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The relation between phase-type representation and positive system realization in both the discrete and continuous time is
discussed. Using the Perron-Frobenius theorem of nonnegative matrix theory, a transformation from positive realization to
phase-type realization is derived under the excitability condition. In order to explain the connection, some useful properties
and characteristics such as irreducibility, excitability, transparency, and order reduction for positive realization and phase-type
representation are discussed. In addition, the connection between the phase-type renewal process and the feedback positive system
is discussed in the stabilization concept.

1. Introduction

Positive systemproblemshave been developed in applications
areas such as biological models, production systems, and
economic applications. The realization problem for positive
system has extensively been considered in many research
papers as [1–5]. Many research activities and applications
have been devoted to the field of phase-type distributions
[6–8]. The positive representation problem finding a Markov
chain associated with phase-type distribution has consider-
able connections with the positive realization problem in the
control theory [9].

We will discuss the relationship between phase-type rep-
resentation and positive realization by using the Perron-Fro-
benius theorem introduced in [10–13].The Perron-Frobenius
theorem is an important concept for the study of positive
systems. For example, the Perron-Frobenius theorem can be
used to derive a transformation from positive realization to
phase-type representation. We use tools and results within
the broad research area of nonnegative matrix theory, which
enable us to explore the characteristics and properties of a
Metzler matrix and nonnegative matrix. Metzler matrices
are replaced by 𝑍-matrices, in particular, by the𝑀-matrices
introduced in [10–13].

The connection between phase-type and positive real-
ization has restrictively been proved in irreducible repre-
sentation cases by remarking that it can be easily simpli-
fied to an irreducible case by discarding some states [9].
Under the irreducible assumption, it is proven that the
positive realization can be transformed into a phase-type
representation [9]. We will show that a positive realization
normalized by a positive number can be transformed into
a phase-type representation. We modify the correspondence
between positive realizations and phase-type representations
under more general assumptions. We use excitable systems
as a subclass of the positive systems introduced in [2, 14].
However, the phase-type representation has a benefit that
the number of free parameters in the representation can be
reduced, compared with the general positive realization.

We will discuss the properties and characteristics, such
as irreducibility, excitability, transparency, and stabilization
introduced in [3, 8, 15–18]. Excitability and transparency are
similar to the reachability and observability of positive linear
systems [17, 18]. There exist unreachable and unobservable
positive states that are excitable and transparent [2, 14].
The properties of excitability and transparency are discussed
furthermore. We will demonstrate how to discard some
unnecessary states when a representation is not irreducible.
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The common connection between the phase-type renewal
process introduced in [7, 8] and the state feedback control
introduced in [15, 16] will be handled. In addition, the relation
and the common characteristics between discrete phase-type
distributions and discrete-time positive systems are discussed
in a similar manner to that applied to the continuous case.

An outline of the paper is as follows. In Section 2,
some relevant background materials, including definitions
and preliminary results are provided. Section 3 addresses the
relationship between phase-type distributions and positive
realizations in the continuous-time domain and discusses the
common properties and characteristics, such as irreducibil-
ity, excitability, transparency, and stabilization. Section 4
discusses the relationship and the common characteristics
between discrete phase-type and discrete-time positive sys-
tems in a similar manner to the continuous case. Finally, the
conclusions follow.

2. Preliminaries

Before proceeding, we introduce some basic notations. An 𝑛×
𝑛 nonnegative matrix 𝐴 is denoted by 𝐴 ≥ 0 if its entries are
nonnegative and at least one entry is positive. 𝐴 = [𝑎

𝑖𝑗
] is

defined by a strict positive matrix (i.e., 𝐴 > 0) if all entries
𝑎
𝑖𝑗
> 0. The associated directed graph, 𝐺(𝐴), consists of 𝑛

vertices {V
1
, . . . , V

𝑛
}, where 𝑎

𝑖𝑗
̸= 0 denotes an edge from V

𝑖

to V
𝑗
. A nonnegative matrix 𝐴 is said to be reducible if there

exists a permutation matrix 𝑃 such that

𝑃𝐴𝑃
𝑇
= [

𝐴
11
𝐴
12

0 𝐴
22

] , (1)

where 𝐴
11
and 𝐴

22
are square matrices and 𝑃𝑇 is defined by

the transpose of 𝑃. Otherwise, 𝐴 is called irreducible. It is
called a Frobenius normal form of 𝐴 if there exists a suitable
permutation 𝑃 such that 𝑃𝐴𝑃𝑇 is in block triangular of the
form

𝑃𝐴𝑃
𝑇
=

[
[
[
[
[
[
[

[

𝐴
11
𝐴
12
⋅ ⋅ ⋅ 𝐴

1𝑝

0 𝐴
22
⋅ ⋅ ⋅ 𝐴

2𝑝

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 𝐴
𝑝𝑝

]
]
]
]
]
]
]

]

, (2)

where 𝐴
𝑖𝑖
is square and either irreducible or a 1 × 1 null

matrix. The spectral radius of 𝐴, denoted by 𝜌(𝐴), is defined
by the largest absolute eigenvalue of 𝐴. The spectrum of 𝐴,
denoted by 𝜎(𝐴), is defined by the set of eigenvalues of 𝐴.
The dominant eigenvalue of 𝐴 is called by the maximal real
among the real eigenvalues of 𝐴, denoted by 𝜆max(𝐴).

A matrix 𝐴 ∈ R𝑛×𝑛 is said to be a Metzler matrix if all
of its off-diagonal elements are nonnegative. If 𝐴 is a Metzler
matrix, then there exist a nonnegativematrix 𝐵 ≥ 0 and some
𝛼 > 0 such that 𝐴 = 𝐵 − 𝛼𝐼. The real dominant eigenvalue of
𝐴 is defined by 𝜆max(𝐴) = 𝜌(𝐵) − 𝛼 if 𝜆max(𝐴) ≥ Re(𝜆) for
all 𝜆 ∈ 𝜎(𝐴). There is a long stream of research dealing with
𝑀-matrices and 𝑍-matrices instead of Metzler matrices [10].
Metzler matrices are replaced by 𝑍-matrices; that is, −𝐴 is a

𝑍-matrix if 𝐴 is a Metzler matrix. In particular, a matrix 𝐴 is
called an𝑀-matrix if any matrix 𝐴 is expressed in the form
𝐴 = 𝜂𝐼 − 𝐵 where 𝐵 ≥ 0 and 𝜂 ≥ 𝜌(𝐵).

Basic definitions and results of cone theory may be
needed within this paper. A set K is said to be a cone if
𝛼K ⊂ K for all 𝛼 ≥ 0. A cone is convex if for any two points
in K it contains the line segment between them. A convex
coneK is solid if the interior ofK is nonempty. It is pointed
if K ∩ (−K) = {0}. A closed pointed solid convex cone is
called a proper cone. A cone K is said to be polyhedral if
it can be expressed as the set of nonnegative combinations
of a finite set of generating vectors. We adopt the notation
K = Cone(𝐶) if K coincides with the set of nonnegative
combinations of the 𝑛 × 𝑘matrix 𝐶.

We discuss the phase-type distribution for a random vari-
able𝑋 ≥ 0 in the terms of a continuous-timeMarkov process.
A continuous-time Markov process is defined on 𝑛 + 1 finite
state space. The row vector 𝛽 gives the initial probabilities
with 𝑖 state probability𝛽

𝑖
. A phase-type distribution is defined

as the distribution of the time to absorption in a continuous-
time Markov chain (CTMC) with one absorbing state [8].
If the 𝑛 + 1 state is an absorbing state and all other states
are transient, we define a phase-type infinitesimal generator
matrix of the Markov chain, denoted by (𝐴, 𝑏, 𝛽), such that

𝐴 = [

𝐴 −𝐴1

0 0
] , 𝑏 = e

𝑛+1
,

𝛽 = [𝛽 𝛽
𝑛+1] ,

(3)

where 0 refers to the column vector, row vector, or matrix
with all entries equal to zero in the case without ambiguity,
e
𝑖
is the corresponding row vector whose 𝑖th entry is one

and the others are zero, and 1 is the column vector with all
entries being one. We can see that 𝛽

𝑛+1
= 0 if 𝛽1 = 1,

and 𝛽1 + 𝛽
𝑛+1

= 1 otherwise. Phase-type distributions are
commonly represented by a vector-matrix tuple (𝛽, 𝐴) that
describes the transient part of the CTMC. The vector-matrix
tuple (𝛽, 𝐴) is a phase-type (Markovian) representation of a
phase-type distribution if and only if 𝛽1 ≤ 1 and 𝛽 ≥ 0,
𝐴 is a Metzler matrix with 𝐴1 ≤ 0 and 𝐴1 ̸= 0, and 𝐴 is
nonsingular.

The probability density function (PDF), cumulative dis-
tribution function (CDF), and Laplace-Stieltjes transform
(LST) of the PDF, respectively, are defined by

𝑓 (𝑥) = 𝛽 exp (𝐴𝑥) (−𝐴1) ,

𝐹 (𝑥) = 1 − 𝛽 exp (𝐴𝑥) 1,

𝑓
∗
(𝑠) = 𝐸 (exp (𝑠𝑋)) = 𝛽 (𝑠𝐼 − 𝐴)−1 (−𝐴1) ,

(4)

where 𝐸(⋅) is an expectation. The ME (matrix exponential)
distribution is a generalization of the phase-type distribution.
A distribution function is called an ME distribution if there
exists the triple (𝐴, 𝑢, 𝛽) such that 𝐹(𝑥) = 1 − 𝛽 exp(𝐴𝑥)𝑢,
and there is no restriction on the elements of (𝐴, 𝑢, 𝛽).

We note that these representations of phase-type distri-
butions are equivalent to the state space realizations of linear
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systems in control. Let us consider single-input, single output
linear time-invariant systems of the form

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑦 (𝑡) = 𝐶𝑥 (𝑡) . (5)

The linear system in (5) is said to be a positive linear system
provided that, for any nonnegative input and nonnegative
initial state, the state trajectory and the output are always
nonnegative. Let a transfer function 𝐻(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵
be defined by the Laplace transform of the impulse response
function ℎ(𝑡) = 𝐶 exp(𝐴𝑡)𝐵 for 𝑡 ≥ 0 and, otherwise, ℎ(𝑡) = 0.
A triple (𝐴, 𝐵, 𝐶) is said to be a positive realization of𝐻(𝑠) in
a continuous-time linear positive system if and only if 𝐴 is a
Metzlermatrix,𝐵 ≥ 0, and𝐶 ≥ 0. A triple (𝐴, 𝐵, 𝐶) is denoted
by a minimal realization if (𝐴, 𝐵, 𝐶) is jointly completely
controllable and completely observable.

An integral function of ℎ(𝑡) is defined by ℎ
𝐼
(𝑡) = ∫

𝑡

0
ℎ(𝑡)𝑑𝑡

and ℎ
𝐼
(0) = 0. We can see that an augmented realization

(𝐴, 𝐵, 𝐶) of ℎ
𝐼
(𝑡) is defined by

𝐴 = (

𝐴 𝐵

0 0
) , 𝐵 = e

𝑛+1
,

𝐶 = (𝐶 0) .

(6)

The augmented realization (𝐴, 𝐵, 𝐶) presents a state
space realization of the integral function, such as ℎ

𝐼
(𝑡) =

𝐶 exp(𝐴𝑡)𝐵. The augmented realization (𝐴, 𝐵, 𝐶) is closely
related to representation (3). We note that the positive
realization of the integration of a positive system is closely
related to the representation of the phase-type distribution.

3. Phase-Type Representation and the Positive
Realization

3.1. Some Connections. Using a generalized version of the
Perron-Frobenius theorem of nonnegative matrix theory,
we derived a transformation from positive realization into
phase-type realization under a constraint. The Perron-
Frobenius theorem asserts that a real square matrix with
positive entries has a unique largest real eigenvalue and
that the corresponding eigenvector has strictly positive com-
ponents [10, 19]. The Perron-Frobenius results of reducible
matrices are characterized by being weaker than those of
irreducible matrices. The general Perron-Frobenius theorem
for reducible matrices is introduced from the result in
Chapter 8 in [19] as follows.

Theorem 1 (Perron-Frobenius [19]). Let 𝐴 ≥ 0 be an 𝑛 × 𝑛
matrix. Then, A has a nonnegative real eigenvalue equal to
its spectral radius 𝜌(𝐴) and there is an eigenvector 𝑥 ≥ 0

corresponding to 𝜌(𝐴).

The solvability problem of the matrix equation (𝐼−𝐴)𝑦 =
𝑏 with constraint 𝑦 ≥ 0 was originally solved by Carlson
[11]. Several generalized versions have been discussed by
researchers [12, 13, 20]. We note that the excitability is closely
related to the existence of the strict positive solution of (𝐼 −

𝐴)𝑦 = 𝑏 (i.e., 𝑦 > 0) as a more general case. For a
discrete-time positive system with realization (𝐴, 𝑏, 𝑐), (𝐴, 𝑏)
is defined to be excitable if there is an 𝑛 such that∑𝑛

𝑚=0
𝐴
𝑚
𝑏 >

0, and (𝑐, 𝐴) is defined to be transparent if there is an 𝑛 such
that ∑𝑛

𝑚=0
𝑐𝐴
𝑚
> 0 [2, 14]. We consider some properties of

excitability.

Lemma 2. Assume that 𝐴 ≥ 0 with 𝜌(𝐴) < 1. Let 𝑏 ≥ 0. Then
the following statements are equivalent:

(1) There is a 𝑦 > 0 such that (𝐼 − 𝐴)𝑦 = 𝑏 and 𝑦 =
lim
𝑛→∞

∑
𝑛

𝑚=0
𝐴
𝑚
𝑏.

(2) (𝐴, 𝑏) is excitable.

Proof. (1) ⇒ (2): we define 𝑦
𝑛
= ∑
𝑛

𝑚=0
𝐴
𝑚
𝑏. Assume that 𝑦

is strictly positive and lim
𝑛→∞

𝑦
𝑛
= 𝑦. Therefore, there is an

𝑛 such that ‖𝑦
𝑘
− 𝑦‖
∞
< 𝜖 for all 𝑘 ≥ 𝑛 and 𝜖 = ‖𝑦‖

∞
/2

where ‖𝑦‖
∞

is defined by∞-norm of 𝑦. Because 𝑦
𝑛
> 0 for

sufficiently large 𝑛, it follows that (𝐴, 𝑏) is excitable.
(2) ⇒ (1): because 𝐴 is stable (i.e., 𝜌(𝐴) < 1), the sum

∑
𝑛

𝑘=1
𝐴
𝑘 converges uniformly to (𝐼−𝐴)−1 as 𝑛 → ∞.We have

𝑦 = lim
𝑛→∞

𝑦
𝑛
. Because each entry of 𝑦

𝑛
is monotonically

increasing with respect to 𝑛 and excitable, we can see that 𝑦
is strictly positive.

Consider a continuous-time system with a positive real-
ization (𝐴, 𝐵, 𝐶). Since 𝐴 is a Metzler matrix, we can choose
an 𝛼 > 0 such that (𝐼 + 𝛼𝐴) ≥ 0 and 𝜌(𝐼 + 𝛼𝐴) < 1. We can
define the excitability and the transparency of continuous-
time positive linear systems in a similar form to discrete-time
ones. The pair (𝐴, 𝐵) is excitable if there is an integer 𝑛 > 0
such that

𝑧
𝑛
=

𝑛

∑

𝑘=0

(𝐼 + 𝛼𝐴)
𝑘
𝐵 > 0 (7)

for some 𝛼 > 0. The pair (𝐶, 𝐴) is transparent if there exists
an 𝑛 such that

𝑤
𝑛
=

𝑛

∑

𝑘=0

𝐶 (𝐼 + 𝛼𝐴)
𝑘
> 0. (8)

for some 𝛼 > 0.

Lemma 3. For the continuous time with a positive realization
(𝐴, 𝐵, 𝐶), assume that (𝐴, 𝐵) is excitable,𝐴 is an asymptotically
stable Metzler matrix (i.e., 𝜆max(𝐴) < 0), and an augmented
realization (𝐴, 𝐵, 𝐶) is given as (6). Then there is a positive
eigenvector V of the spectral radius 𝜎(𝐴) = 0 (i.e., 𝐴V = 0)
such that V is strictly positive (i.e., V > 0).

Proof. We can choose a sufficiently large 𝜂 > 0 such that a
positive matrix 𝐴 = 𝐴 + 𝜂𝐼 satisfies 𝜌(𝐴) = 𝜂, and 𝜂 > |𝑥|
for all 𝑥 ∈ 𝜎(𝐴). By using the Perron-Frobenius Theorem 1
for the augmented nonnegative matrix𝐴with the order 𝑛+1,
there exists an eigenvector V ≥ 0 corresponding to 𝜂 such that
𝐴V = 𝜂V. If the last entry of V is zero, V

𝑛+1
= 0, then it induces

that a vector V∗ ≜ (V1 V
2
⋅ ⋅ ⋅ V
𝑛)
𝑇 is an eigenvector of𝐴+𝜂𝐼

corresponding to an eigenvalue 𝜂. It contradicts the fact that
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all the eigenvalues of𝐴+𝜂𝐼 are less than 𝜂.Therefore, we have
V
𝑛+1
> 0.
Set 𝐴

+
= 𝐼 + 𝐴/𝜂. We have 𝐴

+
V∗ + V

𝑛+1
𝐵/𝜂 = V∗ since

𝐴V = 𝜂V. Thus, 𝐴
+
is stable and positive. By using Lemma 2,

the excitable condition (7) implies a strict positive solution
V∗ = V

𝑛+1
(𝐼 − 𝐴

+
)
−1
𝐵/𝜂 > 0. Therefore, it is shown that V is

strictly positive; that is, V > 0.

We will show that a positive realization of continuous-
time positive system can be transformed into a phase-type
representation normalized by a positive number. Under the
irreducible assumption, it was proven that the positive real-
ization can be transformed into phase-type representation
[9]. We modify the proof as a generalized version of the
correspondence between positive realizations and phase-type
representation.We can see that a phase-type representation is
a special positive realization with excitable constraint.

Theorem 4. Consider the continuous-time positive system
with the positive realization (𝐴, 𝐵, 𝐶) such that (𝐴, 𝐵) is
excitable, and𝐴 is an asymptotically stable andMetzlermatrix.
Then it is transformed into a phase-type infinitesimal generator
matrix (𝐴

+
, 𝐵
+
, 𝐶
+
) such that

𝐴
+
= [

𝐴
+
−𝐴
+
1

0 0
] , 𝐵

+
= e
𝑛+1
, 𝐶

+
= [𝐶+ 0] ,

(9)

where 𝐴
+
1 = −𝐵

+
and 𝐶

+
1 > 0.

Proof. First, let us define an augmented realization (𝐴, 𝐵, 𝐶)
in the form of (6). Using Lemma 3, the Perron eigenvector V
of 𝐴 corresponding to the Perron root 𝜌(𝐴) = 0 is strictly
positive. Set 𝑈 = diag(V

1
, . . . , V

𝑛
, V
𝑛+1
)/V
𝑛+1

. Thus, we can
derive that 𝐴

+
= 𝑈
−1

𝐴𝑈 with 𝐴
+
1 = 0, 𝐵

+
= 𝑈
−1

𝐵 = e
𝑛+1

,
and 𝐶

+
= 𝐶𝑈. Therefore, we can verify that 𝐴

+
1 + 𝐵

1
= 0

where 𝐴
+
= 𝑈
−1
𝐴𝑈, 𝐵

+
= 𝑈
−1
𝐵, 𝐶
+
= 𝐶𝑈, and 𝑈 =

diag(V
1
, . . . , V

𝑛
)/V
𝑛+1

.

An important consequence of the above theorem is that
an excitable positive realization can be transformed into the
form of phase-type representation. Therefore, it is remarked
that he concept of positive realizations is a superset of phase-
type representations.

3.2. Common Properties and Characteristics. We discuss the
properties and characteristics, such as stability, irreducibility,
excitability, and transparency, in positive systems and phase-
type distributions. A positive system with a positive realiza-
tion (𝐴, 𝐵, 𝐶) is said to be irreducible if (𝐴, 𝐵) is excitable
and (𝐶, 𝐴) is transparent in the terminology introduced in
[2, 14]. We note that the properties and characteristics of
excitability and transparency are closely related to those of
the reachability and observability of positive linear systems
[17, 18]. A phase-type representation (𝛼, 𝐴) in whose graph
all the state vertices are connected to the initial vertex
and to the absorbing vertex is called irreducible [8]. We
note that the irreducible representation is closely related

to the irreducibility of the phase-type renewal process in
the Markovian point process introduced in [7, 8]. Renewal
processes provide simple models of point processes, which
may describe an ordered set of points. We consider a renewal
process with a phase-type distribution for the interrenewal
intervals. In [8], the phase-type representation (𝛼, 𝐴) for
the distribution function 𝐹(𝑥) is called irreducible if 𝑄∗ is
irreducible where an infinitesimal generator𝑄∗ is defined by

𝑄
∗
= 𝐴 − 𝐴1𝛼. (10)

We may associate a Markov process with a phase-type
renewal process. A renewal function denoted by 𝑅(𝑥) for
a phase-type distribution 𝐹(𝑥) is defined by the expected
number of renewals in the interval [0, 𝑥]; that is, 𝑅(𝑥) =
𝐸[𝑁(𝑥)], where 𝑁(𝑥) denotes the number of renewals. A
renewal density is defined by 𝑟(𝑥) = 𝑑𝑅(𝑥)/𝑑𝑥. The Laplace
transform of the renewal density 𝑟(𝑥) is denoted by 𝑟∗(𝑠),
which is rewritten by

𝑟
∗
(𝑠) =

𝑓
∗
(𝑠)

(1 − 𝑓∗ (𝑠))
= (−1 + (1 − 𝑓

∗
(𝑠))
−1
) . (11)

In view of control theory, the equation in (11) is equivalent
to the positive feedback control. Because the state space
realization of the inverse system (1 − 𝑓

∗
(𝑠))
−1 is given by

(1 − 𝑓
∗
(𝑠))
−1
= 1 + 𝛼(𝑠𝐼 − 𝑄

∗
)
−1
(−𝐴1), we can see that its

renewal density is given by 𝑟(𝑥) = 𝛼 exp(𝑄∗𝑥)(−𝐴1), which
is equal to the results in [7]. For an irreducible representation
(𝛼, 𝐴), the vectors 𝛼 exp(𝑇𝑥) and exp(𝐴𝑥)(−𝐴1) are strictly
positive [8]. We note that these results are related to the
excitability and transparency of the positive linear system.

The irreducibility of a positive system can be defined in
a similar manner. A positive system is irreducible if each
state variable influences and is influenced by another variable
[2]. It is defined by an irreducible realization for the positive
system with a positive realization (𝐴, 𝐵, 𝐶) if𝑄 is irreducible,
where 𝑄 is defined by

𝑄 = 𝐴 + 𝐵𝐶. (12)

For the open-loop system (5), the associated closed loop
system (positive feedback system) is given by

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐶𝑥 (𝑡) = 𝑄𝑥 (𝑡) , (13)

where the linear state-feedback law is 𝑢(𝑡) = 𝐶𝑥(𝑡) and 𝐶
is the constant feedback gain row vector. The closed loop
system (13) is positive if and only if𝑄 is a Metzler matrix.The
stabilization problem of positive systems has recently been
discussed in [3, 15, 16]. It is known an unstable open positive
system (5) cannot be stabilized by linear state-feedback if
the restriction on nonnegative control in the closed loop is
imposed [15, 16].

The properties and characteristics of excitability and
transparency are closely related to the reachability and
observability of positive linear systems [5, 17, 18]. A reachable
set R is the set of all points which the states approach from
the origin by nonnegative inputs within finite time. It was
shown that R = cl[cone{𝑥 | 𝑥 = exp(𝐴𝑡)𝐵, 𝑡 ≥ 0}], where
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cl(𝑆) is a closure set of 𝑆 [17]. An observable set S is the
set of initial states in which the output is nonnegative for all
𝑡 ≥ 0. The observable set S can be defined by S = {𝑥 |

𝐶 exp(𝐴𝑡)𝑥 ≥ 0, ∀𝑡 ≥ 0}.

Theorem 5 (see [17]). Let a transfer function𝐻(𝑠) be a strictly
proper rational function with degree n, whose realization
is given by (𝐴, 𝐵, 𝐶). Then, 𝐻(𝑠) has a positive realization
(𝐴
∗
, 𝐵
+
, 𝐶
+
) with a Metzler matrix 𝐴

∗
= 𝐴
+
− 𝜂𝐼 if and

only if there exists a generator matrix 𝑃 and 𝜆 ≥ 0 such that a
polyhedral coneP = cone(𝑃) satisfies

(1) (𝐴 + 𝜆𝐼)P ⊂ P;
(2) R ⊂ P ⊂ S,

where 𝑃 ∈ R𝑛×𝑚, 𝑛 ≤ 𝑚, R is a reachable set, and S is an
observable set.

A positive system (𝐴, 𝐵, 𝐶) is said to be reducible other-
wise. When a representation is not irreducible, it can be sim-
plified by discarding some states. Our next question is how to
discard some unnecessary states when a representation is not
irreducible. We discuss an order reduction algorithm of the
asymptotical stable and unexcitable positive realization. Let a
set ⟨𝑛⟩ = {1, . . . , 𝑛}. For a column vector 𝑏 with 𝑛 entries, we
define a support set

supp (𝑏) = {𝑖 ∈ ⟨𝑛⟩ | 𝑏𝑖 ̸= 0} . (14)

Theorem 6. Assume that a positive realization (𝐴
∗
, 𝑏
+
, 𝑐
+
) is

unexcitable and 𝐴
∗
is asymptotically stable. Then there is a

permutation matrix𝑀 = [𝑀1 𝑀2] such that

𝐴
∗
𝑀 = [𝑀1 𝑀2] [

𝐴
11
𝐴
12

0 𝐴
22

] ,

𝑏
+
= [𝑀1 𝑀2] [

𝑒
1

0
] ,

𝑐
+
[𝑀1 𝑀2] = [𝑓1 𝑓2] ,

(15)

where𝐴
11
is an 𝑛

1
×𝑛
1
matrix. Furthermore, we have a reduced

positive realization (𝐴
11
, 𝑒
1
, 𝑓
1
) such that

𝐴
∗
𝑀
1
= 𝑀
1
𝐴
11
, 𝑏

+
= 𝑀
1
𝑒
1
, 𝑐

+
𝑀
1
= 𝑓
1
. (16)

Proof. Because 𝐴
∗
is a Metzler matrix and asymptotical

stable, there is an 𝜂 such that𝐴
+
= 𝐴
∗
+𝜂𝐼 is a positivematrix.

Define 𝑧
𝑚
= ∑
𝑚

𝑘=0
(𝐼+𝛼𝐴)

𝑘
𝐵with 𝛼 = 1/𝜂.There is an integer

𝑁 > 0 such that supp(𝑧
𝑚
) = supp(𝑧

𝑚+1
) for all 𝑚 ≥ 𝑁. A

support set for 𝑧
𝑁
is defined byZ = supp(𝑧

𝑁
). Let 𝑛

1
be the

element number ofZ. We can find a permutation matrix𝑀
such that supp(𝑀𝑇𝑧

𝑁
) = ⟨𝑛

1
⟩. Set 𝐴

1
= 𝑀
𝑇
𝐴𝑀 = [

𝐴
11
𝐴
12

𝐴
21
𝐴
22

]

where the size of 𝐴
11

is 𝑛
1
. If 𝐴
21

is a nonzero matrix, then
we have supp(𝐴

1
𝑀
𝑇
𝑧
𝑁
) ̸⊆ ⟨𝑛

1
⟩, but this contradicts the

definition of 𝑧
𝑚
.We can see that there is a permutationmatrix

𝑀 = [𝑀1 𝑀2] such that 𝐴
∗
𝑀 = [𝑀1 𝑀2] [

𝐴
11
𝐴
12

0 𝐴
22

] and
supp(𝑒

1
) ⊂ ⟨𝑛

1
⟩. We have R ⊂ cone(𝑀

1
). Because 𝐴

∗
is a

Metzler matrix and 𝑐
+
> 0, we can see cone(𝑀

1
) ⊂ S by the

definition of S. By usingTheorem 5, we can derive (16).

We discussed the method to remove unnecessary states
in the unexcitable case. When the transposed realization is
given by (𝐴𝑇, 𝐶𝑇, 𝐵𝑇), the concept of the transparency can be
interpreted by that of the excitability. A removing method of
the unnecessary state in the nontransparent case is similar
to that in the unexcitable case. We illustrate the previous
theorems by means of an example.

Example 7. A positive state-space realization (𝐴, 𝐵, 𝐶) is
given by

𝐴 =

[
[
[
[
[

[

−2 1 1 1

0 −3 0 0

1 1 −1 0

0 1 0 −4

]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[

[

1

0

1

0

]
]
]
]
]

]

𝐶 = [2 4 1 3] .

(17)

We can see that𝑄 = 𝐴+𝐵𝐶 is reducible. Set 𝛼 = 1/5.We have
𝑧
5
= [4.11392 0 5.48992 0]

𝑇.The support set isZ = {1, 3}.
We obtain

𝑀 =

[
[
[
[
[

[

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

]
]
]
]
]

]

. (18)

By using Theorem 6 and removing the unexcitable part,
we obtain an excitable positive realization (𝐴

11
, 𝑒
1
, 𝑓
1
) such

that 𝐴
11
= [
−2 1

1 −1
], 𝑒
1
= [1 1], and 𝑓

1
= [2 1]

𝑇. By
usingTheorem 4, the phase-type representation (𝐴, 𝛽) can be
obtained as follows:

𝐴 = [

−2.000 1.500

0.666 −1.000
] , 𝛽 = [4 3] . (19)

4. Discrete Phase-Type Distributions and
Discrete-Time Positive Systems

A discrete phase-type (DPT) distribution is the distribution
of the time until one absorbing state in a discrete-state
discrete-time Markov chain (DTMC) with 𝑛 transients states
and one absorbing state [8, 21]. DPT distributions have
received little attention in applied stochastic modeling. The
main research activity has addressed continuous phase-type
distributions. Let 𝜏 be the time till absorption into state 𝑛 + 1
in the DTMC. We say that 𝜏 is a random variable of order 𝑛
and representation (𝐴, 𝑏, 𝛽) [8]. The DPT representation has
the following properties. A positive matrix 𝐴 = [𝑎

𝑖𝑗
] is an

(𝑛 × 𝑛) matrix grouping the transition probabilities among
the transient states. A column vector 𝑏 = [𝑏

𝑖
] is a positive 𝑛-

dimensional column vector grouping the probabilities from
any state to the absorbing state. Thus, we have ∑𝑛

𝑗=1
𝑎
𝑖𝑗
=

1 − 𝑏
𝑖
. It means that (𝐼 − 𝐴)1 = 𝑏. An 𝑛 vector 𝛽 is

defined by the initial probability vector. The augmented
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matrix tuple (𝐴, 𝑏̂, 𝛽) is denoted by the augmented phase-
type representation where the one-step transition probability
matrix 𝐴 of the corresponding DTMC can be partitioned by

𝐴 = [

𝐴 𝑏

0 1
] , (20)

the augmented initial vector is defined by 𝛽 = [𝛽 0], and 𝑏̂ =
e
𝑛+1

. Its probability generating function is defined by 𝑃(𝑧) =
𝛽(𝑧
−1
𝐼 − 𝐴)

−1
𝑏 [8].

We can also discuss the realization between the DPH
distributions and discrete-time positive systems in a similar
manner. The discrete-time linear system is represented by

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(21)

where 𝐴 ∈ 𝑅
𝑛×𝑛

+
, 𝐵 ∈ 𝑅

𝑛

+
, and 𝐶𝑇 ∈ 𝑅

𝑛

+
. The matrix

tuple (𝐴, 𝐵, 𝐶) denotes the positive realization (21). In the
next theorem, we show that the positive realization can
be transformed into a DPH representation multiplied by a
positive scalar (i.e., 𝛽 is not necessarily a probability vector).

Theorem 8. Assume that a realization (𝐴, 𝐵, 𝐶) is denoted
by a positive realization satisfying (21) and (𝐴, 𝐵) is excitable
(essential reachable) and stable. Then there is a nonsingular
matrix𝑀 such that the realization (𝐴, 𝑏̃, 𝛽), which is defined
by 𝛽 = 𝐶𝑀, 𝐴 = 𝑀−1𝐴𝑀, and 𝑏̃ = 𝑀−1𝐵, has the properties
of the DPH representation such as 𝑏̃ = (𝐼 − 𝐴)1 and 𝛽 ≥ 0.

Proof. Because 𝐴 is positive, stable, and excitable, the abso-
lute values of its eigenvalues are less than 1 and we can use
Lemma 2. Thus, we obtain the fact that the entries of 𝑥 =
(𝐼 − 𝐴)

−1
𝐵 are positive. A similarity transform matrix𝑀 is

defined by a diagonal matrix,𝑀 = diag(𝑥). Compute a new
realization (𝐴, 𝑏̃, 𝛽). We obtain the facts that (𝐼 − 𝐴)1 = 𝑏̃ ≥
0, 𝛽 ≥ 0, and 𝐴 ≥ 0. Therefore, we can verify that the
new realization satisfies the discrete phase-type distribution
properties.

We can easily deploy the properties and characteristics,
such as irreducibility, excitability, transparency, and order
reduction, in the discrete domain in a similar manner as in
the continuous case. We omit the detailed exploration for the
discrete case in this paper.

5. Conclusions

We considered the relation between the positive realization
and the phase-type representation in continuous time and
discrete time, respectively. Using the Perron-Frobenius theo-
rem, it was shown that a phase-type representation is a special
case with excitable constraint of the positive realization.
We discussed their common properties and characteristics,
such as irreducibility, excitability, transparency, stabilization,
and order reduction. The connection between the phase-
type renewal process and the feedback control of positive

system was discussed. A lot of open problems related to
positive system still remain and should be addressed in future
research. The communities of control and probability theory
can work together on solving the remaining same open
problems.
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