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This paper formulates a delay model characterizing the competition between bacteria and immune system. The center manifold
reduction method and the normal form theory due to Faria andMagalhaes are used to compute the normal form of the model, and
the stability of two nonhyperbolic equilibria is discussed. Sensitivity analysis suggests that the growth rate of bacteria is the most
sensitive parameter of the threshold parameter 𝑅

0
and should be targeted in the controlling strategies.

1. Introduction

Quorum sensing is a process that enables bacteria to commu-
nicate using secreted signaling molecules called autoinducers
[1]. It makes bacteria regulate their gene expression collec-
tively and control their behaviors on community scale. Quo-
rum sensing was initially observed in the marine bacterium
Vibrio fischeri about 30 years ago [2, 3]. Now, many other
species are observed to exhibit quorum sensing behavior,
including major human pathogens such as Staphylococcus
aureus and Pseudomonas aeruginosa. Quorum sensing has
received more and more attention (see [4–15] and the refer-
ences therein) and somemodels are formulated to investigate
its effect on the transmission of disease. Braselton and
Waltman [4] formulated the dynamically allocated inhibitor
production. Dockery and Keener [5] were devoted to devel-
oping and studying an ODE and a PDEmathematical models
for quorum sensing in Pseudomonas aeruginosa and found
that quorum sensing works because of a biochemical switch
between two stable steady solutions, one with low levels of
autoinducer and one with high levels of autoinducer. Koerber
et al. [6] presented a mathematical model for the early
stages of the infection process by Pseudomonas aeruginosa
in burn wounds which accounts for the quorum sensing
and the diffusion of signalling molecules in the burn-wound
environment, and the effects of important parameters on

the dynamic properties of the model are discussed in detail.
They gave some sufficient conditions for the global asymp-
totic stability of two boundary equilibria which, respectively,
correspond to the survival of the allelochemical producer
species or the susceptible one. Fergola et al. [7] formulated an
allelopathic competition model in which a distributed delay
term simulates quorum sensing which regulates the delay
production process of allelochemicals, and they proved the
unique existence of the positive solution and the stability
of biologically meaningful steady-state solutions. Anguige
et al. [9] constructed a multiphase mathematical model
of quorum sensing in a maturing Pseudomonas aeruginosa
biofilm to investigate the effect of antiquorum sensing and
antibiotic treatments on the exopolysaccharide concentration,
signal level, bacterial numbers, and biofilm growth rate. The
above articles leave out the immune response to the bacterial
invasion. However, the immune status of the hosts has a sig-
nificant impact on the transmission of an infection in a pop-
ulation. Literatures [11–15] employed a quadratic function to
describe the quorum sensing of bacteria and formulate some
models to characterize the competition between bacteria and
the immune system, in which the existence of periodical
solution, chaotic motion, and subharmonic bifurcation, the
properties of Hopf bifurcation, and the stability of equilib-
rium et al. were investigated. As a novelty of this paper, a
cubic function is used to express quorum sensing.Thismakes
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the model own more general nonlinearity, which results
in much wider set of outcomes including the coexistence
of multiple positive equilibria and the existence of critical
equilibrium with simple zero singularity.

2. Model Formulation

We denote by 𝑋
𝑈
(𝑡) the concentration of the uninfected

target cells,𝑋
𝐼
(𝑡) the concentration of the infected target cells,

𝐵(𝑡) the concentration of the bacteria, 𝐼
𝑅
(𝑡) the concentration

of the innate cells, and 𝐼
𝐴
(𝑡) the concentration of the adaptive

cells. The dynamic relations among them are as follows: the
uninfected target cells have a natural turnover 𝑆

𝑈
and a half-

life 𝜇
𝑋𝑈

and they are infected by bacteria with mass-action
term 𝛼

1
𝑋
𝑈
𝐵; the infected target cells are cleared by half-

life 𝜇
𝑋𝐼

or adaptive immune cells with mass action term
𝛼
2
𝑋
𝐼
𝐼
𝐴
; both the innate and the adaptive immune cells have a

source term and a half-life time; for the innate immunity, the
source term 𝑆

𝐼𝑅
includes a wide range of cells involved in the

first wave of defense of the host such as natural killer cells,
polymorphonuclear cells, macrophages, and dendritic cells,
and for the adaptive immunity, the source term 𝑆

𝐼𝐴
represents

the memory cells, derived from a previous infection or
vaccination, a zero source means the first infection with this
pathogen and there are no memory cells; both of the two
kinds of cells are increased by the signals captured by the
bacteria load; the bacteria population has a net growth term
represented by a logistic function 𝛼

20
𝐵(1 − 𝐵/𝜎) and it is

cleared by the innate immunity with mass action term 𝛼
3
𝐵𝐼
𝑅
.

Here, we use a function

𝛼
20

𝐵
0

𝐵 (𝑡)
2
𝐵 (𝑡 − 𝜏) (1)

to formulize the bacteria that compete with the immune cells
at time 𝑡, which receive signal molecules 𝜏 time units ago.
𝐵
0
is a positive constant, 𝛼

20
is the growth rate of bacteria,

and 𝜎 is the effective carrying capacity of the environment.
Consequently, the vital dynamics are governed by

𝑑𝐵 (𝑡)

𝑑𝑡
= 𝛼
20
𝐵 (𝑡) (1 +

𝐵
2
(𝑡 − 𝜏)

𝐵
0

−
𝐵 (𝑡)

𝜎
)

− 𝛼
3
𝐵 (𝑡) 𝐼𝑅 (𝑡) − 𝛼4𝐵 (𝑡) 𝐼𝐴 (𝑡) ,

𝑑𝑋
𝑈 (𝑡)

𝑑𝑡
= 𝑆
𝑈
− 𝛼
1
𝑋
𝑈 (𝑡) 𝐵 (𝑡) − 𝜇𝑋𝑈

𝑋
𝑈 (𝑡) ,

𝑑𝑋
𝐼 (𝑡)

𝑑𝑡
= 𝛼
1
𝑋
𝑈
(𝑡) 𝐵 (𝑡) − 𝛼

2
𝐼
𝐴
(𝑡) 𝑋
𝐼
(𝑡) − 𝜇

𝑋𝐼
𝑋
𝐼
(𝑡) ,

𝑑𝐼
𝑅
(𝑡)

𝑑𝑡
= 𝑆
𝐼𝑅
+ 𝛽
1
𝐵 (𝑡) − 𝜇

𝐼𝑅
𝐼
𝑅
(𝑡) ,

𝑑𝐼
𝐴
(𝑡)

𝑑𝑡
= 𝑆
𝐼𝐴
+ 𝛽
2
𝐵 (𝑡) − 𝜇

𝐼𝐴
𝐼
𝐴
(𝑡) .

(2)

Remark 1. The first equation of system (2) suggests that
bacteria are controlled and increased by quorum sensing
except for their net growth and they are cleared by the
innate immune cells. The second equation of system (2)
characterizes the dynamics of the uninfected target cells, and
the third one reflects the dynamics of the infected target cells.
The uninfected target cells are infected by bacteria in mass
action law and they have their own constant input flow, and
the infected target cells are killed by the adaptive immune
cells. The last two equations of system (2) show that each
kind of the immune cells has a special source term and their
responses are enhanced by the bacteria load. The target cells
and the immune cells have their own half-life terms.

3. The Existence and Stability of Equilibria

We introduce

𝑅
0
=

𝛼
3
𝑆
𝐼𝑅

𝛼
20
𝜇
𝐼𝑅

+

𝛼
4
𝑆
𝐼𝐴

𝛼
20
𝜇
𝐼𝐴

,

𝑅
1
=

4𝛼
2

20
(1 − 𝑅

0
)

𝐵
0
(𝛼
20
/𝜎 + 𝛼

3
𝛽
1
/𝜇
𝐼𝑅
+ 𝛼
4
𝛽
2
/𝜇
𝐼𝐴
)
2
.

(3)

Theorem 2. System (2) always admits a bacteria-free equilib-
rium 𝐸

0
= (0, 𝑆

𝑈
/𝜇
𝑋𝑈
, 0, 𝑆
𝐼𝑅
/𝜇
𝐼𝑅
, 𝑆
𝐼𝐴
/𝜇
𝐼𝐴
). If 𝑅

0
> 1, then

system (2) admits a unique positive equilibrium 𝐸
1
. If 𝑅
0
= 1,

then system (2) admits a unique positive equilibrium𝐸
2
. If𝑅
0
<

1 and 𝑅
1
> 1, then system (2) admits no positive equilibrium.

If 𝑅
0
< 1 and 𝑅

1
= 1, then system (2) admits a unique positive

equilibrium 𝐸
4
. If 𝑅
0
< 1 and 𝑅

1
< 1, then system (2) has two

positive equilibria 𝐸
1
and 𝐸

3
.

Specifically,

𝐸
𝑗
= (𝐵
∗

𝑗
,
𝑆
𝑈

𝛼
1
𝐵
∗

𝑗
+ 𝜇
𝑋𝑈

,

𝛼
1
𝑆
𝑈
𝐵
∗

𝑗
𝜇
𝐼𝐴

(𝛼
2
(𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

4
) + 𝜇
𝑋𝐼
𝜇
𝐼𝐴
) (𝛼
1
𝐵
∗

4
+ 𝜇
𝑋𝑈
)

,

𝑆
𝐼𝑅
+ 𝛽
1
𝐵
∗

𝑗

𝜇
𝐼𝑅

,

𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

𝑗

𝜇
𝐼𝐴

) ,

𝐵
∗

1,3
=
𝐵
0

2𝛼
20

(
𝛼
20

𝜎
+
𝛼
3
𝛽
1

𝜇
𝐼𝑅

+
𝛼
4
𝛽
2

𝜇
𝐼𝐴

)(1 ± √1 − 𝑅
1
) ,

𝐵
∗

2
=
𝐵
0

𝛼
20

(
𝛼
20

𝜎
+
𝛼
3
𝛽
1

𝜇
𝐼𝑅

+
𝛼
4
𝛽
2

𝜇
𝐼𝐴

) ,

𝐵
∗

4
=
𝐵
0

2𝛼
20

(
𝛼
20

𝜎
+
𝛼
3
𝛽
1

𝜇
𝐼𝑅

+
𝛼
4
𝛽
2

𝜇
𝐼𝐴

) ,

𝑗 = 1, 2, 3, 4.

(4)
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Theorem 3. If 𝑅
0
> 1, the bacteria-free equilibrium 𝐸

0
is

asymptotically stable, while if 𝑅
0
< 1, 𝐸

0
is unstable.

Theproofs forTheorems 2 and 3 are trivial, so omit them.

In the sequel, we study the stability of the positive
equilibrium 𝐸

𝑗
. First of all, we transfer it to the origin and

get

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − 𝜏) + 𝑓 (𝑥 (𝑡)) , (5)

where

𝑓 (𝑥) =
(
(

(

𝑓
1 (𝑥)

−𝛼
1
𝑥
1
𝑥
2

𝛼
1
𝑥
1
𝑥
2
− 𝛼
2
𝑥
3
𝑥
5

0

0

)
)

)

, 𝑁 =

(
(
(
(

(

2𝛼
20
(𝐵
∗

𝑗
)
2

𝐵
0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

)
)
)
)

)

,

𝑀 =

(
(
(
(
(
(
(
(
(

(

−

𝛼
20
𝐵
∗

𝑗

𝜎
0 0 −𝛼

3
𝐵
∗

𝑗
−𝛼
4
𝐵
∗

𝑗

−𝛼
1
𝑆
𝑈

𝛼
1
𝐵
∗

𝑗
+ 𝜇
𝑋𝑈

−𝜇
𝑋𝑈
− 𝛼
1
𝐵
∗

𝑗
0 0 0

𝛼
1
𝑆
𝑈

𝛼
1
𝐵
∗

𝑗
+ 𝜇
𝑋𝑈

𝛼
1
𝐵
∗

𝑗
−𝜇
𝑋𝐼
−

𝛼
2
(𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

𝑗
)

𝜇
𝐼𝐴

0 Θ

𝛽
1

0 0 −𝜇
𝐼𝑅
0

𝛽
2

0 0 0 −𝜇
𝐼𝐴

)
)
)
)
)
)
)
)
)

)

,

𝑓
1
(𝑥) =

𝛼
20
𝐵
∗

𝑗

𝐵
0

(2𝑥
1
+ 𝑥
1
(𝑡 − 𝜏)) 𝑥

1
(𝑡 − 𝜏)

− 𝑥
1
(𝛼
3
𝑥
4
+ 𝛼
4
𝑥
5
) − 𝛼
20
𝑥
1
(
𝑥
1

𝜎
−
𝑥
2

1
(𝑡 − 𝜏)

𝐵
0

) ,

Θ = −

𝛼
1
𝛼
2
𝑆
𝑈
𝜇
𝐼𝐴
𝐵
∗

𝑗

(𝜇
𝑋𝑈
+ 𝛼
1
𝐵
∗

𝑗
) (𝜇
𝑋𝐼
𝜇
𝐼𝐴
+ 𝛼
2
(𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

𝑗
))

.

(6)

The characteristic equation of (5) at the origin is

(𝜆 + 𝜇
𝑋𝐼
+

𝛼
2
(𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

𝑗
)

𝜇
𝐼𝐴

)(𝜆 + 𝜇
𝑋𝑈
+ 𝛼
1
𝐵
∗

𝑗
)

⋅ (𝜆
3
+ 𝑝
1
𝜆
2
+ 𝑝
2
𝜆 + 𝑝
3
+ (𝑞
1
𝜆
2
+ 𝑞
2
𝜆 + 𝑞
3
) 𝑒
−𝜆𝜏
) = 0,

(7)

where

𝑝
1
= 𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
+

𝐵
∗

𝑗
𝛼
20

𝜎
,

𝑝
2
= 𝜇
𝐼𝑅
𝜇
𝐼𝐴
+

(𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) 𝐵
∗

𝑗
𝛼
20

𝜎
+ 𝛽
1
𝛼
3
𝐵
∗

𝑗
+ 𝛽
2
𝛼
4
𝐵
∗

𝑗
,

𝑝
3
=

𝜇
𝐼𝐴
𝜇
𝐼𝑅
𝐵
∗

𝑗
𝛼
20

𝜎
+ 𝛽
1
𝛼
3
𝐵
∗

𝑗
𝜇
𝐼𝐴
+ 𝛽
2
𝛼
4
𝜇
𝐼𝑅
𝐵
∗

𝑗
,

𝑞
1
= −

2𝛼
20
(𝐵
∗

𝑗
)
2

𝐵
0

, 𝑞
2
= −

2𝛼
20
(𝐵
∗

𝑗
)
2

(𝜇
𝐼𝐴
+ 𝜇
𝐼𝑅
)

𝐵
0

,

𝑞
3
= −

2𝛼
20
(𝐵
∗

𝑗
)
2

𝜇
𝐼𝐴
𝜇
𝐼𝑅

𝐵
0

.

(8)
Equation (7) has two negative roots−𝜇

𝑋𝐼
−𝛼
2
(𝑆
𝐼𝐴
+𝛽
2
𝐵
∗

𝑗
)/𝜇
𝐼𝐴
,

−𝜇
𝑋𝑈
− 𝛼
1
𝐵
∗

𝑗
, and the other roots can be obtained by solving

the following equation:
𝜆
3
+ 𝑝
1
𝜆
2
+ 𝑝
2
𝜆 + 𝑝
3
+ (𝑞
1
𝜆
2
+ 𝑞
2
𝜆 + 𝑞
3
) 𝑒
−𝜆𝜏
= 0. (9)

It can be seen that

𝑝
3
+ 𝑞
3
=

𝐵
∗

𝑗

𝐵
0
𝜎
(𝐵
0
(𝛼
20
𝜇
𝐼𝑅
𝜇
𝐼𝐴
+ 𝛽
1
𝛼
3
𝜎𝜇
𝐼𝐴
+ 𝛽
2
𝛼
4
𝜎𝜇
𝐼𝑅
)

−2𝛼
20
𝐵
∗

𝑗
𝜇
𝐼𝑅
𝜇
𝐼𝐴
𝜎) ,
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𝑝
3
+ 𝑞
3
< 0, 𝑗 = 1, 2;

𝑝
3
+ 𝑞
3
> 0, 𝑗 = 3;

𝑝
3
+ 𝑞
3
= 0, 𝑗 = 4.

(10)

Theorem 4. For 𝜏 = 0, both 𝐸
1
and 𝐸

2
are unstable when they

exist.

Obviously, 𝐸
3
does not own zero eigenvalue singularity;

namely, zero is not a eigenvalue of the Jacobi matrix at 𝐸
3
.

By using the Routh-Hurwitz stability criterion, 𝐸
3
is locally

asymptotically stable if 𝑝
1
+ 𝑞
1
> 0, 𝑝

2
+ 𝑞
2
> 0, and (𝑝

1
+

𝑞
1
)(𝑝
2
+ 𝑞
2
) > (𝑝

3
+ 𝑞
3
) are satisfied together.

Theorem 5. For 𝜏 = 0, 𝐸
3
is asymptotically stable if 𝑅

0
< 1,

𝑅
1
< 1, and 1 − 𝑅

0
are small sufficiently.

Proof. Let 𝑘 = 1 − √1 − 𝑅
1
and 𝜀 = 1 − 𝑅

0
. FromTheorem 2,

𝐸
3
exists if and only if 𝑅

0
< 1 and 𝑅

1
< 1, which leads to

0 < 1 − 𝑅
0
< 1 and 0 < 1 − 𝑅

1
< 1; that is, 0 < 𝜀 < 1 and 0 <

𝑘 < 1. By using 𝑅
1
= 4𝛼
2

20
𝜀/𝐵
0
(𝛼
20
/𝜎+𝛼

3
𝛽
1
/𝜇
𝐼𝑅
+𝛼
4
𝛽
2
/𝜇
𝐼𝐴
)
2,

it follows that 𝑘 approaches 0 if 𝜀 does so. Because

(𝐵
∗

3
)
2

𝐵
0

=
𝐵
∗

3

𝜎
+
𝛼
3

𝛼
20

𝐼
∗

𝑅
+
𝛼
4

𝛼
20

𝐼
∗

𝐴
− 1,

𝐼
∗

𝑅
=

𝑆
𝐼𝑅
+ 𝛽
1
𝐵
∗

3

𝜇
𝐼𝑅

, 𝐼
∗

𝐴
=

𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

3

𝜇
𝐼𝐴

,

(11)

we have

𝑝
1
+ 𝑞
1
= 2𝛼
20
𝜀 − (
𝛼
20

𝜎
+
2𝛽
1
𝛼
3

𝜇
𝐼𝑅

+
2𝛽
2
𝛼
4

𝜇
𝐼𝐴

)𝐵
∗

3
+ 𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
,

𝑝
2
+ 𝑞
2
= 2𝛼
20
(𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) 𝜀 + 𝜇

𝐼𝑅
𝜇
𝐼𝐴

+ (
𝛼
20

𝜎
(𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) + 𝛽
1
𝛼
3
+ 𝛽
2
𝛼
4

+

2𝛽
1
𝛼
3
𝜇
𝐼𝐴

𝜇
𝐼𝑅

+

2𝛽
2
𝛼
4
𝜇
𝐼𝑅

𝜇
𝐼𝐴

)𝐵
∗

3
,

𝑝
3
+ 𝑞
3
= 2𝛼
20
𝜇
𝐼𝑅
𝜇
𝐼𝐴
𝜀

− (
𝛼
20

𝜎
𝜇
𝐼𝑅
𝜇
𝐼𝐴
+ 𝛽
1
𝛼
3
𝜇
𝐼𝐴
+ 𝛽
2
𝛼
4
𝜇
𝑅
)𝐵
∗

3
.

(12)

Note that 𝐵∗
3
= (𝐵
0
/2𝛼
20
)(𝛼
20
/𝜎 + 𝛼

3
𝛽
1
/𝜇
𝐼𝑅
+ 𝛼
4
𝛽
2
/𝜇
𝐼𝐴
)𝑘. We

have

(𝑝
1
+ 𝑞
1
) (𝑝
2
+ 𝑞
2
) − (𝑝

3
+ 𝑞
3
)

=
−𝐵
0

2𝛼
20

[(
2𝛼
20

𝜎
(𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) +
𝛽
1
𝛼
3

𝜇
𝐼𝑅

(3𝜇
𝐼𝑅
+ 4𝜇
𝐼𝐴
)

+
𝛽
2
𝛼
4

𝜇
𝐼𝐴

⋅ (3𝜇
𝐼𝐴
+ 4𝜇
𝐼𝑅
)) 𝜀 +
𝛼
20
𝐵
0

𝜎2

⋅ (
𝛼
20

𝜎
(𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) +
𝛽
1
𝛼
3

𝜇
𝐼𝑅

(4𝜇
𝐼𝑅
+ 5𝜇
𝐼𝐴
)

+
𝛽
2
𝛼
4

𝜇
𝐼𝐴

(4𝜇
𝐼𝐴
+ 5𝜇
𝐼𝑅
))

+
𝐵
0

𝜎
(
𝛽
2

1
𝛼
2

3

𝜇
2

𝐼𝑅

(5𝜇
𝐼𝑅
+ 8𝜇
𝐼𝐴
) +
13𝛽
1
𝛽
2
𝛼
3
𝛼
4

𝜇
𝐼𝑅
𝜇
𝐼𝐴

⋅ (𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) +
𝛽
2

2
𝛼
2

4

𝜇
2

𝐼𝐴

(5𝜇
𝐼𝐴
+ 8𝜇
𝐼𝑅
))]

⋅ (
𝛼
20

𝜎
+
𝛼
3
𝛽
1

𝜇
𝐼𝑅

+
𝛼
4
𝛽
2

𝜇
𝐼𝐴

)𝑘 + (𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) 𝜀
2

+ (
𝛼
20
𝐵
0

2𝜎2
(𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
) +
𝛽
1
𝛼
3
𝐵
0

2𝜎𝜇
𝐼𝑅

(3𝜇
𝐼𝑅
+ 4𝜇
𝐼𝐴
)

+
𝛽
2
𝛼
4
𝐵
0

2𝜎𝜇
𝐼𝐴

(3𝜇
𝐼𝐴
+ 4𝜇
𝐼𝑅
) + (𝜇

𝐼𝑅
+ 𝜇
𝐼𝐴
)
2

+
𝛽
2

1
𝛼
2

3
𝐵
0

𝛼
20
𝜇
2

𝐼𝑅

(𝜇
𝐼𝑅
+ 2𝜇
𝐼𝐴
) +
𝛽
2

2
𝛼
2

4
𝐵
0

𝛼
20
𝜇
2

𝐼𝐴

(𝜇
𝐼𝐴
+ 2𝜇
𝐼𝑅
)

+
3𝛽
1
𝛽
2
𝛼
3
𝛼
4
𝐵
0

𝛼
20
𝜇
𝐼𝑅
𝜇
𝐼𝐴

(𝜇
𝐼𝑅
+ 𝜇
𝐼𝐴
)) 𝜀 + (𝜇

𝐼𝑅
+ 𝜇
𝐼𝐴
) 𝜇
𝐼𝑅
𝜇
𝐼𝐴
.

(13)

Seen from above formulae, 𝑝
1
+𝑞
1
, 𝑝
2
+𝑞
2
, 𝑝
3
+𝑞
3
, and (𝑝

1
+

𝑞
1
)(𝑝
2
+ 𝑞
2
) − (𝑝

3
+ 𝑞
3
) are positive when 𝜀 is small, which

results in the locally asymptotical stability of 𝐸
3
.

Clearly, the left side of (9) is continuous in 𝜏 and has roots
with positive real parts if and only if it has purely imaginary
roots. We will determine whether (9) has purely imaginary
roots or not, fromwhichwe thenwill be able to get conditions
for all eigenvalues to have negative real parts.

Denote the eigenvalue of the characteristic equation (5)
by 𝜆 = 𝜌(𝜏) + 𝑖𝜔(𝜏), where 𝜌(𝜏), 𝜔(𝜏) continually depend
on the delay 𝜏. Under the same conditions as Theorem 5, we
have 𝜌(0) < 0. Since𝜆 is continuous in 𝜏, one still has 𝜌(𝜏) < 0
and 𝐸

3
remains stable if 𝜏 is sufficiently small. If there exists

a positive value 𝜏
0
satisfying 𝜌(𝜏

0
) = 0 , that is, 𝜆 = 𝑖𝜔(𝜏

0
) is

a purely imaginary root of (9), then 𝐸
3
loses its stability and

eventually becomes unstable when 𝜌(𝜏) becomes positive. On
the other hand, if such a 𝜌(𝜏

0
) does not exist 𝐸

3
is always

stable.
Obviously, (9) has a purely imaginary root 𝑖𝜔, 𝜔 > 0, if

and only if

−𝑖𝜔
3
− 𝑝
1
𝜔
2
+ 𝑖𝑝
2
𝜔 + 𝑝
3
+ (−𝑞

1
𝜔
2
+ 𝑖𝑞
2
𝜔 + 𝑞
3
) 𝑒
−𝑖𝜔𝜏
= 0.

(14)

Separating the real and imaginary parts of (14) and adding up
the squares of them lead to

𝑧
3
+ 𝐴
1
𝑧
2
+ 𝐴
2
𝑧 + 𝐴

3
= 0, (15)

where 𝑧 = 𝜔2,𝐴
1
= 𝑝
2

1
−2𝑝
2
−𝑞
2

1
, 𝐴
2
= 𝑝
2

2
−2𝑝
1
𝑝
3
+2𝑞
1
𝑞
3
−𝑞
2

2
,

and 𝐴
3
= 𝑝
2

3
− 𝑞
2

3
.
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It can be verified that 𝐴
3
< 0 and (15) has positive roots.

Without loss of generality, one assumes that (15) has three
positive roots defined by 𝑧

1
, 𝑧
2
, and 𝑧

3
, respectively.Then, (14)

has three positive roots 𝜔
𝑗
= √𝑧𝑗, 𝑗 = 1, 2, 3. And then, we

have

cos (𝜔
𝑘
𝜏) =

(𝑝
1
𝜔
2

𝑘
− 𝑝
3
) (𝑞
3
− 𝑞
1
𝜔
2

𝑘
) + 𝑞
2
𝜔
2

𝑘
(𝜔
2

𝑘
− 𝑝
2
)

𝑞
2

2
𝜔
2

𝑘
+ (𝑞
3
− 𝑞
1
𝜔
2

𝑘
)
2

.

(16)

Thus, if we denote

𝜏
𝑗

𝑘
=
1

𝜔
𝑘

arccos{
(𝑝
1
𝜔
2

𝑘
− 𝑝
3
) (𝑞
3
− 𝑞
1
𝜔
2

𝑘
) + 𝑞
2
𝜔
2

𝑘
(𝜔
2

𝑘
− 𝑝
2
)

𝑞
2

2
𝜔
2

𝑘
+ (𝑞
3
− 𝑞
1
𝜔
2

𝑘
)
2

+
2𝑗𝜋

𝜔
𝑘

} ,

(17)

where 𝑘 = 1, 2, 3, 𝑗 = 0, 1, 2, . . ., then ±𝑖𝜔
𝑘
is a pair of purely

imaginary roots of (9). Define 𝜏
0
= min{𝜏0

𝑘
, 𝑘 = 1, 2, 3}. We

have the following.

Theorem 6. Under the same conditions as Theorem 5, 𝐸
3
is

asymptotically stable for 𝜏 ∈ [0, 𝜏
0
).

Theorem 7. If 3𝜔4
𝑘
+ 2𝐴
1
𝜔
2

𝑘
+ 𝐴
2
̸= 0, system (2) undergoes

Hopf bifurcation at the positive equilibrium 𝐸
3
when 𝜏 = 𝜏𝑗

𝑘
.

4. Normal Forms on the Center Manifold

From the discussions in the above section, it can be seen that
the Jacobi matrix at 𝐸

4
has a uniquely simple zero eigenvalue

if 𝑅
1
= 1 and 𝜏 ̸= (𝑝

2
+ 𝑞
2
)/𝑞
3
. To determine the dynamic

properties of 𝐸
4
, we have to compute the normal forms on

the center manifold. The method used is based on the center
manifold reduction and normal form theory due to Faria and
Magalhaes; see [16, 17].

By means of 𝑅
1
= 1, it obtains

𝑎
2
𝛼
2

3
+ 𝑎
1
𝛼
3
+ 𝑎
0
= 0, (18)

where

𝑎
2
= 𝛼
20
𝜇
𝐼𝑅
𝜇
2

𝐼𝐴
𝐵
0
𝛽
2

1
𝜎
2
,

𝑎
1
= 2𝛼
20
𝜇
2

𝐼𝑅
𝜇
2

𝐼𝐴
𝜎 (2𝜇
𝐼𝐴
𝜎𝛼
20
𝑆
𝐼𝑅
+ 𝐵
0
𝛼
20
𝛽
1
𝜇
𝐼𝐴
+ 𝜎𝐵
0
𝛽
1
𝛽
2
𝛼
4
) ,

𝑎
0
= 𝛼
20
𝜇
3

𝐼𝑅
𝜇
𝐼𝐴
(𝐵
0
𝛼
2

20
𝜇
2

𝐼𝐴
+ 𝐵
0
𝛼
2

4
𝛽
2

2
𝜎
2
+ 2𝐵
0
𝛼
20
𝜇
𝐼𝐴
𝛼
4
𝛽
2
𝜎

+ 4𝛼
20
𝜎
2
𝜇
𝐼𝐴
𝛼
4
𝑆
𝐼𝐴
− 4𝛼
2

20
𝜎
2
𝜇
2

𝐼𝐴
) .

(19)

It is seen from (19) that 𝑎
0
< 0 if 𝑆

𝐼𝐴
and 𝐵

0
are small enough,

which means there exists a unique positive 𝛼
3
solving (18).

Denote it by 𝑑 and define 𝛼
3
as

𝛼
3
= 𝑑 + 𝜇, (20)

where𝜇 is a small parameter. Obviously,𝑅
1
= 1 if𝜇 = 0. Next,

we transfer 𝐸
4
to the origin by

𝑥
1 (𝑡) = 𝐵 (𝑡) − 𝐵

∗

4
, 𝑥

2 (𝑡) = 𝑋𝑈 (𝑡) −
𝑆
𝑈

𝛼
1
𝐵
∗

4
+ 𝜇
𝑋𝑈

,

𝑥
3
(𝑡) = 𝑋

𝐼
(𝑡) −

𝛼
1
𝑆
𝑈
𝐵
∗

4
𝜇
𝐼𝐴

(𝛼
2
(𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

4
) + 𝜇
𝑋𝐼
𝜇
𝐼𝐴
) (𝛼
1
𝐵
∗

4
+ 𝜇
𝑋𝑈
)

,

𝑥
4
(𝑡) = 𝐼

𝑅
(𝑡) −

𝑆
𝐼𝑅
+ 𝛽
1
𝐵
∗

4

𝜇
𝐼𝑅

,

𝑥
5
(𝑡) = 𝐼

𝐴
(𝑡) −

𝑆
𝐼𝐴
+ 𝛽
2
𝐵
∗

4

𝜇
𝐼𝐴

.

(21)

Normalizing the delay by 𝑡 → 𝑡/𝜏, denoting 𝑥
𝑖
(𝜏𝑡) by 𝑢

𝑖
(𝑡),

and neglecting the higher order terms 𝑂(𝜇2), we have

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝐴 (𝜇) 𝑢 (𝑡) + 𝐵 (𝜇) 𝑢 (𝑡 − 1) + 𝑓 (𝑢 (𝑡) , 𝜇) , (22)

where

𝑓 (𝑢, 𝜇) = 𝜏
(
(

(

𝑓
1
(𝑢, 𝜇)

−𝛼
1
𝑢
1
𝑢
2

𝛼
1
𝑢
1
𝑢
2
− 𝛼
2
𝑢
3
𝑢
5

0

0

)
)

)

, 𝐵 (𝜇) = 𝜏
(
(
(

(

2𝛼
20
𝑏
0

𝐵
0

(𝑏 (𝜇) + 𝑏
1
𝜇) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

)
)
)

)

,

𝐴(𝜇) = 𝜏
(
(
(

(

𝛼
20

𝜎
𝑏 (𝜇) 0 0 − (𝑑 + 𝜇) 𝑏 (𝜇) −𝛼

4
𝑏 (𝜇)

−𝛼
1
𝑑 (𝜇) −𝜇

𝑋𝑈
− 𝛼
1
𝑏 (𝜇) 0 0 0

𝛼
1
𝑑 (𝜇) 𝛼

1
𝑏 (𝜇) −𝜇

𝑋𝐼
− 𝛼
2
𝑐 (𝜇) 0 𝛼

2
𝑘 (𝜇)

𝛽
1

0 0 −𝜇
𝐼𝑅

0

𝛽
2

0 0 0 −𝜇
𝐼𝐴

)
)
)

)

,
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𝑓
1
(𝑢, 𝜇) = 𝑢

1
(
2𝛼
20
𝑏 (𝜇)

𝐵
0

𝑢
1 (𝑡 − 1) − (𝑑 + 𝜇) 𝑢4

− 𝛼
4
𝑢
5
+
𝛼
20

𝐵
0

𝑢
2

1
(𝑡 − 1) −

𝛼
20

𝜎
𝑢
1
) +
𝛼
20
𝑏 (𝜇)

𝐵
0

𝑢
2

1
(𝑡 − 1) ,

𝑏
0
=
𝐵
0

2𝛼
20

(
𝛼
20

𝜎
+
𝑑𝛽
1

𝜇
𝐼𝑅

+
𝛼
4
𝛽
2

𝜇
𝐼𝐴

) , 𝑏
1
=
𝐵
0
𝛽
1

2𝛼
20
𝜇
𝐼𝑅

, 𝑏 (𝜇) = 𝑏
0
+ 𝜇𝑏
1
,

𝑐
0
=

𝑆
𝐼𝐴
+ 𝛽
2
𝑏
0

𝜇
𝐼𝐴

, 𝑐
1
=
𝛽
2
𝑏
1

𝜇
𝐼𝐴

, 𝑐 (𝜇) = 𝑐
0
+ 𝜇𝑐
1
, 𝑑

0
=
𝑆
𝑈

𝜇
𝑋𝑈
+ 𝛼
1
𝑏
0

,

𝑑
1
= −
𝑆
𝑈
𝛼
1
𝑏
1

(𝜇
𝑋𝑈
+ 𝛼
1
𝑏
0
)
2
, 𝑑 (𝜇) = 𝑑

0
+ 𝜇𝑑
1
, 𝑘 (𝜇) = 𝑘

0
+ 𝜇𝑘
1
,

𝑘
0
= −
𝛼
1
𝑑
0
𝑏
0

𝜇
𝑋𝐼
+ 𝛼
2
𝑐
0

, 𝑘
1
=

𝑑
2

1
(𝛼
2
𝑐
1
𝑏
0
(𝜇
𝑋𝑈
+ 𝑏
0
𝛼
1
) − 𝜇
𝑋𝑈
(𝜇
𝑋𝐼
+ 𝛼
2
𝑐
0
))

𝑏
1
(𝜇
𝑋𝐼
+ 𝛼
2
𝑐
0
)
2

.

(23)

LetC = C([−1, 0],R5) be the Banach space of continuous
functions from [−1, 0] intoR5 with supremum norm. Define
𝑧
𝑡
∈ C as 𝑧

𝑡
(𝜃) = 𝑧(𝑡 + 𝜃), 𝜃 ∈ [−1, 0]. Equation (22) can be

written as the functional differential equation

�̇� (𝑡) = 𝐿 (𝜇) (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
, 𝜇) , (24)

where 𝑉 is a neighborhood of zero in space of real numbers,
𝐿 : C × 𝑉 → R5 is a parameterized family of bounded
linear operators, and 𝐹 : C × 𝑉 → R5 is a function with

𝐹(0, 𝜇) = 0, 𝜕𝐹(0, 𝜇)/𝜕𝑧 = 0 for all 𝜇 ∈ R. They have the
following respective forms:

𝐿 (𝜇) (𝜑) = 𝐿 (0) 𝜑 + 𝐿
1
(𝜇) 𝜑,

𝐹 (𝜑, 𝜇) = 𝐹
2
(𝜑, 𝜇) + 𝐹

3
(𝜑, 𝜇) ,

(25)

where

𝐿 (0) 𝜑 = 𝜏

(
(
(
(
(
(
(

(

−
𝛼
20
𝑏
0

𝜎
𝜑
1 (0) −
2𝛼
20
𝑏
0

𝐵
0

𝜑
1 (−1) − 𝑏0𝑑𝜑4 (0) − 𝛼4𝑏0𝜑5 (0)

−𝛼
1
𝑑
0
𝜑
1
(0) − (𝜇

𝑋𝑈
+ 𝛼
1
𝑏
0
) 𝜑
2
(0)

𝛼
1
𝑑
0
𝜑
1
(0) + 𝛼

1
𝑏
0
𝜑
2
(0) − (𝛼

2
𝑐
0
+ 𝜇
𝑋𝐼
) 𝜑
3
(0) − 𝛼

1
𝑘
0
𝜑
5
(0)

𝛽
1
𝜑
1
(0) − 𝜇

𝐼𝑅
𝜑
4
(0)

𝛽
2
𝜑
1 (0) − 𝜇𝐼𝐴

𝜑
5 (0)

)
)
)
)
)
)
)

)

,

𝐿
1
(𝜇) 𝜑 = 𝜏𝜇

(
(
(
(
(

(

−
𝛼
20
𝑏
1

𝜎
𝜑
1 (0) +
4𝛼
20
𝑏
0
𝑏
1

𝐵
0

𝜑
1 (−1) − (𝑏0 + 𝑑𝑏1) 𝜑4 (0) − 𝛼4𝑏1𝜑5 (0)

−𝛼
1
𝑑
1
𝜑
1
(0) − 𝛼

1
𝑏
1
𝜑
2
(0)

𝛼
1
𝑑
1
𝜑
1
(0) + 𝛼

1
𝑏
1
𝜑
2
(0) + 𝛼

2
𝑐
1
𝜑
3
(0) − 𝛼

2
𝑘𝜑
5
(0)

0

0

)
)
)
)
)

)

,
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𝐹
2
(𝜑, 𝜇) = 𝜏

(
(
(
(
(

(

𝜑
1
(0) (
2𝛼
20
𝑏
0

𝐵
0

𝜇𝜑
1
(−1) − 𝑑𝜑

4
(0) − 𝛼

4
𝜑
5
(0) −
𝛼
20

𝜎
𝜑
1
(0)) +
𝛼
20
𝑏
1

𝐵
0

𝜑
2

1
(−1)

−𝛼
1
𝜑
1
(0) 𝜑
2
(0)

𝛼
1
𝜑
1
(0) 𝜑
2
(0) − 𝛼

2
𝜑
3
(0) 𝜑
5
(0)

0

0

)
)
)
)
)

)

,

𝐹
3
(𝜑, 𝜇) = 𝜏

(
(
(
(
(

(

𝜑
1
(0) (
2𝑏
1
𝛼
20

𝐵
0

𝜇𝜑
1
(−1) − 𝜇𝜑

4
(0) +
𝛼
20

𝐵
0

𝜑
2

1
(−1)) +

𝛼
20
𝑏
1

𝐵
0

𝜇𝜑
2

1
(−1)

0

0

0

0

)
)
)
)
)

)

.

(26)

From the Riesz representation theorem the linear map 𝐿
can be expressed in integral form as follows:

𝐿 (𝜇) (𝜑) = ∫

0

−1

𝑑𝜂
𝜇 (𝜃) 𝜑 (𝜃) , (27)

where 𝜂
𝜇
is a bounded variation matrix-valued function on

[−1, 0]. In fact, we can define 𝜂
𝜇
as

𝜂
𝜇
(𝜃) = 𝐴 (𝜇) 𝛿 (𝜃) + 𝐵 (𝜇) 𝛿 (𝜃 + 1) , (28)

where 𝛿(⋅) is the Dirac delta function.
LetR5∗ be the 5-dimensional vector space of row vectors,

and denote C∗ = C([−1, 0],R5∗). Then, the adjoint bilinear
form onC∗ ×C can be defined as

⟨𝜓 (𝑠) , 𝜑 (𝜃)⟩ = 𝜓 (0) 𝜑 (0)

− ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) 𝑑𝜂𝜇 (𝜃) 𝜑 (𝜉) 𝑑𝜉,

(29)

where 𝜑 ∈ C and 𝜓 ∈ C∗.
Let 𝐴(𝜇) be the infinitesimal generator of the flow for the

linear system

�̇� (𝑡) = 𝐿 (𝜇) 𝑧
𝑡 (30)

with spectrum𝜎[𝐴(𝜇)].The adjoint operator𝐴∗(𝜇) is defined
as the infinitesimal generator for the solution operator of the
adjoint equation inC∗:

�̇� (𝑡) = −∫

0

−1

𝑤 (𝑡 − 𝜃) 𝑑𝜂
𝜇
(𝜃) . (31)

It is well known that the eigenvalues of 𝐴(𝜇) with zero
real parts play an important role in the bifurcation theory
of RFDES. Denote 𝐴(0) by 𝐴

0
, and let Λ

0
= {𝜆 ∈ 𝜎(𝐴

0
) |

Re𝜆 = 0}. We have Λ
0
= {0}.

Using the formal adjoint theory for FDEs in [18], the
phase space C can be decomposed by Λ

0
as C = 𝑃 ⊕ 𝑄,

where 𝑃 is the generalized eigenspace associated with the
eigenvalues in Λ

0
, 𝑄 = {𝜑 ∈ C | ⟨𝜓, 𝜑⟩ = 0 for all 𝜓 ∈

𝑃
∗
}, and the dual space 𝑃∗ is the generalized eigenspace for
𝐴
∗
(0) associated with the eigenvalues in Λ

0
. Assume that Φ

and Ψ are the respective dual bases of 𝑃 and 𝑃∗ and satisfy
⟨Ψ(𝑠), Φ(𝜃)⟩ = 1.Wemight aswell chooseΦ andΨ as follows:

Φ (𝜃) = (1, −
𝛼
1
𝑑
0

𝜇
𝑋𝑈
+ 𝛼
1
𝑏
0

,
𝛼
1

𝜇
𝑋𝐼
+ 𝛼
2
𝑐
0

⋅ (𝑑
0
−
𝑏
0
𝑑
0

𝜇
𝑋𝑈
+ 𝛼
1
𝑏
0

−
𝑘
0
𝛽
2

𝜇
𝐼𝐴

) ,
𝛽
1

𝜇
𝐼𝑅

,
𝛽
2

𝜇
𝐼𝐴

)

𝑇

,

− 1 ≤ 𝜃 ≤ 0,

Ψ (𝑠) = (1, 0, 0, −
𝑏
0
𝑑

𝜇
𝐼𝑅

, −
𝛼
4
𝑏
0

𝜇
𝐼𝐴

) 𝑙, 0 ≤ 𝑠 ≤ 1,

(32)

where ⋅𝑇 is the transpose of ⋅ and 𝑙 = 1/((1 − 𝑏
0
𝑑𝛽
1
/𝜇
2

𝐼𝑅
−

𝛼
4
𝑏
0
𝛽
2
/𝜇
2

𝐼𝐴
) + 𝜏(2𝛼

20
𝑏
0
/𝐵
0
)).

Let 𝐵 = 0. Then, the following equations hold simultane-
ously:

Φ̇ = Φ𝐵, Ψ̇ = −𝐵Ψ. (33)

As shown in [16, 17], an appropriate phase space for
considering normal forms of (24) is the Banach space BC
of functions from [−1, 0] into R5, which are uniformly
continuous on [−1, 0) and with a jump discontinuity at 0.
Then, the elements of BChave the form𝜑+𝑋

0
𝜌, where𝜑 ∈ C,

𝜌 ∈ R5, and

𝑋
0
(𝜃) =
{

{

{

𝐼, 𝜃 = 0,

0, −1 ≤ 𝜃 < 0,

(34)

so thatBC is identifiedwithC×R5 with the norm |𝜑+𝑋
0
𝜌| =

|𝜑|
𝐶
+ |𝜌|R5 .
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Let 𝜋 : BC → 𝑃 denote the projection

𝜋 (𝜑 + 𝑋
0
𝜌) = Φ (⟨Ψ, 𝜑⟩ + Ψ (0) 𝜌) , 𝜑 ∈ C, 𝜌 ∈ R

5
,

(35)

and then the decomposition C = 𝑃 ⊕ 𝑄 yields a decom-
position of BC by Λ

0
as the topological direct sum BC =

𝑃⊕Ker𝜋 with the property𝑄 ⊂ Ker𝜋, where𝑄 is an infinite
dimensional complementary subspace of 𝑃 and C as shown
above. Now, we decompose 𝑧

𝑡
∈ C1 in (24) as 𝑧

𝑡
= Φ𝑥(𝑡) +𝑦,

where 𝑥(𝑡) ∈ R and 𝑦 ∈ 𝑄1 = 𝑄 ∩ C1, C1 is the subset of C
consisting of continuously differentiable functions.

Next, we rewrite (24) as follows:

�̇� (𝑡) = 𝐿
0
𝑧
𝑡
+ 𝐿
1
(𝜇) 𝑧
𝑡
+ 𝐹 (𝑧

𝑡
, 𝜇) , (36)

And, then, under the composition 𝑧
𝑡
= Φ𝑥(𝑡) + 𝑦, (24) can

be decomposed as a system of ODEs in R × Ker𝜋 as follows:

�̇� = 𝐵𝑥 + 𝑓
1

2
(𝑥, 𝑦, 𝜇) + 𝑓

1

3
(𝑥, 𝑦, 𝜇) ,

̇𝑦 = 𝐴
𝑄1
𝑦 + 𝑓

2

2
(𝑥, 𝑦, 𝜇) + 𝑓

2

3
(𝑥, 𝑦, 𝜇) ,

(37)

where 𝐴
𝑄1
= ̇𝑦 + 𝑋

0
(𝐿
0
(𝑦) − ̇𝑦(0)) is the restriction of 𝐴 as

an operator from 𝑄1 into Ker𝜋, and

𝑓
1

2
(𝑥, 𝑦, 𝜇) = Ψ (0) [𝐿

1
(𝜇) (Φ𝑥 + 𝑦) + 𝐹

2
(Φ𝑥 + 𝑦, 𝜇)] ,

𝑓
2

2
(𝑥, 𝑦, 𝜇) = (𝐼 − 𝜋)𝑋0 [𝐿1 (𝜇) (Φ𝑥 + 𝑦) + 𝐹2 (Φ𝑥 + 𝑦, 𝜇)] ,

𝑓
1

3
(𝑥, 𝑦, 𝜇) = Ψ (0) 𝐹

3
(Φ𝑥 + 𝑦, 𝜇) ,

𝑓
2

3
(𝑥, 𝑦, 𝜇) = (𝐼 − 𝜋)𝑋0𝐹3 (Φ𝑥 + 𝑦, 𝜇) .

(38)

As for autonomous ODEs in R5, the normal forms are
obtained by a recursive process of changes of variables. At a
step 𝑗, the terms of order 𝑗 = 2 are computed from the terms
of the same order and from the terms of lower orders already
computed in previous steps. Assuming that steps of orders
2, 3, . . . , 𝑗 − 1, have already been performed leads to

�̇� = 𝐵𝑥 +

𝑗−1

∑

𝑙≥2

𝑔
1

𝑗
(𝑥, 𝑦, 𝜇) + 𝑓

1

𝑗
(𝑥, 𝑦, 𝜇) + h.o.t,

̇𝑦 = 𝐴
𝑄1
𝑦 +

𝑗−1

∑

𝑙≥2

𝑔
2

𝑗
(𝑥, 𝑦, 𝜇) + 𝑓

2

𝑗
(𝑥, 𝑦, 𝜇) + h.o.t,

(39)

where 𝑓
𝑗
∈ (𝑓
1

𝑗
, 𝑓
2

𝑗
) is the terms of order 𝑗 in (𝑥, 𝑦, 𝜇) after

the previous transformations of variables and h.o.t stands for
the higher order terms. Following the algorithm of [16, 17] at
step 𝑗, using a change of variables of the form

(𝑥, 𝑦) = (𝑥, 𝑦) + 𝑈
𝑗
(𝑥, 𝜇) ≡ (𝑥, 𝑦) + [𝑈

1

𝑗
(𝑥, 𝜇) , 𝑈

2

𝑗
(𝑥, 𝜇)] ,

(40)

where 𝑥, 𝑥 ∈ R, 𝑦, 𝑦 ∈ 𝑄1, and 𝑈1
𝑗
: R2 → R, 𝑈2

𝑗
: R2 →

𝑄
1 are homogeneous polynomials of degree 𝑗 in 𝑥 and 𝜖, after

dropping the hats for simplification of notations, (37) can be
put into the normal form

�̇� = 𝐵𝑥 + ∑

𝑗≥2

𝑔
1

𝑗
(𝑥, 𝑦, 𝜇) ,

̇𝑦 = 𝐴
𝑄
1𝑦 + ∑

𝑗≥2

𝑔
2

𝑗
(𝑥, 𝑦, 𝜇) ,

(41)

where
𝑔
1

𝑗
(𝑥, 𝑦, 𝜇) = 𝑓

1

𝑗
(𝑥, 𝑦, 𝜇) − [𝐷

𝑥
𝑈
1

𝑗
(𝑥, 𝜇) 𝐵𝑥 − 𝐵𝑈

1

𝑗
(𝑥)] ,

𝑔
2

𝑗
(𝑥, 𝑦, 𝜇) = 𝑓

2

𝑗
(𝑥, 𝑦, 𝜇) − [𝐷

𝑥
𝑈
2

𝑗
(𝑥, 𝜇) 𝐵𝑥 − 𝐴

𝑄
1𝑈
2

𝑗
(𝑥)] .

(42)

It can be verified that (24) satisfies nonresonance con-
ditions; see [16, 17]. Then, the locally invariant manifold for
(24) tangent to 𝑃 at zero must be 𝑦 = 0 and the flow on this
manifold is given by 1-dimensional ODE

�̇� = 𝐵𝑥 + 𝑔
1

2
(𝑥, 0, 𝜇) + 𝑔

1

3
(𝑥, 0, 𝜇) + h.o.t. (43)

Thenonlinear terms in (41) are in normal form in the classical
sense with respect to matrix 𝐵. In application, 𝑔1

𝑗
(𝑥, 0, 𝜇)

usually can be determined by the following procedure.

Theorem 8. For 𝑗 ≥ 2, let𝑀
𝑗
denote the operator defined in

𝑉
𝑗
(R2 × Ker𝜋), with values in the same place, by

𝑀
𝑗
(ℎ
1
, ℎ
2
) = (𝑀

1

𝑗
ℎ
1
,𝑀
2

𝑗
ℎ
2
) ,

(𝑀
1

𝑗
ℎ
1
) (𝑥, 𝜇) = 𝐷

𝑥
ℎ
1
(𝑥, 𝜇) 𝐵𝑥 − 𝐵ℎ

1
(𝑥, 𝜇) ,

(𝑀
2

𝑗
) (𝑥, 𝜇) = 𝐷

𝑥
ℎ
2
(𝑥, 𝜇) 𝐵𝑥 − 𝐴

𝑄1
[ℎ
2
(𝑥, 𝜇)]

(44)

with domain 𝐷(𝑀
𝑗
) = 𝑉

2

𝑗
(R2) × 𝑉2

𝑗
(𝑄
1
). Here, we use

the natation 𝑉2
𝑗
(𝑌) to denote the space of homogeneous

polynomials of degree 𝑗 in 2 variables (𝑥, 𝜖) ∈ R2, with
coefficients in a Banach space 𝑌.

According to [16, 17], we derive

𝑈
𝑗
(𝑥) = 𝑀

−1

𝑗
𝑃
𝐼,𝑗
𝑓
𝑗
(𝑥, 0, 𝜇) ∈ Ker (𝑀

𝑗
)
𝑐

, (45)

and then

𝑔
1

𝑗
(𝑥, 0, 𝜇) = (𝐼 − 𝑃

𝐼,𝑗
) 𝑓
1

𝑗
(𝑥, 0, 𝜇) ∈ Im (𝑀1

𝑗
)
𝑐

, (46)

where𝑃
𝐼,𝑗
= (𝑃
1

𝐼,𝑗
, 𝑃
2

𝐼,𝑗
) is the projection of 𝑉2

𝑗
(R2)×𝑉2

𝑗
(Ker𝜋)

on Im(𝑀1
𝑗
) × Im(𝑀2

𝑗
).

Since 𝐵 = 0, it can be checked that [Im(𝑀1
2
)]
𝑐
=

span{𝑥2, 𝑥𝜇, 𝜇2}. Then, we obtain

𝑔
1

2
(𝑥, 0, 𝜇)

= 𝑙𝜇𝜏(
4𝛼
20
𝑏
0
𝑏
1

𝐵
0

−
𝑑𝛽
1

𝜇
𝐼𝑅

−
(𝑏
0
+ 𝑑𝑏
1
) 𝛽
1

𝜇
𝐼𝑅

−
𝛼
4
𝑏
1
𝛽
2

𝜇
𝐼𝐴

)𝑥

+ 𝑙𝜏(
3𝑏
0
𝛼
20

𝐵
0

−
𝑑𝛽
1

𝜇
𝐼𝑅

−
𝛼
4
𝛽
2

𝜇
𝐼𝐴

−
𝛼
20

𝜎
+
𝛼
20
𝑏
0

𝐵
0

)𝑥
2
,

(47)
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and further then the normal form of (24) on the invariant
local center manifold 𝑦 = 0 is given by

�̇� = 𝑙𝜇𝜏(
4𝛼
20
𝑏
0
𝑏
1

𝐵
0

−
𝑑𝛽
1

𝜇
𝐼𝑅

−
(𝑏
0
+ 𝑑𝑏
1
) 𝛽
1

𝜇
𝐼𝑅

−
𝛼
4
𝑏
1
𝛽
2

𝜇
𝐼𝐴

)𝑥

+ 𝑙𝜏(
3𝑏
0
𝛼
20

𝐵
0

−
𝑑𝛽
1

𝜇
𝐼𝑅

−
𝛼
4
𝛽
2

𝜇
𝐼𝐴

−
𝛼
20

𝜎
)𝑥
2

+ 𝑓
3
(𝑥, 0, 𝜇) + h.o.t.

(48)

If 𝑅
0
< 1, by using the definitions, we can verify that

𝑏
0
𝛼
20

𝐵
0

>
𝑑𝛽
1

𝜇
𝐼𝑅

+
𝛼
4
𝛽
2

𝜇
𝐼𝐴

+
𝛼
20

𝜎
. (49)

Theorem 9. If 𝑅
1
= 1, the positive equilibrium 𝐸

4
is unstable

for any 𝜏 > 0.

For 𝑅
0
= 1, 𝐸

0
is also an equilibrium with simple zero

singularity. To discuss its stability, we employ the following
perturbation form:

𝛼
20
= 𝑑 + 𝜇, (50)

where 𝑑 = (𝛼
3
𝑆
𝐼𝑅
/𝜇
𝐼𝑅
) + (𝛼

4
𝑆
𝐼𝐴
/𝜇
𝐼𝐴
) and 𝜇 is a small

parameter. Then, the normal form of (24) near the bacteria-
free equilibrium is as follows:

�̇� = 𝜏𝜇𝑥 − 𝜏(
𝑑

𝜎
+
𝛼
3
𝛽
1

𝜇
𝐼𝑅

+
𝛼
4
𝛽
2

𝜇
𝐼𝐴

)𝑥
2
+ h.o.t. (51)

Theorem 10. If 𝑅
0
= 1, the bacteria-free equilibrium is

unstable for any 𝜏 > 0.

5. Sensitive Analysis

Sensitivity indices allow us to measure the relative change
in a variable when a parameter changes. The normalized
forward sensitivity index of a variable to a parameter is the
ratio of the relative change in the variable to the relative
change in the parameter.When the variable is a differentiable
function of the parameter, the sensitivity index may be
alternatively defined using partial derivatives. Here, one
adopts the following definition as described by Chitnis et al.
[19].

Definition 11. The normalized forward sensitivity index of a
variable, 𝑢, that depends differentiably on a parameter, 𝑝, is
defined as 𝛾𝑢

𝑝
= (𝜕𝑢/𝜕𝑝) × (𝑝/𝑢).

To clear bacteria in the body, we must take measures to
make 𝑅

0
> 1 hold. For this end, it is important to determine

how crucial each parameter is to 𝑅
0
. Table 1 exhibits the

analytical sensitivity indices of 𝑅
0
to the parameters 𝛼

20
, 𝛼
3
,

𝛼
4
, 𝜇
𝐼𝑅
, 𝜇
𝐼𝐴
, 𝑆
𝐼𝑅
, and 𝑆

𝐼𝐴
.

The negative sign of the sensitivity index for 𝑅
0
implies

that increase in the relevant parameter leads to the decrease

Table 1: Sensitivity indices of 𝑅
0
to its parameters.

Parameter 𝑗 𝛼
20
𝛼
3
𝛼
4
𝜇
𝐼𝑅
𝜇
𝐼𝐴
𝑆
𝐼𝑅
𝑆
𝐼𝐴

𝛾
𝑅0

𝑗
−1 𝑙

1
𝑙
2
−𝑙
1
−𝑙
2
𝑙
1
𝑙
2

𝑙1 = 𝑆𝐼𝑅
𝜇𝐼𝐴
𝛼3/(𝛼3𝑆𝐼𝑅

𝜇𝐼𝐴
+ 𝛼4𝑆𝐼𝐴

𝜇𝐼𝑅
) and 𝑙2 = 𝑆𝐼𝐴𝜇𝐼𝑅𝛼4/(𝛼3𝑆𝐼𝑅𝜇𝐼𝐴 +

𝛼4𝑆𝐼𝐴
𝜇𝐼𝑅
).

2

1.5

20

1

15

0.5

0
1050

R
0

𝛼20

k = 2

k = 0

R0 = 1

Figure 1: Plot of 𝑅
0
against the the effective reproductive rate 𝛼

20
∈

(0, 20] for 𝑘 = 0, 2.

in 𝑅
0
. Note that 0 < 𝑙

1
, 𝑙
2
< 1. The most sensitive parameter

is the growth rate 𝛼
20
, which has a high impact on 𝑅

0
and

should be targeted by intervention strategies. To reduce 𝛼
20

to ensure 𝑅
0
> 1, we may develop an inhibitor to control the

reproduction of bacteria or to kill bacteria individual, which
agrees with an intuitive expectation.

To understand how 𝛼
20

affects 𝑅
0
, we might as well

assume 𝛼
4
= 𝑘𝛼
3
, 𝑆
𝐼𝐴
= 𝑘𝑆
𝐼𝑅
, and 𝜇

𝐼𝐴
= 𝑘𝜇
𝐼𝑅
, and then

gets 𝑅
0
= (𝛼
3
𝑆
𝐼𝑅
/𝛼
20
𝜇
𝐼𝑅
)(1 + 𝑘). Clearly, for 𝑘 = 0, only the

innate immune cell competes with bacteria. Figure 1 exhibits
the relationship between 𝑅

0
and 𝛼

20
with 𝛼

3
= 𝜇
𝐼𝑅
= 0.02,

𝑆
𝐼𝑅
= 0.04, and 𝑘 = 0, 2. It can be seen from the plot that as
𝛼
20

decreases 𝑅
0
increases faster when 𝑘 = 2 than the case

of 𝑘 = 0, which reveals that vaccination or other strategies
adopted to stimulate immunity of the body are beneficial to
the clearance of bacteria.

Figure 2 shows the solutions of system (2) starting from
different initial values chosen arbitrarily together with 𝛼

20
=

0.01, 0.5, 2, 𝛼
3
= 0.02, 𝛼

4
= 0.04, 𝑆

𝐼𝑅
= 1, 𝑆

𝐼𝐴
= 2, 𝜇

𝐼𝑅
= 0.02,

𝜇
𝐼𝐴
= 0.04, 𝐵

0
= 1, 𝜎 = 1/3, 𝛽

1
= 0.01, 𝛽

2
= 0.02, 𝛼

1
= 0.01,

𝛼
2
= 0.01, 𝜇

𝑋𝑈
= 0.02, and 𝜇

𝑋𝐼
= 0.04. It is easy to see that

the bacteria concentration 𝐵(𝑡) tends to zero, and the smaller
growth rate leads to the faster convergence.

6. Conclusions

This paper formulates the competition between bacteria and
immune system by DDEs. Then, the qualitative properties
of the model are analyzed. Specially, by virtue of the center
manifold reduction and normal form theory due to Faria
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Figure 2: Simulations of 𝐵(𝑡) for 𝛼
20
= 2, 0.5, 0.01 in each figure.

and Magalhaes [16, 17], the normal form of system (2)
associated with zero eigenvalue is computed, fromwhich one
deduces that the bacteria-free equilibrium𝐸

0
and the positive

equilibrium 𝐸
4
are unstable under the conditions of 𝑅

0
=

1 and 𝑅
1
= 1, respectively. Next, sensitivity analysis and

numerical simulations indicate that the effective reproductive
rate 𝛼

20
is the most sensitive parameter to 𝑅

0
. Theorem 3

suggests the strategies target the decrease of the growth rate
which can be successful in disease elimination.

On the biological viewpoint, the terms 𝛼
3
𝑆
𝐼𝑅
/𝜇
𝐼𝑅

and
𝛼
4
𝑆
𝐼𝐴
/𝜇
𝐼𝐴
measure the respective strengths of the innate and

adaptive immune system defense against the bacterial chal-
lenge, while the factor 𝛼

20
measures the bacteria’s offensive

strength. So with (𝛼
3
𝑆
𝐼𝑅
)/(𝛼
20
𝜇
𝐼𝑅
) + (𝛼

4
𝑆
𝐼𝐴
)/(𝛼
20
𝜇
𝐼𝐴
), we can

compare the strength of the immune system against the
bacterial offensive.Thus,Theorems 2 and 3have the biological

explications: in the domain of attraction of𝐸
0
, bacteria will be

cleared if 𝑅
0
> 1; that is, the strength of the immune system

defense against the bacteria challenge is not weaker than
the bacteria’s offensive strength; in the domain of attraction
of 𝐸
3
, bacteria coexist with immune cells when 𝑅

0
< 1

and the bacterial challenge is weaker than bacteria’s offensive
strength.
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