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Four (2+1)-dimensional nonlinear evolution equations, generated by the Jaulent-Miodek hierarchy, are investigated by the
bifurcation method of planar dynamical systems.The bifurcation regions in different subsets of the parameters space are obtained.
According to the different phase portraits in different regions, we obtain kink (antikink) wave solutions, solitary wave solutions,
and periodic wave solutions for the third of these models by dynamical systemmethod. Furthermore, the explicit exact expressions
of these bounded traveling waves are obtained. All these wave solutions obtained are characterized by distinct physical structures.

1. Introduction

In [1–4], four (2+1)-dimensional nonlinear models gen-
erated by the Jaulent-Miodek hierarchy were developed.
These nonlinear models are completely integrable evolution
equations. There are many approaches to investigate nonlin-
ear evolution equation, for example, the inverse scattering
method, the Bäcklund transformation method, the Darboux
transformation method, the Hirota bilinear method [1–3, 5–
8], and the dynamical systems method [9–11]. The Hirota
bilinear method [3] is used to formally derive the multiple
kink solutions and multiple singular kink solutions of these
models. By applying the direct symmetry method [4], group
invariant solutions and some new exact solutions of the
(2+1)-dimensional Jaulent-Miodek equation are obtained.
Dynamical systems method is a very effective method to
research qualitative behavior for traveling wave solutions of
these completely integrable evolution equations. In [11], only
considering bifurcation parametric 𝑐, some exact traveling
wave solutions are given by applying themethod of dynamical
systems for these models. In this paper, all wave solutions
are given by the method of dynamical systems under more
general parametric conditions. Some computer symbolic
systems such as Maple and Mathmatic allow us to perform
complicated and tedious calculations.

Four (2+1)-dimensional nonlinear models generated by
the Jaulent-Miodek hierarchy [3] are given by
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We will study the third model given by
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By introducing the potential
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(𝑥, 𝑦, 𝑡) , (4)
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to remove the integral term in the system (3), we obtain the
following equation
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We are interested in thewave solutions of the system (3) in
this paper. Motivated by [9], we obtain dynamical properties
of (11) and different wave solutions of the system (3) in
detail. This paper is organized as follows. In Section 2, we
establish the traveling wave equation (3) for the third model
of (1). Furthermore, we obtain the first integral of dynamical
governing equation of the system (11). Then, we analyze the
bifurcation behaviors of the system (11). Phase portraits in
the different subsets of parameter space will be presented in
Section 3. In Section 4, using the information of the phase
portraits in Section 3, we analyze all the possible traveling
wave solutions of the system (11). Some explicit parametric
representations of traveling wave solutions of (3) and the
system (11) are also obtained. The final section includes brief
summary, future plans, and potential fields of applications.

2. Traveling Wave Equation for the System (3)

We assume that the traveling wave transform of the system
(3) is in the form

𝑢 (𝑥, 𝑦, 𝑡) = Ψ (𝜉) ,

𝜉 = 𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡,

(6)

where 𝑐 is propagating wave velocity. Let 𝑘 = 𝑟, 𝑐 = 1, the
traveling wave transform of (6) is equivalent to 𝜉 = 𝑥 +

𝑦 − 𝑐𝑡 [11]. So, our traveling wave transform is more general.
According to physical meaning of traveling wave solutions of
the system (3), we always assume that 𝑐 > 0, 𝑘 ̸= 0, and
𝑟 ̸= 0. Now, substituting (6) into (5), we have the traveling
wave equation
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Integrating (7) with respect to 𝜉 once, we have

−16𝑘𝑐𝑢
𝜉
+ 4𝑘
4
𝑢
𝜉𝜉𝜉
− 8𝑘
4
𝑢
3

𝜉
+ 3𝑟
2
𝑢
𝜉
+ 6𝑘
2
𝑟𝑢
2

𝜉
= 0. (8)

Setting 𝑢
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= 𝜑, (8) becomes
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Furthermore, (8) can be rewritten as
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Letting 𝜑󸀠 = 𝑦, then we have the following planar system
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Obviously, the above system (11) is aHamiltonian systemwith
Hamiltonian function
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In order to research the system (11), let 𝑎 = −(3𝑟
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The Hamiltonian function of (13) is
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3. The Bifurcation Analysis of the System (11)

In this section, our aim is to study the traveling wave solu-
tions of the system (11) by applying bifurcation method and
qualitative theory of dynamical systems [9, 10]. Through
some special phase orbits, we obtain smooth periodic wave
solutions, solitary wave solutions, kink and antikink wave
solutions, and so on. Fixing 𝑐, we discuss the phase portrait
of the system (11) along with the changes of parameters 𝑟
and 𝑘 so as to study traveling wave solutions of the system
(11). Further more, through the traveling wave solutions of
the system (11) and the potential relation (4), traveling wave
solutions of the system (3) will be obtained.

3.1. Phase Portraits and Qualitative Analysis of the System (11).
In order to investigate the phase portrait of the system (11),
we set
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of Δ. Obviously, the system (11) has only one trivial singular
point (0, 0). Thus the other singular points of the system (11)
are given as follows. (1) When Δ < 0, the system (11) has
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We notice that the Jacobian of linearized system of the
system (11) at the singular points is given by
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Thus, the characteristic values of linearized system of the
system (11) at (𝜑

𝑖
, 0) are 𝜆 = ±√𝑓󸀠(𝜑
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has four real roots.
It is well known that the planar Hamiltonian system is

determined by its potential energy level curve and its singular
point in the form of (𝜑∗, 0). So, we are interested in looking
for the possible zeros of (15) and determining whether there
are heteroclinic orbits, homoclinic orbits, periodic orbits at
different singular points.

In order to find the heteroclinic orbits and the homoclinic
orbits of the system (11), let
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From (19), we can get the following expressions of its roots:
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Substituting (20) into (15), we can get
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Theorem 1. When 𝑘 > 0, 𝑐 > 0, from (22), one has the
following.

(i) When 𝑟 = ±2√𝑘𝑐, there are two heteroclinic orbits
formed by the saddle points (±2√𝑘𝑐, 0).

(ii) When 𝑟 ∈ (−4√3𝑘𝑐/3, −2√𝑘𝑐) ∪ (2√𝑘𝑐, 4√3𝑘𝑐/3),
there are no heteroclinic orbits, while there are homo-
clinic orbits formed by other saddle points except for
two saddle points (±2√𝑘𝑐, 0).
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In order to give the details of the bifurcation, if 𝑐 > 0,
𝑘 > 0, we can obtain the following six bifurcation boundaries:
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All these bifurcation boundaries divide the parameter
space into seven regions (see Figure 1(a)) in which different
phase portraits exist. All the corresponding phase portraits
will be shown in Figure 2.

If 𝑐 > 0, 𝑘 < 0, there is one bifurcation boundary:

𝐿
7
: 𝑟 = 0. (24)

In this case, the corresponding phase portraits in two
bifurcation regions 𝐹

7
and 𝐹

8
(see Figure 1(b)) will be shown

in Figure 3.
Assuming that the following conditions hold:

𝑘 > 0, 𝑐 > 0, Δ ≥ 0. (𝐼)

Therefore, we can obtain the phase portraits of the system (11)
in Figure 2.
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ℎ
𝑖
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𝑖
, 𝑦) . (25)

According to Figure 2, we obtain Case 1 as follows.

Case 1. Suppose that 𝑘 > 0, 𝑐 > 0, and Δ ≥ 0, in addition
to one of conditions (1)–(12), we can obtain the sign of 𝑓󸀠(𝜑

𝑖
)

and the relation among ℎ(𝜑
𝑖
, 0) by choosing suitable 𝑟, 𝑘, and

𝑐, respectively.

(1) When 𝑟 < −4√3𝑘𝑐/3, the fact is that ℎ
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< ℎ
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2

exists and the system (11) has two saddles at (𝜑
1,2
, 0) and

a center at (0, 0) determined by (16). When ℎ ∈ (ℎ
0
, ℎ
1
),

the system (11) has a family of periodic orbits in which the
periodic orbit Γ

1
is included (see Figure 2(a)). When ℎ ∈

(−∞, ℎ
0
) ∪ (ℎ
2
,∞), periodic orbits become open curves.
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Figure 1: Transition boundaries on (𝑘 − 𝑟) plane of system (10).

(2) When 𝑟 = −4√3𝑘𝑐/3, the coefficient of 𝜑 vanishes.
Both singular points (𝜑

0,1
, 0) are degenerated to (𝜑

0
, 0) and

(𝜑
2
, 0) becoming a saddle point in the system (11) (see

Figure 2(b)). In the system (11), all the level curves are
open.

(3) When −4√3𝑘𝑐/3 < 𝑟 < −2√𝑘𝑐, the fact is that ℎ
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ℎ
−

0
, periodic orbits become the homoclinic orbit Γ

4
. When

ℎ ∈ (−∞, ℎ
1
), periodic orbits become open curves.

(4) When 𝑟 = −2√𝑘𝑐, the system (11) has two saddles at
(𝜑
0,2
, 0) and a center at (𝜑

1
, 0), where 𝜑

2
= 2𝜑
1
= −√𝑘𝑐/𝑘

2,
ℎ
1
= −9𝑐

2
/4𝑘
4
< ℎ
0
= ℎ
2
. When ℎ = ℎ

0
, the system (11) has

heteroclinic orbits consisting of Γ
10

and Γ
11
, which connects

two saddles (𝜑
0,2
, 0) (see Figure 2(d)). When ℎ ∈ (ℎ

1
, ℎ
0
),

the system (11) has a family of periodic orbits in which the
periodic orbit Γ

12
is included. But when ℎ → ℎ

−

0
, periodic

orbits become the heteroclinic orbit Γ
10
and the orbit Γ

11
.

(5) When −2√𝑘𝑐 < 𝑟 < −8√66𝑘𝑐/33, we can obtain ℎ
2
<

ℎ
1
< ℎ
0
and the system (11) has two saddles at (𝜑

0,2
, 0) and a

center at (𝜑
1
, 0) (see Figure 2(e)).The system (11) has a family

of open curves.
(6) When 𝑟 = −8√66𝑘𝑐/33, both singular points (𝜑

1,2
, 0)

are degenerated to (−2√66𝑘𝑐/11, 0); (𝜑
0
, 0) becomes a saddle

in the system (11) (see Figure 2(f)). The system (11) has a
family of open curves.

(7) When 𝑟 = 8√66𝑘𝑐/33, both singular points (𝜑
1,2
, 0)

are degenerated to (2√66𝑘𝑐/11, 0), (𝜑
0
, 0) becomes a saddle

in the system (11) (see Figure 2(g)). The system (11) has a
family of open curves.

(8)When 8√66𝑘𝑐/33 < 𝑟 < 2√𝑘𝑐, the system (11) has two
saddles at (𝜑

0,1
, 0) and a center at (𝜑

2
, 0). The system (11) has

a family of open curves (see Figure 2(h)).
(9) When 𝑟 = 2√𝑘𝑐, the system (11) has two saddles at

(𝜑
0,2
, 0) and a center at (𝜑

1
, 0), where 𝜑

2
= 2𝜑
1
= −√𝑘𝑐/𝑘

2,
ℎ
2
= −9𝑐

2
/4𝑘
4
< ℎ
0
= ℎ
1
. When ℎ = ℎ

0
, the system (11) has

heteroclinic orbits consisting of Γ
13

and Γ
14
, which connects

two saddles (𝜑
0,2
, 0). When ℎ ∈ (ℎ

1
, ℎ
0
), the system (11) has

a family of periodic orbits in which the periodic orbit Γ
15

is
included (see Figure 2(i)). But when ℎ → ℎ

+

0
, periodic orbits

become the heteroclinic orbit Γ
13
and the orbit Γ

14
.

(10) When 2√𝑘𝑐 < 𝑟 < 4√3𝑘𝑐/3, the system (11) has two
saddles at (𝜑

0,1
, 0) and a center at (𝜑

2
, 0) and ℎ

2
< ℎ
0
< ℎ
1

exists. When ℎ = ℎ
0
, the system (11) has homoclinics orbit

Γ
7
and a special orbit Γ

8
. When ℎ ∈ (ℎ

0
, ℎ
1
), the system (11)

has a family of periodic orbits in which the periodic orbit Γ
9

is included (see Figure 2(j)). When ℎ → ℎ
+

0
, periodic orbits

become the homoclinics orbit Γ
7
.When ℎ ∈ (ℎ

1
,∞), periodic

orbits become open curves.
(11) When 𝑟 = 4√3𝑘𝑐/3, the coefficient of 𝜑 vanishes.

Both singular points (𝜑
0,2
, 0) are degenerated to (𝜑

0
, 0) and

(𝜑
1
, 0) becoming a saddle in the system (11) (see Figure 2(k)).

In the system (11), all the level curves are open.
(12) When 𝑟 > 4√3𝑘𝑐/3, the system (11) has two saddles

at (𝜑
1,2
, 0) and a center at (0, 0) and ℎ

0
< ℎ
2
< ℎ
1
exists.

When ℎ ∈ (ℎ
0
, ℎ
2
), the system (11) has a family of periodic

orbits in which the periodic orbit Γ
16
is included. When ℎ ∈

(−∞, ℎ
0
) ∪ (ℎ
1
,∞), periodic orbits become open curves (see

Figure 2(l)).
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Figure 2: The bifurcation phase portraits in different regions of Figure 1(a) for the system (11).
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Figure 3: The bifurcation phase portraits in different regions of Figure 1(b) for the system (11).
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1
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𝜉

(b) 𝑤
1
(𝜉) (𝑐
1
= 0)

Figure 4: The periodic wave solutions of the system (11) and the system (3) when 𝑟 < −4√3𝑘𝑐/3, 𝑘 > 0, 𝑐 > 0, and Δ ≥ 0.

Assuming that the following conditions

𝑘 < 0, 𝑐 > 0 (𝐼𝐼)

hold, according to Figure 3, we obtain Case 2 as follows.

Case 2. Suppose that 𝑘 < 0, 𝑐 > 0, similarly, we have the
following.

(13)When 𝑟 < 0, the system (11) has two saddles at (𝜑
1,2
, 0)

and a center at (0, 0) and ℎ
0
< ℎ
1
< ℎ
2
exists. When ℎ ∈

(ℎ
0
, ℎ
1
)∪(ℎ
1
, ℎ
2
), the system (11) has a family of periodic orbits

in which the periodic orbit Γ
17
is included; under other cases,

periodic orbits become open curves (see Figure 4(a)).

(14) When 𝑟 > 0, the system (11) has two saddles at
(𝜑
1,2
, 0) and a center at (0, 0) and ℎ

0
< ℎ
2
< ℎ
1
exists. When

ℎ ∈ (ℎ
0
, ℎ
2
) ∪ (ℎ
2
, ℎ
1
), the system (11) has a family of periodic

orbits in which the periodic orbit Γ
18
is included; under other

cases, periodic orbits become open curves (see Figure 4(b)).

4. Smooth Solitary Wave Solutions, Periodic
Wave Solutions, and Kink Wave Solutions
for the System (11) and the System (3)

In this section, we will seek all traveling wave solutions which
correspond to the special bounded phase orbits of the system
(11) in Section 3.The explicit expressions of the system (3) are
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also obtained by all traveling wave solutions of the system (11)
and the relation (4).

4.1. Smooth Solitary Wave Solutions, Periodic Wave Solutions,
and Kink and Antikink Wave Solutions of the System (11).
From the qualitative theory of dynamical system, we know
that a smooth solitary wave solution of a partial differ-
ential system corresponds to a smooth homoclinic orbit
of a traveling wave equation. A periodic orbit of traveling
wave equation corresponds to a periodic traveling wave
solution of a partial differential system. Similarly, a smooth
heteroclinic orbit of traveling wave equation corresponds to a
smooth kink (antikink) wave solution of a partial differential
system.

According to the above analysis, in this section, we con-
sider the existence and the explicit exact expressions of
smooth periodic wave solutions, smooth solitary wave solu-
tions, and smooth kink (antikink) wave solutions for the
system (11) and the system (3) under the parameter conditions
(𝐼) and (𝐼𝐼).

Firstly, we consider the existence of smooth periodic wave
solutions under parameter conditions (𝐼) and (𝐼𝐼).

Proposition 2. (i) When 𝑘 > 0, 𝑐 > 0, and Δ ≥ 0, the
system (11) has a family of smooth periodic wave solutions (see
Figure 2), which correspond to 𝐻(𝜑, 𝑦) = ℎ, ℎ ∈ 𝐼, where 𝐼 is
one of intervals in (1), (3), (4), (9), (10), and (12) of Case 1.

(1) When 𝑟 < −4√3𝑘𝑐/3, ℎ ∈ (ℎ
0
, ℎ
1
), where ℎ

0
< ℎ
1
< ℎ
2

in Case 1(1) (see Figure 2(a)).

(2) When −4√3𝑘𝑐/3 < 𝑟 < −2√𝑘𝑐, ℎ ∈ (ℎ
1
, ℎ
0
), where

ℎ
1
< ℎ
0
< ℎ
2
in Case 1(3) (see Figure 2(c)).

(3) When 𝑟 = −2√𝑘𝑐, ℎ ∈ (ℎ
1
, ℎ
0
), where ℎ

1
< ℎ
0
= ℎ
2
in

Case 1(4) (see Figure 2(d)).

(4) When 𝑟 = 2√𝑘𝑐, ℎ ∈ (ℎ
2
, ℎ
0
), where ℎ

2
< ℎ
0
= ℎ
1
in

Case 1(9) (see Figure 2(i)).

(5) When 2√𝑘𝑐 < 𝑟 < 4√3𝑘𝑐/3, ℎ ∈ (ℎ
0
, ℎ
1
), where ℎ

2
<

ℎ
0
< ℎ
1
in Case 1(10) (see Figure 2(j)).

(6) When 𝑟 > 4√3𝑘𝑐/3, ℎ ∈ (ℎ
0
, ℎ
2
), where ℎ

0
< ℎ
1
< ℎ
2

in Case 1(12) (see Figure 2(l)).

(ii) When 𝑘 < 0, 𝑐 > 0, the system (11) has a family
of smooth periodic wave solutions (see Figure 2), which corre-
spond to𝐻(𝜑, 𝑦) = ℎ, ℎ ∈ 𝐼, where 𝐼 is one of the intervals in
(13) and (14) of Case 2.

(1) When 𝑟 < 0, ℎ ∈ (ℎ
0
, ℎ
1
)∪(ℎ
1
, ℎ
2
), where ℎ

0
< ℎ
1
< ℎ
2

in Case 2(13) (see Figure 3(a)).

(2) When 𝑟 < 0, ℎ ∈ (ℎ
0
, ℎ
2
)∪(ℎ
2
, ℎ
1
), where ℎ

0
< ℎ
2
< ℎ
1

in Case 2(14) (see Figure 3(b)).

Secondly, we discuss the existence of solitary wave solu-
tions under group (I). We can summarize the results for the
system (11) from Figures 2(c) and 2(j).

Proposition 3. Under conditions (𝐼), one has following results.

(i) When −4√3𝑘𝑐/3 < 𝑟 < −2√𝑘𝑐, the system (11) has
a smooth solitary wave solution of valley type, which
corresponds to the orbit Γ

4
of𝐻(𝜑, 𝑦) = ℎ

0
.

(ii) When 2√k𝑐 < 𝑟 < 4√3𝑘𝑐/3, the system (11) has
a smooth solitary wave solution of peak type, which
corresponds to the orbit Γ

19
of𝐻(𝜑, 𝑦) = ℎ

0
.

Finally, we mention the conditions of existence for kink
wave solutions of the system (11).

Proposition 4. When conditions (𝐼) hold, the system (11) has
smooth kink (antkink) under one of the following conditions:

(1) 𝑟 = −2√kc, the system (11) has smooth kink which
corresponds to the orbits Γ

9
and Γ

10
of 𝐻(𝜑, 𝑦) = ℎ

0

(see Figure 2(d));

(2) 𝑟 = 2√kc, the system (11) has smooth kink which
corresponds to the orbits Γ

14
and Γ
15

of 𝐻(𝜑, 𝑦) = ℎ
0

(see Figure 2(i)).

4.2. Exact Traveling Wave Solutions of the System (11) and the
System (3). Firstly, wewill obtain some explicit expressions of
traveling wave solutions for the system (11) when conditions
(𝐼) and (𝐼𝐼) hold. Furthermore, using potential (4) for the
system (3), its exact traveling wave solutions are given as
follows.

We only choose one of the periodic orbits to calculate
periodic wave solutions.

(1) Periodic wave solutions for the system (11) and the
system (3).

There are periodic orbits such as Γ
1
, Γ
6
, Γ
9
, Γ
12
, Γ
15
, Γ
16
,

Γ
17
, and Γ

18
(see Figures 2(a), 2(c), 2(d), 2(i), 2(j), 2(l), 3(a),

and 3(b)), which correspond to periodic wave solutions for
the system (11). We only choose one of the periodic orbits
(see Figure 2(a)) to calculate periodic wave solutions. This
method can be used for other periodic orbits.

When 𝑟 < −4√3𝑘𝑐/3 (see Figure 2(a)), we notice that
there are periodic orbit Γ

1
and two special orbits Γ

2
, Γ
3
passing

the points (𝜑
4
, 0), (𝜑

5
, 0), (𝜑

6
, 0), and (𝜑

7
, 0). In the (𝜑, 𝑦)-

plane the expressions of the orbits are given as

𝑦 = ±
√
−

(3𝑟
2
− 16𝑘𝑐)

8𝑘
4

𝜑
2
−

27𝑟

𝑘
2
𝜑
3
+ 𝜑
4
+ ℎ

= ±√(𝜑 − 𝜑
4
) (𝜑 − 𝜑

5
) (𝜑 − 𝜑

6
) (𝜑 − 𝜑

7
),

(26)

where 𝜑
4
< 𝜑
5
< 0 < 𝜑

6
< 𝜑
7
.

Substituting (26) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating them
along Γ

1
, Γ
2
, and Γ

3
, it follows that

±∫

𝜑

𝜑
5

1

√(𝜑 − 𝜑
4
) (𝜑 − 𝜑

5
) (𝜑 − 𝜑

6
) (𝜑 − 𝜑

7
)

𝑑𝑠 = ∫

𝜉

0

𝑑𝑠.

(27)
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Completing the above integral, we obtain one of the periodic
traveling wave solutions (see Figure 4(a)) of (26):

𝜑
1
(𝜉)

= 𝜑
4
+

(𝜑
5
− 𝜑
4
) 𝑠𝑛 (𝜉, 𝜑

4
, 𝜑
5
, 𝜑
6
, 𝜑
7
)

1 − ((𝜑
6
− 𝜑
5
) / (𝜑
6
− 𝜑
4
)) 𝑠𝑛 (𝜉, 𝜑

4
, 𝜑
5
, 𝜑
6
, 𝜑
7
)

,

(28)

where 𝑠𝑛(𝜉, 𝜑
4
, 𝜑
5
, 𝜑
6
, 𝜑
7
) = 𝑠𝑛

2
(√2(𝜑

5
− 𝜑
7
)(𝜑
4
− 𝜑
6
)𝜉/2,

(𝜑
6
− 𝜑
5
)(𝜑
7
− 𝜑
4
)/(𝜑
7
− 𝜑
5
)(𝜑
6
− 𝜑
4
)).

Noting (6), we obtain the the following exact periodic
wave solutions of the system (11) from (28):

𝑞
1
(𝑥, 𝑦, 𝑡)

= 𝜑
4
+

(𝜑
5
− 𝜑
4
) 𝑠𝑛 (𝑥, 𝑦, 𝑡, 𝜑

4
, 𝜑
5
, 𝜑
6
, 𝜑
7
)

1 − ((𝜑
6
− 𝜑
5
) / (𝜑
6
− 𝜑
4
)) 𝑠𝑛 (𝑥, 𝑦, 𝑡, 𝜑

4
, 𝜑
5
, 𝜑
6
, 𝜑
7
)

,

(29)

where 𝑠𝑛(𝑥,𝑦, 𝑡,𝜑
4
,𝜑
5
,𝜑
6
,𝜑
7
) = 𝑠𝑛

2
(2√(𝜑

5
− 𝜑
7
)(𝜑
4
− 𝜑
6
)(𝑘𝑥+

𝑟𝑦− 𝑐𝑡)/2, (𝜑
6
−𝜑
5
)(𝜑
7
−𝜑
4
)/(𝜑
7
−𝜑
5
)(𝜑
6
−𝜑
4
)). 𝑞
1
(𝑥, 𝑦, 𝑡) is

one of the smooth periodic wave solutions of the system (11).
Since 𝑢

1
(𝜉) = ∫ 𝜑

1
(𝜉)𝑑𝜉, integrating (28) about 𝜉, by (6),

we can obtain one of smooth wave solutions 𝑢
1
(𝑥, 𝑦, 𝑡) of sys-

tem (5). Applying the potential (4), the periodicwave solution
for the system (3) is obtained as follows:

𝑤
1
(𝑥, 𝑦, 𝑡) = 𝑘𝑞

1
(𝑥, 𝑦, 𝑡) + 𝑐

1
, (30)

where 𝑐
1
is a constant.

Noting (6), the periodic traveling wave solution𝑤
1
(𝜉) for

the system (3) is obtained (see Figure 4(b)).

Remark 5. In [11], some periodic wave solutions of the system
(11) are obtained, but the periodic wave solutions of the
system (3) are not given. The periodic wave solutions of the
system (3) cannot be derived by themethod [3]. In this paper,
we obtain all periodic wave solutions of the system (11) and
the system (3).

(2) Solitary wave solutions for the system (11) and the
system (3).

When −4√3𝑘𝑐/3 < 𝑟 < −2√𝑘𝑐, from the phase portrait
(see Figure 2(c)), we notice that there are a homoclinic orbit
Γ
4
and a special orbit Γ

5
passing the points (𝜑

8
, 0), (𝜑

9
, 0), and

(0, 0). In (𝜑, 𝑦)-plane, the expressions of the orbits are given
as

𝑦 = ±√𝜑
2
(𝜑 − 𝜑

8
) (𝜑 − 𝜑

9
), (31)

when𝐻(𝜑, 𝑦) = 0, where 𝜑
8
= (𝑟 − 2√𝑟

2
− 4𝑘𝑐)/2𝑘

2
< 𝜑
9
=

(𝑟 + 2√𝑟
2
− 4𝑘𝑐)/2𝑘

2
< 0.

Substituting (31) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating them
along Γ

4
and Γ
5
, we have

±∫

𝜑

𝜑
9

1

√𝜑
2
(𝜑 − 𝜑

8
) (𝜑 − 𝜑

9
)

𝑑𝑠 = ∫

𝜉

0

𝑑𝑠. (32)

Completing the above integral, we obtain the following soli-
tary wave solution (see Figure 5(a)) of the system (11):

𝜑
2
(𝜉) =

2𝜑
8
𝜑
9

(𝜑
8
− 𝜑
9
) cosh ((√2/2)√𝜑8𝜑9𝜉) + 𝜑8 + 𝜑9

.

(33)

Noting (6), we obtain the following exact solitary wave
solutions (see Figure 5(a)) of the system (11) from (33):

𝑞
2
(𝑥, 𝑦, 𝑡)

= −

2𝑎𝑘
2

2√𝑟
2
− 4𝑘𝑐 cosh ((√2𝑎/2) (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)) − 𝑟

,

(34)

where 𝑞
2
(𝑥, 𝑦, 𝑡) is a solitary wave solution of the system (11).

Since 𝑢(𝜉) = ∫𝜑(𝜉)𝑑𝜉, integrating (33) about 𝜉, we can
obtain
𝑢
2
(𝜉)

= 2√2tanh−1(
(𝑟 + 2√𝑟

2
− 4𝑘𝑐) tanh (√2𝑎𝜉/4)
2𝑘
2
√𝑎

) .

(35)

According to (6), wave solutions of traveling wave equation
(7) from (5) are able to obtain

𝑢
2
(𝑥, 𝑦, 𝑡)

= 2√2tanh−1 ((𝑟 + 2√𝑟2 − 4𝑘𝑐)(
√2𝑎 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

4

)

× tanh(
√2𝑎 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

4

)

× (2𝑘
2
√𝑎)

−1

) ,

(36)

where 𝑢
2
(𝑥, 𝑦, 𝑡) is one of the smooth wave solutions of (5).

We substitute (36) into the potential𝑤(𝑥, 𝑦, 𝑡) = 𝑢
𝑥
(𝑥, 𝑦, 𝑡)

as defined in (4) to obtain

𝑤
2
(𝑥, 𝑦, 𝑡) = − (2𝑘

3
𝑎 (𝑟 + 2√𝑟

2
− 4𝑘𝑐))

× ((5𝑟
2
+ 4𝑟√𝑟

2
− 4𝑘𝑐 − 4𝑘

4
𝑎 − 16𝑘𝑐)

× cosh(
√2𝑎 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

4

)

2

−4𝑟√𝑟
2
− 4𝑘𝑐 + 5𝑟

2
+ 16𝑘𝑐)

−1

,

(37)

where 𝑤
2
(𝑥, 𝑦, 𝑡) is a solitary wave solution of the system (3).

Using travelingwave transform (6), the solitary wave solution
𝑤
2
(𝜉) of the system (3) is obtained (see Figure 5(b)).



Abstract and Applied Analysis 9

1 2 3 40−1−2−3−4

y

𝜉
−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

(a) 𝜑
2
(𝜉)

1 2 3 40−1−2−3−4

y

𝜉
−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

(b) 𝑤
2
(𝜉)

Figure 5: The solitary wave of the system (11) and the system (3) when −4√3𝑘𝑐/3 < 𝑟 < −2√𝑘𝑐, 𝑘 > 0, 𝑐 > 0, and Δ ≥ 0.

When 2√𝑘𝑐 < 𝑟 < 4√3𝑘𝑐/3 (see Figure 2(j)), the expres-
sions of the homoclinic orbit Γ

7
and the special orbit Γ

8

passing the points (𝜑
11
, 0), (0, 0), and (𝜑

12
, 0) are given as in

(𝜑, 𝑦)-plane:

𝑦 = ±√𝜑
2
(𝜑 − 𝜑

11
) (𝜑 − 𝜑

12
), (38)

when𝐻(𝜑, 𝑦) = 0, where 0 < 𝜑
11
= (𝑟 − 2√𝑟

2
− 4𝑘𝑐)/2𝑘

2
<

𝜑
12
= (𝑟 + 2√𝑟

2
− 4𝑘𝑐)/2𝑘

2.
Substituting (38) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating them

along Γ
19
and Γ
20
, we have

±∫

𝜑
11

𝜑

1

√𝜑
2
(𝜑 − 𝜑

11
) (𝜑 − 𝜑

12
)

𝑑𝑠 = ∫

𝜉

0

𝑑𝑠. (39)

Completing the above integral, we obtain the following soli-
tary wave solution (see Figure 6(a)) of the system (11):

𝜑
3
(𝜉) =

2𝜑
8
𝜑
9

(𝜑
9
− 𝜑
8
) cosh ((√2/2)√𝜑8𝜑9𝜉) + 𝜑8 + 𝜑9

.

(40)
Noting (6), we obtain the following exact wave solutions

of the system (11) from (40)
𝑞
3
(𝑥, 𝑦, 𝑡)

=

2𝑘
2
𝑎

2√𝑟
2
− 4𝑘𝑐 cosh ((√2𝑎/2) (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)) + 𝑟

,

(41)

where 𝑞
3
(𝑥, 𝑦, 𝑡) is a solitary wave solution of the system (11).

Since 𝑢(𝜉) = ∫ 𝜑(𝜉)𝑑𝜉, integrating (40) about 𝜉, we can
obtain

𝑢
3
(𝜉) = −2√2tanh−1(

(−𝑟 + 2√𝑟
2
− 4𝑘𝑐) tanh (√2𝑎𝜉/4)
2𝑘
2
√𝑎

) .

(42)

According to (6), one of the smooth wave solutions of (5) is
able to obtain

𝑢
3
(𝑥, 𝑦, 𝑡)

= −2√2tanh−1 (((−𝑟 + 2√𝑟2 − 4𝑘𝑐)

× tanh(
√2𝑎 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

4

))

× (2𝑘
2
√𝑎)

−1

) .

(43)

Substitute (42) into the potential 𝑤(𝑥, 𝑦, 𝑡) = 𝑢
𝑥
(𝑥, 𝑦, 𝑡)

as defined in (4) to obtain

𝑤
3
(𝑥, 𝑦, 𝑡) = (2𝑘

3
𝑎 (𝑟 − 2√𝑟

2
− 4𝑘𝑐))

× ((−5𝑟
2
+ 4𝑟√𝑟

2
− 4𝑘𝑐 + 4𝑘

2
𝑎 + 16𝑘𝑐)

× (cosh(
√2𝑎 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

4

))

2

−4𝑟√𝑟
2
− 4𝑘𝑐 + 5𝑟

2
− 16𝑘𝑐)

−1

,

(44)

where 𝑤
3
(𝑥, 𝑦, 𝑡) is a solitary wave solution of the system (3).

Applying (6), the solitary wave solution 𝑤
3
(𝜉) is obtained for

the system (3) (see Figure 6(b)).
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Figure 6: The solitary wave of the system (11) and the system (3) when 2√𝑘𝑐 < 𝑟 < 4√3𝑘𝑐/3, 𝑘 > 0, 𝑐 > 0, and Δ ≥ 0.

Remark 6. In [11], only one solitary wave solution of peak
type wave solutions of the system (3) is obtained. However,
the solitary wave solutions of system (3) cannot be found
by Hirota’s bilinear method [3]. Fortunately, we obtain all
solitary wave solutions of the system (11) and the system (3).

(3) Kink (antikink) wave solutions for the system (11) and
the system (3).

When 𝑟 = −2√𝑘𝑐 (see Figure 2(d)), in (𝜑, 𝑦)-plane, the
expressions of the heteroclinic orbits Γ

10
and Γ
11
passing the

points (𝜑
13
, 0), (0, 0) are given as

𝑦 = ±
√
𝑐𝜑
2

𝑘
3
+ 2

√𝑘𝑐

𝑘
2
𝜑
3
+

1

2

𝜑
4
,

(45)

when𝐻(𝜑, 𝑦) = 0, where 𝜑
13
= −√𝑘𝑐/𝑘

2
< 0.

Substituting (45) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating them
along Γ

10
and Γ
11
, we have

∫

𝜑

𝜑
13

1

√𝜑
2
(𝜑 + √𝑘𝑐/𝑘

2
)

2

𝑑𝑠 =

√2

2

∫

𝜉

0

𝑑𝑠, (46a)

−∫

𝜑

𝜑
13

1

√𝜑
2
(𝜑 + √𝑘𝑐/𝑘

2
)

2

𝑑𝑠 =

√2

2

∫

𝜉

0

𝑑𝑠. (46b)

Completing the above integral (46a), we obtain the following
kink wave solution of the system (11) (see Figure 7(a)):

𝜑
4
(𝜉) = −

√𝑘𝑐 (1 − tanh (√2𝑘𝑐𝜉/2𝑘2))
2𝑘
2

.
(47)

Noting (6), we obtain the exact wave solution of the system
(11) from (47). Consider

𝑞
4
(𝑥, 𝑦, 𝑡) = −

√𝑘𝑐 (1 − tanh (√2𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡) /2𝑘2))
2𝑘
2

,

(48)

where 𝑞
4
(𝑥, 𝑦, 𝑡) is a kink wave solution of the system (11).

Since 𝑢(𝜉) = ∫ 𝜑(𝜉)𝑑𝜉, integrating (47) about 𝜉, we can
obtain

𝑢
4
(𝜉)

= −(

1

2𝑘
2

√𝑘𝑐𝜉 +

√2

4

× ( ln(1 + tanh(
√2𝑘𝑐𝜉

2𝑘
2
))

+

√2

4

ln(1 − tanh(
√2𝑘𝑐𝜉

2𝑘
2
)))) .

(49)

According to (6), kink wave solutions of (5) are able to obtain

𝑢
4
(𝑥, 𝑦, 𝑡)

= −(

1

2𝑘
2

√𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

+

√2

4

( ln(− tanh(
√2𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

2𝑘
2

) − 1)

+

√2

4

ln(1 − tanh(
√2𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

2𝑘
2

)))) .

(50)
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Figure 7: The kink (antikink) wave solutions of the system (11) and the system (3) when 𝑟 = −2√𝑘𝑐, 𝑘 > 0, 𝑐 > 0, and Δ ≥ 0.

Using the potential (4), the kink wave solution for the
system (3) are obtained as follows:

𝑤
4
(𝑥, 𝑦, 𝑡) = −

√𝑘𝑐 (1 − tanh (√2𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡) /2𝑘2))
2𝑘

,

(51)

where 𝑤
4
(𝑥, 𝑦, 𝑡) is the smooth kink wave solution of the

system (3). The smooth kink wave solution 𝑤
4
(𝜉) of the sys-

tem (3) is obtained from (51) (see Figure 7(b)). Analogously,
completing the above integral (46b), we have the following
antikink wave solution

𝜑
4
󸀠 (𝜉) = −

√𝑘𝑐 (1 + tanh (√2𝑘𝑐𝜉/2𝑘2))
2𝑘
2

, (52)

𝑤
4
󸀠 (𝑥, 𝑦, 𝑡) = −

√𝑘𝑐 (1 + tanh (√2𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡) /2𝑘2))
2𝑘

,

(53)

for the system (11) and the system (3), respectively (see
Figures 7(c) and 7(d)).

When 𝑟 = 2√𝑘𝑐 (see Figure 2(i)), in (𝜑, 𝑦)-plane, the
expressions of the heteroclinic orbits Γ

13
and Γ
14
passing the

points (0, 0), (𝜑
14
, 0) are given as

𝑦 = ±
√
𝑐𝜑
2

𝑘
3
− 2

√𝑘𝑐

𝑘
2
𝜑
3
+

1

2

𝜑
4
,

(54)

when𝐻(𝜑, 𝑦) = 0, 𝜑
14
= √𝑘𝑐/𝑘

2
> 0.
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Substituting (54) into 𝑑𝜑/𝑑𝜉 = 𝑦 and integrating them
along Γ

13
and Γ
14
, we have

∫

𝜑
14

𝜑

√2

√𝜑
2
(𝜑 − √𝑘𝑐/𝑘

2
)

2

𝑑𝑠 = ∫

𝜉

0

𝑑𝑠, (55a)

−∫

𝜑
14

𝜑

√2

√𝜑
2
(𝜑 − √𝑘𝑐/𝑘

2
)

2

𝑑𝑠 = ∫

𝜉

0

𝑑𝑠. (55b)

Completing the above integral (55a), we obtain the exact kink
wave solution of the system (11) (see Figure 8(a)):

𝜑
5
(𝜉) =

√𝑘𝑐 (1 + tanh (√2𝑘𝑐𝜉/2𝑘2))
2𝑘
2

.
(56)

Noting (6), we obtain the following exact wave solution of the
system (11) from (56):

𝑞
5
(𝑥, 𝑦, 𝑡)

=

√𝑘𝑐 (1 + tanh (√𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡) /2𝑘))
2𝑘
2

,

(57)

where 𝑞
5
(𝑥, 𝑦, 𝑡) is a kink wave solution of the system

(11).
Since 𝑢(𝜉) = ∫ 𝜑(𝜉)𝑑𝜉, integrating (56) about 𝜉, we can

obtain

𝑢
5
(𝜉) = (

√𝑘𝑐

2𝑘
2
𝜉 −

√2

4

× ( ln(tanh(
√𝑘𝑐𝜉

2𝑘

) − 1)

−

√2

4

ln(1 + tanh(
√2𝑘𝑐𝜉

2𝑘
2
)))) .

(58)

According to (6), the traveling wave solution of (5) is able to
obtain

𝑢
5
(𝑥, 𝑦, 𝑡)

= (

√𝑘𝑐

2𝑘
2
(𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

−

√2

4

( ln(tanh(
√𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

2𝑘

) − 1)

−

√2

4

ln(1 + tanh(
√2𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡)

2𝑘
2

)))).

(59)

Applying the potential (4), the kink wave solution of the
system (3) is obtained as follows:

𝑤
5
(𝑥, 𝑦, 𝑡)

=

√𝑘𝑐 (1 + tanh (√𝑘𝑐 (𝑘𝑥 + 𝑟𝑦 − 𝑐𝑡) /2𝑘))
2𝑘

,

(60)

where 𝑤
5
(𝑥, 𝑦, 𝑡) is the smooth kink wave solution of the

system (3).
Noting (6), we can obtain the smooth kink wave solution

𝑤
5
(𝜉) of the system (3) (see Figure 8(b)). Analogously, com-

pleting the above integral (55b), we obtain the exact antikink
wave solution:

𝜑
5
󸀠 (𝜉) =

√𝑘𝑐 (1 − tanh (√2𝑘𝑐𝜉/2𝑘2))
2𝑘
2

,

𝑤
5
󸀠 (𝜉) =

√𝑘𝑐 (1 − tanh (√𝑘𝑐 (𝜉) /2𝑘))
2𝑘

,

(61)

for the system (11) and the system (3), respectively (see
Figures 8(c) and 8(d)).

Remark 7. In [3], applying the necessary condition for the
kink waves to exist, multiple kink solutions and multiple
singular kink solutions of the system (3) are formally derived.
By the special traveling wave transform in [11], no kink
(antikink) solutions of the system (11) and system (3) are
obtained. In this paper, not considering the necessary con-
dition for the kink waves to exist [3], we obtain all kink and
antikink wave solutions of the system (11) and the system (3)
by the bifurcation method of dynamical systems.

From (1) to (12), we can obtain three theorems about
the exact periodic wave solutions and smooth solitary wave
solutions and kink (antikink) wave solutions for the system
(11) and the system (3).

Theorem 8. When conditions (𝐼) or (𝐼𝐼) hold, one can obtain
some representative smooth exact periodic wave solutions of the
system (11) from the periodic obits (see Figures 2(a), 2(c), 2(i),
2(j), and 2(l)) and Figures 3(a) and 3(b)), which correspond
to the representative smooth exact periodic wave solutions of
the system (3), such as the periodic wave solution 𝑞

1
(𝑥, 𝑦, 𝑡)

of the system (11) corresponding to the periodic wave solution
𝑤
1
(𝑥, 𝑦, 𝑡) of the system (3).

Theorem 9. Under conditions (𝐼), the following results hold.

(1) When −4√3𝑘𝑐/3 < 𝑟 < −2√𝑘𝑐, the system (11)
has an exact solitary wave solution 𝑞

2
(𝑥, 𝑦, 𝑡), which

corresponds to the solitary wave solutions𝑤
2
(𝑥, 𝑦, 𝑡) of

the system (3).
(2) When 2√𝑘𝑐 < 𝑟 < 4√3𝑘𝑐/3, the system (11) has exact

solitary wave solutions 𝑞
3
(𝑥, 𝑦, 𝑡), which correspond to

the solitary wave solutions𝑤
3
(𝑥, 𝑦, 𝑡) of the system (3).

Theorem 10. Under conditions (𝐼), the following results hold.

(1) When 𝑟 = −2√𝑘𝑐, the system (11) has an exact smooth
kink wave solution 𝑞

4
(𝑥, 𝑦, 𝑡), which corresponds to
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Figure 8: The kink (antikink) wave solutions of system (11) and (3) when 𝑟 = 2√𝑘𝑐, 𝑘 > 0, 𝑐 > 0, and Δ ≥ 0.

the kink wave solution 𝑤
4
(𝑥, 𝑦, 𝑡) of the system (3),

respectively.

(2) When 𝑟 = 2√𝑘𝑐, the system (11) has an exact smooth
kink wave solution 𝑞

5
(𝑥, 𝑦, 𝑡), which corresponds to the

kink wave solution 𝑤
5
(𝑥, 𝑦, 𝑡) of the system (3).

5. Discussion

In this work we obtain all wave solutions of the complete
integrability of the (2+1)-dimensional nonlinear evolution
equation, the third model, by dynamical systems method.
This method can be used for the remaining three models.
By determining the necessary condition for the complete

integrability of these models in [3], multiple kink solutions
and multiple singular kink solutions were formally derived
for the third model. Compared to the method in [3], the
necessary condition which is among the coefficients of the
spatial variables is not necessary in our method. In [11], only
solitary wave solutions are obtained by a special traveling
wave transform. To our knowledge, we completely obtain all
solitary wave solutions and kink (antikink) wave solutions
for these models by the bifurcation method of dynamical
system.The idea of applying themethod of dynamical system
to research the complete integrability can be used for other
models.This will be examined in forthcoming works. For the
remaining three models, we can follow the same approach to
derive all wave solutions for them.
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