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We consider nonlinear impulsive differential equations with 𝜓-exponential and 𝜓-ordinary dichotomous linear part in a Banach
space. By the help of Banach’s fixed-point principle sufficient conditions are found for the existence of 𝜓-bounded solutions of these
equations on R and R

+
.

1. Introduction

Impulsive differential equations are an adequate mathemati-
cal apparatus for simulation of numerous processes and phe-
nomena in biology, physics, chemistry, control theory, and
so forth which during their evolutionary development are
subject to short time perturbations in the form of impulses.
The qualitative investigation of these processes began with
the work of Mil’man and Myshkis [1]. For the first time such
equations were considered in an arbitrary Banach space in
[2–5].

The problem of 𝜓-boundedness and 𝜓-stability of the
solutions of differential equations in finite dimensional
Euclidean spaces, introduced for the first time by Akinyele
[6], has been studied since then by many authors. A beautiful
explanation about the benefits of such a use of weighted
stability and boundedness can be found, for example, in [7].
Inspired by the famous monographs of Coppel [8], Daleckii
and Krein [9], and Massera and Schaeffer [10], where the
important notion of exponential and ordinary dichotomy
for ordinary differential equations is considered in detail,
Diamandescu [11–13] and Boi [14, 15] introduced and studied
the 𝜓-dichotomy for linear differential equations in a finite
dimensional Euclidean space, where 𝜓 is a nonnegative
continuous diagonal matrix function. The concept of 𝜓-
dichotomy for arbitrary Banach spaces was introduced and

studied in [16, 17]. In this case 𝜓(𝑡) is an arbitrary bounded
invertible linear operator.

A weighted dichotomy for linear differential equations
with impulse effect in arbitrary Banach spaces is considered
in [18] for a 𝜓-exponential dichotomy and in [19] for the
particular case of 𝜓-ordinary dichotomy.

This paper considers nonlinear perturbed impulsive dif-
ferential equations with a 𝜓-dichotomous liner part in an
arbitrary Banach space. We will show that some properties of
these equations will be influenced by the corresponding 𝜓-
dichotomous impulsive homogeneous linear equation. Suf-
ficient conditions for existence of 𝜓-bounded solutions of
this equations on R and R

+
in case of 𝜓-exponential or 𝜓-

ordinary dichotomy are found.

2. Preliminaries

Let𝑋 be an arbitrary Banach space with norm | ⋅ | and identity
Id. By 𝐽 we will denoteR orR

+
= [0, ∞) and by 𝐼 eitherZ or

N ∪ {0}.
We consider the nonlinear impulsive differential equation

d𝑥

d𝑡
= 𝐴 (𝑡) 𝑥 + 𝐹 (𝑡, 𝑥) (𝑡 ̸= 𝑡

𝑛
) , (1)

𝑥 (𝑡
+

𝑛
) = 𝑄

𝑛
𝑥 (𝑡
𝑛
) + 𝐻
𝑛

(𝑥 (𝑡
𝑛
)) (𝑛 ∈ 𝐼) , (2)
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where 𝑇 = {𝑡
𝑛
}
𝑛∈𝐼

is a finite or infinite sequence in 𝐽. We will
say that condition (H1) is satisfied if the following conditions
hold:

(H 1.1) 𝐴(𝑡) (𝑡 ∈ 𝐽) is a continuous operator-valued function
with values in the Banach space 𝐿𝐵(𝑋) of all linear
bounded operators acting in 𝑋 with the norm ‖ ⋅ ‖.

(H 1.2) 𝑄
𝑛

∈ 𝐿𝐵(𝑋) (𝑛 ∈ 𝐼).
(H 1.3) The function 𝐹(𝑡, 𝑥) : 𝐽 × 𝑋 → 𝑋 is continuous with

respect to 𝑡.
(H 1.4) 𝐻

𝑛
: 𝑋 → 𝑋 (𝑛 ∈ 𝐼) are continuous operators.

(H 1.5) 𝑡
𝑛

< 𝑡
𝑛+1

and lim
𝑛→±∞

𝑡
𝑛

= ±∞ (𝑛 ∈ 𝐼).

Consider the corresponding linear impulsive equation

d𝑥

d𝑡
= 𝐴 (𝑡) 𝑥 (𝑡 ̸= 𝑡

𝑛
, 𝑛 ∈ 𝐼) , (3)

𝑥 (𝑡
+

𝑛
) = 𝑄

𝑛
𝑥 (𝑡
𝑛
) (𝑛 ∈ 𝐼) . (4)

Definition 1. By a solution of the impulsive equation (1), (2)
(or (3), (4)) we will call a function 𝑥(𝑡) which for 𝑡 ̸= 𝑡

𝑛

satisfies (1) (or (3)) and for 𝑡 = 𝑡
𝑛
satisfies condition (2) (or

(4)) and is continuous from the left.

As shown, for instance in [3, 4], if the operators 𝑄
𝑛
have

bounded inverse ones, then for the impulsive linear equation
(3), (4) there exists a Cauchy operator 𝑉(𝑡), (𝑡 ∈ 𝐽) by means
of which each solution 𝑥(𝑡) of (3), (4) for which 𝑥(𝑠) = 𝜉 ∈ 𝑋

has the form

𝑥 (𝑡) = 𝑉 (𝑡) 𝑉
−1

(𝑠) 𝜉 (𝑡, 𝑠 ∈ 𝐽) . (5)

Let 𝑅𝐿(𝑋) be the subspace of all invertible operators in
𝐿𝐵(𝑋) whose inverse operators are bounded too. Let 𝜓(𝑡) :

𝐽 → 𝑅𝐿(𝑋) be continuous with respect to 𝑡 ∈ 𝐽 operator
function.

Definition 2. A function 𝑢(𝑡) : 𝐽 → 𝑋 is said to be 𝜓-
bounded on 𝐽 if 𝜓(𝑡)𝑢(𝑡) is bounded on 𝐽.

Let𝐶
𝜓
(𝑋, 𝑇) be the space of all𝜓-bounded on 𝐽 functions

with values in 𝑋 which are continuous for 𝑡 ∉ 𝑇, have
discontinuities of the first kind for 𝑡 ∈ 𝑇, and are continuous
from the left, which is a Banach space with the norm

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

= sup
𝑡∈𝐽

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑓 (𝑡)
󵄨󵄨󵄨󵄨 . (6)

Definition 3. The linear impulsive equation (3), (4) is said to
have a 𝜓-exponential dichotomy on 𝐽 if there exist a pair of
mutually complementary projections 𝑃

1
and 𝑃
2

= Id− 𝑃
1
and

positive constants 𝑁
1
, 𝑁
2
, ]
1
, ]
2
such that

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

1
𝑉
−1

(𝑠) 𝜓
−1

(𝑠)
󵄩󵄩󵄩󵄩󵄩

≤ 𝑁
1
𝑒
−]1(𝑡−𝑠)

(𝑠 ≤ 𝑡, 𝑠, 𝑡 ∈ 𝐽) ,

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

2
𝑉
−1

(𝑠) 𝜓
−1

(𝑠)
󵄩󵄩󵄩󵄩󵄩

≤ 𝑁
2
𝑒
−]2(𝑠−𝑡)

(𝑡 ≤ 𝑠, 𝑠, 𝑡 ∈ 𝐽) .

(7)

Equation (3), (4) is said to have a 𝜓-ordinary dichotomy on
𝐽 if (7) hold with ]

1
= ]
2

= 0. In this case we denote 𝑁 =

max{𝑁
1
, 𝑁
2
}.

Remark 4. For 𝜓(𝑡) = Id for all 𝑡 ∈ 𝐽 we obtain the
notion exponential and ordinary dichotomy for impulsive
differential equations considered in [3, 20, 21]. That is why
our main results in this paper appear as a generalization of
some results there.

Let us introduce the principal Green function of the
nonhomogeneous equation corresponding to (3), (4) with the
projections 𝑃

1
and 𝑃

2
from the definition for 𝜓-exponential

dichotomy

𝐺 (𝑡, 𝑠) =
{

{

{

𝑉 (𝑡) 𝑃
1
𝑉
−1

(𝑠) (𝑡 > 𝑠, 𝑡, 𝑠 ∈ 𝐽)

−𝑉 (𝑡) 𝑃
2
𝑉
−1

(𝑠) (𝑡 < 𝑠, 𝑡, 𝑠 ∈ 𝐽) .
(8)

Definition 5. The nonnegative function 𝑚(𝑡) is said to be
integrally bounded on 𝐽 if for some 𝑙 the following inequality
holds:

𝐵 (𝑚 (𝑡)) = sup
𝑡∈𝐽

∫

𝑡+𝑙

𝑡

𝑚 (𝑠) d𝑠 < ∞. (9)

Definition 6. The sequence of nonnegative numbers {𝑚
𝑛
}
𝑛∈𝐼

is said to be integrally bounded if for some 𝑙 the following
inequality holds:

𝐵 (𝑚
𝑗
) = sup
𝑡∈𝐼

∑

𝑡≤𝑡𝑗<𝑡+𝑙

𝑚
𝑗

< ∞. (10)

For each integrable on 𝐽 function 𝑚(𝑡) we introduce the
notation

𝐿 (𝑚 (𝑡)) = ∫
𝐽

𝑚 (𝑠) d𝑠 (11)

and for each summable on 𝐼 sequence of nonnegative num-
bers {𝑚

𝑛
}
𝑛∈𝐼

the notation

𝐿 (𝑚
𝑗
) = ∑

𝑗∈𝐼

𝑚
𝑗
. (12)

Definition 7. Let 𝑟 > 0 be an arbitrary number. We will say
that the function 𝐹(𝑡, 𝑥) (𝑡 ∈ 𝐽, 𝑥 ∈ 𝑋) and the operators
𝐻
𝑗

(𝑗 ∈ 𝐼) satisfy the condition (H2) with the operator
function 𝜓(𝑡) : 𝐽 → 𝑅𝐿(𝑋), if there exist positive functions
𝑚(𝑡), 𝑘(𝑡) (𝑡 ∈ 𝐽) and sequences of nonnegative numbers
{𝑚
𝑛
}
𝑛∈𝐼

, {𝑘
𝑛
}
𝑛∈𝐼

such that

(H 2.1) |𝜓(𝑡)𝐹(𝑡, 𝑥)| ≤ 𝑚(𝑡) (|𝜓(𝑡)𝑥| ≤ 𝑟, 𝑡 ∈ 𝐽);
(H 2.2) |𝜓(𝑡)(𝐹(𝑡, 𝑥

1
) − 𝐹(𝑡, 𝑥

2
))| ≤ 𝑘(𝑡)|𝜓(𝑡)(𝑥

1
−

𝑥
2
)| (|𝜓(𝑡)𝑥

1
|, |𝜓(𝑡)𝑥

2
| ≤ 𝑟, 𝑡 ∈ 𝐽);

(H 2.3) |𝜓(𝑡
𝑗
)𝐻
𝑗
(𝑥)| ≤ 𝑚

𝑗
(|𝜓(𝑡
𝑗
)𝑥| ≤ 𝑟, 𝑗 ∈ 𝐼);

(H 2.4) |𝜓(𝑡
𝑗
)(𝐻
𝑗
(𝑥
1
) − 𝐻

𝑗
(𝑥
2
))| ≤ 𝑘

𝑗
|𝜓(𝑡
𝑗
)(𝑥
1

−

𝑥
2
)| (|𝜓(𝑡

𝑗
)𝑥
1
|, |𝜓(𝑡

𝑗
)𝑥
2
| ≤ 𝑟, 𝑗 ∈ 𝐼).
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Definition 8. We say that the function 𝐹(𝑡, 𝑥) and the
operators 𝐻

𝑗
belong to the class 𝐸𝐷

𝜓
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑟) if the

condition (H2) is fulfilled with the operator function 𝜓(𝑡),
the functions 𝑚(𝑡), 𝑘(𝑡) are integrally bounded on 𝐽 and
𝐵(𝑚(𝑡)) ≤ 𝑎

1
, 𝐵(𝑘(𝑡)) ≤ 𝑎

2
, and the sequences {𝑚

𝑗
} and {𝑘

𝑗
}

are integrally bounded and 𝐵(𝑚
𝑗
) ≤ 𝑎
3
, 𝐵(𝑘
𝑗
) ≤ 𝑎
4
.

Definition 9. We say that the function 𝐹(𝑡, 𝑥) and the opera-
tors 𝐻

𝑗
belong to the class 𝐷

𝜓
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑟) if the condition

(H2) is fulfilled with the operator function𝜓(𝑡), the functions
𝑚(𝑡), 𝑘(𝑡) are integrable on 𝐽 and 𝐿(𝑚(𝑡)) ≤ 𝑎

1
, 𝐿(𝑘(𝑡)) ≤ 𝑎

2
,

and the sequences {𝑚
𝑗
} and {𝑘

𝑗
} are summable on 𝐼 and

𝐿(𝑚
𝑗
) ≤ 𝑎
3
, 𝐿(𝑘
𝑗
) ≤ 𝑎
4
.

3. Main Results

Theorem 10. Let the following conditions be fulfilled:

(1) The linear impulsive differential equation (3), (4) (i.e.,
the linear part of (1), (2)) has 𝜓-exponential dichotomy
on R with projections 𝑃

1
and 𝑃

2
.

(2) Conditions (H1) and (H2) hold.

(3) The function 𝐹(𝑡, 𝑥) and the operators 𝐻
𝑗
belong to the

class 𝐸𝐷
𝜓
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑟).

(4) The operators 𝑄
𝑛
have bounded inverse ones.

Then for an arbitrary 𝑟 > 0, for sufficient small values of 𝑎
1
,

𝑎
2
, 𝑎
3
, 𝑎
4
the impulsive equation (1), (2) has a unique solution

𝑥(𝑡), which is defined for 𝑡 ∈ R and for which |𝜓(𝑡)𝑥(𝑡)| ≤

𝑟 (𝑡 ∈ R).

Proof. Let 𝐽 = R. Consider in the space𝐶
𝜓
(𝑋, 𝑇) the operator

𝑄 : 𝐶
𝜓
(𝑋, 𝑇) → 𝐶

𝜓
(𝑋, 𝑇) defined by the formula

𝑄𝑥 (𝑡) = ∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
)) ,

(13)

where 𝐺 is defined by (8).
Now we will show that the ball

𝑆
𝜓,𝑟

= {𝑥 : |‖𝑥‖|
𝐶𝜓

≤ 𝑟} (14)

is invariant with respect to 𝑄 and the operator 𝑄 is contract-
ing.

First we will prove that the operator 𝑄 maps the ball 𝑆
𝜓,𝑟

into itself. One has

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

−∞

𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

𝑡

𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡𝑗<𝑡

𝜓 (𝑡) 𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡≤𝑡𝑗

𝜓 (𝑡) 𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(15)

We will estimate the addends in (15). For 𝑥 ∈ 𝑆
𝜓,𝑟

we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

−∞

𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

−∞

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
1
𝑉
−1

(𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

−∞

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
1
𝑉
−1

(𝜏) 𝜓
−1

(𝜏) 𝜓 (𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

1
𝑉
−1

(𝜏) 𝜓
−1

(𝜏)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜓 (𝜏)

⋅ 𝐹 (𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨 d𝜏 ≤ 𝑁

1
∫

𝑡

−∞

𝑒
−]1(𝑡−𝜏)𝑚 (𝜏) d𝜏

≤ 𝑁
1

∫
𝑠≤0

𝑒
]1𝑠𝑚 (𝑡 + 𝑠) d𝑠 ≤ 𝑁

1
𝑎
1

∞

∑

𝑘=0

𝑒
−]1𝑘

≤
𝑁
1
𝑎
1

1 − 𝑒−]1
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

𝑡

𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

𝑡

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
2
𝑉
−1

(𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

𝑡

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
2
𝑉
−1

(𝜏) 𝜓
−1

(𝜏) 𝜓 (𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

∞

𝑡

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

2
𝑉
−1

(𝜏) 𝜓
−1

(𝜏)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜓 (𝜏)

⋅ 𝐹 (𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨 d𝜏 ≤ 𝑁

2
∫

∞

𝑡

𝑒
−]2(𝜏−𝑡)𝑚 (𝜏) d𝜏

≤ 𝑁
2

∫
𝑠≥0

𝑒
−]2𝑠𝑚 (𝑡 + 𝑠) d𝑠 ≤ 𝑁

2
𝑎
1

∞

∑

𝑘=0

𝑒
−]2𝑘

≤
𝑁
2
𝑎
1

1 − 𝑒−]2
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡𝑗<𝑡

𝜓 (𝑡) 𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡𝑗<𝑡

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
1
𝑉
−1

(𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡𝑗<𝑡

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
1
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
) 𝜓 (𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤ ∑

𝑡𝑗<𝑡

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

1
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡
𝑗
)

⋅ 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨
≤ 𝑁
1

(∑

𝑡𝑗<𝑡

𝑒
]1(𝑡𝑗−𝑡)𝑚

𝑗
) ≤

𝑁
1
𝑎
3

1 − 𝑒−]1𝑙
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡≤𝑡𝑗

𝜓 (𝑡) 𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡≤𝑡𝑗

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
2
𝑉
−1

(𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑡≤𝑡𝑗

𝜓 (𝑡) 𝑉 (𝑡)

⋅ 𝑃
2
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
) 𝜓 (𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑

𝑡≤𝑡𝑗

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

2
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡
𝑗
)

⋅ 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨
≤ 𝑁
2

(∑

𝑡≤𝑡𝑗

𝑒
]2(𝑡−𝑡𝑗)𝑚

𝑗
) ≤

𝑁
2
𝑎
3

1 − 𝑒−]2𝑙
.

(16)

From the estimates (16) it follows that

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤

𝑁
1
𝑎
1

1 − 𝑒−]1
+

𝑁
2
𝑎
1

1 − 𝑒−]2
+

𝑁
1
𝑎
3

1 − 𝑒−]1𝑙

+
𝑁
2
𝑎
3

1 − 𝑒−]2𝑙
.

(17)

Hence by 𝑎
1

≤ 𝑟(𝑁
2
/(1 − 𝑒

−]2) + 𝑁
1
/(1 − 𝑒

−]1))
−1 and

𝑎
3

≤ (𝑁
2
/(1 − 𝑒

−]2𝑙) + 𝑁
1
/(1 − 𝑒

−]1𝑙))
−1 we obtain

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑟. (18)

Thus the operator 𝑄 maps the ball 𝑆
𝜓,𝑟

into it self.
Now we will prove that the operator 𝑄 is a contraction in

the ball 𝑆
𝜓,𝑟
. Let 𝑥

1
, 𝑥
2

∈ 𝑆
𝜓,𝑟
. Using the same technique as

above we obtain

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥
1

(𝑡) − 𝜓 (𝑡) 𝑄𝑥
2

(𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

∞

−∞

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝐺 (𝑡, 𝜏)

⋅ (𝐹 (𝜏, 𝑥
1

(𝜏)) − 𝐹 (𝜏, 𝑥
2

(𝜏)))
󵄨󵄨󵄨󵄨 d𝜏 +

∞

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡)

⋅ 𝐺 (𝑡, 𝑡
+

𝑗
) (𝐻
𝑗
(𝑥
1

(𝑡
𝑗
)) − 𝐻

𝑗
(𝑥
2

(𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨

≤ ∫

∞

−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝜓

−1

(𝜏)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜓 (𝜏)

⋅ (𝐹 (𝜏, 𝑥
1

(𝜏)) − 𝐹 (𝜏, 𝑥
2

(𝜏)))
󵄨󵄨󵄨󵄨 d𝜏 +

∞

∑

𝑗=−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡)

⋅ 𝑉 (𝑡) 𝑃
1
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡
𝑗
)

⋅ (𝐻
𝑗
(𝑥
1

(𝑡
𝑗
)) − 𝐻

𝑗
(𝑥
2

(𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨
≤ sup
𝜏∈𝐽

󵄨󵄨󵄨󵄨𝜓 (𝜏)

⋅ (𝑥
1

(𝜏) − 𝑥
2

(𝜏))
󵄨󵄨󵄨󵄨 ∫

∞

−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝜓

−1

(𝜏)
󵄩󵄩󵄩󵄩󵄩

⋅ 𝑘 (𝜏) d𝜏 + sup
𝜏∈𝐽

󵄨󵄨󵄨󵄨𝜓 (𝜏) (𝑥
1

(𝜏) − 𝑥
2

(𝜏))
󵄨󵄨󵄨󵄨

⋅

∞

∑

𝑗=−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

1
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
)
󵄩󵄩󵄩󵄩󵄩

𝑘
𝑗

≤ sup
𝜏∈𝐽

󵄨󵄨󵄨󵄨𝜓 (𝜏) (𝑥
1

(𝜏) − 𝑥
2

(𝜏))
󵄨󵄨󵄨󵄨 (

𝑁
2
𝑎
2

1 − 𝑒−]2
+

𝑁
1
𝑎
2

1 − 𝑒−]1

+
𝑁
2
𝑎
4

1 − 𝑒−]2𝑙
+

𝑁
1
𝑎
4

1 − 𝑒−]1𝑙
) .

(19)

Hence
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑄𝑥
1

− 𝑄𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

≤ (
𝑁
2
𝑎
2

1 − 𝑒−]2
+

𝑁
1
𝑎
2

1 − 𝑒−]1
+

𝑁
2
𝑎
4

1 − 𝑒−]2𝑙
+

𝑁
1
𝑎
4

1 − 𝑒−]1𝑙
)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥
1

− 𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

.

(20)

Thus by 𝑎
2

< (𝑁
2
/(1 − 𝑒

−]2) + 𝑁
1
/(1 − 𝑒

−]1))
−1 and 𝑎

4
<

(𝑁
2
/(1 − 𝑒

−]2𝑙) + 𝑁
1
/(1 − 𝑒

−]1𝑙))
−1 the operator 𝑄 is a

contraction in the ball 𝑆
𝜓,𝑟
.

From Banach’s fixed point principle, the existence of a
unique fixed point of the operator 𝑄 follows.

It is not hard to verify that each solution of the impulsive
differential equation (1), (2) which lies in the ball 𝑆

𝜓,𝑟
is also

a solution of the equation

𝑥 (𝑡) = 𝑄𝑥 (𝑡) (21)

and vice versa.

Corollary 11. If the conditions of Theorem 10 are fulfilled and
if, moreover, 𝐹(𝑡, 0) = 0 (𝑡 ∈ R), then 𝑥 = 0 is a unique
solution of (1), (2) in 𝐶

𝜓
(𝑋, 𝑇).

Theorem 12. Let the following conditions be fulfilled:

(1) The linear impulsive differential equation (3), (4) (i.e.,
the linear part of (1), (2)) has 𝜓-exponential dichotomy
on R with projections 𝑃

1
and 𝑃

2
.

(2) Conditions (H1) and (H2) hold.
(3) The function 𝐹(𝑡, 𝑥) and the operators 𝐻

𝑗
belong to the

class 𝐷
𝜓
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑟).

(4) The operators 𝑄
𝑛
have bounded inverse ones.

Then for an arbitrary 𝑟 > 0, for sufficient small values of 𝑎
1
,

𝑎
2
, 𝑎
3
, 𝑎
4
the impulsive equation (1), (2) has a unique solution

𝑥(𝑡), which is defined for 𝑡 ∈ R and for which |𝜓(𝑡)𝑥(𝑡)| ≤

𝑟 (𝑡 ∈ R).

Proof. Let 𝐽 = R. In the proof ofTheorem 10 itwasmentioned
that each solution 𝑥(𝑡) of the impulsive differential equation
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(1), (2) that remains for 𝑡 ∈ 𝐽 in the ball 𝑆
𝜓,𝑟

satisfies the
equation

𝑥 (𝑡) = ∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

(22)

and vice versa.
We consider again in the space 𝐶

𝜓
(𝑋, 𝑇) the operator 𝑄 :

𝐶
𝜓
(𝑋, 𝑇) → 𝐶

𝜓
(𝑋, 𝑇) defined in (13). For |𝜓(𝑡)𝑄𝑥(𝑡)| we

obtain the following estimate:

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

∞

−∞

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨 d𝜏

+

∞

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡) 𝐺 (𝑡, 𝑡

+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨
≤ ∫

∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡)

⋅ 𝐺 (𝑡, 𝜏) 𝜓
−1

(𝜏) 𝜓 (𝜏) 𝐹 (𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨󵄨
d𝜏 +

∞

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡)

⋅ 𝑉 (𝑡) 𝑃
1
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
) 𝜓 (𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨

≤ ∫

∞

−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝜓

−1

(𝜏)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜓 (𝜏) 𝐹 (𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨 d𝜏

+

∞

∑

𝑗=−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝑉 (𝑡) 𝑃

1
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡
𝑗
)

⋅ 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨
≤ 𝑁 ∫

∞

−∞

󵄨󵄨󵄨󵄨𝜓 (𝜏) 𝐹 (𝜏, 𝑥 (𝜏))
󵄨󵄨󵄨󵄨 d𝜏

+ 𝑁

∞

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡
𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
))

󵄨󵄨󵄨󵄨󵄨
= 𝑁 ∫

∞

−∞

𝑚 (𝜏) d𝜏

+ 𝑁

∞

∑

𝑗=−∞

𝑚
𝑗

= 𝑁 (𝐿 (𝑚 (𝑡)) + 𝐿 (𝑚
𝑗
)) ≤ 𝑁 (𝑎

1

+ 𝑎
3
) .

(23)

Thus by sufficiently small 𝑎
1
and 𝑎
3
the operator 𝑄 maps

the ball 𝑆
𝜓,𝑟

into it self.
Now we will prove that the operator 𝑄 is a contraction in

the ball 𝑆
𝜓,𝑟
. Let 𝑥

1
, 𝑥
2

∈ 𝑆
𝜓,𝑟
. We obtain

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥
1

(𝑡) − 𝜓 (𝑡) 𝑄𝑥
2

(𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

∞

−∞

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝐺 (𝑡, 𝜏)

⋅ (𝐹 (𝜏, 𝑥
1

(𝜏)) − 𝐹 (𝜏, 𝑥
2

(𝜏)))
󵄨󵄨󵄨󵄨 d𝜏 +

∞

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡)

⋅ 𝐺 (𝑡, 𝑡
+

𝑗
) (𝐻
𝑗
(𝑥
1

(𝑡
𝑗
)) − 𝐻

𝑗
(𝑥
2

(𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨

≤ ∫

∞

−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡) 𝐺 (𝑡, 𝜏) 𝜓

−1

(𝜏)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜓 (𝜏)

⋅ (𝐹 (𝜏, 𝑥
1

(𝜏)) − 𝐹 (𝜏, 𝑥
2

(𝜏)))
󵄨󵄨󵄨󵄨 d𝜏 +

∞

∑

𝑗=−∞

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑡)

⋅ 𝑉 (𝑡) 𝑃
1
𝑉
−1

(𝑡
+

𝑗
) 𝜓
−1

(𝑡
+

𝑗
)
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑡
𝑗
)

⋅ (𝐻
𝑗
(𝑥
1

(𝑡
𝑗
)) − 𝐻

𝑗
(𝑥
2

(𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨
≤ 𝑁 sup
𝜏∈𝐽

󵄨󵄨󵄨󵄨𝜓 (𝜏)

⋅ (𝑥
1

(𝜏) − 𝑥
2

(𝜏))
󵄨󵄨󵄨󵄨 (∫

∞

−∞

𝑘 (𝜏) d𝜏 +

∞

∑

𝑗=−∞

𝑘
𝑗
) ≤ 𝑁

⋅ sup
𝜏∈𝐽

󵄨󵄨󵄨󵄨𝜓 (𝜏) (𝑥
1

(𝜏) − 𝑥
2

(𝜏))
󵄨󵄨󵄨󵄨 (𝑎
2

+ 𝑎
4
) .

(24)

Hence
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑄𝑥
1

− 𝑄𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

≤ 𝑁 (𝑎
2

+ 𝑎
4
)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥
1

− 𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

. (25)

Thus by sufficiently small 𝑎
2
and 𝑎

4
the operator 𝑄 is a

contraction in the ball 𝑆
𝜓,𝑟
.

From Banach’s fixed point principle follows the existence
of a unique fixed point of the operator 𝑄.

Theorem 13. Let the following conditions be fulfilled:
(1) The linear impulsive differential equation (3), (4) (i.e.,

the linear part of (1), (2)) has 𝜓-exponential dichotomy
on R with projections 𝑃

1
and 𝑃

2
.

(2) Conditions (H1) and (H2) hold.
(3) The function 𝐹(𝑡, 𝑥) and the operators 𝐻

𝑗
belong to the

class 𝐸𝐷
𝜓
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑟).

(4) The operators 𝑄
𝑛
have bounded inverse ones.

Then for any 𝑟 > 0 by sufficient small 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
there

exists 𝜌 < 𝑟 such that the impulsive equation (1), (2) has for
each 𝜉 ∈ 𝑋

1
= 𝑃
1
𝑋 with |𝜓(0)𝜉| ≤ 𝜌 a unique solution 𝑥(𝑡) on

𝑅
+
for which 𝑃

1
𝑥(0) = 𝜉 and |𝜓(𝑡)𝑥(𝑡)| ≤ 𝑟 (𝑡 ∈ R

+
).

Proof. Let 𝐽 = R
+
and 𝑥(𝑡) be a solution of (1), (2) that

remains for 𝑡 ∈ 𝐽 in the ball 𝑆
𝜓,𝑟

= {𝑥 : |‖𝑥‖|
𝐶𝜓

≤ 𝑟}. From the
results obtained in [18, Theorem 1 and Remark 2] it follows
that such 𝑥(𝑡) satisfies the integral equation

𝑥 (𝑡) = 𝑉 (𝑡) 𝜉 + ∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
)) ,

(26)

where 𝜉 = 𝑃
1
𝑥(0). The converse is also true: a solution of the

(26) satisfies the differential equation (1), (2) for 𝑡 ∈ 𝐽.
Let 𝜉 ∈ 𝑋

1
and |𝜓(0)𝜉| ≤ 𝜌 < 𝑟. We consider in the space

𝐶
𝜓
(𝑋, 𝑇) the operator 𝑄 : 𝐶

𝜓
(𝑋, 𝑇) → 𝐶

𝜓
(𝑋, 𝑇) defined by

the formula

𝑄𝑥 (𝑡) = 𝑉 (𝑡) 𝜉 + ∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
)) .

(27)
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First we will prove that the operator 𝑄 maps the ball 𝑆
𝜓,𝑟

into it self. Indeed one has

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑉 (𝑡) 𝜉
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓 (𝑡)

⋅ (∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(28)

For the first addend with 𝜌 ≤ 𝑟/2𝑁
1
we obtain

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑉 (𝑡) 𝜉
󵄨󵄨󵄨󵄨 ≤ 𝑁
1
𝑒
−]1𝑡 󵄨󵄨󵄨󵄨𝜓 (0) 𝜉

󵄨󵄨󵄨󵄨 ≤ 𝑁
1
𝑒
−]1𝑡𝜌 ≤

𝑟

2
. (29)

Using the same technique as in the proof of Theorem 10 we
obtain for the second addend the estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓 (𝑡) (∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑁
1
𝑎
1

1 − 𝑒−]1

+
𝑁
2
𝑎
1

1 − 𝑒−]2
+

𝑁
1
𝑎
3

1 − 𝑒−]1𝑙
+

𝑁
2
𝑎
3

1 − 𝑒−]2𝑙
.

(30)

Hence by 𝑎
1

≤ (𝑟/2)(𝑁
2
/(1 − 𝑒

−]2) + 𝑁
1
/(1 − 𝑒

−]1))
−1 and

𝑎
3

≤ (𝑟/2)(𝑁
2
/(1 − 𝑒

−]2𝑙) + 𝑁
1
/(1 − 𝑒

−]1𝑙))
−1 we obtain

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑟. (31)

Thus the operator 𝑄 maps the ball 𝑆
𝜓,𝑟

into it self.
Now we will prove that the operator 𝑄 is a contraction in

the ball 𝑆
𝜓,𝑟
. Let 𝑥

1
, 𝑥
2

∈ 𝑆
𝜓,𝑟
. We obtain as in the proof of

Theorem 10 the estimate
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑄𝑥
1

− 𝑄𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

≤ (
𝑁
2
𝑎
2

1 − 𝑒−]2
+

𝑁
1
𝑎
2

1 − 𝑒−]1
+

𝑁
2
𝑎
4

1 − 𝑒−]2𝑙
+

𝑁
1
𝑎
4

1 − 𝑒−]1𝑙
)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥
1

− 𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

.

(32)

By 𝑎
2

< (𝑁
2
/(1 − 𝑒

−]2) + 𝑁
1
/(1 − 𝑒

−]1))
−1 and 𝑎

4
< (𝑁
2
/(1 −

𝑒
−]2𝑙) + 𝑁

1
/(1 − 𝑒

−]1𝑙))
−1 the operator 𝑄 is a contraction in the

ball 𝑆
𝜓,𝑟
.

From Banach’s fixed point principle the existence of a
unique fixed point of the operator 𝑄 follows.

Theorem 14. Let the following conditions be fulfilled:

(1) The linear impulsive differential equation (3), (4) (i.e.,
the linear part of (1), (2)) has 𝜓-exponential dichotomy
on R with projections 𝑃

1
and 𝑃

2
.

(2) Conditions (H1) and (H2) hold.
(3) The function 𝐹(𝑡, 𝑥) and the operators 𝐻

𝑗
belong to the

class 𝐷
𝜓
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑟).

(4) The operators 𝑄
𝑛
have bounded inverse ones.

Then for any 𝑟 > 0 by sufficient small 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
there

exists 𝜌 < 𝑟 such that the impulsive equation (1), (2) has for
each 𝜉 ∈ 𝑋

1
= 𝑃
1
𝑋 with |𝜓(0)𝜉| ≤ 𝜌 a unique solution 𝑥(𝑡) on

𝑅
+
for which 𝑃

1
𝑥(0) = 𝜉 and |𝜓(𝑡)𝑥(𝑡)| ≤ 𝑟 (𝑡 ∈ R

+
).

Proof. Let 𝐽 = R
+
, 𝜉 ∈ 𝑋

1
, and |𝜓(0)𝜉| ≤ 𝜌 < 𝑟. We consider

again in the space 𝐶
𝜓
(𝑋, 𝑇) the operator 𝑄 : 𝐶

𝜓
(𝑋, 𝑇) →

𝐶
𝜓
(𝑋, 𝑇) defined by formula (27).
First we will prove that the operator 𝑄 maps the ball 𝑆

𝜓,𝑟

into it self. One has

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑄𝑥 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑉 (𝑡) 𝜉
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓 (𝑡)

⋅ (∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(33)

For the first addend with 𝜌 ≤ 𝑟/2𝑁
1
we obtain

󵄨󵄨󵄨󵄨𝜓 (𝑡) 𝑉 (𝑡) 𝜉
󵄨󵄨󵄨󵄨 ≤ 𝑁
1
𝑒
−]1𝑡 󵄨󵄨󵄨󵄨𝜓 (0) 𝜉

󵄨󵄨󵄨󵄨 ≤ 𝑁
1
𝑒
−]1𝑡𝜌 ≤

𝑟

2
. (34)

For the second addend with 𝑎
1

+ 𝑎
3

≤ 𝑟/2𝑁 as in the proof of
Theorem 12 one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓 (𝑡) (∫

∞

−∞

𝐺 (𝑡, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) d𝜏

+

∞

∑

𝑗=−∞

𝐺 (𝑡, 𝑡
+

𝑗
) 𝐻
𝑗
(𝑥 (𝑡
𝑗
)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑁 (𝑎
1

+ 𝑎
3
) ≤

𝑟

2
.

(35)

Thus the operator 𝑄 maps the ball 𝑆
𝜓,𝑟

into it self.
Let 𝑥
1
, 𝑥
2

∈ 𝑆
𝜓,𝑟
. As in the proof ofTheorem 12 we obtain

the estimate
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑄𝑥
1

− 𝑄𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

≤ 𝑁 (𝑎
2

+ 𝑎
4
)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥
1

− 𝑥
2

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐶𝜓

. (36)

Hence by 𝑎
2

+ 𝑎
4

< 𝑁
−1 the operator 𝑄 is a contraction in the

ball 𝑆
𝜓,𝑟
.

From Banach’s fixed point principle the existence of a
unique fixed point of the operator 𝑄 follows.

In the proof of Theorem 13 it was already mentioned that
every solution of the impulsive differential equation (1), (2)
which lies in the ball 𝑆

𝜓,𝑟
fulfills the equality

𝑥 (𝑡) = 𝑄𝑥 (𝑡) (37)

and vice versa.
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