
Research Article
On Some Inequalities Involving Three or More Means

Mustapha Ra\ssouli1,2 and Mohamed Chergui3

1Department of Mathematics, Science Faculty, Taibah University, P.O. Box 30097, Al Madinah Al Munawwarah 41477, Saudi Arabia
2Department of Mathematics, Science Faculty, Moulay Ismail University, 50060 Meknes, Morocco
3Department of Mathematics, Centre Régional des Métiers de l’Education et de la Formation, (CRMEF), 14000 Kenitra, Morocco

Correspondence should be addressed to Mustapha Räıssouli; raissouli.mustapha@gmail.com
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We investigate some results about mean-inequalities involving a large number of bivariate means. As application, we derive a lot of
inequalities between four or more means among the standard means known in the literature.

1. Introduction

By (bivariate)meanwe understand amap𝑚 between positive
real numbers satisfying the following double inequality:

min (𝑎, 𝑏) ≤ 𝑚 (𝑎, 𝑏) ≤ max (𝑎, 𝑏) , ∀𝑎, 𝑏 > 0. (1)

As usual, we define continuous (resp., symmetric/ homo-
geneous) means in the habitual way. The standard examples
of such means are given in the following:

𝐴 (𝑎, 𝑏) =

𝑎 + 𝑏

2

,

𝐺 (𝑎, 𝑏) = √𝑎𝑏,

𝐻 (𝑎, 𝑏) =

2𝑎𝑏

𝑎 + 𝑏

,

𝐶 (𝑎, 𝑏) =

𝑎
2
+ 𝑏
2

𝑎 + 𝑏

,

𝐿 (𝑎, 𝑏) =

𝑏 − 𝑎

log 𝑏 − log 𝑎
,

𝑃 (𝑎, 𝑏) =

𝑏 − 𝑎

4 arctan√𝑏/𝑎 − 𝜋

=

𝑏 − 𝑎

2 arcsin ((𝑏 − 𝑎) / (𝑏 + 𝑎))
,

𝑇 (𝑎, 𝑏) =

𝑏 − 𝑎

2 arctan (𝑏/𝑎) − 𝜋/2

=

𝑏 − 𝑎

2 arctan ((𝑏 − 𝑎) / (𝑏 + 𝑎))
,

𝑀 (𝑎, 𝑏) =

𝑏 − 𝑎

2 sinh−1 ((𝑏 − 𝑎) / (𝑏 + 𝑎))
,

(2)

with 𝐿(𝑎, 𝑎) = 𝑃(𝑎, 𝑎) = 𝑇(𝑎, 𝑎) = 𝑀(𝑎, 𝑎) = 𝑎, and they are
known as the arithmetic mean, geometric mean, harmonic
mean, contraharmonic mean, logarithmic mean, first Seiffert
mean [1], second Seiffert mean [2], and Neuman-Sándor
mean [3], respectively. Other examples of means (not needed
here) can be found in the literature; see [4], for instance, and
the references cited therein.

The two means,

𝑈 (𝑎, 𝑏) =

𝑏 − 𝑎

√2 arctan ((𝑏 − 𝑎) /√2𝑎𝑏)
,

𝑈 (𝑎, 𝑎) = 𝑎,

𝑉 (𝑎, 𝑏) =

𝑏 − 𝑎

√2 sinh−1 ((𝑏 − 𝑎) /√2𝑎𝑏)
,

𝑉 (𝑎, 𝑎) = 𝑎,

(3)
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were introduced in [5] (see page 9 and page 24, resp.). These
two means are included in the so-called Seiffert type means
discussed in [6].

As usual, we identify a mean 𝑚 with its value at (𝑎, 𝑏) by
setting 𝑚 fl 𝑚(𝑎, 𝑏) for the sake of simplicity. If 𝑚

1
and 𝑚

2

are twomeans, we write𝑚
1
< 𝑚
2
formeaning that𝑚

1
(𝑎, 𝑏) <

𝑚
2
(𝑎, 𝑏) for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Two different means

𝑚
1
and 𝑚

2
are called comparable if 𝑚

1
< 𝑚
2
or 𝑚
2
< 𝑚
1

holds. As it is well-known, means𝐴,𝐺,𝐻, 𝐿, 𝑃,𝑀, and 𝑇 are
mutually comparable with 𝐻 < 𝐺 < 𝐿 < 𝑃 < 𝐴 < 𝑀 < 𝑇.
Concerning means 𝑈 and 𝑉 we have 𝐿 < 𝑉 < 𝑃 < 𝑈 <

𝑀. However, the means 𝑈 and 𝐴 are not comparable; see
Section 5.

The notation 𝑚∗ refers to the dual mean of 𝑚 defined by
𝑚
∗
(𝑎, 𝑏) = (𝑚(𝑎

−1
, 𝑏
−1
))
−1 for all 𝑎, 𝑏 > 0. As it is well-known,

if 𝑚 is symmetric and homogeneous then so is 𝑚∗, with
𝑚
∗
(𝑎, 𝑏) = 𝑎𝑏/𝑚(𝑎, 𝑏) which we briefly write as𝑚∗ = 𝐺

2
/𝑚.

For over the last years, mean-theory has been the subject
of intensive research. It has been proved, throughout a large
number of works, that mean-theory is useful from theoretical
point of view and for practical purposes.Themost interesting
subject in mean-theory is to investigate mean-inequalities
that occur in a primordial place in the literature. For instance,
many inequalities involving trigonometric/hyperbolic func-
tions can be derived from mean-inequalities in a simple
and fast way. As far as we know, published results about
comparison of the previous standard means concern mean-
inequalities involving only two or three means. Inspired by
an approach, recently introduced by the first author in [7], we
present here some results about inequalities involving a large
number ofmeans. In particular, inequalities involving four or
more means among the standard means𝐴, 𝐺, 𝐿, 𝑃, 𝑇, and𝑀
are discussed. Inequalities involving the means 𝑈 and 𝑉 are
also obtained.

2. Background Material

In this section, we state some results that will be needed
throughout the following.We begin by recalling the following
result; see [7].

Theorem 1. Let 𝑚 be a continuous homogeneous symmetric
mean. Then the binary map𝑚𝜎 defined by𝑚𝜎(𝑎, 𝑎) = 𝑎 and

(𝑚
𝜎
(𝑎, 𝑏))

−1

=

1

𝑏 − 𝑎

∫

𝑏/𝑎

1

𝑚(1,

1

𝑡
2
)𝑑𝑡 (4)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 is a continuous homogeneous
symmetric mean (called the integral mean-transform of𝑚).

As example, we have 𝐴𝜎 = 𝐻, 𝐺𝜎 = 𝐿, and𝐻𝜎 = 𝑇. The
mean-map 𝑚 → 𝑚

𝜎 is pointwisely strictly decreasing; that
is, if𝑚

1
and𝑚

2
are two continuous homogeneous symmetric

means such that𝑚
1
< 𝑚
2
, then we have𝑚𝜎

1
> 𝑚
𝜎

2
.

As pointed out in [7], a continuous homogeneous sym-
metric mean will be called regular mean, for the sake of
simplicity. A regular mean 𝑚 will be called 𝜎-regular if the
map𝑥 → 𝑚(𝑥, 1) is continuously differentiable on (0,∞) and

the function 𝑓
𝑚
(called the generated function of𝑚) defined

by

𝑓
𝑚
(𝑥) =

𝑑

𝑑𝑥

(

𝑥 − 1

𝑚 (𝑥, 1)

) (5)

for all 𝑥 > 0, with 𝑓
𝑚
(1) = 1, satisfies

min(1, 1
𝑥
2
) ≤ 𝑓
𝑚
(𝑥) ≤ max(1, 1

𝑥
2
) (6)

for all 𝑥 > 0. The previous means are regular and 𝜎-regular,
except 𝐶 which is not 𝜎-regular (see [7, Examples 3.1, 3.2,
3.3]).

The following result has also been proved in [7].

Theorem 2. Let 𝑚 be a 𝜎-regular mean with its generated
function 𝑓

𝑚
. Then the binary map 𝑟

𝑚
defined by

𝑟
𝑚
(𝑎, 𝑏) = 𝑏𝑓

𝑚
(√

𝑏

𝑎

) (7)

for all 𝑎, 𝑏 > 0 is a regular mean with 𝑟𝜎
𝑚
= 𝑚.

If we denote byM
𝑟
andM

𝜎
the sets of all regular means

and 𝜎-regular means, respectively, then the mean-map 𝑚 →

𝑚
𝜎 is a bijection fromM

𝑟
intoM

𝜎
and we can write (see [7])

(𝑟
𝜎

𝑚
= 𝑚, 𝑟

𝑚
∈ M
𝑟
) ⇐⇒

(𝑟
𝑚
= 𝑚
−𝜎
, 𝑚 ∈ M

𝜎
) .

(8)

With this, the following result, which will be needed
throughout the following, has been established in [7].

Theorem 3. The following relationships hold:

𝐻
−𝜎

= 𝐴,

𝐿
−𝜎

= 𝐺,

𝑇
−𝜎

= 𝐻,

𝐴
−𝜎

= (

𝐴 + 𝐺

2

)

∗

=

2𝐺
2

𝐴 + 𝐺

,

𝐺
−𝜎

= (

𝐴𝐺 + 𝐺
2

2

)

1/2

,

𝑃
−𝜎

= ((

𝐴 + 𝐺

2

)

∗

𝐺)

1/2

= (

2𝐺
3

𝐴 + 𝐺

)

1/2

,

𝑀
−𝜎

= ((

𝐴
2
+ 𝐴𝐺

2

)

1/2

)

∗

= (

2𝐺
4

𝐴
2
+ 𝐴𝐺

)

1/2

,

(9)

where the notation𝑚∗ refers to the dual mean of𝑚.

If, for𝑚 ∈ M
𝜎
, we set

𝐹
𝑚
(𝑧) fl

𝑚
−𝜎

𝐺

, with 𝑧 =

𝐴

𝐺

≥ 1, (10)
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it is easy to see that if𝑚
1
, 𝑚
2
∈ M
𝜎
then we have [7]

(𝐹
𝑚
1
(𝑧) > 𝐹

𝑚
2
(𝑧) , ∀𝑧 > 1) ⇒ 𝑚

1
< 𝑚
2
. (11)

Finally, we recall the following result; see, for example, [7].

Theorem 4. The following relationships are met:

𝐹
𝐿
(𝑧) = 1,

𝐹
𝐻
(𝑧) = 𝑧,

𝐹
𝑇
(𝑧) =

1

𝑧

,

𝐹
𝐴
(𝑧) =

2

𝑧 + 1

,

𝐹
𝐺
(𝑧) = √

𝑧 + 1

2

,

𝐹
𝑃
(𝑧) = √

2

𝑧 + 1

,

𝐹
𝑀
(𝑧) = √

2

𝑧
2
+ 𝑧

,

𝐹
𝑈
(𝑧) =

1

𝑧

√
𝑧 + 1

2

,

𝐹
𝑉
(𝑧) = √

𝑧 + 1

2𝑧

.

(12)

Using the previous result, it is easy to see that, for all 𝑧 > 1,
we have

𝐹
𝑇
(𝑧) < 𝐹

𝑀
(𝑧) < 𝐹

𝐴
(𝑧) < 𝐹

𝑃
(𝑧) < 𝐹

𝐿
(𝑧) < 𝐹

𝐺
(𝑧)

< 𝐹
𝐻
(𝑧) ,

𝐹
𝑀
(𝑧) < 𝐹

𝑈
(𝑧) < 𝐹

𝑃
(𝑧) < 𝐹

𝑉
(𝑧) < 𝐹

𝐿
(𝑧) ,

(13)

which, with (11), immediately implies (simultaneously and in
a fast way) the known chains 𝐻 < 𝐺 < 𝐿 < 𝑃 < 𝐴 < 𝑀 <

𝑇 and 𝐿 < 𝑉 < 𝑃 < 𝑈 < 𝑀, respectively. The previous
inequalities are graphically illustrated in Figure 1.

3. Some Needed Results

In this section we present some results that will be needed for
obtaining a lot of mean-inequalities involving four or more
means among the previously mentioned means. We preserve
the same notations as in the previous sections. We begin by
stating the following result.

Theorem 5. Let 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
be 𝑛 regular means and

𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
∈ (0, 1) such that ∑𝑛

𝑖=1
𝜆
𝑖
= 1. Then one has

(

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝑖
)

𝜎

≤

𝑛

∑

𝑖=1

𝜆
𝑖
(𝑚
𝑖
)
𝜎

. (14)

If moreover two different means among 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
are

comparable then (14) is strict.

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FH

FG

FL

FV
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Figure 1: Curves of 𝐹
𝑚
.

Proof. First, it is easy to see that ∑𝑛
𝑖=1

𝜆
𝑖
𝑚
𝑖
is a regular mean.

By definition, for all 𝑎, 𝑏 > 0, 𝑎 ̸= 𝑏, we have

((

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝑖
)

𝜎

(𝑎, 𝑏))

−1

=

1

𝑏 − 𝑎

∫

𝑏/𝑎

1

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝑖
(1,

1

𝑡
2
)𝑑𝑡.

(15)

This, with the linearity of integral, gives

((

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝑖
)

𝜎

(𝑎, 𝑏))

−1

=

𝑛

∑

𝑖=1

𝜆
𝑖
(𝑚
𝜎

𝑖
(𝑎, 𝑏))

−1

. (16)

Taking inverse-sides of (16) and using the fact that the real-
valued function 𝑥 → 1/𝑥 is (strictly) convex on (0,∞),
generalized Jensen’s inequality asserts that

(

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝑖
)

𝜎

(𝑎, 𝑏) ≤

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝜎

𝑖
(𝑎, 𝑏) . (17)

Now, if two means among 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
are different and

comparable, say 𝑚
𝑖
(𝑎, 𝑏) < 𝑚

𝑗
(𝑎, 𝑏) for all 𝑎, 𝑏 > 0 with

𝑎 ̸= 𝑏 and some 𝑖 ̸= 𝑗, then the strict convexity of 𝑥 → 1/𝑥

implies that previous Jensen’s inequality is strict and the proof
is complete.

For practical purposes, the following corollary is of
interest.

Corollary 6. Let 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
and 𝑚 be 𝜎-regular means.

Assume that, for some 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
∈ (0, 1) such that

∑
𝑛

𝑖=1
𝜆
𝑖
= 1, the inequality

𝑛

∑

𝑖=1

𝜆
𝑖
𝐹
𝑚
𝑖
(𝑧) < 𝐹

𝑚
(𝑧) (18)

holds true for all 𝑧 > 1. Then we have

𝑚 <

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝑖
. (19)
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Proof. Since 𝐹
𝑚
(𝑧) fl 𝑚

−𝜎
/𝐺, with 𝑧 = 𝐴/𝐺, then (18) can be

written as follows:
𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
−𝜎

𝑖
< 𝑚
−𝜎
. (20)

This, with (14) and the fact that the mean-map 𝑚 → 𝑚
𝜎 is

pointwisely strictly decreasing, yields

𝑚 = (𝑚
−𝜎
)

𝜎

< (

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
−𝜎

𝑖
)

𝜎

≤

𝑛

∑

𝑖=1

𝜆
𝑖
(𝑚
−𝜎

𝑖
)

𝜎

=

𝑛

∑

𝑖=1

𝜆
𝑖
𝑚
𝑖
,

(21)

which implies the desired result.

The following example shows that the reverse statement
of the previous corollary is not always true.

Example 7. It is easy to see that the inequality

2

3

𝑥 +

2

3

(

1

2𝑥

)

1/2

≥ 1 (22)

holds for all 𝑥 > 0 with equality if and only if 𝑥 = 1/2. This,
with the fact that 𝐺/(𝐴 + 𝐺)(𝑎, 𝑏) ̸= 1/2 for 𝑎 ̸= 𝑏, yields

1

3

(

2𝐺

𝐴 + 𝐺

) +

2

3

(

𝐴 + 𝐺

2𝐺

)

1/2

> 1. (23)

Writing this inequality in the form

1

3

(

2𝐺
2

𝐴 + 𝐺

) +

2

3

(

𝐴𝐺 + 𝐺
2

2

)

1/2

> 𝐺, (24)

we then obtain (by virtue of Theorem 3)

1

3

𝐴
−𝜎
+

2

3

𝐺
−𝜎

> 𝐿
−𝜎
. (25)

This, with the known inequality 𝐿 < (1/3)𝐴 + (2/3)𝐺 (see,
e.g., [8, 9]), justifies our claim.

Theorem 8. Let 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
be 𝑛 regular means and

𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
∈ (0, 1) such that ∑𝑛

𝑖=1
𝜆
𝑖
= 1. Then there holds

(

𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
)

𝜎

≥

𝑛

∏

𝑖=1

(𝑚
𝜎

𝑖
)
𝜆
𝑖

. (26)

If moreover two means among 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
are different

then (26) is strict.

Proof. Clearly, ∏𝑛
𝑖=1
𝑚
𝜆
𝑖

𝑖
is a regular mean. Without loss of

generality, we can assume that 𝑎 < 𝑏. By definition of the
integral transform-mean we have

((

𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
)

𝜎

(𝑎, 𝑏))

−1

=

1

𝑏 − 𝑎

∫

𝑏/𝑎

1

𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
(1,

1

𝑡
2
)𝑑𝑡.

(27)

According to generalizedHölder’s inequality for integrals, the
latter inequality yields

((

𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
)

𝜎

(𝑎, 𝑏))

−1

≤

1

𝑏 − 𝑎

𝑛

∏

𝑖=1

(∫

𝑏/𝑎

1

(𝑚
𝜆
𝑖

𝑖
(1,

1

𝑡
2
))

1/𝜆
𝑖

𝑑𝑡)

𝜆
𝑖

.

(28)

Since ∑𝑛
𝑖=1

𝜆
𝑖
= 1 the last inequality becomes

((

𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
)

𝜎

(𝑎, 𝑏))

−1

≤

𝑛

∏

𝑖=1

(

1

𝑏 − 𝑎

∫

𝑏/𝑎

1

𝑚
𝑖
(1,

1

𝑡
2
)𝑑𝑡)

𝜆
𝑖

,

(29)

or again

((

𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
)

𝜎

(𝑎, 𝑏))

−1

≤

𝑛

∏

𝑖=1

((𝑚
𝜎

𝑖
(𝑎, 𝑏))

−1

)

𝜆
𝑖

. (30)

Taking inverses of the two sides of this latter inequality we
find

(

𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
)

𝜎

(𝑎, 𝑏) ≥

𝑛

∏

𝑖=1

(𝑚
𝜎

𝑖
(𝑎, 𝑏))

𝜆
𝑖

fl
𝑛

∏

𝑖=1

(𝑚
𝜎

𝑖
)
𝜆
𝑖

(𝑎, 𝑏) .

(31)

Now, if themeans𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
are not all equal thenwe can

see that Hölder’s inequality is here strict, thus completing the
proof.

The following corollary is of interest for practical pur-
poses.

Corollary 9. Let 𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
and 𝑚 be 𝜎-regular means.

Assume that, for some 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
∈ (0, 1) such that

∑
𝑛

𝑖=1
𝜆
𝑖
= 1, the inequality

𝐹
𝑚
(𝑧) ≤

𝑛

∏

𝑖=1

(𝐹
𝑚
𝑖
(𝑧))

𝜆
𝑖 (32)

holds true for all 𝑧 ≥ 1. Then we have
𝑛

∏

𝑖=1

𝑚
𝜆
𝑖

𝑖
≤ 𝑚. (33)

Ifmoreover there exist twomeans among𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
which

are different then (33) is strict.

Proof. In similar way as the proof of Corollary 6, we deduce
the desired result from the previous theorem. Detail is simple
and therefore omitted here.

We end this section by stating the following remark.

Remark 10. It is worth mentioning that the mean-inequality
(33) is strict even if (32) is an equality, provided two means
among𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛
are different.
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4. Inequalities Involving 𝐺, 𝐴, 𝐿, 𝑃, 𝑀, and 𝑇

This section is devoted to investigating some applications for
mean-inequalities. As already pointed before, we give mean-
inequalities involving some means among those recalled in
the previous introduction. Concerning mean-inequalities in
a geometric combination involving only three means,

𝐺𝑃 < 𝐿
2
,

𝑃𝑀 < 𝐴
2
,

𝐴𝑇 < 𝑀
2
,

𝐿𝑇 < 𝐴
2
,

𝐿𝐴 < 𝑃
2
,

𝐴
2
𝐺 < 𝑃

3

(34)

have been proved in [10, 11]; see also [7]. Other inequalities
in geometric combination, such as (𝑄𝐴2)1/3 < 𝑀 < (𝑄𝐴)

1/2,
can be found in the literature. Here 𝑄 refers to the quadratic
mean; that is, 𝑄 fl 𝑄(𝑎, 𝑏) = √(𝑎

2
+ 𝑏
2
)/2. In a parallel way,

mean-inequalities in a (convex) combination sum were the
subject of many published papers. See [12] and the related
references cited therein.

The following result givesmoremean-inequalities involv-
ing only three means among 𝐺, 𝐴, 𝐿, 𝑃,𝑀, and 𝑇.

Theorem 11. The following inequalities hold true:

𝐿
2
𝑀 < 𝑃

3
,

𝐿
3
𝑇 < 𝑃

4
,

𝐺
3
𝑀 < 𝐿

4
,

𝐺
4
𝑇 < 𝐿

5
,

𝑃𝑇
2
< 𝑀
3
,

𝐺𝑇
4
< 𝑀
5
,

𝑃
2
𝑇 < 𝐴

3
.

(35)

Proof. Let us prove the inequality 𝐿
2
𝑀 < 𝑃

3. Using
Theorem 4, simple observation leads to the fact that

(𝐹
𝐿
(𝑧))
2

𝐹
𝑀
(𝑧) = 𝐹

𝑀
(𝑧) = √

2

𝑧
2
+ 𝑧

=

1

√𝑧

√
2

𝑧 + 1

≥

2

𝑧 + 1

√
2

𝑧 + 1

= (𝐹
𝑃
(𝑧))
3

(36)

hold for all 𝑧 ≥ 1.This, with Corollary 9, yields the firstmean-
inequality. The other mean-inequalities can be proved in the
same way. Detail is simple and therefore omitted here with
the aim of not lengthening this paper.

Remark 12. In [13] the authors showed that 𝑃𝛼𝑇1−𝛼 < 𝑀 if
and only if 𝛼 ≥ 1/3. This means that the mean-inequality
𝑃𝑇
2
< 𝑀
3 (previously mentioned) is the best possible.

Otherwise, it is worth mentioning that certain inequali-
ties of the above theorem can be deduced from those of (34).
As example, from 𝑃𝑀 < 𝐴

2, that is, 𝑀 < 𝐴
2
/𝑃, one has

𝐿
2
𝑀 < 𝐿

2
𝐴
2
/𝑃 < 𝑃

3, since this latter inequality is equivalent
to 𝐿𝐴 < 𝑃

2. However, our aim here is to show how to apply
the same procedure, described by the present approach, for
proving old/new mean-inequalities in a simple and fast way.

Similarly, we can find a lot of mean-inequalities involving
four means among the standard means 𝐺, 𝐴, 𝐿, 𝑃,𝑀, and 𝑇.
For instance, we cite the following.

Theorem 13. The following mean-inequalities are satisfied:

𝑃
2
𝐴𝑇
2
< 𝑀
5
,

𝐺
6
𝐴𝑇 < 𝐿

8
,

𝐺
2
𝐿𝑇 < 𝑃

4
,

𝐿
2
𝑀
2
𝑇 < 𝐴

5
,

𝐺
4
𝑀
2
< 𝐿
5
𝐴.

(37)

Proof. We show𝑃
2
𝐴𝑇
2
< 𝑀
5 and𝐺4𝑀2 < 𝐿

5
𝐴, for example.

The proofs of the other inequalities are analogue.
For all 𝑧 ≥ 1, we can easily verify that (by Theorem 4)

(𝐹
𝑃
(𝑧))
2

𝐹
𝐴
(𝑧) (𝐹

𝑇
(𝑧))
2

= (𝐹
𝑀
(𝑧))
4

≥ (𝐹
𝑀
(𝑧))
5

. (38)

By Corollary 9 we immediately obtain the first inequality. For
the second one, we have

(𝐹
𝐺
(𝑧))
2

𝐹
𝐻
(𝑧) (𝐹

𝑀
(𝑧))
2

= 1 = (𝐹
𝐿
(𝑧))
5

, (39)

which by the same reason as previous implies 𝐺2𝐻𝑀2 < 𝐿
5.

Now, getting 𝐻 = 𝐺
2
/𝐴 in this latter inequality we then

obtain the second desired inequality.

We left to the reader the routine task for obtaining
more inequalities in an analogous way. Similarly, inequalities
involving five means can be obtained as well. The following
result lists some of them.

Theorem 14. The following mean-inequalities hold:

𝐺
2
𝑀𝑇 < 𝑃

3
𝐴,

𝐺
10
𝑃
2
𝐴𝑀
2
< 𝐿
15
,

𝐺
12
𝑃
2
𝑀
2
𝑇 < 𝐿

17
,

𝐺
16
𝐴𝑀
2
𝑇
2
< 𝐿
21
,

𝐺
2
𝐿
3
𝑀
2
𝑇 < 𝑃

8
,

𝐿𝑃
2
𝑀
2
𝑇 < 𝐴

6
,

𝐺
3
𝑃𝑇 < 𝐿

4
𝐴.

(40)
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Proof. We show 𝐺
2
𝑀𝑇 < 𝑃

3
𝐴 and 𝐿𝑃

2
𝑀
2
𝑇 < 𝐴

6, for
instance. For all 𝑧 ≥ 1, we can easily see that (always by
Theorem 4)

𝐹
𝑀
(𝑧) 𝐹
𝑇
(𝑧) 𝐹
𝐻
(𝑧) = 𝐹

𝑀
(𝑧) ≥ (𝐹

𝑃
(𝑧))
3

, (41)

which, with Corollary 9, yields 𝑀𝑇𝐻 < 𝑃
3. Getting 𝐻 =

𝐺
2
/𝐴, we deduce the first desired inequality. The second one

can be similarly obtained from the following:

𝐹
𝐿
(𝑧) (𝐹

𝑃
(𝑧))
2

(𝐹
𝑀
(𝑧))
2

𝐹
𝑇
(𝑧) ≥ (𝐹

𝐴
(𝑧))
6

. (42)

Concerningmean-inequalities involving all the sixmeans
𝐴,𝐺, 𝐿, 𝑃,𝑀, and 𝑇, we have the following result.

Theorem 15. The three following mean-inequalities hold:

𝐺
2
𝐿
2
𝑀
2
𝑇 < 𝑃

6
𝐴,

𝐺
14
𝑃
2
𝐴𝑀
2
𝑇 < 𝐿

20
,

𝐺
10
𝑃
2
𝑀
2
𝑇 < 𝐿

14
𝐴.

(43)

Proof. We just show the first inequality, for example. In
similar way as previous, we have (for all 𝑧 ≥ 1)

(𝐹
𝑀
(𝑧))
2

(𝐹
𝐿
(𝑧))
2

𝐹
𝑇
(𝑧) 𝐹
𝐻
(𝑧) = (𝐹

𝑀
(𝑧))
2

≥ (𝐹
𝑃
(𝑧))
6

,

(44)

from which we get𝑀2𝐿2𝑇𝐻 < 𝑃
6. Replacing𝐻 by 𝐺2/𝐴 we

obtain the desired inequality.

We end this section by stating the following interesting
result.

Theorem 16. For every real number 𝑞 ≥ 1 we have

𝐺𝐴
𝑞+1

𝐿
𝑞−1

< 𝑃
2𝑞+1

. (45)

Proof. ByTheorem 4, simple computation leads to

𝐹
𝐺
(𝑧) (𝐹

𝐴
(𝑧))
𝑞+1

(𝐹
𝐿
(𝑧))
𝑞−1

= (𝐹
𝑃
(𝑧))
2𝑞+1 (46)

for all 𝑧 ≥ 1. This, with Corollary 9, yields the desired mean-
inequality.

Remark 17. Inequality (45) contains some known mean-
inequalities shown in the literature by different ways. In fact,
taking 𝑞 = 1 it yields 𝐺𝐴2 < 𝑃

3 which is the last inequality in
(34). Writing it in the equivalent form

𝐺
1/𝑞
𝐴
1+1/𝑞

𝐿
1−1/𝑞

< 𝑃
2+1/𝑞 (47)

and then letting 𝑞 → ∞ we find again 𝐴𝐿 < 𝑃
2; see (34). For

𝑞 = 2, it gives 𝐺𝐴3𝐿 < 𝑃
5.

5. Inequalities Involving 𝑈 and 𝑉

As already pointed before, the means 𝑈 and 𝑉 satisfy the
following chain of inequalities:

(𝐺 <) 𝐿 < 𝑉 < 𝑃 < 𝑈 < 𝑀(< 𝑇) . (48)

We notice that means𝐴 and𝑈 are not comparable. In fact, in
[14] the authors proved that the double inequality

𝑀
𝑝
(𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) < 𝑀

𝑞
(𝑎, 𝑏) (49)

takes place if and only if 𝑝 ≤ 2 log 2/(2 log𝜋 − log 2) =

0.8684 . . . and 𝑞 ≥ 4/3, where 𝑀
𝑝
(𝑎, 𝑏) = [(𝑎

𝑝
+

𝑏
𝑝
)/2]
1/𝑝
, 𝑝 ̸= 0, and 𝑀

0
(𝑎, 𝑏) = √𝑎𝑏, is the 𝑝th-

power mean.Therefore,𝑈 and𝐴 are not comparable because
𝐴(𝑎, 𝑏) fl (𝑎 + 𝑏)/2 = 𝑀

1
(𝑎, 𝑏).

For recent developments about means 𝑈 and 𝑉 we refer
the reader to [14–18]. As far as we know, mean-inequalities
involving three or more means and including𝑈 and/or𝑉 are
not investigated in the literature yet. Adopting the previous
approach, we can give a lot of mean-inequalities involving
𝑈 and 𝑉. We start with the case of convex arithmetic
combination.

Theorem 18. The following inequalities hold:

𝑉 <

𝐿 + 𝑈

2

,

𝑈 <

𝐴 + 𝑇

2

.

(50)

Proof. For all 𝑧 > 1, we have (byTheorem 4)

𝐹
𝑉
(𝑧) = √

𝑧 + 1

2𝑧

= √
1

2

+

1

2

1

𝑧

>

1

2

+

1

2

1

√𝑧

, (51)

since the real-function 𝑥 → √𝑥 is strictly concave on (0,∞).
A simple verification leads to

1

√𝑧

>

1

𝑧

√
𝑧 + 1

2

= 𝐹
𝑈
(𝑧) (52)

for all 𝑧 > 1. This, with 𝐹
𝐿
(𝑧) = 1, gives

𝐹
𝑉
(𝑧) >

1

2

𝐹
𝐿
(𝑧) +

1

2

𝐹
𝑈
(𝑧) , (53)

which, with Corollary 6, yields the first inequality of (50).The
second inequality of (50) can be proved in a similar way.

Now, we give some inequalities in convex geometric
combination between three means including 𝑈 and 𝑉.
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Theorem 19. The following mean-inequalities hold:

𝐺𝑈 < 𝑉
2
,

𝑉𝑀 < 𝐴
2
,

𝐺𝑉 < 𝐿
2
,

𝑉𝑀 < 𝑈
2
,

𝑉
2
𝑇 < 𝐴

3
,

𝐿
2
𝑈 < 𝑃

3
,

𝑉
2
𝑇 < 𝑈

3
,

𝐺
2
𝑇 < 𝑉

3
.

(54)

Proof. Wewill show the inequalities𝐺𝑈 < 𝑉
2 and𝑉𝑀 < 𝑈

2,
for instance. For all 𝑧 ≥ 1, it is easy to see that

𝐹
𝐺
(𝑧) 𝐹
𝑈
(𝑧) = (𝐹

𝑉
(𝑧))
2

,

𝐹
𝑉
(𝑧) 𝐹
𝑀
(𝑧) ≥ (𝐹

𝑈
(𝑧))
2

.

(55)

These, with Corollary 9, yield the desired inequalities.

Inequalities involving four or more means including 𝑈
and 𝑉 can be obtained in a similar way as previous. As
examples, we cite the following:

𝐺𝑉
2
𝑃
3
< 𝐿
6
,

𝐺𝐿𝑈 < 𝑉
3
,

𝐺
2
𝐿𝐴 < 𝑈

4
,

𝐺
5
𝑈𝑀 < 𝑉

7
,

𝑉
6
𝑃
2
𝑇 < 𝑈

9
,

𝑉
2
𝑃
6
𝑇 < 𝑀

9
,

𝑉
2
𝑈
2
𝑇 < 𝐴

5
,

𝑉
2
𝑃𝑀 < 𝐴

4
,

𝐺𝐿𝑉𝑈𝐴 < 𝑃
5
,

𝐺
6
𝑉
2
𝑀
2
𝑇 < 𝐿

8
𝐴
3
.

(56)

Other more interesting examples are given in the follow-
ing result.

Theorem 20. The two inequalities

𝐺
2𝑞
𝑈
2
𝑇
𝑞−1

< 𝑉
3𝑞+1

, (57)

𝐺
4𝑞
𝐴𝑀
2𝑞−2

𝑇
𝑞+1

< 𝑈
7𝑞 (58)

hold for each 𝑞 ≥ 1, while

𝐺
2𝑞+2

𝑈
2𝑞
𝑇 < 𝑉

3𝑞+2
𝐴
𝑞+1 (59)

is valid for every 𝑞 ≥ 0.

Proof. According toTheorem 4 we have (for all 𝑧 ≥ 1)

(𝐹
𝐺
(𝑧))
2𝑞

(𝐹
𝑈
(𝑧))
2

(𝐹
𝑇
(𝑧))
𝑞−1

= (

𝑧 + 1

2𝑧

)

𝑞+1

= (𝐹
𝑉
(𝑧))
2𝑞+2

≥ (𝐹
𝑉
(𝑧))
3𝑞+1

,

(60)

since 3𝑞 + 1 ≥ 2𝑞 + 2 and 𝐹
𝑉
(𝑧) ≤ 1 for all 𝑧 ≥ 1. This,

with Corollary 9, gives (57). Inequalities (58) and (59) can be
proved in a similar way.

For particular cases of the parameter 𝑞, we can find again
some mean-inequalities among those stated in the previous
results. The following example explains this latter situation.

Example 21. (1) With 𝑞 = 1, (57) gives 𝐺𝑈 < 𝑉
2 which is the

first inequality of (54). Writing it in the form

𝑇
1−1/𝑞

𝐺
2
𝑈
2/𝑞

< 𝑉
3+1/𝑞 (61)

and getting 𝑞 → ∞ we find 𝐺
2
𝑇 < 𝑉

3 which is the last
inequality in (54).

(2) With 𝑞 = 0, (59) yields 𝐺2𝑇 < 𝑉
2
𝐴 while with 𝑞 = 1

it gives 𝐺4𝑈2𝑇 < 𝑉
5
𝐴
2. Writing (59) in the equivalent form

𝐺
2+2/𝑞

𝑈
2
𝑇
1/𝑞

< 𝑉
3+2/𝑞

𝐴
1+1/𝑞 (62)

and then letting 𝑞 → ∞ we obtain 𝐺2𝑈2 < 𝑉
3
𝐴.

Other mean-inequalities can be deduced from (58) in a
similar way. We left it to the reader.

It is clear that whenever we have a mean-inequality
involving 𝑛 + 1 means we can deduce from it a mean-
inequality involving only 𝑝 ≤ 𝑛means, provided the involved
𝑛+1means are mutually comparable.The following example
explains more precisely such situation.

Example 22. Let us consider the first inequality of Theo-
rem 15; that is, 𝐺2𝐿2𝑀2𝑇 < 𝑃

6
𝐴. This, with 𝐴 < 𝑇, implies

that 𝐺𝐿𝑀 < 𝑃
3.

As it is well-known, mean-inequalities could be good
tool for proving some inequalities involving trigonomet-
ric/hyperbolic functions whose proofs in a direct way present
serious difficulties. Let us observe this situation in the
following example.

Example 23. Let us consider (45); that is,

𝐺𝐴
𝑞+1

𝐿
𝑞−1

< 𝑃
2𝑞+1

, ∀𝑞 ≥ 1. (63)

(i) Let 𝑥 ∈ (0, 𝜋/2) and set 𝑎 = 1+ sin𝑥, 𝑏 = 1− sin𝑥. Simple
computation leads to

𝐴 = 1,

𝐺 = cos𝑥,

𝑃 =

sin𝑥
𝑥

,

𝐿 =

sin𝑥
arctanh (sin𝑥)

.

(64)



8 Abstract and Applied Analysis

Substituting these in the previous mean-inequality we obtain

𝑥
2𝑞+1 cos𝑥 < (sin𝑥)𝑞+2 (arctanh (sin𝑥))𝑞−1 ,

∀𝑞 ≥ 1, ∀𝑥 ∈ (0,

𝜋

2

) .

(65)

(ii) Let 𝑥 ̸= 0 and 𝑎 = 𝑒
𝑥, 𝑏 = 𝑒

−𝑥. We then have

𝐺 = 1,

𝐴 = cosh 𝑥,

𝐿 =

sinh𝑥
𝑥

,

𝑃 =

sinh𝑥
arcsin (tanh𝑥)

,

(66)

which when substituted in the previous mean-inequality
yield

(cosh 𝑥)𝑞+1 (arcsin (tanh𝑥))2𝑞+1 < 𝑥
𝑞−1

(sinh𝑥)𝑞+2 ,

∀𝑞 ≥ 1, ∀𝑥 > 0.

(67)

Now, take 𝑞 = 1. Inequality (65) implies

𝑥
3 cos𝑥 < sin3𝑥, ∀𝑥 ∈ (0,

𝜋

2

) (68)

while (67) yields

(cosh 𝑥)2 (arcsin (tan𝑥))3 < (sinh𝑥)3 , ∀𝑥 > 0 (69)

which are well-known inequalities. We left to the reader the
routine task for deducing trigonometric/hyperbolic inequal-
ities from mean-inequalities (57), (58), and (59).
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