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We are interested in the approximate analytical solutions of the wave-like nonlinear equations with variable coefficients. We use
a wave operator, which provides a convenient way of controlling all initial and boundary conditions. The proposed choice of the
auxiliary operator helps to find the approximate series solution without any discretization, linearization, or restrictive assumptions.
Several examples are given to verify the reliability and efficiency of the method.

1. Introduction

We consider the equation

𝑢
𝑡𝑡
− 𝑘 (𝑥, 𝑡) 𝑢

𝑥𝑥
= 𝑓 (𝑢, 𝑢

𝑥
, 𝑢
𝑦
, 𝑢
𝑥𝑡
) + 𝑔 (𝑥, 𝑡) ,

𝑥 > 0, 𝑡 > 0

(1)

with initial conditions

𝑢 (𝑥, 0) = 𝜑 (𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝜓 (𝑥)

(2)

and boundary condition

𝑢 (0, 𝑡) = ℎ (𝑡) , (3)

where 𝑓, 𝑔, 𝑘, 𝜑, 𝜓, and ℎ are known functions.
Note that the proposed method can be applied for

equations like

𝑘 (𝑥, 𝑡) 𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
= 𝑓 (𝑢, 𝑢

𝑥
, 𝑢
𝑦
, 𝑢
𝑥𝑡
) + 𝑔 (𝑥, 𝑡) , (4)

with the same type of initial-boundary conditions.
Problems like (1)–(3) model many problems in classical

and quantummechanics, solitons, andmatter physics [1, 2]. If
𝑓 is a function of 𝑢 only and 𝑘(𝑥, 𝑡) = const we obtain Klein-
Gordon or sine-Gordon type equations. These models can

describe some nonlinear phenomena; for example, wave-like
equation can describe earthquake stresses [3], coupling cur-
rents in a flat multistrand two-layer superconducting cable
[4], and nonhomogeneous elastic waves in soils [5]. Typical
examples of the wave-like equations with variable coeffi-
cients are Euler-Tricomi equation [6] or Chaplygin equa-
tion [7] given by

𝑢
𝑡𝑡
− 𝑡𝑢
𝑥𝑥
= 0,

𝑢
𝑡𝑡
− 𝑘 (𝑡) 𝑢

𝑥𝑥
= 0,

(5)

which are useful in the study of transonic flow, where 𝑢 =

𝑢(𝑡, 𝑥) is the stream function of a plane-parallel steady-state
gas flow, 𝑘(𝑡) is positive at subsonic and negative at supersonic
speed, and 𝑥 is the angle of inclination of the velocity vector.
Some Chaplygin type of equation of the special form

𝑢
𝑡𝑡
+

𝑥
2

1 − 𝑥
2
/𝑐
2
𝑢
𝑥𝑥
+ 𝑥𝑢
𝑥
= 0, (6)

where 𝑐 = 𝑐(𝑥) is the speed of sound, has also applications in
the study of transonic flow [8].

Note that we use the term wave-like equation to describe
the partial differential equations with the terms 𝑢

𝑡𝑡
and 𝑢

𝑥𝑥
;

that is, the term “wave-like” may not correspond to the real
physical waves, in general.

Recently, there has been a growing interest for obtaining
the explicit solutions to wave-like and heat-like models by
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analytic techniques. Wazwaz [9] used the tanh method to
obtain the exact solution of the sine-Gordon equation. Kaya
[10] applied the modified decomposition method to solve
the sine-Gordon equation. Aslanov [11] used homotopy per-
turbation method to solve Klein-Gordon type of equations
with unbounded right-hand side. El-Sayed [12] and Wazwaz
and Gorguis [13] used Adomian decomposition method for
solving wave-like and heat-like problems.

The homotopy analysis method [14–18] is developed to
search the accurate asymptotic solutions of nonlinear prob-
lems. Liao [17] proved that the homotopy analysis method
(HAM) contains some other nonperturbation techniques,
such as Adomian’s decomposition method and Lyapunov’s
artificial small parameter. Hayat and Sajid [19] and Abbas-
bandy [20] pointed out that the homotopy perturbation
method is only a special case of the HAM. Aslanov [21] used
homotopy perturbation method to solve wave-like equations
with initial-boundary conditions. Rajaraman [22] and Alo-
mari at al. [23] applied HAM for solving nonlinear equa-
tions with initial conditions. Öziş and Ağırseven [24] used
homotopy perturbation method for solving heat-like and
wave-like equations with variable coefficients.

Various methods for obtaining exact and approximate
solutions to nonlinear partial differential equations have been
proposed. Among these methods are the homotopy pertur-
bation and Adomian decomposition methods [25–29], the
variational iterationmethod [30], homotopy analysis method
[31], and others.

Here we will further extend the applications of HAM to
obtain an approximate series solution for the nonlinear wave-
like equations with variable coefficients and with initial-
boundary conditions. The difficulty in the use of standard
HAM is that the choice of the linear operator 𝐿 in standard
form (like 𝐿𝑢 = 𝑢

𝑡𝑡
or 𝐿𝑢 = 𝑢

𝑥𝑥
) cannot control the boundary

conditions (2)-(3).
Unlike the various approximation techniques, which are

usually valid for problems with (only) initial conditions, our
technique is applicable for a wide range of initial-boundary
problems of types (1)–(3). The central idea here is that the
problem,

𝑢
𝑡𝑡
− 𝑐
2
𝑢
𝑥𝑥
= 𝑔 (𝑥, 𝑡) ,

𝑢 (𝑥, 0) = 𝜑 (𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝜓 (𝑥) ,

𝑢 (0, 𝑡) = ℎ (𝑡) ,

(7)

has a unique solution (see, e.g., [32]) and therefore there exists
an inverse of the operator 𝐿 : 𝑢

𝑡𝑡
− 𝑐
2
𝑢
𝑥𝑥
. This operator can

control all initial-boundary conditions in each step of HAM.
Therefore we rewrite (1) as

𝐿𝑢 = −𝑐
2
𝑢
𝑥𝑥
+ 𝑘 (𝑥, 𝑡) 𝑢

𝑥𝑥
+ 𝑓 (𝑢, 𝑢

𝑥
, 𝑢
𝑦
, 𝑢
𝑥𝑦
)

+ 𝑔 (𝑥, 𝑡) ,

(8)

for some appropriate constant 𝑐, and construct the so-called
zero-order deformation equation [14, 15]:

(1 − 𝑞) 𝐿 [𝜙 (𝑥, 𝑡; 𝑞) − 𝑢
0
(𝑥, 𝑡)] = 𝑞ℎ𝑁 [𝜙 (𝑥, 𝑡; 𝑞)] , (9)

where 𝑞 ∈ [0, 1] is an embedding parameter, ℎ is a nonzero
auxiliary function, 𝐿(𝑢) = 𝑢

𝑡𝑡
− 𝑐
2
𝑢
𝑥𝑥
, 𝑁(𝜙) = 𝜙

𝑡𝑡
−

𝑘(𝑥, 𝑡)𝜙
𝑥𝑥

− 𝑓(𝜙, 𝜙
𝑥
, 𝜙
𝑦
, 𝜙
𝑥𝑡
) − 𝑔(𝑥, 𝑡), 𝑢

0
(𝑥, 𝑡) is an initial

guess, and 𝜙(𝑥, 𝑡; 𝑞) is an unknown function. The conditions
𝑞 = 0 and 𝑞 = 1 correspond to

𝜙 (𝑥, 𝑡; 0) = 𝑢
0
(𝑥, 𝑡) ,

𝜙 (𝑥, 𝑡; 1) = 𝑢 (𝑥, 𝑡) ,

(10)

respectively. Thus as 𝑞 increases from 0 to 1, the solution
𝜙(𝑥, 𝑡; 𝑞) varies from the initial guess 𝑢

0
(𝑥, 𝑡) to the solution

𝑢(𝑥, 𝑡) [14, 15].
Expanding 𝜙(𝑥, 𝑡; 𝑞) in Taylor series with respect to 𝑞, one

has

𝜙 (𝑥, 𝑡; 𝑞) = 𝑢
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) 𝑞

𝑚
, (11)

where

𝑢
𝑚
(𝑥, 𝑡) =

1

𝑚!

𝜕
𝑚
𝜙 (𝑥, 𝑡, 𝑞)

𝜕𝑞
𝑚









𝑞=0

. (12)

If the auxiliary linear operator, the initial guess, the auxiliary
parameter ℎ, and the auxiliary function are so properly
chosen, then series (11) converges at 𝑞 = 1 and

𝜙 (𝑥, 𝑡; 1) = 𝑢
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) , (13)

which must be one of solutions of the original equation, as
proved by Liao [17].

According to definition (12), the governing equation can
be deduced from the zero-order deformation equation (9).
Define the vector

�⃗�
𝑛
= {𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
} . (14)

Differentiating equation (9) 𝑚 times with respect to embed-
ding parameter 𝑞 and then setting 𝑞 = 0, we have the so-called
𝑚th-order deformation equation

𝐿 [𝑢
𝑚
− 𝜒
𝑚
𝑢
𝑚−1

] = ℎ𝑅
𝑚
(�⃗�
𝑚−1

) , (15)

where

𝑅
𝑚
(�⃗�
𝑚−1

) =

1

(𝑚 − 1)!

𝜕
𝑚−1

𝑁(𝜙 (𝑥, 𝑡, 𝑞))

𝜕𝑞
𝑚−1









𝑞=0

, (16)

𝜒
𝑚
=

{

{

{

0, 𝑚 ≤ 1

1, 𝑚 > 1.

(17)

2. Applications

To demonstrate the advantages of our approach first we con-
sider the wave-like linear equation with constant coefficients.
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Example 1. We consider the initial-boundary value problem

𝑢
𝑡𝑡
+ 𝑢
𝑥𝑥
= −2𝑢

𝑥𝑡
, 𝑥 > 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑥
3
,

𝑢
𝑡
(𝑥, 0) = −3𝑥

2
,

𝑢 (0, 𝑡) = 𝑡
3
.

(18)

The exact solution is 𝑢 = |(𝑥 − 𝑡)3|.

The traditional methods (with 𝐿𝑢 = 𝑢
𝑡𝑡
⋅ ⋅ ⋅ ) do not work

for this kind of problems. For example, the operator 𝐿𝑢 = 𝑢
𝑡𝑡

can not control the condition 𝑢(0, 𝑡) = 0 in every iteration
step, the same for the operator 𝐿𝑢 = 𝑢

𝑥𝑥
; that is, we need

an operator that can control all initial/boundary conditions.
Clearly the most appropriate operator should be the wave
operator. We take 𝐿(𝜙) = 𝜕

2
𝜙(𝑥, 𝑡, 𝑞)/𝜕𝑡

2
− 𝜕
2
𝜙(𝑥, 𝑡, 𝑞)/𝜕𝑥

2.
Equation (1) suggests that we define the nonlinear operator as

𝑁(𝜙) = 2

𝜕
2
𝜙 (𝑥, 𝑡, 𝑞)

𝜕𝑥
2

+ 2

𝜕
2
𝜙 (𝑥, 𝑡, 𝑞)

𝜕𝑥𝜕𝑡

. (19)

Using the above definition, we construct the zeroth-order
deformation equation

(1 − 𝑞) 𝐿 [𝜙 (𝑥, 𝑡; 𝑞) − 𝑢
0
(𝑥, 𝑡)] = 𝑞ℎ𝑁 [𝜙 (𝑥, 𝑡; 𝑞)] (20)

and the𝑚th order deformation equation

𝐿 [𝑢
𝑚
− 𝜒
𝑚
𝑢
𝑚−1

] = ℎ𝑅
𝑚
(�⃗�
𝑚−1

) , (21)

with the initial/boundary conditions 𝑢
𝑚
(𝑥, 0) = 0,

(𝑢
𝑚
)
𝑡
(𝑥, 0) = 0, and 𝑢

𝑚
(0, 𝑡) = 0.

Now it follows from the theory of wave equations that [32]
the solution of the equation 𝑢

𝑡𝑡
−𝑢
𝑥𝑥
= 0with the same initial-

boundary conditions is

𝑢
0
(𝑥, 𝑡) =

1

2

((𝑥 + 𝑡)
3
+ (𝑥 − 𝑡)

3
) −

1

2

∫

𝑥+𝑡

𝑥−𝑡

(3𝑦
2
) 𝑑𝑦

= (𝑥 − 𝑡)
3 for 𝑥 > 𝑡,

𝑢
0
(𝑥, 𝑡) =

1

2

((𝑥 + 𝑡)
3
+ (𝑥 − 𝑡)

3
) −

1

2

∫

𝑥+𝑡

𝑡−𝑥

(3𝑦
2
) 𝑑𝑦

+ (𝑡 − 𝑥)
3
= (𝑡 − 𝑥)

3
, for 𝑥 < 𝑡.

(22)

According to (21) we now successively obtain

𝐿 (𝑢
1
) = ℎ [(2𝑢

0
)
𝑥𝑥
+ (2𝑢
0
)
𝑥𝑡
] ≡ 𝑔 (𝑥, 𝑡) = 0 (23)

and it follows from

𝑢
1
=

ℎ

2

∫

𝑡

0

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

𝑔 (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠, for 𝑥 > 𝑡,

𝑢
1
=

ℎ

2

∫

𝑡−𝑥

0

∫

𝑥+𝑡−𝑠

𝑡−𝑥−𝑠

𝑔 (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠

+

ℎ

2

∫

𝑡

𝑡−𝑥

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

𝑔 (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠, for 𝑥 < 𝑡

(24)

that 𝑢
1
= 𝑢
2
= ⋅ ⋅ ⋅ = 0 [32].

Example 2. We consider the initial-boundary value problem

𝑢
𝑡𝑡
=

6 − (𝑥 − 𝑡)
2

6

𝑢
𝑥𝑥
+ 𝑢, 𝑥 > 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑥
3
,

𝑢
𝑡
(𝑥, 0) = −3𝑥

2
,

𝑢 (0, 𝑡) = 0.

(25)

The exact solution is

𝑢 =

{

{

{

(𝑥 − 𝑡)
3 if 𝑥 > 𝑡

0 if 𝑥 < 𝑡.
(26)

First we rewrite the equation as

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
=

− (𝑥 − 𝑡)
2

6

𝑢
𝑥𝑥
+ 𝑢. (27)

The solution of the equation 𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

= 0 with the same
initial-boundary conditions will be taken as an initial approx-
imation:

𝑢
0
=

1

2

((𝑥 + 𝑡)
3
+ (𝑥 − 𝑡)

3
) −

1

2

∫

𝑥+𝑡

𝑥−𝑡

3𝑦
2
𝑑𝑦

= (𝑥 − 𝑡)
3 for 𝑥 > 𝑡,

𝑢
0
=

1

2

((𝑥 + 𝑡)
3
− (𝑡 − 𝑥)

3
) −

1

2

∫

𝑥+𝑡

𝑡−𝑥

3𝑦
2
𝑑𝑦 = 0

for 𝑥 < 𝑡.

(28)

For 𝑢
1
we have

𝐿 (𝑢
1
) = ℎ [

(𝑥 − 𝑡)
2

6

𝑢
0𝑥𝑥

− 𝑢
0
] (29)

and therefore

𝑢
1

=

ℎ

2

∫

𝑡

0

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

(

(𝑦 − 𝑠)
2

6

6 (𝑦 − 𝑠) − (𝑦 − 𝑠)
3

)𝑑𝑦𝑑𝑠

= 0, for 𝑥 > 𝑡,

𝑢
1

=

ℎ

2

∫

𝑡−𝑥

0

∫

𝑥+𝑡−𝑠

𝑡−𝑥−𝑠

(0) 𝑑𝑦 𝑑𝑠 +

ℎ

2

∫

𝑡

𝑡−𝑥

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

(0) 𝑑𝑦 𝑑𝑠

= 0, for 𝑥 < 𝑡,

(30)

and continuing in this way, we obtain 𝑢
2
= 𝑢
3
= ⋅ ⋅ ⋅ = 0 and

𝑢exact = 𝑢0 + 𝑢1.

The above example demonstrates the importance of
the proposed technique with the use of wave operator. In
fact, all traditional approaches with some auxiliary operator
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Table 1: Maximum errors for Example 3.

𝑡 \ 𝑥 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
0.1 9.0 ⋅ 10−6 9.0 ⋅ 10−6 9.0 ⋅ 10−6 9.0 ⋅ 10−6 9.0 ⋅ 10−6 9.0 ⋅ 10−6 9.0 ⋅ 10−6 9.0 ⋅ 10−6

0.2 1.4 ⋅ 10−4 1.5 ⋅ 10−4 1.5 ⋅ 10−4 1.5 ⋅ 10−4 1.5 ⋅ 10−4 1.5 ⋅ 10−4 1.5 ⋅ 10−4 1.5 ⋅ 10−4

0.4 2.0 ⋅ 10−3 2.7 ⋅ 10−3 2.9 ⋅ 10−3 2.9 ⋅ 10−3 2.9 ⋅ 10−3 2.9 ⋅ 10−3 2.9 ⋅ 10−3 2.9 ⋅ 10−3

0.5 4.7 ⋅ 10−3 6.8 ⋅ 10−3 7.5 ⋅ 10−3 7.6 ⋅ 10−3 7.6 ⋅ 10−3 7.6 ⋅ 10−3 7.6 ⋅ 10−3 7.6 ⋅ 10−3

0.7 1.7 ⋅ 10−2 2.6 ⋅ 10−2 3.1 ⋅ 10−2 3.3 ⋅ 10−2 3.4 ⋅ 10−2 3.4 ⋅ 10−2 3.4 ⋅ 10−2 3.4 ⋅ 10−2

0.8 2.9 ⋅ 10−2 4.6 ⋅ 10−2 5.5 ⋅ 10−2 6.0 ⋅ 10−2 6.2 ⋅ 10−2 6.3 ⋅ 10−2 6.3 ⋅ 10−2 6.3 ⋅ 10−2

0.9 4.6 ⋅ 10−2 7.5 ⋅ 10−2 9.2 ⋅ 10−2 0.1020 0.10682 0.10888 0.10973 0.10974

𝐿𝑢 = 𝑢
𝑡𝑡
do not work, since the (exact) solution is not

analytical function on the whole region. For example, the
approaches used in [23, 24] can not be applied to solve
this problem (note that the approaches used in [23, 24] are
effective and simple for the problemswith analytical solutions
and/or for the problems with initial conditions).

Example 3. Weconsider the nonlinear initial-boundary value
problem

𝑢
𝑡𝑡
− 𝑥
2
𝑢
𝑥𝑥
= 𝑥𝑒
𝑡
− (𝑢
𝑥
)
2

+ 𝑒
2𝑡
,

𝑢 (𝑥, 0) = 𝑥,

𝑢
𝑡
(𝑥, 0) = 𝑥,

𝑢 (0, 𝑡) = 0.

(31)

The exact solution is 𝑢 = 𝑥𝑒
𝑡. We take 𝐿(𝑢) = 𝑢

𝑡𝑡
− 𝑢
𝑥𝑥

and
𝑢
0
as a solution of the problem 𝐿(𝑢) = 0 with the initial/

boundary conditions 𝑢(𝑥, 0) = 𝑥, 𝑢
𝑡
(𝑥, 0) = 𝑥, and 𝑢(0, 𝑡) =

0 [32]:

𝑢
0
=

1

2

[(𝑥 + 𝑡) + (𝑥 − 𝑡)] +

1

2

∫

𝑥+𝑡

𝑥−𝑡

𝑦𝑑𝑦 = 𝑥 (𝑡 + 1)

for 𝑥 > 𝑡,

𝑢
0
=

1

2

[(𝑥 + 𝑡) − (𝑡 − 𝑥)] +

1

2

∫

𝑥+𝑡

𝑡−𝑥

𝑦𝑑𝑦 = 𝑥 (𝑡 + 1)

for 𝑥 < 𝑡.

(32)

And now we obtain from (16)

𝐿 (𝑢
1
) = −ℎ [− (1 − 𝑥

2
) (𝑢
0
)
𝑥𝑥
+ 𝑥𝑒
𝑡
− (𝑢
0𝑥
)
2

+ 𝑒
2𝑡
]

= −ℎ [𝑥𝑒
𝑡
− (𝑡 + 1)

2
+ 𝑒
2𝑡
] ,

𝑢
1
= −

ℎ

2

∫

𝑡

0

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

𝑔 (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠, for 𝑥 > 𝑡,

𝑢
1
= −

ℎ

2

∫

𝑡−𝑥

0

∫

𝑥+𝑡−𝑠

𝑡−𝑥−𝑠

𝑔 (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠

−

ℎ

2

∫

𝑡

𝑡−𝑥

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

𝑔 (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠 for 𝑥 < 𝑡,

(33)

2

1
1.0

0z0.5
0.00.0

-0.50.5
1.0

y x
−1

−2

−1.0

−0.5

−1.0

Figure 1: The exact solution for Example 3.
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Figure 2: The approximate solution for Example 3.

where 𝑔(𝑦, 𝑠) = 𝑦𝑒𝑠 − (𝑠 + 1)2 + 𝑒2𝑠. Hence we obtain

𝑢
1
= −ℎ (𝑥𝑒

𝑡
− 𝑥 − 𝑡𝑥 −

1

2

𝑡 −

1

2

𝑡
2
−

1

3

𝑡
3
−

1

12

𝑡
4

+

1

4

𝑒
2𝑡
−

1

4

) , for 𝑥 > 𝑡,

𝑢
1
= −ℎ(𝑡𝑥

2
−

3𝑥

2

− 𝑡
2
𝑥 −

𝑡𝑥
3

3

−

𝑡
3
𝑥

3

+

𝑡
2
𝑥
2

2

−

𝑒
2𝑡

4𝑒
2𝑥

− 2𝑡𝑥 + 𝑥𝑒
𝑡
+

𝑥
2

2

−

𝑥
3

3

+

𝑥
4

12

+

𝑒
2𝑡

4

)

(34)

for 𝑥 < 𝑡. The absolute errors between the exact and the two-
term approximation of the series solution for some values of
(𝑥, 𝑡) ∈ [0, 1] × [0, 1] with ℎ = −1 are shown in Table 1.
The exact solution for Example 3 is shown in Figure 1 and the
approximate solution is shown in Figure 2. A higher accuracy
level can be attained by evaluating some more terms.
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Table 2: Maximum errors for Example 4.

𝑡 \ 𝑥 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
0.1 3.2 ⋅ 10−4 3.3 ⋅ 10−4 3.3 ⋅ 10−4 3.3 ⋅ 10−4 3.3 ⋅ 10−4 3.3 ⋅ 10−4 3.3 ⋅ 10−4 3.3 ⋅ 10−4

0.2 1.2 ⋅ 10−3 2.6 ⋅ 10−3 2.6 ⋅ 10−3 2.6 ⋅ 10−3 2.6 ⋅ 10−3 2.6 ⋅ 10−3 2.6 ⋅ 10−3 2.6 ⋅ 10−3

0.4 3.3 ⋅ 10−3 6.6 ⋅ 10−3 1.4 ⋅ 10−2 2.1 ⋅ 10−2 2.1 ⋅ 10−2 2.1 ⋅ 10−2 2.1 ⋅ 10−2 2.1 ⋅ 10−2

0.5 5.5 ⋅ 10−3 8.7 ⋅ 10−3 1.2 ⋅ 10−2 2.6 ⋅ 10−2 4.0 ⋅ 10−2 4.1 ⋅ 10−2 4.0 ⋅ 10−2 4.0 ⋅ 10−2

0.7 1.8 ⋅ 10−2 2.2 ⋅ 10−2 1.5 ⋅ 10−2 4.8 ⋅ 10−3 8.9 ⋅ 10−3 5.2 ⋅ 10−2 0.10648 0.10507
0.8 3.7 ⋅ 10−2 4.4 ⋅ 10−2 2.9 ⋅ 10−2 1.9 ⋅ 10−3 2.0 ⋅ 10−2 1.4 ⋅ 10−2 0.19175 0.14981
0.9 0.07335 9.0 ⋅ 10−2 6.5 ⋅ 10−2 1.5 ⋅ 10−2 4.1 ⋅ 10−2 8.0 ⋅ 10−2 1.6 ⋅ 10−2 0.1997

Example 4. Consider the nonlinear initial-boundary value
problem

𝑢
𝑡𝑡
− 𝑡𝑢
𝑥𝑥
= 𝑢
2
− 𝑡
2
𝑥
4
− 2𝑡
2
𝑥
3
− 𝑡
2
𝑥
2
− 2𝑡
2
,

𝑢 (𝑥, 0) = 0,

𝑢
𝑡
(𝑥, 0) = 𝑥 + 𝑥

2
,

𝑢 (0, 𝑡) = 0.

(35)

The exact solution is 𝑢 = 𝑥𝑡 + 𝑥2𝑡. We take 𝐿 = 𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
, and

consequently

𝑢
0
=

1

2

∫

𝑥+𝑡

𝑥−𝑡

(𝑦 + 𝑦
2
) 𝑑𝑦 =

1

3

𝑡 (𝑡
2
+ 3𝑥
2
+ 3𝑥) ,

for 𝑥 > 𝑡,

𝑢
0
=

1

2

∫

𝑥+𝑡

𝑡−𝑥

(𝑦 + 𝑦
2
) 𝑑𝑦 =

1

3

𝑥 (3𝑡
2
+ 3𝑡 + 𝑥

2
) ,

for 𝑥 < 𝑡,

𝑢
1
= −ℎ (

1

180

𝑡
8
+

2

45

𝑡
6
𝑥
2
+

2

45

𝑡
6
𝑥 −

2

3

𝑡
3
) ,

for 𝑥 > 𝑡,

𝑢
1
= −ℎ (−

79

45

𝑡
7
𝑥 +

64

9

𝑡
6
𝑥
2
+

1

45

𝑡
6
𝑥 −

473

45

𝑡
5
𝑥
3

+

253

36

𝑡
4
𝑥
4
−

8

9

𝑡
4
𝑥
3
−

73

45

𝑡
3
𝑥
5
+

23

6

𝑡
3
𝑥
4
−

1

3

𝑡
3
𝑥

−

1

45

𝑡
2
𝑥
6
−

35

6

𝑡
2
𝑥
5
+ 𝑡
2
𝑥
2
− 𝑡
2
𝑥 +

1

45

𝑡𝑥
7
+

71

18

𝑡𝑥
6

+

10

3

𝑡𝑥
3
−

1

360

𝑥
8
−

125

126

𝑥
7
−

23

6

𝑥
4
) , for 𝑥 < 𝑡.

(36)

The absolute errors between the exact and the two-term
approximation of the series solution for some values of
(𝑥, 𝑡) ∈ [0, 1] × [0, 1] for ℎ = −1 are shown in Table 2. The
exact solution for Example 4 is shown in the Figure 3 and the
approximate solution is shown in Figure 4.

−1.0

2

0.00.0
xy

-1.0-0.5-0.5 z 0
0.50.5

1.0 1.0

1

−1

−2

Figure 3: Exact solution for Example 4.
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Figure 4: Approximate two-term approximation for Example 4.

Example 5. Consider the nonlinear initial-boundary value
problem

𝑢
𝑡𝑡
=

6 + (𝑥 − 𝑡)
5

6

𝑢
𝑥𝑥
− 𝑢
2
, 𝑥 > 0, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑥
3
,

𝑢
𝑡
(𝑥, 0) = −3𝑥

2
,

𝑢 (0, 𝑡) = 𝑡
3
,

(37)

whose exact solution is

𝑢 =

{

{

{

(𝑥 − 𝑡)
3 if 𝑥 > 𝑡,

(𝑡 − 𝑥)
3 if 𝑥 < 𝑡.

(38)

First we rewrite the equation as

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
=

(𝑥 − 𝑡)
5

6

𝑢
𝑥𝑥
− 𝑢
2
. (39)
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The solution of the equation 𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
= 0 with the same ini-

tial-boundary conditions is

𝑢
0
=

1

2

((𝑥 + 𝑡)
3
+ (𝑥 − 𝑡)

3
) −

1

2

∫

𝑥+𝑡

𝑥−𝑡

3𝑦
2
𝑑𝑦

= (𝑥 − 𝑡)
3
, for 𝑥 > 𝑡,

(40)

𝑢
0
=

1

2

((𝑥 + 𝑡)
3
− (𝑡 − 𝑥)

3
) −

1

2

∫

𝑥+𝑡

𝑡−𝑥

3𝑦
2
𝑑𝑦

+ (𝑡 − 𝑥)
3
= (𝑡 − 𝑥)

3
, for 𝑥 < 𝑡.

(41)

For 𝑢
1
we have

𝐿 (𝑢
1
) = −ℎ [

(𝑥 − 𝑡)
5

6

𝑢
0𝑥𝑥

− 𝑢
2

0
] ,

𝑢
1
= −

ℎ

2

∫

𝑡

0

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

(

(𝑦 − 𝑠)
5

6

6 (𝑦 − 𝑠) − (𝑦 − 𝑠)
6

)𝑑𝑦𝑑𝑠

= 0, for 𝑥 > 𝑡,

𝑢
1
= −

ℎ

2

∫

𝑡−𝑥

0

∫

𝑥+𝑡−𝑠

𝑡−𝑥−𝑠

(

(𝑠 − 𝑦)
5

6

6 (𝑠 − 𝑦) − (𝑠 − 𝑦)
6

)𝑑𝑦𝑑𝑠

−

ℎ

2

∫

𝑡

𝑡−𝑥

∫

𝑥+𝑡−𝑠

𝑥−𝑡+𝑠

(

(𝑠 − 𝑦)
5

6

6 (𝑠 − 𝑦) − (𝑠 − 𝑦)
6

)𝑑𝑦𝑑𝑠

= 0

(42)

for 𝑥 < 𝑡, and for the exact solution we obtain 𝑢 = 𝑢
0
+ 𝑢
1
.

3. Discussion

Themain goal of this work was to propose a reliable method
for solving wave-like equations with variable coefficients.The
proposed equations may not be solved by the method of
separation of variables or byHAMorADM in standard form.
The main difficulty in the use of previous methods is related
to the choice of an auxiliary linear operator 𝐿. Traditional
methods work effectively in case of analytical solutions in
the whole region, that is, in fact, when some initial/boundary
condition is supposed by another one or in case of some
special type of equations (homogeneous, etc.).

The proposed method was applied directly without any
need for restrictive assumptions, and this gives it a wider
applicability. This method is capable of greatly reducing
the volume of computational work compared to standard
approaches while still maintaining high accuracy of the
approximate solution. A higher accuracy level can be attained
even by evaluating some two-three terms in the series
solution.

The approach was tested by employing the method to
obtain solutions for several problems.The results obtained in
all cases demonstrate the efficiency of this approach.
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