝜇 + Λ𝜔

𝑖
+ 𝜖
𝑖
,

𝜖
𝑖
∼ 𝑁 (0, Ψ

𝜖𝑖
) , 𝜔
𝑖
∼ 𝑁 (0, 𝜙) ;

𝑀
𝜇𝜖: 𝑦∗
𝑖
= 𝜇
𝑖
+ Λ𝜔
𝑖
+ 𝜖
𝑖
,

𝜖
𝑖
∼ 𝑁 (0, Ψ

𝜖𝑖
) , 𝜔
𝑖
∼ 𝑁 (0, 𝜙) ;

𝑀
𝜇𝜙: 𝑦∗
𝑖
= 𝜇
𝑖
+ Λ𝜔
𝑖
+ 𝜖
𝑖
,

𝜖
𝑖
∼ 𝑁 (0, Ψ

𝜖
) , 𝜔
𝑖
∼ 𝑁 (0, 𝜙

𝑖
) ;

𝑀
𝜖𝜙: 𝑦∗
𝑖
= 𝜇 + Λ𝜔

𝑖
+ 𝜖
𝑖
,

𝜖
𝑖
∼ 𝑁 (0, Ψ

𝜖𝑖
) , 𝜔
𝑖
∼ 𝑁 (0, 𝜙

𝑖
) ;

𝑀
𝜇𝜖𝜙: 𝑦∗

𝑖
= 𝜇
𝑖
+ Λ𝜔
𝑖
+ 𝜖
𝑖
,

𝜖
𝑖
∼ 𝑁 (0, Ψ

𝜖𝑖
) , 𝜔
𝑖
∼ 𝑁 (0, 𝜙

𝑖
) .

(28)

The following two types of prior inputs are, respectively,
used for the hyperparameters involved in the parametric
components and semiparametric components: (I) Λ

𝜖0𝑘
=

Λ̃
𝜖𝑘
, 𝐻
𝜖0𝑘

= 𝐼
2
, 𝛾
0
= 𝛾̃, 𝐻

𝜁0
= 1, 𝜇

0
= 𝜇̃, Σ

0
= diag{𝑆},

𝛼
𝜖0𝑘

= 9.0,𝛽
𝜖0𝑘

= (𝛼
𝜖0𝑘
−1)𝜓̃
𝜖𝑘
,𝜌
0
= 𝜌
𝜙

0
= 20,𝑅𝜙−1

0
= (𝜌
0
−2)𝜙̃,

𝜅
1

= 𝜅
2

= 8.0, and 𝜏
1

= 𝜏
2

= 8.0, where 𝜃̃ denotes
the maximum likelihood estimates of 𝜃 under parametric
model from analysis of a “control-group” sample and 𝑆 is
the polychoric correlation matrix obtained on the basis of
single confirmatory factor analysis model; (II) 𝜆

𝜖0𝑗𝑘
= 0,

𝐻
𝜖0𝑘

= 0.01𝐼
2
, 𝛾
0
= 0, 𝐻

𝜁0
= 0.01, 𝜇

0
= 0
5×1

, Σ
0
= 0.01𝐼

5
,

𝛼
𝜖0𝑘

= 𝛽
𝜖0𝑘

= 2.0, 𝜌
0
= 𝜌
𝜙

0
= 10, 𝑅−1

0
= 𝜌
0
− 2, 𝜅
1
= 𝜅
2
= 0.01,

and 𝜏
1
= 𝜏
2
= 0.01.Note that prior (I) givesmore information

than prior (II) since it partly takes advantage of information
from sample.

The proposed Bayesian semiparametric approach with
𝐺 = 50 was applied to calculate the values of CPO and
LPML. We draw 100,000 effective observations from the
corresponding posteriors via the blocked Gibbs sampler and
divide them into 100 batches equally. Table 3 gives the means
and standard deviations of LPML under priors (I) and (II).
The following facts can be found. (i) The values of LPML
under prior (I) are larger than those under prior (II). This
indicates that the LPML tends to choose the model with
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Figure 2: Plot of contours of posterior predictive density of pair (𝑦
1
, 𝑦
2
) under parametric model and semiparametric model 𝑀𝜖: (a)

corresponds to parametric model and (b) corresponds to semiparametric model with 𝐺 = 50.

Table 3:Mean and standard deviation (SD) of LPML in the political
and economic risk data.

Model
LPML

BAY I BAY II
Mean SD Mean SD

𝑀
𝜇

−253.0577 60.7693 −274.9704 14.7176
𝑀
𝜖

−176.5289 110.0227 −188.8361 175.3741
𝑀
𝜇𝜖

−193.2270 81.3209 −209.0063 77.0664
𝑀
𝜇𝜙

−235.7465 15.3588 −235.7465 11.6911
𝑀
𝜖𝜙

−267.4536 10.2084 −271.2875 10.4206
𝑀
𝜇𝜖𝜙

−255.2335 27.2208 −258.7124 15.8416

informative prior. (ii) 𝑀𝜖 give the largest value. Among the
posited models, 𝑀𝜖 is selected. We also compute the values
of LPML for parametric model. They are −287.4262 and
−288.6033 under priors (I) and (II) with standard deviations
6.287 and 5.065, respectively. Therefore, the data support the
semiparametric model instead of parametric model.

Table 4 presents the estimates of factor loading 𝜆
𝑗𝑘

as well as their standard deviations with semiparametric
and parametric model under prior (I). The factor loading
estimates 𝜆̂

𝑘𝑗
in themeasurement equation can be interpreted

according to a standard confirmatory factor analysis model.
The difference between the two approaches is obvious: the
estimates of 𝜆

41
and 𝜆

51
under parametric model are only

half of those under semiparametric model. Moreover, the
standard deviations of estimates with parametric method are
uniformly larger than that of semiparametric model. Since
we identify illegal economic activity log PCR with economic
factor 𝜉 (𝜆∗

12
= 1) and independent of judiciary with political

factor 𝜂 (𝜆∗
31

= 1), respectively, the level of economic factor
has a negative effect on real gross domestic product, while
the level of political factor has positive effect on lack of
expropriation risk threat and lack of corruption.The estimate
𝜆̂
22
= −0.123 indicates that a one-unit increase in the level of

economic factor leads to 0.123-unit decrease in themagnitude
of gross domestic product.The interpretation of 𝜆̂

41
and 𝜆̂
51
is

similar. The differences of estimates between parametric and
semiparametric methods illustrate the effects of heavy tails of
the data on the estimates.

6. Concluding Remarks

Parametric modeling for latent variable model with mixed
data structure has long dominated Bayesian inference work,

Table 4: Estimates and standard errors estimates of the parameters
in analysis of political and economic risk data.

Parameter Parametric model 𝑀
𝜖 model

Est. SD Est. SD
𝜆
22

−0.155 0.083 −0.123 0.077
𝜆
41

0.418 0.104 0.846 0.088
𝜆
51

0.367 0.090 0.754 0.066
𝜏
42

−1.336 0.157 −1.340 0.055
𝜏
43

−0.905 0.167 −0.898 0.061
𝜏
44

−0.008 0.149 0.004 0.055
𝜏
52

−0.794 0.142 −0.787 0.046
𝜏
53

0.001 0.155 0.002 0.053
𝜏
54

0.566 0.136 0.567 0.035

typically developed within the standard exponential family.
Such modeling is often confused with handling the mul-
timodal and unknown heterogeneous problems. In dealing
with multimodality or increased heterogeneity in data, one
naturally resorts to the finite mixture model [47, 48] which
is more flexible and feasible to implement due to advances in
simulation-based model fitting.

Rather than handling the large number of parameters
resulting from the finite mixture models with a large num-
ber of components, we consider, in this paper, the finite-
dimensional Dirichlet process mixture model for latent
variable model with continuous and ordinal responses. The
core of our proposal is to model the mean vector and/or
variance-covariance parameters of unique errors and latent
variables into the finite-dimensional stick-breaking priors.
This will help to reveal the local dependence structure such
as classification groups and clustering among the data. The
blocked Gibbs sampler developed by Ishwaran and Zarepour
[31], which takes advantage of the block updating and
accelerates mixing in Gibbs sampling, is adapted here to cope
with the posterior inference.

The proposed methodologies in this paper can be applied
to more general latent variable models that include the
multilevel SEMs [49] and longitudinal latent trait models [5]
with discrete variables.

Appendix

Full Conditional Distributions

(1) Full Conditional Distribution 𝑝(𝜗, 𝑌
∗
| Ω, 𝜋, Θ∗, 𝐿, 𝛽,

𝑌). To draw (𝜗, 𝑌
∗
) from 𝑝(𝜗, 𝑌

∗
| Ω, 𝜋, Θ∗, 𝐿, 𝛽, 𝑌),
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we implement it by (i) drawing (𝜏, 𝑌
∗
) from 𝑝(𝜏, 𝑌

∗
| Ω,

Λ, 𝜋, Θ∗, 𝐿, 𝛽, 𝑌) and (ii) drawing Λ from 𝑝(Λ | Ω, 𝜏,
𝑌
∗
𝜋, Θ∗, 𝐿, 𝛽, 𝑌). The underlying reason is that drawing

(𝜏, 𝑌
∗
) from the joint conditional distribution as proposed

here is more efficient than drawing 𝜏 and 𝑌∗ separately from
the corresponding marginal conditional distribution (see Liu
[50], Nandram and Chen [51], and Song and Lee [6]).

It can be shown that 𝑝(𝜏, 𝑌∗ | Ω, Λ, 𝜋, Θ∗, 𝐿, 𝛽, 𝑌), not
involving 𝜋 and 𝛽, is given by

𝑝 (𝜏, 𝑌
∗
| Ω, Λ, Θ

∗
, 𝐿, 𝑌) = 𝑝 (𝜏 | Ω, Λ,Θ

∗
, 𝐿, 𝑌)

⋅ 𝑝 (𝑌
∗
| 𝜏, Ω, Λ,Θ

∗
, 𝐿, 𝑌)

=

𝑠

∏

𝑗=1

𝑝 (𝜏
𝑗
| Ω, Λ, Θ

(𝑗)
, 𝑌
(𝑗)
)

⋅ 𝑝 (𝑌
∗

(𝑗)
| 𝜏
𝑗
, Ω, Λ,Θ

(𝑗)
, 𝑌
(𝑗)
) ,

(A.1)

where 𝑌∗
(𝑗)

= {𝑦
∗

𝑖𝑗
: 𝑖 = 1, . . . , 𝑛}, Θ

(𝑗)
= {𝜃
𝑖𝑗
: 𝑖 = 1, . . . , 𝑛}, and

𝑌
(𝑗)

= {𝑦
𝑖𝑗
: 𝑖 = 1, . . . , 𝑛}. Further,

𝑝 (𝜏
𝑗
| Ω, Λ, Θ

(𝑗)
, 𝑌
(𝑗)
)

∝

𝑏𝑗−1

∏

𝑘=1

∏

{𝑖:𝑦𝑖𝑗=𝑘}

{Φ (𝜓
−1/2

𝜖𝑖𝑗
(𝜏
𝑗,𝑘+1

− 𝜇
𝑖𝑗
− Λ
𝑇

𝑗
𝜔
𝑖
))

− Φ (𝜓
−1/2

𝜖𝑖𝑗
(𝜏
𝑗,𝑘
− 𝜇
𝑖𝑗
− Λ
𝑇

𝑗
𝜔
𝑖
))} 𝐼 {𝜏

𝑗,𝑘
< 𝜏
𝑗,𝑘+1

} ,

𝑝 (𝑌
∗

(𝑗)
| 𝜏
𝑗
, Ω, Λ,Θ

(𝑗)
, 𝑌
(𝑗)
) ∝

𝑛

∏

𝑖=1

𝑁(𝑦
∗

𝑖𝑗
| 𝜇
𝑖𝑗

+ Λ
𝑇

𝑗
𝜔
𝑖
, 𝜓
𝜖𝑖𝑗
) 𝐼 {𝜏
𝑗,𝑦𝑖𝑗

< 𝑦
∗

𝑖𝑗
≤ 𝜏
𝑗,𝑦𝑖𝑗+1

} ,

(A.2)

whereΦ(⋅) is the cumulative distribution function of𝑁(0, 1).
It is difficult to sample 𝜏

𝑗
from 𝑝(𝜏

𝑗
| Ω, Λ, Θ

(𝑗)
, 𝑌
(𝑗)
)

since this target distribution is nonstandard. We follow
Cowles’ routines [52] anduseMetropolis-Hasting (MH) algo-
rithm to sample observations from this complex conditional
distribution. Specifically, given the current values 𝜏

(𝑙)

𝑗
=

(𝜏
(𝑙)

𝑗,2
, . . . , 𝜏

(𝑙)

𝑗,𝑏𝑗−1
)
𝑇 at the 𝑙th iteration, generate a candidate

vector 𝜏∗
𝑗
= (𝜏
∗

𝑗,2
, . . . , 𝜏

∗

𝑗,𝑏𝑗−1
)
𝑇 from the following truncated

normal distribution:

𝜏
∗

𝑗,𝑘
∼ 𝑁(𝜏

(𝑙)

𝑗,𝑘
, 𝜎
2

MH𝑗𝑘) 𝐼 {(𝜏
∗

𝑗,𝑘−1
, 𝜏
(𝑙)

𝑗,𝑘+1
]} ,

for 𝑘 = 2, . . . , 𝑏
𝑗
− 1.

(A.3)

Accept this candidate 𝜏
∗

𝑗
as 𝜏
(𝑙+1)

𝑗
with the probability

min{1, 𝑅
𝑗
}, where

𝑅
𝑗
=

𝑏𝑗−1

∏

𝑘=2

Φ(𝜎
−1

MH𝑗𝑘 [𝜏
(𝑙)

𝑗,𝑘+1
− 𝜏
(𝑙)

𝑗,𝑘
]) − Φ(𝜎

−1

MH𝑗𝑘 [𝜏
∗

𝑗,𝑘−1
− 𝜏
(𝑙)

𝑗,𝑘
])

Φ(𝜎−1MH𝑗𝑘 [𝜏
∗

𝑗,𝑘+1
− 𝜏∗
𝑗,𝑘
]) − Φ(𝜎−1MH𝑗𝑘 [𝜏

(𝑙)

𝑗,𝑘−1
− 𝜏∗
𝑗,𝑘
])

×

𝑛

∏

𝑖=1

Φ(𝜓
−1/2

𝜖𝑖𝑗
(𝜏
∗

𝑗,𝑦𝑖𝑗+1
− 𝜇
𝑖𝑗
− Λ
𝑇

𝑗
𝜔
𝑖
)) − Φ(𝜓

−1/2

𝜖𝑖𝑗
(𝜏
∗

𝑗,𝑦𝑖𝑗
− 𝜇
𝑖𝑗
− Λ
𝑇

𝑗
𝜔
𝑖
))

Φ(𝜓
−1/2

𝜖𝑖𝑗
(𝜏
(𝑙)

𝑗,𝑦𝑖𝑗+1
− 𝜇
𝑖𝑗
− Λ𝑇
𝑗
𝜔
𝑖
)) − Φ(𝜓

−1/2

𝜖𝑖𝑗
(𝜏
(𝑙)

𝑗,𝑦𝑖𝑗
− 𝜇
𝑖𝑗
− Λ𝑇
𝑗
𝜔
𝑖
))

.

(A.4)

As pointed out by Cowles (1996) [52], the quantities 𝜎2MH𝑗𝑘
should be chosen carefully such that the average acceptance
probability is about 0.30 or more.

For 𝑝(Λ,Π | Ω, 𝜏, 𝑌
∗
, 𝜋, Θ
∗
, 𝐿, 𝛽, 𝑌), without loss of

generality, we assume that the elements in Λ are all free. Let
𝑦
∗∗

𝑖𝑗
= 𝑦
∗

𝑖𝑗
−𝜇
𝑗
. Under the prior distributions given in (14), we

have

𝑝 (Λ | Ω, 𝑌
∗
, Θ
∗
, 𝐿)
𝐷

=

𝑝

∏

𝑘=1

𝑁(𝑚
𝜖𝑘
, Σ
𝜖𝑘
) , (A.5)

in which

𝑚
𝜖𝑘
= Σ
𝜖𝑘
(𝐻
−1

𝜖0𝑘
Λ
0𝑘
+

𝑛

∑

𝑖=1

𝜔
𝑖
𝑦
∗∗

𝑖𝑘

𝜓
𝜖𝑖𝑘

) ,

Σ
𝜖𝑘
= (

𝑛

∑

𝑖=1

𝜓
−1

𝜖𝑖𝑘
𝜔
𝑖
𝜔
𝑇

𝑖
+ 𝐻
−1

𝜖0𝑘
)

−1

.

(A.6)

(2) Full Conditional Distribution 𝑝(Ω | 𝜏, 𝑌∗, 𝜃, 𝜋, Θ∗, 𝐿, 𝛽,
𝑌). It can be shown that the conditional distribution of Ω is
given by

𝑝 (Ω | 𝜏, 𝑌
∗
, 𝜃, 𝜋, Θ

∗
, 𝐿, 𝛽, 𝑌)

=

𝑛

∏

𝑖=1

𝑝 (𝜔
𝑖
| 𝜃, 𝜃
𝑖
, 𝑦
∗

𝑖
) ,

[𝜔
𝑖
| 𝜃, 𝜃
𝑖
, 𝑦
∗

𝑖
]
𝐷

= 𝑁(Σ
𝜔𝑖
Λ
𝑇
Ψ
−1

𝜖𝑖
(𝑦
∗

𝑖
− 𝜇
𝑖
) , Σ
𝜔𝑖
) ,

(A.7)

where Σ
𝜔𝑖
= (Λ
𝑇
Ψ
−1

𝜖𝑖
Λ + Φ

−1

𝑖
)
−1.

(3)The Full Conditional Distribution 𝑝(𝜋,Θ∗ | Ω, 𝑌∗, 𝜗, 𝐿, 𝛽,
𝑌). It is clear that

𝑝 (𝜋,Θ
∗
| Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽, 𝑌)

= 𝑝 (𝜋 | Θ
∗
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽, 𝑌)

⋅ 𝑝 (Θ
∗
| 𝜋, Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽, 𝑌) .

(A.8)
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Let 𝑚
𝑘

= #{𝑖 : 𝐿
𝑖
= 𝑘} be the number of 𝐿

𝑖
equal

to 𝑘, for 𝑘 = 1, . . . , 𝐺 − 1. It can be shown that 𝑝(𝜋 |

Θ
∗
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽, 𝑌) = 𝑝(𝜋 | 𝐿, 𝛼) is a generalized Dirichlet

distribution, GD(𝑎
∗

1
, 𝑏
∗

1
, . . . , 𝑎

∗

𝐺−1
, 𝑏
∗

𝐺−1
) with 𝑎

∗

𝑘
= 1 + 𝑚

𝑘
,

𝑏
∗

𝑘
= 𝛼 + ∑

𝐺

𝑗=𝑘+1
𝑚
𝑗
(𝑘 = 1, . . . , 𝐺 − 1), which is constructed

by

𝜋
1
= 𝑉
∗

1
,

𝜋
𝑘
= 𝑉
∗

𝑘

𝑘−1

∏

𝑗=1

(1 − 𝑉
∗

𝑗
) (𝑘 = 2, . . . , 𝐺 − 1) ,

(A.9)

where 𝑉∗
𝑗

ind
∼ Beta(𝑎∗

𝑗
, 𝑏
∗

𝑗
).

For 𝑝(Θ∗ | 𝜋, Ω, 𝑌∗, 𝜗, 𝐿, 𝛽, 𝑌) = 𝑝(Θ
∗
| Ω, 𝑌∗, 𝜗,

𝐿, 𝛽), let 𝐿∗ = {𝐿
∗

1
, . . . , 𝐿

∗

𝑚
} be the unique set of 𝐿, Θ∗

𝐿
∗ =

{𝜃
∗

𝐿
∗
1
, . . . , 𝜃

∗

𝐿
∗
𝑚
}, andΘ∗

(−𝐿
∗
)
corresponding to those values inΘ∗

with Θ∗
𝐿
∗ excluded. Then,

𝑝 (Θ
∗
| Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽) = 𝑝 (Θ

∗

(−𝐿
∗
)
| Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

⋅ 𝑝 (Θ
∗

𝐿
∗ | Θ
∗

(−𝐿
∗
)
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽)

= 𝑝 (Θ
∗

(−𝐿
∗
)
| 𝛽) 𝑝 (Θ

∗

𝐿
∗ | Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽) .

(A.10)

Let 𝜇∗ = {𝜇
∗

𝑗
: 𝑗 = 1, . . . , 𝐺}, Ψ∗

𝜖
= {Ψ
∗

𝜖𝑗
: 𝑗 = 1, . . . , 𝐺}, and

Φ
∗
= {Φ
∗

𝑗
: 𝑗 = 1, . . . , 𝐺}, and note that Θ∗ = {𝜇

∗
, Ψ
∗

𝜖
, Φ
∗
}.

The components of {𝜇∗
(−𝐿
∗
)
, Ψ
∗

𝜖(−𝐿
∗
)
, Φ
∗

(−𝐿
∗
)
} are easy to sample

based on (14). Further,

𝑝 (Θ
∗

𝐿
∗ | Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

=

𝑚

∏

𝑗=1

𝑝 (𝜃
∗

𝐿
∗
𝑗
| Ω, 𝑌

∗
, 𝜗, 𝐿, 𝛽)

(A.11)

which can be implemented by drawing: for 𝑙 ∈ 𝐿∗

𝑝 (𝜇
∗

𝑙
| Ψ
∗

𝜖𝑙
, Ψ
∗

𝜁𝑙
, Φ
∗

𝑙
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽) ∼ 𝑁 (𝜇

∗

𝑙
, Σ
∗

𝑙
) ,

𝑝 (Ψ
∗−1

𝜖𝑙
| 𝜇
∗

𝑙
, Ψ
∗

𝜁𝑙
, Φ
∗

𝑙
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽)

∼

𝑝

∏

𝑘=1

Gamma (𝛼∗
𝜖𝑙𝑘
, 𝛽
∗

𝜖𝑙𝑘
) ,

𝑝 (Φ
∗−1

𝑙
| 𝜇
∗

𝑙
, Ψ
∗

𝜖𝑙
, Ψ
∗

𝜁𝑙
, Ω, 𝑌
∗
, 𝜗, 𝐿, 𝛽)

∼ Wishart (𝜌∗
𝑙0
, 𝑅
∗

𝑙0
)

(A.12)

in which

𝜇
∗

𝑙
= Σ
∗

𝑙
(Σ
−1

] ] + (Ψ∗−1
𝜖𝑙

∑

{𝑖:𝐿 𝑖=𝑙}

(𝑦
∗

𝑖
− Λ𝜔
𝑖
))) ,

Σ
∗

𝑙
= [Σ
−1

] + 𝑚
𝑙
Ψ
∗−1

𝜖𝑙
]
−1

,

𝛼
∗

𝜖𝑙𝑘
= 𝛼
𝜖0𝑘

+ 𝑚
𝑙
,

𝛽
∗

𝜖𝑙𝑘
= 𝛽
𝜖0𝑘

+ 2
−1

∑

{𝑖:𝐿 𝑖=𝑙}

(𝑦
∗

𝑖𝑘
− 𝜇
∗

𝑙𝑘
− Λ
𝑇

𝑘
𝜔
𝑖
)
2

,

𝜌
∗

𝑙0
= 𝜌
𝜙

0
+ 𝑚
𝑙
,

𝑅
∗

𝑙0
= (𝑅

𝜙−1
+ ∑

{𝑖:𝐿 𝑖=𝑙}

𝜔
𝑖
𝜔
𝑇

𝑖
)

−1

.

(A.13)

(4) Full Conditional Distribution 𝑝(𝐿 | Ω, 𝜏, 𝑌∗, 𝜗, 𝜋, 𝑍, 𝑌).
It can be shown that

𝑝 (𝐿 | Ω, 𝑌
∗
, 𝜗, 𝜋, Θ

∗
, 𝑌)

=

𝑛

∏

𝑖=1

𝑝 (𝐿
𝑖
| Ω, 𝑌

∗
, 𝜗, 𝜋, Θ

∗
, 𝑌) ,

[𝐿
𝑖
= ⋅ | Ω, 𝜏, 𝑌

∗
, 𝜗, 𝜋, Θ

∗
, 𝑌]

iid
∼

𝐺

∑

𝑘=1

𝜋
∗

𝑖𝑘
𝛿
𝑘 (⋅) ,

(A.14)

where 𝜋
∗

𝑖𝑘
= 𝑐
𝑖
𝜋
𝑘
𝑝(𝑦
∗

𝑖
| 𝜔
𝑖
, 𝜃
∗

𝑘
, 𝜗)𝑝(𝜔

𝑖
| 𝜃
∗

𝑘
) and 𝑐

𝑖
is a

normalized constant such that ∑𝐺
𝑘=1

𝜋
∗

𝑖𝑘
= 1.0.

(5) Full Conditional Distribution 𝑝(𝛽 | Ω, 𝜏, 𝑌∗, 𝜗, 𝜋, 𝑍,
𝐿, 𝑌). Based on the priors given in (15), the full conditional
distributions for components of hyperparameters 𝛽 are given
as follows:

[] | Θ∗, Σ]] ∼ 𝑁 (𝑚], 𝐴]) ,

[Σ]], Θ
∗
] ∼

𝑝

∏

𝑗=1

Gamma−1(𝜅
1
+ 0.5𝐺, 𝜅

2

+ 0.5

𝐺

∑

𝑘=1

(𝜇
∗

𝑘𝑗
− 𝜇
𝑗
)
2

) ,

[𝑅
−1
| Θ
∗
] ∼ Wishart(𝐺𝜌

0
+ 𝜌
𝜙

0
,

(

𝐺

∑

𝑘=1

Φ
∗−1

𝑘
+ 𝑅
𝜙

0
)

−1

) ,

[𝛼 | 𝜋] ∼ Gamma (𝜏
1
+ 𝐺 − 1, 𝜏

2
− log𝜋

𝐺
) ,

(A.15)

where 𝑚] = 𝐴]{Σ
−1

0
𝜇
0
+ Σ
−1

] ∑
𝐺

𝑘=1
𝜇
∗

𝑘
} and 𝐴] = (𝐺Σ

−1

] +

Σ
−1

0
)
−1
.
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