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This paper shows that the epidemic model, previously proposed under ordinary differential equation theory, can be generalized to
fractional order on a consistent framework of biological behavior.The domain set for the model in which all variables are restricted
is established.Moreover, the existence and stability of equilibriumpoints are studied.Wepresent the proof that endemic equilibrium
point when reproduction number 𝑅

0
> 1 is locally asymptotically stable. This result is achieved using the linearization theorem for

fractional differential equations. The global asymptotic stability of disease-free point, when 𝑅
0
< 1, is also proven by comparison

theory for fractional differential equations.The numeric simulations for different scenarios are carried out and data obtained are in
good agreement with theoretical results, showing important insight about the use of the fractional coupled differential equations
set to model babesiosis disease and tick populations.

1. Introduction

Bovine babesiosis is transmitted by the sting of ticks and
is the most important disease to attack bovine populations
in tropical regions. In warm and hot regions there is great
economic loss due to bovine death by bovine babesiosis,
with decrease of bovine products and by-products.Moreover,
the climate conditions in those regions favor the survival
and reproduction of ticks and, consequently, bovines have a
permanent contact with these vectors [1]. Furthermore, the
vertical transmission in bovines and ticks is possible provided
that the ovaries of the female ticks are infected by parasites
[1]. The behavior dynamics of diseases has been studied for
a long time and is an important issue in the real world.
The most important model that can be used to interpret the
disease characteristic of epidemics is a susceptible-infected-
recuperatedmodel (SIR) that was developed by Kermack and
McKendrick [2], and various types of diseases are studied
by this type of ordinary differential equation system. Aranda
et al. [3] introduced the epidemiological model for bovine

babesiosis and tick populations disease. In this work the
qualitative dynamics behavior is determined by the basic
reproduction number, 𝑅0. If the threshold parameter, 𝑅0 < 1,
is proved by LaSalle-Lyapunov theorem then the solution
converges to the disease free equilibrium point. However,
if 𝑅0 > 1, the convergence is to the endemic equilibrium
point by numerical simulations. In recent years, the theory
of networks in epidemiological model has been introduced
in the literature. The purpose of this modification is to have
better understanding andprediction of epidemic patterns and
intervention measures. For more details see [4–6].

The notion of fractional calculus was introduced by
Leibniz, one of the founders of standard calculus, in a letter
written in 1695. In recent decades, fractional differential
equations are one of the most important topics in mathe-
matics and have received attention due to the possibility of
describing nonlinear systems, thus attracting much attention
and increasing interest due to its potential applications in
physics, control theory, and engineering (see [7–15]). The
advantage of fractional-order differential equation systems is
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that they allow greater degrees of freedom and incorporate
the memory effect in the model. Due to this fact, they have
been introduced in epidemiological modeling systems. In
[16], a fractional order for the dynamics of A(H1N1) influenza
disease is studied by numerical simulations. Pooseh et al. [17]
andDiethelm [18] have introduced fractional denguemodels.
In this paper the parameters of the equations obtained in
the field research do not reproduce well the evolution of the
disease in the case of entire order model. However, when
we consider the fractional system, with the same parameters
obtained in the field, the data are better adjusted which shows
an advantage of the fractional system. In [11] the parameter
𝜃 is associated with a memory effect. In [19], the authors
attribute to 𝜃 thememory information of the dengue disease’s.
In this paper, we consider the fractional-order system associ-
ated with the evolution of bovine babesiosis disease and tick
populations. We introduce a generalization of the classical
model presented by Aranda et al. [3]. The generalization is
obtained by changing the ordinary derivative by fractional
Caputo derivative. It is easy to see that when 𝜃 = 1 we
return to the classical model. For the construction of this
model by Aranda et al. [3], the compartments of populations
and the biological hypothesis are used. This argument is well
established in the disease transmission theory. In Aranda et
al., theorems well established in the literature for ordinary
differential systems are used. To prove our results, it is neces-
sary to use different tools to those used for the integer order.
This is due to the fact that the versions of La-Salle invariance
theorem used by Aranda et al. are not found in the literature
for fractional-order systems. Therefore, we emphasize that
the work presents a collaboration in this direction as when
using the comparison theory for fractional-order systems to
prove the global stability of the equilibrium free point of the
disease by introducing a new type of results in the literature.
On the other hand, we also have a test on the local asymptotic
stability of endemic equilibrium point, a result that is just
enunciated in Aranda et al. [3]. We obtain a generalization
of all results in [3]. Our simulation shows that the fractional
model has great potential to describe the real problem
without the need for adjustment of parameters obtained in
field research.This is due to a greater flexibility of adjustment
obtained with the introduction of the new parameter. This
paper is organized in four sections. Introduction is the first
section. In Section 2, we mention a few results and notations
related to the theory of fractional differential equations; in
Section 3, we consider the fractional-order model associated
with the dynamics of bovine babesiosis and ticks populations.
Qualitative dynamics of the model is determined by the basic
reproduction number. We give a detailed analysis for the
global asymptotical stability of disease-free equilibrium point
and the local asymptotical stability of the endemic equilib-
rium point. Finally, in Section 4, numerical simulations are
presented to verify the main results.

2. Preliminaries

For many years, there have been several definitions that fit
the concept of fractional derivatives [10, 20]. In this paper

the Riemann-Liouville fractional derivative and Caputo frac-
tional derivative definitions are presented. Firstly, we intro-
duce the definition of Riemann-Liouville fractional integral

𝐽
𝜃
𝑓 (𝑡) =

1
Γ (𝜃)

∫

𝑡

0
(𝑡 − 𝑠)

𝜃−1
𝑓 (𝑠) 𝑑𝑠, (1)

where 𝜃 > 0, 𝑓 ∈ 𝐿
1
(R+), and Γ(⋅) is the Gamma function.

The Riemann-Liouville derivative is given by

𝐷
𝜃

𝑅
𝑓 (𝑡) =

𝑑
𝑛

𝑑𝑡𝑛
[𝐽
𝑛−𝜃

𝑓 (𝑡)]

=
1

Γ (𝑛 − 𝜃)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0
(𝑡 − 𝑠)

𝑛−𝜃−1
𝑓 (𝑠) 𝑑𝑠,

𝑛 − 1 ≤ 𝜃 < 𝑛.

(2)

The Caputo fractional derivative is given as follows:

𝐷
𝜃

𝐶
𝑓 (𝑡) = 𝐽

𝑛−𝜃
[𝑓
(𝑛)
(𝑡)]

=
1

Γ (𝑛 − 𝜃)
∫

𝑡

0
(𝑡 − 𝑠)

𝑛−𝜃−1
𝑓
(𝑛)
(𝑠) 𝑑𝑠,

(3)

where 𝑛 is the first integer which is not less than 𝜃.
The Laplace transform of the Caputo fractional derivative

is given by

L [𝐷
𝜃

𝐶
𝑓 (𝑡)] = 𝑠

𝜃
𝐹 (𝑠) −

𝑛−1
∑

𝑘=0
𝑓
(𝑘)
(0) 𝑠𝜃−𝑘−1. (4)

The Mittag-Leffler function is defined by the following
infinite power series:

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
. (5)

The Laplace transform of the functions is

L [𝑡
𝛽−1

𝐸
𝛼,𝛽

(±𝑎𝑡
𝛼
)] =

𝑠
𝛼−𝛽

𝑠𝛼 ∓ 𝑎
. (6)

Let 𝛼, 𝛽 > 0 and 𝑧 ∈ C, and the Mittag-Leffler functions
satisfy the equality given byTheorem 4.2 in [10]

𝐸
𝛼,𝛽

(𝑧) = 𝑧𝐸
𝛼,𝛼+𝛽

(𝑧) +
1

Γ (𝛽)
. (7)

Definition 1. A function 𝑓 is Hölder-continuous if there are
nonnegative constants 𝐶, ] such that

𝑓 (𝑥) −𝑓 (𝑦)
 ≤ 𝐶

𝑥 −𝑦


]
, (8)

for all 𝑥, 𝑦 in the domain of 𝑓 and ] is the Hölder exponent.
We represent the space of Hölder-continuous functions by
𝐶
0,].

We develop a generalized inequality, wherein the under-
lying comparison system is a vector fractional-order system.
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A nonnegative (resp., positive) vector Vmeans that every
component of V is nonnegative (resp., positive). We denote a
nonnegative (resp., positive) vector by 0 ≤≤ V (resp., 0 << V).

Consider the fractional-order system:

𝐷
𝜃

𝐶
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢) ,

𝑢 (0) = 𝑢0,
(9)

where 𝐷𝜃
𝐶
𝑢(𝑡) = (𝐷

𝜃

𝐶
𝑢1(𝑡), 𝐷

𝜃

𝐶
𝑢2(𝑡), . . . , 𝐷

𝜃

𝐶
𝑢
𝑚
(𝑡))
𝑇, 0 < 𝜃 <

1, 𝑢(𝑡) ∈ M ⊂ R𝑚, 𝑡 ∈ [0, 𝑇) (𝑇 ≤ +∞), M is an open set,
0 ∈ M, and 𝑓 : [0, 𝑇) × M → R𝑚 is continuous in 𝑡 and
satisfies the Lipschitz condition:


𝑓 (𝑡, 𝑢


) −𝑓 (𝑡, 𝑢


)

≤ 𝐿


𝑢

−𝑢

, 𝑡 ∈ [0, 𝑇) , (10)

for all 𝑢, 𝑢 ∈ Ω ⊂ M, where 𝐿 > 0 is a Lipschitz constant.

Theorem 2 (see [15]). Let 𝑢(𝑡), 𝑡 ∈ [0, 𝑇), be the solu-
tion of system (9). If there exists a vector function V =

(V1, V2, . . . , V𝑚)
𝑇
: [0, 𝑇) → M such that V

𝑖
∈ 𝐶

0,]
, 𝜃 < ] <

1, 𝑖 = 1, . . . , 𝑚 and

𝐷
𝜃

𝐶
V (𝑡) ≤≤ 𝑓 (𝑡, V (𝑡)) , 𝑡 ∈ [0, 𝑇) . (11)

If V(0) ≤≤ 𝑢0, 𝑢0 ∈ M, then V(𝑡) ≤≤ 𝑢(𝑡), 𝑡 ∈ [0, 𝑇).

Now, we will introduce a Theorem of stability for linear
systems of fractional order. Let𝐴 ∈ 𝑀

𝑚×𝑚
(R), and we define

the linear system homogeneous equation:

𝐷
𝜃

𝐶
𝑥 (𝑡) = 𝐴𝑥 (𝑡) ,

𝑥 (0) = 𝑥0.
(12)

Definition 3. We say that linear system (12) is stable if for all
𝜖 > 0, 𝛿 > 0 exists such that ‖𝑥0‖ < 𝛿; then ‖𝑥(𝑡)‖ < 𝜖,
for all 𝑡 ≥ 0; linear system (12) is asymptotically stable if
lim
𝑡→∞

𝑥(𝑡) = 0.

The next result establishes the stability of the fractional
linear system similarly to the theory of ordinary differential
equation.

Theorem 4 (see [21]). System (12) origin is asymptotically
stable if and only if |arg(𝜆

𝑖
)| > 𝜃𝜋/2 is satisfied for all

eigenvalues of the matrix 𝐴. Moreover, this system is stable if
and only if |arg(𝜆

𝑖
)| ≥ 𝜃𝜋/2 is satisfied for all eigenvalues of

the matrix 𝐴, and the eigenvalues satisfying |arg(𝜆
𝑖
)| = 𝜃𝜋/2

have geometric multiplicity equal to one.

Let 𝑓 : M → R𝑚, M ∈ R𝑚; we consider the following
system of fractional order:

𝐷
𝜃

𝐶
𝑥 (𝑡) = 𝑓 (𝑥) ,

𝑥 (0) = 𝑥0.
(13)

Definition 5. We say that 𝐸 is an equilibrium point for (13), if
and only if 𝑓(𝐸) = 0.

Remark 6. When 𝜃 ∈ (0, 1), the fractional system 𝐷
𝜃

𝐶
𝑥(𝑡) =

𝑓(𝑥) has the same equilibrium points as the system 𝑥

(𝑡) =

𝑓(𝑥).

Definition 7. The equilibrium point 𝐸 of autonomous system
(13) is said to be stable if for all 𝜖 > 0, 𝛿 > 0 exists such that
if ‖𝑥0 − 𝐸‖ < 𝛿, then ‖𝑥(𝑡) − 𝐸‖ < 𝜖, 𝑡 ≥ 0; the equilibrium
point𝐸 of autonomous system (13) is said to be asymptotically
stable if lim

𝑡→∞
𝑥(𝑡) = 𝐸.

Theorem 8 (see [12]). The equilibrium points of system (13)
are locally asymptotically stable if all eigenvalues 𝜆

𝑖
of Jaco-

bian matrix 𝐽, calculated in the equilibrium points, satisfy
|arg(𝜆

𝑖
)| > 𝜃𝜋/2.

3. Mathematical Model

In this section, we introduce the fractional model for the
babesiosis disease in bovine and tick populations. We use the
assumptions in Aranda et al. [3] and introduce the following
hypotheses.

(i) The total of bovine population 𝑁
𝐵
(𝑡) is divided into

three subpopulations:

(a) bovines that may become infected (susceptible
𝑆
𝐵
(𝑡));

(b) bovines infected by Babesia parasite (infected
𝐼
𝐵
(𝑡));

(c) bovines that have been treated for the babesiosis
(controlled 𝐶

𝐵
(𝑡)).

(ii) The parameter 𝜇
𝐵
is the birth rate of bovine.The birth

rate 𝜇
𝐵
is assumed to be equal to the natural death.

(iii) The total population of ticks𝑁
𝑇
(𝑡) is divided into two

subpopulations:

(a) ticks which may become infected by the disease
𝑆
𝑇
(𝑡);

(b) ticks infected by the Babesia parasite 𝐼
𝑇
(𝑡).

(iv) The parameter 𝜇
𝑇
is the birth rate of the ticks and it is

assumed to be equal to the death rate.
(v) A susceptible bovine can transit to the infected sub-

population 𝐼
𝐵
(𝑡) because of an effective transmission

due to a sting of an infected tick at a rate 𝛽
𝐵
.

(vi) A susceptible tick can be infected if there exists
an effective transmission when it stings an infected
bovine, at rate 𝛽

𝑇
.

(vii) We assumed a hundred percent vertical transmission
in the bovine populations 𝜇

𝐵
. In the tick populations

it occurs with probability 1 − 𝑝, where 𝑝 is the
probability that a susceptible tick was born from an
infected one.

(viii) A fraction 𝜆
𝐵
of the infected bovine is controlled, that

is, treated against Babesia parasite.
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(ix) A fraction 𝛼
𝐵
of the controlled bovine may return to

the susceptible state.
(x) Homogeneous mixing is assumed; that is, all suscep-

tible bovines have the same probability to be infected
and all susceptible ticks have the same probability to
be infected.

Under the above assumptions, the transmission dynamics
of babesiosis disease to bovine and tick population can
be modeled by the following system nonlinear ordinary
differential equations [3]:

𝑆


𝐵
(𝑡) = 𝜇

𝐵
(𝑆
𝐵 (𝑡) +𝐶𝐵 (𝑡)) + 𝛼𝐵𝐶𝐵 (𝑡) − 𝜇𝐵𝑆𝐵 (𝑡)

− 𝛽
𝐵
𝑆
𝐵
(𝑡)

𝐼
𝑇 (𝑡)

𝑁
𝑇 (𝑡)

,

𝐼


𝐵
(𝑡) = 𝜇

𝐵
𝐼
𝐵
(𝑡) + 𝛽

𝐵
𝑆
𝐵
(𝑡)

𝐼
𝑇 (𝑡)

𝑁
𝑇
(𝑡)

− 𝜇
𝐵
𝐼
𝐵
(𝑡)

− 𝜆
𝐵
𝐼
𝐵
(𝑡) ,

𝐶


𝐵
(𝑡) = 𝜆

𝐵
𝐼
𝐵
(𝑡) − [𝜇

𝐵
+𝛼
𝐵
] 𝐶
𝐵
(𝑡) ,

𝑆


𝑇
(𝑡) = 𝜇

𝑇
(𝑆
𝑇
(𝑡) + 𝑝𝐼

𝑇
(𝑡)) − 𝛽

𝑇
𝑆
𝑇
(𝑡)

𝐼
𝐵
(𝑡)

𝑁
𝐵 (𝑡)

− 𝜇
𝑇
𝑆
𝑇 (𝑡) ,

𝐼


𝑇
(𝑡) = 𝛽

𝑇
𝑆
𝑇

𝐼
𝐵
(𝑡)

𝑁
𝐵
(𝑡)

+ (1−𝑝) 𝜇
𝑇
𝐼
𝑇 (𝑡) − 𝜇𝑇𝐼𝑇 (𝑡) .

(14)

In recent years, a considerable interest in the fractional
calculus has been shown, which allows us to consider inte-
gration and differentiation of any order. To a large extent
this is due to the applications of the fractional calculus to
problems in different areas of research. The advantage of
fractional-order differential equation systems is that they
allow greater degrees of freedom and incorporate memory
effect in the model. Now we describe the new system of
fractional differential equations to model the babesiosis
disease in bovine and tick populations, and in this system,
𝜃 ∈ (0, 1):

𝐷
𝜃

𝐶
𝑆
𝐵
(𝑡) = 𝜇

𝐵
(𝑆
𝐵
(𝑡) +𝐶

𝐵
(𝑡)) + 𝛼

𝐵
𝐶
𝐵
(𝑡) − 𝜇

𝐵
𝑆
𝐵
(𝑡)

− 𝛽
𝐵
𝑆
𝐵
(𝑡)

𝐼
𝑇 (𝑡)

𝑁
𝑇
(𝑡)

,

𝐷
𝜃

𝐶
𝐼
𝐵 (𝑡) = 𝜇

𝐵
𝐼
𝐵 (𝑡) + 𝛽𝐵𝑆𝐵 (𝑡)

𝐼
𝑇
(𝑡)

𝑁
𝑇
(𝑡)

− 𝜇
𝐵
𝐼
𝐵 (𝑡)

− 𝜆
𝐵
𝐼
𝐵
(𝑡) ,

𝐷
𝜃

𝐶
𝐶
𝐵
(𝑡) = 𝜆

𝐵
𝐼
𝐵
(𝑡) − [𝜇

𝐵
+𝛼
𝐵
] 𝐶
𝐵
(𝑡) ,

𝐷
𝜃

𝐶
𝑆
𝑇
(𝑡) = 𝜇

𝑇
(𝑆
𝑇
(𝑡) + 𝑝𝐼

𝑇
(𝑡)) − 𝛽

𝑇
𝑆
𝑇
(𝑡)

𝐼
𝐵 (𝑡)

𝑁
𝐵
(𝑡)

− 𝜇
𝑇
𝑆
𝑇
(𝑡) ,

𝐷
𝜃

𝐶
𝐼
𝑇
(𝑡) = 𝛽

𝑇
𝑆
𝑇

𝐼
𝐵
(𝑡)

𝑁
𝐵 (𝑡)

+ (1−𝑝) 𝜇
𝑇
𝐼
𝑇
(𝑡)

− 𝜇
𝑇
𝐼
𝑇 (𝑡) .

(15)

Simplifying the system (15) and using the bovine populations
constant equal𝑁

𝐵
and tick populations is𝑁

𝑇
and introduc-

ing the proportions

𝑆
𝐵 (𝑡) =

𝑆
𝐵
(𝑡)

𝑁
𝐵
(𝑡)

,

𝐼
𝐵
(𝑡) =

𝐼
𝐵
(𝑡)

𝑁
𝐵
(𝑡)

,

𝐶
𝐵
(𝑡) =

𝐶
𝐵 (𝑡)

𝑁
𝐵 (𝑡)

,

𝑆
𝑇
(𝑡) =

𝑆
𝑇 (𝑡)

𝑁
𝑇
(𝑡)

,

𝐼
𝑇 (𝑡) =

𝐼
𝑇
(𝑡)

𝑁
𝑇
(𝑡)

,

(16)

we obtain the following fractional system that describes the
dynamics of the proportion of bovines in each class:

𝐷
𝜃

𝐶
𝑆
𝐵
(𝑡) = (𝜇

𝐵
+𝛼
𝐵
) (1− 𝑆

𝐵
(𝑡) − 𝐼

𝐵
(𝑡))

− 𝛽
𝐵
𝑆
𝐵 (𝑡) 𝐼𝑇 (𝑡) ,

𝐷
𝜃

𝐶
𝐼
𝐵 (𝑡) = 𝛽

𝐵
𝑆
𝐵 (𝑡) 𝐼𝑇 (𝑡) − 𝜆𝐵𝐼𝐵 (𝑡) ,

𝐷
𝜃

𝐶
𝐼
𝑇 (𝑡) = 𝛽

𝑇
(1− 𝐼
𝑇 (𝑡)) 𝐼𝐵 (𝑡) − 𝜇𝑇𝑝𝐼𝑇 (𝑡) ,

(17)

defined in the region Ω = {(𝑆
𝐵
, 𝐼
𝐵
, 𝐼
𝑇
) : 0 ≤ 𝑆

𝐵
+ 𝐼
𝐵
≤ 1, 0 ≤

𝐼
𝑇
≤ 1}. Next, we show all variables of the babesiosis model

living in Ω for all time 𝑡 ≥ 0. To establish our first result we
introduce the following lemma.

Lemma 9 (see [22]). Let the function 𝑓 ∈ 𝐶[𝑡0, 𝑡1] and its
fractional derivative 𝐷𝜃

𝐶
𝑓(𝑡) ∈ 𝐶(𝑡0, 𝑡1] for 0 ≤ 𝜃 < 1, and

𝑡0, 𝑡1 ∈ R; then one has

𝑓 (𝑡) = 𝑓 (𝑡0) +
1

Γ (𝛼)
𝐷
𝜃

𝐶
𝑓 (𝜏) (𝑡 − 𝑡0)

𝛼
, (18)

for all 𝑡 ∈ (𝑡0, 𝑡1], where 𝑡0 ≤ 𝜏 < 𝑡.

Thus, considering the interval [0, 𝑡1] for any 𝑡1 > 0, this
theorem implies that the function 𝑓 : [0, 𝑡1] → R+ is
nonincreasing on (0, 𝑡1) if 𝐷

𝜃

𝐶
𝑓(𝑡) ≤ 0 for all 𝑡 ∈ (0, 𝑡0) and

nondecreasing on [0, 𝑡0] if𝐷
𝜃

𝐶
𝑓(𝑡) ≥ 0 for all 𝑡 ∈ (0, 𝑡0).

Proposition 10. The region Ω = {(𝑆
𝐵
, 𝐼
𝐵
, 𝐼
𝑇
) : 0 ≤ 𝑆

𝐵
+ 𝐼
𝐵
≤

1, 0 ≤ 𝐼
𝑇
≤ 1} is a positive invariant set for system (17).

Proof. ByTheorem 3.1 and Remark 3.2 in [23] we obtain the
global existence and uniqueness of the solutions of (17).



Abstract and Applied Analysis 5

We denote by Ω
+
= {(𝑆
𝐵
, 𝐼
𝐵
, 𝐼
𝑇
) : 𝑆
𝐵
≥ 0, 𝐼

𝐵
≥ 0 and

𝐼
𝑇
≥ 0}. If (𝑆

𝐵
(0), 𝐼
𝐵
(0), 𝐼
𝑇
(0)) ∈ 𝑆

𝐵
-axis = {(𝑆

𝐵
, 0, 0) : 𝑆

𝐵
≥

0} (with the same form we define 𝐼
𝐵
-axis and 𝐼

𝑇
-axis). The

vector field from (17) confined in 𝑆
𝐵
-axis assumes the form

𝐹(𝑆
𝐵
, 𝐼
𝐵
, 𝐼
𝑇
) = ((𝜇

𝐵
+𝛼
𝐵
)−(𝜇
𝐵
+𝛼
𝐵
)𝑆
𝐵
(𝑡), 0, 0), by the Laplace

transform properties (6), and we obtain the solution

(𝑆
𝐵 (𝑡) , 𝐼𝐵 (𝑡) , 𝐼𝑇 (𝑡))

= (𝑡
𝜃
𝐸
𝜃,𝜃+1 (− (𝜇𝐵 +𝛼𝐵) 𝑡

𝜃
) (𝜇
𝐵
+𝛼
𝐵
)

+ 𝐸
𝜃,1 (− (𝜇𝐵 +𝛼𝐵) 𝑡

𝜃
) 𝑆
𝐵
(0) , 0, 0) ∈ 𝑆

𝐵
-axis.

(19)

By the same argument, if (𝑆
𝐵
(0), 𝐼
𝐵
(0), 𝐼
𝑇
(0)) ∈ 𝐼

𝐵
-axis we

obtain

(𝑆
𝐵
(𝑡) , 𝐼
𝐵
(𝑡) , 𝐼
𝑇
(𝑡)) = (0, 𝐸

𝜃,1 (−𝜆𝐵𝑡
𝜃
) 𝐼
𝐵
(0) , 0)

∈ 𝐼
𝐵
-axis

(20)

and if (𝑆
𝐵
(0), 𝐼
𝐵
(0), 𝐼
𝑇
(0)) ∈ 𝐼

𝑇
-axis, we have

(𝑆
𝐵
(𝑡) , 𝐼
𝐵
(𝑡) , 𝐼
𝑇
(𝑡)) = (0, 0, 𝐸

𝜃,1 (−𝜇𝑇𝑝𝑡
𝜃
𝐼
𝑇
(0)))

∈ 𝐼
𝑇
-axis.

(21)

This proves that axes 𝑆
𝐵
, 𝐼
𝐵
, and 𝐼

𝑇
are solutions and positive

invariants sets.
Now, we will prove that Ω

+
is a positive invariant set.

By way of contradiction, suppose there exists a solution
(𝑆
𝐵
, 𝐼
𝐵
, 𝐼
𝑇
) such that (𝑆

𝐵
(0), 𝐼
𝐵
(0), 𝐼
𝑇
(0)) ∈ Ω

+
and the solu-

tion (𝑆
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡)) to escape of Ω

+
. From the previous

argument and by the unicity of solutions (𝑆
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡))

do not cross the axis. From the previous conclusion we have
three possibilities.

(i) If the solution (𝑆
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡)) escapes by the plane

𝑆
𝐵
= 0, then there exists 𝑡0 such that 𝑆

𝐵
(𝑡0) = 0,

𝐼
𝐵
(𝑡0) > 0 and 𝐼

𝑇
(𝑡0) > 0 and for all 𝑡 > 𝑡0

sufficiently near 𝑡0 we have 𝑆𝐵(𝑡) < 0. On the other
hand,𝐷𝜃

𝐶
𝑆
𝐵
(𝑡)|
𝑡=𝑡0

= (𝜇
𝐵
+𝛼
𝐵
)(1−𝐼
𝐵
(𝑡0)) > (𝜇

𝐵
+𝛼
𝐵
) >

0. From Lemma 9, we obtain 𝑆
𝐵
(𝑡) ≥ 𝑆

𝐵
(𝑡0) ≥ 0 for all

𝑡 sufficiently near 𝑡0, and this is absurd.

(ii) If the solution (𝑆
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡)) escape by 𝐼

𝐵
= 0,

then there exists 𝑡0 such that 𝑆
𝐵
(𝑡0) > 0, 𝐼

𝐵
(𝑡0) = 0,

and 𝐼
𝑇
(𝑡0) > 0 and for all 𝑡 > 𝑡0 sufficiently near 𝑡0 we

have 𝐼
𝐵
(𝑡) < 0.Again,𝐷𝜃

𝐶
𝐼
𝐵
(𝑡)|
𝑡=𝑡0

= 𝛽
𝐵
𝑆
𝐵
(𝑡0)𝐼𝑇(𝑡0) >

0. From Lemma 9, we obtain 𝐼
𝐵
(𝑡) ≥ 𝐼

𝐵
(𝑡0) ≥ 0 for all

𝑡 sufficiently near 𝑡0, and this is a contradiction.

(iii) If the solution (𝑆
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡)) escape by 𝐼

𝑇
= 0,

then there exists 𝑡0 such that 𝑆
𝐵
(𝑡0) > 0, 𝐼

𝐵
(𝑡0) > 0

and 𝐼
𝑇
(𝑡0) = 0 and for all 𝑡 > 𝑡0 sufficiently near 𝑡0 we

have 𝐼
𝑇
(𝑡) < 0.We obtain𝐷𝜃

𝐶
𝐼
𝑇
(𝑡)|
𝑡=𝑡0

= 𝛽
𝑇
𝐼
𝐵
(𝑡0) > 0

and by Lemma 9, we have 𝐼
𝑇
(𝑡) ≥ 𝐼

𝐵
(𝑡0) ≥ 0 for all 𝑡

sufficiently near 𝑡0, and this is false.

Therefore, we obtain 𝑆
𝐵
(𝑡) ≥ 0, 𝐼

𝐵
(𝑡) ≥ 0 and 𝐼

𝑇
(𝑡) ≥ 0, for all

𝑡 ≥ 0.

If 0 ≤ 𝑆
𝐵
(0) + 𝐼

𝐵
(0) ≤ 1, from the two first equations of

system (17), we get

𝐷
𝜃

𝐶
(𝑆
𝐵
(𝑡) + 𝐼

𝐵
(𝑡)) = (𝜇

𝐵
+𝛼
𝐵
)

− (𝜇
𝐵
+𝛼
𝐵
) (𝑆
𝐵 (𝑡) + 𝐼𝐵 (𝑡))

− 𝜆
𝐵
𝐼
𝐵
(𝑡)

≤ (𝜇
𝐵
+𝛼
𝐵
)

− (𝜇
𝐵
+𝛼
𝐵
) (𝑆
𝐵 (𝑡) + 𝐼𝐵 (𝑡)) .

(22)

Applying the Laplace transform in the previous inequality, we
have

𝜆
𝜃
L (𝑆
𝐵 (𝑡) + 𝐼𝐵 (𝑡)) − 𝜆

𝜃−1
(𝑆
𝐵 (0) + 𝐼𝐵 (0))

≤ (𝜇
𝐵
+𝛼
𝐵
)
1
𝜆
− (𝜇
𝐵
+𝛼
𝐵
)L (𝑆

𝐵
(𝑡) + 𝐼

𝐵
(𝑡)) ,

(23)

that can be written as

L (𝑆
𝐵 (𝑡) + 𝐼𝐵 (𝑡))

≤ (𝜇
𝐵
+𝛼
𝐵
)

𝜆
𝜃−(1+𝜃)

𝜆𝜃 + 𝜇
𝐵
+ 𝛼
𝐵

+
𝜆
𝜃−1

𝜆𝜃 + 𝜇
𝐵
+ 𝛼
𝐵

(𝑆
𝐵
(0) + 𝐼

𝐵
(0)) .

(24)

From the Laplace transform properties (6) and equality (7)
we infer

(𝑆
𝐵 (𝑡) + 𝐼𝐵 (𝑡))

≤ 𝑡
𝜃
𝐸
𝜃,𝜃+1 (− (𝜇𝐵 +𝛼𝐵) 𝑡

𝜃
) (𝜇
𝐵
+𝛼
𝐵
)

+ 𝐸
𝜃,1 (− (𝜇𝐵 +𝛼𝐵) 𝑡

𝜃
) (𝑆
𝐵
(0) + 𝐼

𝐵
(0))

≤ 𝑡
𝜃
𝐸
𝜃,𝜃+1 (− (𝜇𝐵 +𝛼𝐵) 𝑡

𝜃
) (𝜇
𝐵
+𝛼
𝐵
)

+ 𝐸
𝜃,1 (− (𝜇𝐵 +𝛼𝐵) 𝑡

𝜃
) = 1.

(25)

Therefore, we have that 0 ≤ 𝑆
𝐵
(𝑡) + 𝐼

𝐵
(𝑡) ≤ 1.

On the other hand, if 0 ≤ 𝐼
𝑇
(0) ≤ 1, from system (17), we

obtain

𝐷
𝜃

𝐶
𝐼
𝑇
(𝑡) = 𝛽

𝑇
(1− 𝐼
𝑇
(𝑡)) 𝐼
𝐵
(𝑡) − 𝜇

𝑇
𝑝𝐼
𝑇
(𝑡)

≤ (𝛽
𝑇
+𝜇
𝑇
𝑝) − (𝛽

𝑇
+𝜇
𝑇
𝑝) 𝐼
𝑇
(𝑡) .

(26)

The proof of 0 ≤ 𝐼
𝑇
(𝑡) ≤ 1 is similar to the previous case.

Finally, we conclude thatΩ is a positive invariant set.

In the following result we study the existence and stability
of the equilibriumpoints of system (17).Motivated byAranda
et al. [3], we will use the following threshold parameter. For
more details on the threshold parameter, see [24, 25]:

𝑅0 =
𝛽
𝐵
𝛽
𝑇

𝜆
𝐵
𝜇
𝑇
𝑝
. (27)
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The next result is similar to Proposition 1 in [3], and so
we omit its proofs.

Theorem 11. System (17) has the disease-free equilibrium
point:

𝐸1 = (𝑆
𝐵1
, 𝐼
𝐵1
, 𝐼
𝑇1
) = (1, 0, 0) , (28)

for all the values of the parameters in this system, whereas only
if 𝑅0 > 1, there is (unique) endemic equilibrium point:

𝐸2 = (𝑆
𝐵2
, 𝐼
𝐵2
, 𝐼
𝑇2
) , (29)

where

𝑆
𝐵2
=

𝜆
𝐵
(𝛼
𝐵
+ 𝜇
𝐵
) 𝛽
𝑇
+ (𝛼
𝐵
+ 𝜇
𝐵
+ 𝜆
𝐵
) 𝜆
𝐵

𝛽
𝑇
[𝛼
𝐵
(𝛽
𝐵
+ 𝜆
𝐵
) + 𝜆
𝐵
𝜇
𝐵
+ 𝛽
𝐵
(𝜆
𝐵
+ 𝜇
𝐵
)]
,

𝐼
𝐵2
=

(𝜇
𝐵
+ 𝛼
𝐵
) (𝛽
𝑇
𝛽
𝐵
− 𝜆
𝐵
𝜇
𝑇
𝑝)

𝛽
𝑇
[𝛼
𝐵
(𝛽
𝐵
+ 𝜆
𝐵
) + 𝜇
𝐵
𝜆
𝐵
+ 𝛽
𝐵
(𝜇
𝐵
+ 𝜆
𝐵
)]
,

𝐼
𝑇2
=

(𝛼
𝐵
+ 𝜇
𝐵
) (𝛽
𝐵
𝛽
𝑇
− 𝜆
𝐵
𝜇
𝑇
𝑝)

(𝛼
𝐵
+ 𝜇
𝐵
) 𝛽
𝐵
𝛽
𝑇
+ (𝛼
𝐵
+ 𝜇
𝐵
+ 𝜆
𝐵
) 𝛽
𝐵
𝜇
𝑇
𝑝
,

(30)

in the interior of Ω.

Computing the Jacobian matrix of system (17) evaluated
at the disease-free point, one gets

𝐽 (𝐸
1
) =



− (𝜇
𝐵
+ 𝛼
𝐵
) − (𝜇

𝐵
+ 𝛼
𝐵
) −𝛽

𝐵

0 −𝜆
𝐵

𝛽
𝐵

0 𝛽
𝑇

−𝜇
𝑇
𝑝



, (31)

and consequently, the eigenvalues of 𝐽(𝐸1) are

𝜆1 = − (𝜇
𝐵
+𝛼
𝐵
) ,

𝜆2 =
− (𝜆
𝐵
+ 𝜇
𝑇
𝑝) + √Δ

2
,

𝜆3 =
− (𝜆
𝐵
+ 𝜇
𝑇
𝑝) − √Δ

2
,

(32)

where Δ = (𝜆
𝐵
− 𝜇
𝑇
𝑝)

2
+ 4𝛽
𝐵
𝛽
𝑇
. It is easy to see that 𝜆1 and

𝜆3 are negative numbers. If 𝑅0 < 1 we observe

Δ = (𝜆
𝐵
−𝜇
𝑇
𝑝)

2
+ 4𝛽
𝐵
𝛽
𝑇

= 𝜆
2
𝐵
+𝜇

2
𝑇
𝑝
2
− 2𝜆
𝐵
𝜇
𝑇
𝑝+ 4𝛽

𝐵
𝛽
𝑇

< 𝜆
2
𝐵
+𝜇

2
𝑇
𝑝
2
+ 2𝜆
𝐵
𝜇
𝑇
𝑝 = (𝜆

𝐵
+𝜇
𝑇
𝑝)

2
.

(33)

We infer that

𝜆2 =
− (𝜆
𝐵
+ 𝜇
𝑇
𝑝) + √Δ

2

<
− (𝜆
𝐵
+ 𝜇
𝑇
𝑝) + (𝜆

𝐵
+ 𝜇
𝑇
𝑝)

2
= 0.

(34)

Therefore, 𝜆2 < 0; then we have that all eigenvalues of
the Jacobian matrix at 𝐸1 are negative: that is, |arg(𝜆

𝑖
)| =

𝜋, 𝑖 = 1, 2, 3, and from Theorem 8, we have that disease-
free equilibrium point 𝐸1 is locally asymptotically stable.
Consequently, we have the followingTheorem.

Theorem 12. If 𝑅0 < 1, then the disease-free point 𝐸1 is locally
asymptotically stable.

In the next result we prove the global asymptotical
stability of the disease-free equilibrium point.

Theorem 13. If 𝑅0 < 1, then the disease-free point 𝐸1 is
globally asymptotically stable.

Proof. Suppose that (𝑆
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡)) is the solution of

system (17). Making the change of variables 𝐿
𝐵
= 1 − 𝑆

𝐵
we

obtain the new system:

𝐷
𝜃

𝐶
𝐿
𝐵
(𝑡) = − (𝜇

𝐵
+𝛼
𝐵
) 𝐿
𝐵
(𝑡) + (𝜇

𝐵
+𝛼
𝐵
) 𝐼
𝐵
(𝑡)

+ 𝛽
𝐵
𝐼
𝑇 (𝑡) − 𝛽𝐵𝐿𝐵 (𝑡) 𝐼𝑇 (𝑡) ,

𝐷
𝜃

𝐶
𝐼
𝐵 (𝑡) = 𝛽

𝐵
(1−𝐿

𝐵 (𝑡)) 𝐼𝑇 (𝑡) − 𝜆𝐵𝐼𝐵 (𝑡) ,

𝐷
𝜃

𝐶
𝐼
𝑇
(𝑡) = 𝛽

𝑇
(1− 𝐼
𝑇
(𝑡)) 𝐼
𝐵
(𝑡) − 𝜇

𝑇
𝑝𝐼
𝑇
(𝑡) .

(35)

It is easy to see that

− (𝜇
𝐵
+𝛼
𝐵
) (𝐿
𝐵
(𝑡) − 𝐼

𝐵
(𝑡))

+ 𝛽
𝐵
(𝐼
𝑇
(𝑡) − 𝐿

𝐵
(𝑡) 𝐼
𝑇
(𝑡))

≤ − (𝜇
𝐵
+𝛼
𝐵
) (𝐿
𝐵
(𝑡) − 𝐼

𝐵
(𝑡)) + 𝛽

𝐵
𝐼
𝑇
(𝑡) ,

𝛽
𝐵
(1 − 𝐿

𝐵 (𝑡)) 𝐼𝑇 (𝑡) − 𝜆𝐵𝐼𝐵 (𝑡) ≤ 𝛽
𝐵
𝐼
𝑇 (𝑡) − 𝜆𝐵𝐼𝐵 (𝑡) ,

𝛽
𝑇
(1− 𝐼
𝑇
(𝑡)) 𝐼
𝐵
(𝑡) − 𝜇

𝑇
𝑝𝐼
𝑇
(𝑡) ≤ 𝛽

𝑇
𝐼
𝐵
(𝑡)

− 𝜇
𝑇
𝑝𝐼
𝑇
(𝑡) .

(36)

From the above, it follows that the solutions (𝐿
𝐵
(𝑡), 𝐼
𝐵
(𝑡),

𝐼
𝑇
(𝑡)) of system (35) satisfy the differential inequality:

𝐷
𝜃

𝐶
𝐿
𝐵
(𝑡) ≤ − (𝜇

𝐵
+𝛼
𝐵
) 𝐿
𝐵
(𝑡) + (𝜇

𝐵
+𝛼
𝐵
) 𝐼
𝐵
(𝑡)

+ 𝛽
𝐵
𝐼
𝑇
(𝑡) ,

𝐷
𝜃

𝐶
𝐼
𝐵
(𝑡) ≤ 𝛽

𝐵
𝐼
𝑇
(𝑡) − 𝜆

𝐵
𝐼
𝐵
(𝑡) ,

𝐷
𝜃

𝐶
𝐼
𝑇
(𝑡) ≤ 𝛽

𝑇
𝐼
𝐵
(𝑡) − 𝜇

𝑇
𝑝𝐼
𝑇
(𝑡) .

(37)

Moreover, motivated by (37), let (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)) be the
solution of fractional linear system:

𝐷
𝜃

𝐶
𝑋 (𝑡) = − (𝜇

𝐵
+𝛼
𝐵
)𝑋 (𝑡) + (𝜇

𝐵
+𝛼
𝐵
) 𝑌 (𝑡)

+ 𝛽
𝐵
𝑍 (𝑡) ,

𝐷
𝜃

𝐶
𝑌 (𝑡) = 𝛽

𝐵
𝑍 (𝑡) − 𝜆𝐵𝑌 (𝑡) ,

𝐷
𝜃

𝐶
𝑍 (𝑡) = 𝛽

𝑇
𝑌 (𝑡) − 𝜇𝑇𝑝𝑍 (𝑡) ,

(38)

with initial conditions (𝑋(0), 𝑌(0), 𝑍(0)) = (𝑋0, 𝑌0, 𝑍0) ∈ Ω.
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The eigenvalues of system (38) are given by



− (𝜇
𝐵
+ 𝛼
𝐵
) (𝜇
𝐵
+ 𝛼
𝐵
) 𝛽
𝐵

0 −𝜆
𝐵

𝛽
𝐵

0 𝛽
𝑇

−𝜇
𝑇
𝑝



. (39)

Similar to the proof of Theorem 12, we infer that all the
eigenvalues are negatives; thus, |arg(𝑥

𝑖
)| = 𝜋, 𝑖 = 1, 2, 3,

and fromTheorem 4, we can conclude that lim
𝑡→∞

𝑋(𝑡) = 0,
lim
𝑡→∞

𝑌(𝑡) = 0, and lim
𝑡→∞

𝑍(𝑡) = 0.
From the previous discussion and the comparison prin-

ciple, Theorem 2, we have

(𝐿
𝐵
(𝑡) , 𝐼
𝐵
(𝑡) , 𝐼
𝑇
(𝑡)) ≤≤ (𝑋 (𝑡) , 𝑌 (𝑡) , 𝑍 (𝑡)) . (40)

This implies lim
𝑡→∞

(𝐿
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡)) = (0, 0, 0), and it

follows that (𝑆
𝐵
(𝑡), 𝐼
𝐵
(𝑡), 𝐼
𝑇
(𝑡)) converge to the disease-free

equilibrium point 𝐸1 = (1, 0, 0), when 𝑅0 < 1.This ends the
proof.

Now we show the local stability of the endemic equi-
librium point 𝐸2, and we give the definition of an additive
compound matrix. For more details see [26, 27].

Definition 14. Let 𝐴 be any 𝑛 ×𝑚matrix of real and complex
numbers, and let 𝑎

𝑖1,...,𝑗𝑘 be the minor of 𝐴 determined
by the rows (𝑖1, . . . , 𝑖𝑘) and the columns (𝑗1, . . . , 𝑗𝑘), 1 ≤

𝑖1 < 𝑖2, . . . , < 𝑖
𝑘

≤ 𝑛, 1 ≤ 𝑗1 < 𝑗2, . . . , < 𝑗
𝑘

≤ 𝑚.

The kth multiplicative compound matrix of 𝐴𝑘 of 𝐴 is the
(
𝑛

𝑘
) × (
𝑛

𝑘
) matrix whose entries, written in a lexicographic

order, are 𝑎
𝑖1,...,𝑗𝑘 . When 𝐴 is a 𝑛 × 𝑚 matrix with columns

𝑎1, 𝑎2, . . . , 𝑎𝑘, 𝐴
𝑘 is the exterior product 𝑎1 ∧ 𝑎2 ∧ ⋅ ⋅ ⋅ ∧ 𝑎𝑘.

Definition 15. If 𝐴 = 𝑎
𝑖𝑗
is a 𝑛 × 𝑛 matrix, its 𝑘th additive

compound𝐴[𝑘] of the𝐴 is the ( 𝑛
𝑘
)×(
𝑛

𝑘
)matrix given by𝐴[𝑘] =

|𝐷(𝐼 + ℎ𝐴)
(𝑘)
| = 0, where 𝐷 is a differentiation with respect

to ℎ. For any integers 𝑖 = 1, . . . , ( 𝑛
𝑘
), let (𝑖) = (𝑖1, . . . , 𝑖𝑘) be

the 𝑖th member in the lexicographic ordering of all 𝑘-tuples
of integers such that 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖

𝑘
≤ 𝑖
𝑛
.Then

𝑏
𝑖𝑗
=

{{{{

{{{{

{

𝑎
𝑖1𝑖1

+ ⋅ ⋅ ⋅ + 𝑎
𝑖𝑘𝑖𝑘

if (𝑖) = (𝑗) ,

(−1)𝑟+𝑠 𝑎𝑖𝑠𝑖𝑟 , if one entry of 𝑖
𝑠
of (𝑖) does not occur in (𝑗) and 𝑗

𝑠
does not occur in (𝑖) ,

0, if (𝑖) differs from (𝑗) in two or more entries.

(41)

Remark 16. For 𝑛 = 3, the matrices 𝐴[𝑘] are as follows:

𝐴
[1]

= 𝐴,

𝐴
[2]

=
[
[

[

𝑎11 + 𝑎22 𝑎23 −𝑎13

𝑎32 𝑎11 + 𝑎33 𝑎12

−𝑎31 𝑎21 𝑎22 + 𝑎33

]
]

]

,

𝐴
[3]

= 𝑎11 + 𝑎22 + 𝑎33.

(42)

The next lemma is stated and proved in [28].

Lemma 17. Let 𝑀 be a 3 × 3 real matrix. If tr(𝑀) < 0,
det(𝑀) < 0, and det(𝑀[2]) < 0 are all negative, then all
eigenvalues of𝑀 have negative real part.

Theorem 18. If 𝑅0 > 1, 𝜇
𝐵
+ 𝛼
𝐵
> 𝛽
𝑇
, and 𝜇

𝐵
+ 𝛼
𝐵
> 𝛽
𝐵
, then

endemic equilibrium point 𝐸2 is locally asymptotically stable.

Proof. The Jacobian matrix of systems (17) in the endemic
equilibrium point is given by

𝐽 (𝐸2)

= (

− (𝜇
𝐵
+ 𝛼
𝐵
+ 𝛽
𝐵
𝐼
𝑇
) − (𝜇

𝐵
+ 𝛼
𝐵
) −𝛽

𝐵
𝑆
𝐵

𝛽
𝐵
𝐼
𝑇

−𝜆
𝐵

𝛽
𝐵
𝑆
𝐵

0 𝛽
𝑇
(1 − 𝐼

𝑇
) −𝐼
𝐵
𝛽
𝑇
− 𝜇
𝑇
𝑝

) .

(43)

From 𝐽(𝐸2), we have tr(𝐽(𝐸2)) = −(𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
) −𝜆
𝐵
−

𝐼
𝐵
𝛽
𝑇
− 𝜇
𝑇
𝑝 < 0.

To show the det 𝐽(𝐸2) < 0, we will make a simplification
into system (17), where it comes from

− (𝜇
𝐵
+𝛼
𝐵
) = −

𝛽
𝐵
𝑆
𝐵
𝐼
𝑇

1 − 𝑆
𝐵
− 𝐼
𝐵

,

𝜆
𝐵
=
𝛽
𝐵
𝑆
𝐵
𝐼
𝑇

𝐼
𝐵

,

𝜇
𝑇
𝑝 =

𝛽
𝑇
(1 − 𝐼

𝑇
) 𝐼
𝐵

𝐼
𝑇

.

(44)

Substituting (44) in the matrix (43), we obtain

det (𝐽 (𝐸2))

=



−
𝛽
𝐵
𝐼
𝑇
(1 − 𝐼

𝐵
)

1 − 𝑆
𝐵
− 𝐼
𝐵

−
𝛽
𝐵
𝑆
𝐵
𝐼
𝑇

1 − 𝑆
𝐵
− 𝐼
𝐵

−𝛽
𝐵
𝑆
𝐵

𝛽
𝐵
𝐼
𝑇

−
𝛽
𝐵
𝑆
𝐵
𝐼
𝑇

𝐼
𝐵

𝛽
𝐵
𝑆
𝐵

0 𝛽
𝑇
(1 − 𝐼

𝑇
) −

𝛽
𝑇
𝐼
𝐵

𝐼
𝑇



.

(45)
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Then

det (𝐽 (𝐸2)) = −
(1 − 𝑆

𝐵
− 𝐼
𝐵
) 𝐼
𝐵
𝐼
𝑇
(1 − 𝐼

𝐵
) 𝛽
𝐵
𝑆
𝐵
𝛽
𝑇
𝐼
𝑇

(1 − 𝑆
𝐵
− 𝐼
𝐵
) 𝐼
𝐵
𝐼
𝑇
(1 − 𝑆

𝐵
− 𝐼
𝐵
)

− 𝛽
𝐵
𝑆
𝐵
𝛽
𝐵
𝐼
𝑇
𝛽
𝑇
(1− 𝐼
𝑇
) −

𝛽
𝐵
𝑆
𝐵
𝐼
𝑇
𝛽
𝐵
𝐼
𝑇
𝛽
𝑇
𝐼
𝐵

(1 − 𝑆
𝐵
− 𝐼
𝐵
) 𝐼
𝑇

= −𝛽
𝐵
𝑆
𝐵
𝛽
𝑇
𝐼
𝑇
[

(1 − 𝑆
𝐵
− 𝐼
𝐵
) 𝐼
𝐵
𝐼
𝑇
(1 − 𝐼

𝐵
)

(1 − 𝑆
𝐵
− 𝐼
𝐵
) 𝐼
𝐵
𝐼
𝑇
(1 − 𝑆

𝐵
− 𝐼
𝐵
)

+ 𝛽
𝐵
(1− 𝐼
𝑇
)] −

𝛽
𝐵
𝑆
𝐵
𝛽
𝑇
𝐼
𝑇
𝛽
𝐵
𝐼
𝑇
𝐼
𝐵

(1 − 𝑆
𝐵
− 𝐼
𝐵
) 𝐼
𝑇

.

(46)

Therefore, as all are constant positive parameters, it follows
that det(𝐽(𝐸2)) < 0.

Let 𝐽[2](𝐸2) be the additive compound matrix:

𝐽
[2]
(𝐸2) = (

𝑀 − 𝜆
𝐵

𝛽
𝐵
𝑆
𝐵

𝛽
𝐵
𝑆
𝐵

𝛽
𝑇
− 𝛽
𝑇
𝐼
𝑇
𝑀+𝐾 − (𝜇

𝐵
+ 𝛼
𝐵
)

0 𝛽
𝐵
𝐼
𝑇

− (𝜆
𝐵
+ 𝐾)

) , (47)

where𝑀 = −(𝜇
𝐵
+ 𝛼
𝐵
+ 𝛽
𝐵
𝐼
𝑇
) and𝐾 = −(𝐼

𝐵
𝛽
𝑇
+ 𝜇
𝑇
𝑝). From

the hypothesis 0 ≤ 1 − 𝐼
𝑇
≤ 1, we get

det (𝐽[2] (𝐸2)) = − [(𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
)

⋅ (𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝)

⋅ (𝜆
𝐵
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝)] + 𝛽

𝐵
𝑆
𝐵
𝛽
𝑇
(1− 𝐼
𝑇
) [𝐼
𝑇
𝛽
𝐵

+𝜆
𝐵
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝] − (𝜇

𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
) (𝜇
𝐵

+𝛼
𝐵
) 𝛽
𝐵
𝐼
𝑇
≤ − [(𝜇

𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
)

⋅ (𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝)

⋅ (𝜆
𝐵
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝)] + 𝛽

𝐵
𝛽
𝑇
(𝐼
𝑇
𝛽
𝐵
+𝜆
𝐵
+ 𝐼
𝐵
𝛽
𝑇

+𝜇
𝑇
𝑝) − (𝜇

𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
) (𝜇
𝐵
+𝛼
𝐵
) 𝛽
𝐵
𝐼
𝑇

= − (𝜆
𝐵
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝) [(𝜇

𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
)

⋅ (𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝) −𝛽

𝐵
𝛽
𝑇
]

− 𝛽
𝐵
𝐼
𝑇
[(𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
) (𝜇
𝐵
+𝛼
𝐵
) − 𝛽
𝐵
𝛽
𝑇
] .

(48)

Analyzing the terms of equality above, we have

(𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
)

⋅ (𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+ 𝐼
𝐵
𝛽
𝑇
+𝜇
𝑇
𝑝) > 𝛽

𝐵
𝛽
𝑇
,

(𝜇
𝐵
+𝛼
𝐵
+𝛽
𝐵
𝐼
𝑇
+𝜆
𝐵
) (𝜇
𝐵
+𝛼
𝐵
) > 𝛽
𝐵
𝛽
𝑇
.

(49)

Then det(𝐽[2](𝐸2)) < 0 and from Lemma 17, the endemic
equilibrium point (𝐸2) is locally asymptotically stable. This
concludes the proof.

4. Numerical Simulations

In this section, we simulate different possible scenarios to
check the effect that some values of fractional exponent

𝜃 have on the dynamics of bovine babesiosis disease and
tick populations. For comparison purposes, we will use the
same parameters as Aranda et al. [3]. To solve a nonlinear
differential equation set with fractional order, amethod based
on the classical Adams-Bashforth-Moulton approach was
used, as presented in [29]:

𝑓
𝑗,𝑚

= 𝑓
𝑗,1 + 𝐽, (50)

in which 𝑗 = 1, 2, and 3 represents population number: 𝑆
𝐵
,

𝐼
𝐵
, and 𝐼

𝑇
, respectively. The time is defined as 𝑡

𝑚
= (𝑚 − 1)𝐻

in which 2 < 𝑚 < 𝑁 + 1 and𝑁 = 𝑇/𝐻, with 𝑇 equal to the
final time. The fractional integral is determined by modified
trapezoidal rule as

𝐽 =

𝑛−1
∑

𝑘=0
𝑓
𝑖,𝑘
𝑤
𝜇
+

(𝑓
𝑖,𝑘
− 𝑓
𝑖,𝑘+1) 𝑔𝜇

ℎ
, (51)

in which 𝜇 = 𝑛 − 𝑘, ℎ = 𝑡
𝑚
/𝑛, and 𝑡

𝑘
= 𝑘ℎ,

𝑤
𝜇
= (

ℎ
𝜃

𝛾 (𝜃 + 1)
) (𝜇
𝜃
− (𝜇 − 1)𝜃) ,

𝑔
𝜇
= (

ℎ
(𝜃+1)

𝛾 (𝜃 + 2)
) (𝜇
(𝜃+1)

− (𝜇 + 𝜃) (𝜇 − 1)𝜃) .

(52)

In this work𝐻 = 40 and 𝑛 = 400.More details about the
numerical integration algorithm can be found in [29, 30].

Figure 1 shows the dynamics of the bovine babesiosis
disease and tick populations, with initial condition of 𝑆

𝐵
=

0.3756, 𝐼
𝐵
= 0.5184, and 𝐼

𝑇
= 0.6000, and reproduction

number 𝑅0 = 67.54. As can be seen, following the course
of the disease, the system evolves to the endemic equilibrium
point with population number of 𝑆

𝐵2
= 0.04967, 𝐼

𝐵2
= 0.7894,

and 𝐼
𝑇2

= 0.7019, as determined by (30). The convergence
to the equilibrium point, when 𝑅0 > 1, is predicted by
Theorem 18. The variables 𝑆

𝐵
, 𝐼
𝐵
, and 𝐼

𝑇
drop to less than

1% of the equilibrium values above 6280 years, when a
veterinary intervention was simulated making 𝑅0 less than
1 (𝑅0 = 0.6754). This new 𝑅0 value was obtained with 𝛽

𝐵

equal to 1/10 of the initial value. Now the system gets out
of endemic equilibrium point and evolves to the disease-free
equilibrium point (1, 0, 0), as predicted by Theorems 12 and
13. The control parameters of differential equation set are
presented in Table 1.

A comparison between two different values of the frac-
tional order is shown in Figure 2, with the same control
parameter shown in Table 1. Figure 2 shows a different behav-
ior for 𝜃 = 0.9 and 𝜃 = 1, with a maximum value of 𝑆

𝐵
and

a minimum value of 𝐼
𝐵
, that does not appear when 𝜃 = 1.

For both cases, the disease evolves to the endemic equilibrium
point; however, it is slower when 𝜃 = 0.9.

Table 2 shows the time 𝜏1% in which variables drop to less
than 1% of the equilibrium values.These times were obtained
with different values of 𝜃. Aswe can see, the time 𝜏1% increases
when 𝜃 decreases.The time 𝜏1% as function 𝜃was adjusted by
two linear equations, 𝜏1%×1/𝜃 and ln(𝜏1%)×1/𝜃.The first case
is consistent with exponential behavior and the second case
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Table 1: The control parameters.

Parameter Value
𝜇
𝐵

0.0002999
𝛼
𝐵

0.001
𝛽
𝐵

0.006
𝜆
𝐵

0.000265
𝛽
𝑇

0.00048
𝜇
𝑇

0.001609
𝑝 0.1

Table 2: Relaxation time.

𝜃 𝜏1%/years
1 5120
0.975 8640
0.95 15200
0.925 26720
0.9 42840
0.875 49560
0.85 65840
0.825 70880
0.8 96680

with power law 𝑡
−𝜃. After the statistical analysis based on the

correlation coefficient, 0.90013 against 0.98018, one concludes
that the system decays to equilibrium condition like power
law 𝑡
−𝜃. This result was previously proven under theoretical

assumptions [21].

5. Conclusions

We did not find global stability results for fractional differ-
ential order equations in the literature. This way, we obtain
a new result for global asymptotical stability of disease-free
equilibrium using comparison theory of fractional differen-
tial equations since 𝑅0 < 1, and therefore the proof that
endemic equilibrium point, when 𝑅0 > 1, 𝜇

𝐵
+ 𝛼
𝐵

>

𝛽
𝐶
, and 𝜇

𝐵
+ 𝛼
𝐵

> 𝛽
𝐶
, is locally asymptotically stable

was achieved using the linearization theorem for fractional
differential equations. Therefore, if 𝑅0 < 1 so the system
evolves to endemic equilibrium point. To return to disease-
free status, the𝑅0 value should be greater than 1.The𝑅0 < 1 is
achieved when parameters 𝛽

𝐵
and 𝛽

𝐶
are very small or when

parameters 𝜆
𝐵
, 𝜇
𝐶
, and 𝑝 are very large. Therefore, biological

strategy to combat babesiosis disease would have to focus
on one of these parameters. These results were confirmed
by numerical simulations using the extension of Adams-
Bashforth-Moulton algorithm.

Numeric simulations of improved epidemic model with
arbitrary order have shown that fractional order is related
to relaxation time, in other words, the time taken to reach
equilibrium. Numerical simulations with different order
show that the system decays to equilibrium condition like
power law 𝑡

−𝜃, as previously established in [21]. This result
provides an important insight about the use of fractional
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Figure 1: Dynamic of the bovine babesiosis disease. 𝐼
𝐵
(continuous

line) together with 𝑆
𝐵
(dashed line) and 𝐼
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(dotted line) were shown

as function of the time.
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Figure 2: Dynamic of the bovine babesiosis disease, with 𝜃 = 1
(continuous line) and 𝜃 = 0.9 (dotted line).

order to model the dynamics of babesiosis disease and tick
population.Theproof shownhere should be used as a guide in
the study of equilibrium conditions in similar problems, such
as tuberculosis [28], malaria [31], or toxoplasmosis disease
[32].
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