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This paper focuses on a hybrid multistep and its twin one-leg methods and implementing them on implicit mixed differential
algebraic equations. The orders of convergence for the above methods are discussed and numerical tests are solved.

1. Introduction

Consider the ordinary differential system:

𝑦
󸀠
= 𝑓 (𝑡, 𝑦) , (1)

where the linear multistep method (LM) [1, 2]
𝑘

∑

𝑖=0
𝛼
𝑖
𝑦
𝑚+𝑖

= ℎ

𝑘

∑

𝑖=0
𝛽
𝑖
𝑓 (𝑡
𝑚+𝑖

, 𝑦
𝑚+𝑖

) (2)

is given, and the generating polynomials

𝜌 (𝜁) =

𝑘

∑

𝑖=0
𝛼
𝑖
𝜁
𝑖
,

𝜎 (𝜁) =

𝑘

∑

𝑖=0
𝛽
𝑖
𝜁
𝑖

(3)

have real coefficients and no common divisor. Also assume
throughout the normalization that

𝜎 (1) = 1. (4)

Then the associated one-leg (OL) method is defined by
𝑘

∑

𝑖=0
𝛼
𝑖
𝑦
𝑚+𝑖

= ℎ𝑓(

𝑘

∑

𝑖=0
𝛽
𝑖
𝑡
𝑚+𝑖

,

𝑘

∑

𝑖=0
𝛽
𝑖
𝑦
𝑚+𝑖

) . (5)

The author presents hybrid multistep methods that take
the form

𝑦
𝑛+𝑠

= ℎ𝜇𝑓
𝑛
+

𝑘−2

∑

𝑗=0
𝛾
𝑛−𝑗

𝑦
𝑛−𝑗

, (6a)

𝑦
𝑛
+

𝑘

∑

𝑗=1
𝛼
𝑛−𝑗

𝑦
𝑛−𝑗

= ℎ𝛽
𝑠
(𝑓
𝑛+𝑠

−𝛽
∗
𝑓
𝑛−1) , (6b)

and the one-leg twin of (6a) and (6b) takes the form

𝑦
𝑛
+

𝑘

∑

𝑗=1
𝛼
𝑛−𝑗

𝑦
𝑛−𝑗

= ℎ𝑓 (𝛽
𝑠
𝑡
𝑛+𝑠

−𝛽
𝑠
𝛽
∗
𝑡
𝑛−1, 𝛽𝑠𝑦𝑛+𝑠 −𝛽𝑠𝛽

∗
𝑦
𝑛−1) ,

(7)

where 𝑓
𝑛+𝑠

= 𝑓(𝑡
𝑛+𝑠
, 𝑦
𝑛+𝑠
), 𝑡
𝑛+𝑠

= 𝑡
𝑛
+ 𝑠ℎ, −1 < 𝑠 < 1, −1 ⩽

𝛽
∗
< 1. 𝛽

𝑠
, and 𝛼

𝑛−𝑗
, 𝑗 = 1, 2, . . . , 𝑘, are parameters to be

determined as functions of 𝑠 and 𝛽∗. Methods (6a) and (6b)
with step 𝑘 have order 𝑝 = 𝑘 and 𝑦

𝑛+𝑠
has order 𝑘 − 1. To

evaluate the value of 𝑦
𝑛+𝑠

at the off-step point, that is, 𝑡
𝑛+𝑠

,
consider the nodes 𝑡

𝑛
(double node), 𝑡

𝑛−1, . . ., and 𝑡𝑛−𝑘 (simple
nodes) [3, 4].

Applying Newton’s interpolation formula for this data
gives the following scheme:

𝑦 (𝑡
𝑛
+ 𝑠ℎ)

= 𝑦
𝑛
+ 𝑠ℎ𝑓
𝑛
+ 𝑠

2
(ℎ𝑓
𝑛
−∇𝑦
𝑛
)
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+
𝑠
2
(𝑠 + 1)
2!

(ℎ𝑓
𝑛
−∇𝑦
𝑛
−
1
2
∇
2
𝑦
𝑛
)

+
𝑠
2
(𝑠 + 1) (𝑠 + 2)

3!
(ℎ𝑓
𝑛
−∇𝑦
𝑛
−
1
2
∇
2
𝑦
𝑛
−
∇
3
𝑦
𝑛

3
)

+ ⋅ ⋅ ⋅ ,

(8)
where ∇𝑦

𝑛
= 𝑦
𝑛
− 𝑦
𝑛−1 and 𝑓 (or 𝑓(𝑡, 𝑦)) is considered as a

derivative of the solution 𝑦(𝑡).
The hybridmultistepmethod and its twin one-leg depend

on two parameters,𝛽∗ and 𝑠, which control their convergence
and stability; also the position of the stage point affects the
stability regions of the methods. For optimal values of 𝛽∗
and 𝑠, the methods have larger stability region compared
to the hybrid backward differentiation formulae [3]; the
corresponding one-leg twin is 𝐺-stable for 𝑘 = 2 and 𝑘 = 3;
see [5, 6].

Differential-algebraic equations (DAEs) often take place
in highly scientific technology domains, such as automatic
control engineering, simulation of electrical networks, and
chemical reaction kinetics [7, 8]. Some systems can be
reduced toODE systems and can be solved bynumericalODE
methods. Reduction to explicit differential system (1) in some
other systems can be impossible or impractical because the
problem is more naturally posed in the form 𝐹(𝑡, 𝑦

󸀠
, 𝑦) =

0 and a reduction might reduce the sparseness of Jacobian
matrices. These systems are then solved directly [9, 10].

Here LM (2) and OL (5) are defined for implicit mixed
differential algebraic systems of the form

𝐹 (𝑡, 𝑦
󸀠
, 𝑦, 𝑥) = 0, (9a)

𝐺 (𝑡, 𝑦, 𝑥) = 0, (9b)
where 𝐹, 𝐺, 𝑥, and 𝑦 are vectors of the same dimension.
Rewrite (2) and (5) in the form

1
ℎ
𝜌𝑦
𝑛
−𝜎𝑦
󸀠

𝑛
= 0, (10)

1
ℎ
𝜌𝑦
𝑛
−𝑓 (𝜎𝑦

𝑛
, 𝜏) = 0, (11)

respectively, where 𝜏 = 𝜎𝑡
𝑛
, substituting for 𝑦󸀠

𝑛
in (9a) and

(9b):

𝐹(𝑡
𝑛
,
1
𝛽
𝑘

(
1
ℎ
𝜌𝑦
𝑛
−𝜎𝑦
󸀠

𝑛
) , 𝑦
𝑛
, 𝑥
𝑛
) = 0, (12a)

𝐺 (𝑡
𝑛
, 𝑥
𝑛
, 𝑦
𝑛
) = 0, (12b)

where 𝜎𝑦󸀠
𝑛
acts only on backward data. Equations (12a) and

(12b) can be solved for (𝑦
𝑛
, 𝑥
𝑛
). In the one-leg form, the

arguments are changed to 𝜏
𝑛
, 𝑦
󸀠
(𝜏
𝑛
), 𝑦(𝜏

𝑛
), and 𝑥(𝜏

𝑛
). The

implementation of OL (5) to (9a) and (9b) gives the equations

𝐹(𝜏,
1
ℎ
𝜌𝑦
𝑛
, 𝜎𝑦
𝑛
, 𝜎𝑥
𝑛
) = 0, (13a)

𝐺 (𝑡
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
) = 0. (13b)

As a modification technique that applies the same argu-
ments of 𝐹 on 𝐺, this implementation can be written as

𝐹(𝜏,
1
ℎ
𝜌𝑦
𝑛
, 𝜎𝑦
𝑛
, 𝜎𝑥
𝑛
) = 0, (14a)

𝐺 (𝜏, 𝜎𝑦
𝑛
, 𝜎𝑥
𝑛
) = 0. (14b)

The LMS and MOL formulations in (12a), (12b), (14a), and
(14b) are easier to implement than OL method in (13a) and
(13b) because both equations are evaluated on the same
arguments.

In the following section, the hybrid multistep (HMS)
method in (6a) and (6b) and its twin, hybrid one-leg (7)
(HOL) method are defined for (9a) and (9b) and expressions
for the local truncation errors of (HMS) and (HOL) are given.

2. The Hybrid Method

In the case of 𝑘 = 2, the method in (6a) and (6b) takes the
form

𝛼
𝑛
𝑦
𝑛
+𝛼
𝑛−1𝑦𝑛−1 +𝛼𝑛−2𝑦𝑛−2 = ℎ𝛽

𝑠
(𝑓
𝑛+𝑠

−𝛽
∗
𝑓
𝑛−1) , (15a)

𝑦
𝑛+𝑠

= 𝑦
𝑛
+ 𝑠ℎ𝑓
𝑛
, (15b)

where

𝛼
𝑛
=
3 + 2𝑠 − 𝛽∗

2 (1 − 𝛽∗)
,

𝛼
𝑛−1 =

−2 (1 + 𝑠)
(1 − 𝛽∗)

,

𝛼
𝑛−2 =

− (−1 − 2𝑠 − 𝛽∗)
2 (1 − 𝛽∗)

,

𝛽
𝑠
=

1
(1 − 𝛽∗)

.

(16)

Method (15a) has order 2 and its truncation error is ((2 +
3𝑠(2 + 𝑠) + 𝛽∗)/6(−1 + 𝛽∗))ℎ3𝑦󸀠󸀠󸀠(𝜂), and 𝑦

𝑛+𝑠
has order one

and its truncation error is 𝑇2 = 𝑠
2
ℎ
2
𝑦
󸀠󸀠
(𝜂) due to (8), where

𝜂 ∈ (𝑡
𝑛−2, 𝑡𝑛+1). Applying the method in (15a) and (15b) on

implicit mixed differential algebraic equations (9a) and (9b)
obtains the following:

𝐹 (𝑡
𝑛+𝑠
, 𝑢
𝑛+𝑠
, 𝑦
𝑛+𝑠
, 𝑥
𝑛+𝑠
) = 0, (17a)

𝐺 (𝑡
𝑛
, 𝑥
𝑛
, 𝑦
𝑛
) = 0, (17b)

where

𝑢
𝑛+𝑠

=
1
ℎ𝛽
𝑠

(𝛼
𝑛
𝑦
𝑛
+𝛼
𝑛−1𝑦𝑛−1 +𝛼𝑛−2𝑦𝑛−2) + 𝛽

∗
𝑓
𝑛−1. (18)

Let 𝑥(𝑡) and 𝑦(𝑡) be the exact solution of (9a) and (9b).
The residues of (17a) and (17b) are the values of the left sides
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evaluated on 𝑥(𝑡) and 𝑦(𝑡). Using Taytor expansion for the
second argument of 𝐹 evaluated on 𝑦(𝑡),

𝑢 (𝑡
𝑛+𝑠
)

=
1
ℎ𝛽
𝑠

(𝛼
𝑛
𝑦 (𝑡
𝑛
) + 𝛼
𝑛−1𝑦 (𝑡𝑛−1) + 𝛼𝑛−2𝑦 (𝑡𝑛−2))

+ 𝛽
∗
𝑓 (𝑡
𝑛−1) ,

(19)

leads to

𝑢 (𝑡
𝑛+𝑠
) ≃ 𝑦
󸀠
(𝑡
𝑛+𝑠
) +𝑇1, (20)

where

𝑇1 =
1
6
(−2− 6𝑠 − 𝛽∗) ℎ2𝑦󸀠󸀠󸀠 (𝜂) . (21)

Theorem 1. The order of convergence of the second-order
hybrid method in (15a) and (15b) when applied to implicit
mixed DAEs (9a) and (9b) is two.

Proof. Let the local truncation errors be defined by 𝜖
𝑛

=

𝑦
𝑛
− 𝑦(𝑡
𝑛
), 𝜙
𝑛
= 𝑥
𝑛
− 𝑥(𝑡
𝑛
), 𝜖
𝑛
= 𝑦
󸀠

𝑛
− 𝑦
󸀠
(𝑡
𝑛
), and 𝜙

𝑛
=

𝑥
󸀠

𝑛
− 𝑥
󸀠
(𝑡
𝑛
), where {𝑥

𝑛+𝑠
, 𝑦
𝑛+𝑠
} satisfies (17a) and (17b) with

exact backward data:

0 = 𝐹 (𝑡
𝑛+𝑠
, 𝑦
󸀠

𝑛+𝑠
, 𝑦
𝑛+𝑠
, 𝑥
𝑛+𝑠
) ≃ 𝐹(𝑡

𝑛+𝑠
,

1
ℎ𝛽
𝑠

(𝛼
𝑛
𝑦
𝑛
+𝛼
𝑛−1𝑦𝑛−1 +𝛼𝑛−2𝑦𝑛−2) + 𝛽

∗
𝑓
𝑛−1, 𝑦𝑛

+ 𝑠ℎ𝑦
󸀠

𝑛
, 𝑥
𝑛
+ 𝑠ℎ𝑥
󸀠

𝑛
) ≃ 𝐹(𝑡

𝑛+𝑠
,

1
ℎ𝛽
𝑠

(𝛼
𝑛
(𝑦 (𝑡
𝑛
) + 𝜖
𝑛
) + 𝛼
𝑛−1𝑦𝑛−1 +𝛼𝑛−2𝑦𝑛−2)

+ 𝛽
∗
𝑓
𝑛−1, 𝑦 (𝑡𝑛) + 𝜖𝑛 + 𝑠ℎ (𝑦

󸀠
(𝑡
𝑛
) + 𝜖
𝑛
) , 𝑥 (𝑡

𝑛
)

+ 𝜙
𝑛
+ 𝑠ℎ (𝑥

󸀠
(𝑡
𝑛
) + 𝜙
𝑛
)) ≃ 𝐹(𝑡

𝑛+𝑠
, 𝑇1 +

𝜖
𝑛
𝛼
𝑛

ℎ𝛽
𝑠

+𝑦
󸀠
(𝑡
𝑛+𝑠
) , 𝑇2 + 𝜖𝑛 + 𝑠ℎ𝜖𝑛 +𝑦 (𝑡𝑛+𝑠) , 𝑇3 +𝜙𝑛

+ 𝑠ℎ𝜙
𝑛
+𝑥 (𝑡
𝑛+𝑠
)) ,

(22)

where 𝑇3 = 𝑠
2
ℎ
2
𝑥
󸀠󸀠
(𝜂); expanding around (𝑡

𝑛+𝑠
, 𝑦
󸀠
(𝑡
𝑛+𝑠
),

𝑦(𝑡
𝑛+𝑠
), 𝑥(𝑡
𝑛+𝑠
)) implies that

𝐹 (𝑡
𝑛+𝑠
, 𝑦
󸀠
(𝑡
𝑛+𝑠
) , 𝑦 (𝑡

𝑛+𝑠
) , 𝑥 (𝑡

𝑛+𝑠
))

+(𝑇1 +
𝜖
𝑛
𝛼
𝑛

ℎ𝛽
𝑠

)𝐹
𝑦
󸀠 + (𝑇2 + 𝜖𝑛 + 𝑠ℎ𝜖𝑛) 𝐹𝑦

+ (𝑇3 +𝜙𝑛 + 𝑠ℎ𝜙𝑛) 𝐹𝑥 ≃ 0,

(23)

where the arguments of 𝐹, 𝐹
𝑦
󸀠 , 𝐹
𝑦
, and 𝐹

𝑥
are (𝑡
𝑛+𝑠
, 𝑦
󸀠
(𝑡
𝑛+𝑠
),

𝑦(𝑡
𝑛+𝑠
), 𝑥(𝑡
𝑛+𝑠
))

𝜖
𝑛
(
𝛼
𝑛

ℎ𝛽
𝑠

𝐹
𝑦
󸀠 +𝐹
𝑦
)+𝑇1𝐹𝑦󸀠 +𝑇2𝐹𝑦 + 𝑠ℎ𝜖𝑛𝐹𝑦

+ (𝑇3 +𝜙𝑛 + 𝑠ℎ𝜙𝑛) 𝐹𝑥 ≃ 0.
(24)

The errors 𝜖
𝑛
and 𝜙

𝑛
satisfy the following equations:

𝜖
𝑛
(
𝛼
𝑛

ℎ𝛽
𝑠

𝐹
𝑦
󸀠 +𝐹
𝑦
)+𝜙
𝑛
𝐹
𝑥

≃ − (𝑇1𝐹𝑦󸀠 +𝑇2𝐹𝑦 + 𝑠ℎ𝜖𝑛𝐹𝑦 + (𝑇3 + 𝑠ℎ𝜙𝑛) 𝐹𝑥) ,

(25)

0 = 𝐺 (𝑡
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
) ≃ 𝐺+𝐺

𝑦
𝜖
𝑛
+𝐺
𝑥
𝜙
𝑛
, (26)

where 𝐺 = 𝐹 = 0 and the arguments of 𝐺,𝐺
𝑦
, 𝐺
𝑥
are

(𝑡
𝑛
, 𝑦(𝑡
𝑛
), 𝑥(𝑡
𝑛
)). If 𝐺−1

𝑥
and 𝐹−1

𝑦
󸀠 exist, then

𝜙
𝑛
≃ −𝐺

−1

𝑥
𝐺
𝑦
𝜖
𝑛
. (27)

Therefore, 𝜙
𝑛
has the same order as 𝜖

𝑛
.The substitution for 𝜙

𝑛

in (25) implies that

𝜖
𝑛
(𝐼 −

ℎ𝛽
𝑠

𝛼
𝑛

𝐺
−1

𝑥
𝐺
𝑦
𝐹
𝑥
+
ℎ𝛽
𝑠

𝛼
𝑛

𝐹
𝑦
) = 𝛾1, (28)

where

𝛾1 = −
ℎ𝛽
𝑠

𝛼
𝑛

⋅ 𝐹
−1
𝑦
󸀠 (𝑇1𝐹𝑦󸀠 +𝑇2𝐹𝑦 + 𝑠ℎ𝜖𝑛𝐹𝑦 + 𝑠ℎ𝜙𝐹𝑥 +𝑇3𝐹𝑥)

= 𝑂 (ℎ
3
) ,

𝜖
𝑛
(𝐼 +𝑂 (ℎ)) = 𝑂 (ℎ

3
) ,

𝜖
𝑛
= 𝑂 (ℎ

3
) .

(29)

Then 𝜖
𝑛
and 𝜙

𝑛
are third order; thus the method is of second

order.
Therefore, 𝜖

𝑛
is third order small and in accordance with

classical theory we conclude that the global error 𝜖
𝑛
in 𝑦
𝑛

must be second order small. Furthermore, if 𝜙
𝑛
denotes the

global error in 𝑥
𝑛
—note that the global errors (𝜖

𝑛
, 𝜙
𝑛
) satisfy

the same algebraic constraints as the local errors (𝜖
𝑛
, 𝜙
𝑛
),

namely, (26)—consequently,𝜙
𝑛
is also second order small and

thus method in (15a) and (15b) is second order small and
accurate with respect to both 𝑦 and 𝑥.

Modified Technique for Hybrid Method. It is noticed that the
arguments of (17a) are (𝑡

𝑛+𝑠
, 𝑦
󸀠

𝑛+𝑠
, 𝑦
𝑛+𝑠
, 𝑥
𝑛+𝑠
) and that of (17b)

is (𝑡
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
). The arguments of (17a) and (17b) can be taken

as

𝐹 (𝑡
𝑛+𝑠
, 𝑦
󸀠

𝑛+𝑠
, 𝑦
𝑛+𝑠
, 𝑥
𝑛+𝑠
) = 0,

𝐺 (𝑡
𝑛+𝑠
, 𝑦
𝑛+𝑠
, 𝑥
𝑛+𝑠
) = 0,

(30)

which is called the modified technique for hybrid method.
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In this case,

0 = 𝐺 (𝑡
𝑛+𝑠
, 𝑦
𝑛+𝑠
, 𝑥
𝑛+𝑠
) ≃ 𝐺 (𝑡

𝑛+𝑠
, 𝑦
𝑛
+ 𝑠ℎ𝑦
󸀠

𝑛
, 𝑥
𝑛

+ 𝑠ℎ𝑥
󸀠

𝑛
) ≃ 𝐺 (𝑡

𝑛+𝑠
, 𝑇2 + 𝜖𝑛 + 𝑠ℎ𝜖𝑛 +𝑦 (𝑡𝑛+𝑠) , 𝑇3

+𝜙
𝑛
+ 𝑠ℎ𝜙
𝑛
+𝑥 (𝑡
𝑛+𝑠
)) .

(31)

Expanding 𝐺 around (𝑡
𝑛+𝑠
, 𝑦(𝑡
𝑛+𝑠
), 𝑥(𝑡
𝑛+𝑠
)) gives the follow-

ing:

𝐺+ (𝑇2 + 𝜖𝑛 + 𝑠ℎ𝜖𝑛) 𝐺𝑦 + (𝑇3 +𝜙𝑛 + 𝑠ℎ𝜙𝑛)𝐺𝑥 ≃ 0,

𝑇3 +𝜙𝑛 + 𝑠ℎ𝜙𝑛 ≃ − (𝑇2 + 𝜖𝑛 + 𝑠ℎ𝜖𝑛) 𝐺
−1
𝑥
𝐺
𝑦
.

(32)

Substitute for (𝑇3 + 𝜙𝑛 + 𝑠ℎ𝜙𝑛) in (24):

𝜖
𝑛
(𝐼 +

ℎ𝛽
𝑠

𝛼
𝑛

𝐹
−1
𝑦
󸀠 (𝐹𝑦 −𝐺

−1
𝑥
𝐺
𝑦
𝐹
𝑥
))

≃ −
ℎ𝛽
𝑠

𝛼
𝑛

𝐹
−1
𝑦
󸀠 (𝑇1𝐹𝑦󸀠 + (𝐹𝑦 −𝐺

−1
𝑥
𝐺
𝑦
𝐹
𝑥
) (𝑇2 + 𝑠ℎ𝜖)) ,

(33)

where

𝛾2 = −
ℎ𝛽
𝑠

𝛼
𝑛

𝐹
−1
𝑦
󸀠 (𝑇1𝐹𝑦󸀠 + (𝐹𝑦 −𝐺

−1
𝑥
𝐺
𝑦
𝐹
𝑥
) (𝑇2 + 𝑠ℎ𝜖))

= 𝑂 (ℎ
3
) ,

𝜖
𝑛
(𝐼 +𝑂 (ℎ)) ≃ 𝑂 (ℎ

3
) ,

𝜖
𝑛
= 𝑂 (ℎ

3
) ,

(34)

and the global error 𝜖
𝑛
affecting 𝑦

𝑛
is 𝑂(ℎ2).

Since

0 = 𝐺 (𝑡
𝑛+𝑠
, 𝑦
𝑛+𝑠
, 𝑥
𝑛+𝑠
) ≃ 𝐺 (𝑡

𝑛+𝑠
, 𝑦 (𝑡
𝑛
) + 𝜖
𝑛

+ 𝑠ℎ (𝑦
󸀠
(𝑡
𝑛
) + 𝜖̃) , 𝑥 (𝑡

𝑛
) + 𝜙
𝑛
+ 𝑠ℎ (𝑥

󸀠
(𝑡
𝑛
) +

̃
𝜙))

≃ (𝑦 (𝑡
𝑛
) + 𝜖
𝑛
+ 𝑠ℎ (𝑦

󸀠
(𝑡
𝑛
) + 𝜖̃) − 𝑦 (𝑡

𝑛+𝑠
)) 𝐺
𝑦

+ (𝑥 (𝑡
𝑛
) + 𝜙
𝑛
+ 𝑠ℎ (𝑥

󸀠
(𝑡
𝑛
) +

̃
𝜙) − 𝑥 (𝑡

𝑛+𝑠
))𝐺
𝑥

≃ (𝜖
𝑛
+ 𝑠ℎ𝜖̃ + 𝑇2)𝐺𝑦 + (𝜙𝑛 + 𝑠ℎ

̃
𝜙 +𝑇3)𝐺𝑥,

𝜙
𝑛
≃ − (𝜖

𝑛
+ 𝑠ℎ𝜖̃ + 𝑇2)𝐺

−1
𝑥
𝐺
𝑦
− (𝑠ℎ

̃
𝜙 +𝑇3)

= 𝑂 (ℎ
2
) ,

(35)

thus the method is of second order.

3. The One-Leg Twin

In the case of 𝑘 = 2, method (7) takes the form

𝛼
𝑛
𝑦
𝑛
+𝛼
𝑛−1𝑦𝑛−1 +𝛼𝑛−2𝑦𝑛−2

= ℎ𝑓 (𝛽
𝑠
𝑡
𝑛+𝑠

−𝛽
𝑠
𝛽
∗
𝑡
𝑛−1, 𝛽𝑠𝑦𝑛+𝑠 −𝛽𝑠𝛽

∗
𝑦
𝑛−1) ,

(36a)

𝑦
𝑛+𝑠

= 𝑦
𝑛
+ 𝑠ℎ𝑓
𝑛
. (36b)

Method (36a) has order 2 and its truncation error is (1/6−
(1 + 𝑠)2/2(−1 + 𝛽∗)2)ℎ3𝑦󸀠󸀠󸀠(𝜂) and 𝑦

𝑛+𝑠
has order one and its

truncation error is 𝑇2 = 𝑠
2
ℎ
2
𝑦
󸀠󸀠
(𝜂) due to (8).

Theorem 2. The order of convergence of the second-order one-
leg twin in (36a) and (36b)when applied to implicitmixedDAE
is two.

Proof. Applying the method in (36a) and (36b) on the
implicit mixed differential algebraic equations (9a) and (9b)
obtains the following:

𝐹(𝜏
𝑛
,
1
ℎ
𝜌𝑦
𝑛
, 𝜎𝑦
𝑛
, 𝜎𝑥
𝑛
) = 0, (37a)

𝐺 (𝑡
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
) = 0. (37b)

The residues of (37a) and (37b) are the values of the left
sides evaluated on 𝑥(𝑡) and 𝑦(𝑡):

0 ≃ 𝐹(𝜏
𝑛
,
1
ℎ
(𝛼
𝑛
𝑦
𝑛
+𝛼
𝑛−1𝑦𝑛−1 +𝛼𝑛−2𝑦𝑛−2) , 𝛽𝑠𝑦𝑛+𝑠

−𝛽
𝑠
𝛽
∗
𝑦
𝑛−1, 𝛽𝑠𝑥𝑛+𝑠 −𝛽𝑠𝛽

∗
𝑥
𝑛−1) ,

0 ≃ 𝐹(𝜏
𝑛
,

1
ℎ
(𝛼
𝑛
(𝑦 (𝑡
𝑛
) + 𝜖
𝑛
) + 𝛼
𝑛−1𝑦𝑛−1 +𝛼𝑛−2𝑦𝑛−2) ,

𝛽
𝑠
(𝑦 (𝑡
𝑛
) + 𝜖
𝑛
+ 𝑠ℎ (𝑦

󸀠
(𝑡
𝑛
) + 𝜖
𝑛
)) − 𝛽

𝑠
𝛽
∗
𝑦
𝑛−1,

𝛽
𝑠
(𝑥 (𝑡
𝑛
) + 𝜙
𝑛
+ 𝑠ℎ (𝑥

󸀠
(𝑡
𝑛
) + 𝜙
𝑛
)) − 𝛽

𝑠
𝛽
∗
𝑥
𝑛−1) ,

0 ≃ 𝐹(𝜏
𝑛
, 𝑇1 +

𝛼
𝑛
𝜖
𝑛

ℎ
+𝑦
󸀠
(𝜏
𝑛
) , 𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛

+𝑦 (𝜏
𝑛
) , 𝑇5 +𝛽𝑠𝜙𝑛 +𝛽𝑠𝑠ℎ𝜙𝑛 +𝑥 (𝜏𝑛)) ,

(38)

where

𝑇1 = (
1
6
−

(1 + 𝑠)2

2 (−1 + 𝛽∗)2
)ℎ

2
𝑦
󸀠󸀠󸀠
(𝜂) ,

𝑇4 = 𝜎𝑦 (𝑡
𝑛
) − 𝑦 (𝜏

𝑛
) =

(1 + 𝑠)2 𝛽∗

2 (−1 + 𝛽∗)2
ℎ
2
𝑦
󸀠󸀠
(𝜂) ,

𝑇5 = 𝜎𝑥 (𝑡
𝑛
) − 𝑥 (𝜏

𝑛
) =

(1 + 𝑠)2 𝛽∗

2 (−1 + 𝛽∗)2
ℎ
2
𝑥
󸀠󸀠
(𝜂) ,

(39)

and expanding around 𝜏
𝑛
, 𝑦
󸀠
(𝜏
𝑛
), 𝑦(𝜏
𝑛
), 𝑥(𝜏
𝑛
) implies that

0 ≃ 𝐹 (𝜏
𝑛
, 𝑦
󸀠
(𝜏
𝑛
) , 𝑦 (𝜏

𝑛
) , 𝑥 (𝜏

𝑛
)) + (𝑇1 +

𝛼
𝑛
𝜖
𝑛

ℎ
)𝐹
𝑦
󸀠

+ (𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐹𝑦

+ (𝑇5 +𝛽𝑠𝜙𝑛 +𝛽𝑠𝑠ℎ𝜙𝑛) 𝐹𝑥,

(40)
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0 ≃ (𝑇1 +
𝛼
𝑛
𝜖
𝑛

ℎ
)𝐹
𝑦
󸀠 + (𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐹𝑦

+ (𝑇5 +𝛽𝑠𝜙𝑛 +𝛽𝑠𝑠ℎ𝜙𝑛) 𝐹𝑥,

(41)

where the arguments of 𝐹, 𝐹
𝑦
󸀠 , 𝐹
𝑦
, 𝐹
𝑥
are (𝜏

𝑛
, 𝑦
󸀠
(𝜏
𝑛
), 𝑦(𝜏
𝑛
),

𝑥(𝜏
𝑛
)).
Expanding (37b) around (𝑡

𝑛
, 𝑦(𝑡
𝑛
), 𝑥(𝑡
𝑛
)), if 𝐺−1

𝑥
exists,

gives the following:

𝜙
𝑛
≃ −𝐺

−1

𝑥
𝐺
𝑦
𝜖
𝑛
; (42)

substitute 𝜙
𝑛
in (41):

𝜖
𝑛
(𝐼+

ℎ

𝛼
𝑛

𝐹
−1
𝑦
󸀠 (𝛽𝑠𝐹𝑦 −𝛽𝑠𝐺

−1

𝑥
𝐺
𝑦
𝐹
𝑥
)) ≃ −

ℎ

𝛼
𝑛

⋅ 𝐹
−1
𝑦
󸀠 ((𝑇4 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐹𝑦

+ (𝑇5 +𝛽𝑠𝑠ℎ𝜙𝑛) 𝐹𝑥 +𝑇1𝐹𝑦󸀠) ,

𝜖
𝑛
(1+𝑂 (ℎ)) ≃ 𝛾3 = 𝑂 (ℎ

3
) ,

(43)

where

𝛾3 = −
ℎ

𝛼
𝑛

𝐹
−1
𝑦
󸀠 ((𝑇4 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐹𝑦 + (𝑇5 +𝛽𝑠𝑠ℎ𝜙𝑛) 𝐹𝑥

+𝑇1𝐹𝑦󸀠) ,

𝜖
𝑛
= 𝑂 (ℎ

3
) ;

(44)

thus the method is of second order.

Modified Technique for One-Leg Twin Method. Here the
arguments of 𝐹 and 𝐺 are different if the arguments of 𝐺 are
taken as (𝜏

𝑛
, 𝑦(𝜏
𝑛
), 𝑥(𝜏
𝑛
)), and (37a) and (37b) become the

following:

𝐹(𝜏
𝑛
,
1
ℎ
𝜌𝑦
𝑛
, 𝜎𝑦
𝑛
, 𝜎𝑥
𝑛
) = 0,

𝐺 (𝜏
𝑛
, 𝜎𝑦
𝑛
, 𝜎𝑥
𝑛
) = 0,

𝐺 (𝜏
𝑛
, 𝛽
𝑠
𝑦
𝑛+𝑠

−𝛽
𝑠
𝛽
∗
𝑦
𝑛−1, 𝛽𝑠𝑥𝑛+𝑠 −𝛽𝑠𝛽

∗
𝑥
𝑛−1) = 0,

0 = 𝐺 (𝜏
𝑛
, 𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛 +𝑦 (𝜏𝑛) , 𝑇5 +𝛽𝑠𝜙𝑛

+𝛽
𝑠
𝑠ℎ𝜙
𝑛
+𝑥 (𝜏

𝑛
)) ,

0 ≃ 𝐺 (𝜏
𝑛
, 𝑦 (𝜏
𝑛
) , 𝑥 (𝜏

𝑛
)) + (𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐺𝑦

+ (𝑇5 +𝛽𝑠𝜙𝑛 +𝛽𝑠𝑠ℎ𝜙𝑛)𝐺𝑥,

(𝑇5 +𝛽𝑠𝜙𝑛 +𝛽𝑠𝑠ℎ𝜙𝑛) ≃ − (𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛)

⋅ 𝐺
−1
𝑥
𝐺
𝑦
.

(45)

Substitute (𝑇5 + 𝛽𝑠𝜙𝑛 + 𝛽𝑠𝑠ℎ𝜙𝑛) in (41):

0

≃ (𝑇1 +
𝛼
𝑛
𝜖
𝑛

ℎ
)𝐹
𝑦
󸀠 + (𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐹𝑦

− (𝑇4 +𝛽𝑠𝜖𝑛 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐺
−1
𝑥
𝐺
𝑦
𝐹
𝑥
,

𝜖
𝑛
(𝐼 +

ℎ

𝛼
𝑛

𝐹
−1
𝑦
󸀠 (𝛽𝑠𝐹𝑦 −𝛽𝑠𝐺

−1
𝑥
𝐺
𝑦
𝐹
𝑥
)) ≃ 𝛾4

= 𝑂 (ℎ
3
) ,

(46)

where

𝛾4 = −
ℎ

𝛼
𝑛

𝐹
−1
𝑦
󸀠 ((𝑇4 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐹𝑦

− (𝑇4 +𝛽𝑠𝑠ℎ𝜖𝑛) 𝐺
−1
𝑥
𝐺
𝑦
𝐹
𝑥
+𝑇1𝐹𝑦󸀠) ,

𝜖
𝑛
(𝐼 +𝑂 (ℎ)) ≃ 𝛾4 = 𝑂 (ℎ

3
) .

(47)

Consequently, 𝜖
𝑛
= 𝑂(ℎ

3
) and the global error 𝜖

𝑛
affecting 𝑦

𝑛

is 𝑂(ℎ2). However, since

0 = 𝐺 (𝜏
𝑛
, 𝜎𝑦
𝑛
, 𝜎𝑥
𝑛
)

= 𝐺 (𝜏
𝑛
, 𝜎𝑦 (𝑡

𝑛
) + 𝜎𝜖

𝑛
, 𝜎𝑥 (𝑡

𝑛
) + 𝜎𝜙

𝑛
)

≃ (𝜎𝑦 (𝑡
𝑛
) + 𝜎𝜖

𝑛
−𝑦 (𝜏

𝑛
)) 𝐺
𝑦

+ (𝜎𝑥 (𝑡
𝑛
) + 𝜎𝜙

𝑛
−𝑥 (𝜏

𝑛
)) 𝐺
𝑥

≃ (𝜎𝜖
𝑛
+𝑇4) 𝐺𝑦 + (𝜎𝜙𝑛 +𝑇5)𝐺𝑥,

(48)

the global error 𝜙
𝑛
is related to 𝜖

𝑛
by the difference

𝜎𝜙
𝑛
≃ (𝜎𝜖
𝑛
+𝑇4) 𝐺

−1
𝑥
𝐺
𝑦
−𝑇5 = 𝑂 (ℎ

2
) . (49)

The solution 𝜙
𝑛
of this difference equation is also 𝑂(ℎ2)

since 𝜎−1 is a bounded operator; thus themethod is of second
order.

4. Numerical Tests

Here, some numerical results are presented to evaluate the
performance of the proposed technique [11, 12].

Test 1. Consider the differential algebraic equations:

𝑥
󸀠

(𝑡) = 2 (1−𝑦) sin (𝑦) + 𝑥

√1 − 𝑦
,

0 = 𝑥
2
+ (𝑦− 1) cos2 (𝑦) ,

(50)
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Figure 1: Rectifier circuit.

with the initial conditions 𝑥(1) = 1, 𝑦(1) = 0, and the exact
solution is 𝑥(𝑡) = 𝑡 cos(1 − 𝑡2), 𝑦(𝑡) = 1 − 𝑡2.

Test 2. Consider the nonlinear DAEs:

𝑦
󸀠

1 −𝑦2 −𝑦1𝑦3 = 0,

𝑦
󸀠

2 +(
𝜋

3
)

2
𝑦1 −𝑦2𝑦3 = 0,

− (
𝜋

3
)

2
𝑦
2
1 −𝑦

2
2 + 1 = 0,

𝑡 ∈ [0, 1] ,

(51)

with the initial conditions𝑦1(0) = 0,𝑦2(0) = 1, and𝑦3(0) = 0.
The exact solutions are 𝑦1(𝑡) = (3/𝜋) sin((𝜋/3)𝑡), 𝑦2(𝑡) =

cos((𝜋/3)𝑡), and 𝑦3(𝑡) = 0.

Test 3. Consider the nonlinear DAEs:

𝑥
󸀠

(𝑡) = 𝑓 (𝑥, 𝑡) − 𝐵 (𝑥, 𝑡) 𝑦,

0 = 𝑔 (𝑥, 𝑦) ,

(52)

with

𝑓 = (
−𝑥1 + 𝑥2 − sin (𝑡) − (1 + 2𝑡)

0
) ,

𝐵 = (
0

𝑥1
) ,

𝑥 = (
𝑥1

𝑥2
) ,

𝑔 = 𝑥
2
1 +𝑥1 (𝑥2 − sin (𝑡) − 1+ 2𝑡) ,

(53)

subject to the initial conditions 𝑥1(0) = 1, 𝑥2(0) = 0, and
𝑦(𝑡) = −1.

The exact solution is 𝑥
𝑒
= (1 − 2𝑡, sin(𝑡)), 𝑦

𝑒
= − cos(𝑡)/

(1 − 2𝑡).

Test 4 (practical test). Consider rectifier diode circuit [13]
in Figure 1 for transforming an AC voltage source into a

Table 1: The errors of solutions for the first test.

𝑡 ℎ Er(𝑥(𝑡)) Er(𝑦(𝑡))

HMS

2 0.01 4.83216𝐸 − 4 9.09651𝐸 − 4

4 0.01 1.19431𝐸 − 2 4.42402𝐸 − 3

2 0.001 1.96883𝐸 − 6 3.71621𝐸 − 6

4 0.001 5.36086𝐸 − 4 1.98856𝐸 − 4

2 0.000l 1.68493𝐸 − 7 3.18069𝐸 − 7

4 0.0001 3.80065𝐸 − 7 1.40968𝐸 − 7

HOL

2 0.01 2.69539𝐸 − 4 5.05238𝐸 − 4

4 0.01 1.3771𝐸 − 2 5.10544𝐸 − 3

2 0.001 4.43816𝐸 − 7 8.37372𝐸 − 7

4 0.001 1.40624𝐸 − 4 5.21576𝐸 − 5

2 0.0001 3.55151𝐸 − 8 6.70428𝐸 − 8

4 0.0001 1.39345𝐸 − 6 5.16839𝐸 − 7

HBDF

2 0.01 1.99174𝐸 − 2 3.53307𝐸 − 2

4 0.01 2.83319𝐸 − 1 9.99465𝐸 − 2

2 0.001 6.02345𝐸 − 5 1.13683𝐸 − 4

4 0.001 1.37187𝐸 − 3 5.08695𝐸 − 4

2 0.0001 6.21028𝐸 − 8 1.17233𝐸 − 7

4 0.0001 4.78321𝐸 − 6 1.77411𝐸 − 6

DC voltage. It is designed in such a way that it damps the
incoming sine-wave.

In Figure 1, the circuit is a half wave rectifier circuit. The
diode permits the flow of the current during the positive half
cycle and stops the current flowduring the negative half cycle.
The capacitor is used to smooth the output voltage such that
the output voltage at the load resistor 𝑅 is close to a DC
voltage:

V
𝑛1
(𝑡) = 10 sin (377𝑡) . (54)

Kirchhoff ’s Current Law (KCL) at 𝑛1

𝑖
𝑠
(𝑡) = 𝑖

𝐷
(𝑡) ,

𝑖
𝐷
(𝑡) = 𝐼

𝑠
(exp (38.685 (V

𝑛1
(𝑡) − V

𝑛2
(𝑡))) − 1) .

(55)

Assuming 𝐼
𝑠
= 10−13𝐴,

𝑖
𝑠
(𝑡) = 𝐼

𝑠
(exp (38.685 (V

𝑛1
(𝑡) − V

𝑛2
(𝑡))) − 1) . (56)

KCL at 𝑛2:

𝑖
𝐷
(𝑡) = 𝑖

𝑅
(𝑡) + 𝑖
𝑐
(𝑡) ,

𝐼
𝑠
(exp (38.685 (V

𝑛1
(𝑡) − V

𝑛2
(𝑡))) − 1)

=
V
𝑛2
(𝑡)

𝑅
+ 𝑐

𝑑

𝑑𝑡
V
𝑛2
(𝑡) ,

(57)
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Figure 2: The exact and approximate solutions for the current of the diode circuit.
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Figure 3: The exact and numerical solutions for the voltage (V
𝑛2
(𝑡)) of the diode circuit.
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Figure 4: The exact and approximate solutions of the voltage (V
𝑛1
(𝑡)) of the diode circuit.

where 𝑖
𝑠
is the supply current, 𝑖

𝐷
is the diode current, 𝑖

𝑅
is

the current in the resistor 𝑅, 𝑖
𝐶
is the current in the capacitor

𝐶, 𝐼
𝑠
is the reverse current of the diode, 𝑛1 and 𝑛2 are node

1 and node 2, 𝑛0 is the reference node, and V is the supply
voltage. We solve this circuit with hybrid formula (6a) and

(6b) method and draw the exact and the numerical solutions
in Figures 2–4.

The above tests are solved by the hybridmultistepmethod
in (6a) and (6b) and its hybrid twin one-leg method (7) (with
𝑘 = 2, 𝛽∗ = −0.4, and 𝑠 = −0.4) and compared with HBDF



8 Abstract and Applied Analysis

Table 2: The errors of solutions for the second test.

𝑡 ℎ Er(𝑦
1
(𝑡)) Er(𝑦

2
(𝑡)) Er(𝑦

3
(𝑡))

HMS

0.5 0.01 4.44120𝐸 − 6 2.67822𝐸 − 6 5.5219𝐸 − 8

1 0.01 5.17837𝐸 − 6 9.38061𝐸 − 6 5.5219𝐸 − 8

0.5 0.001 4.51402𝐸 − 8 2.72911𝐸 − 8 5.54467𝐸 − 11

1 0.001 5.21721𝐸 − 8 9.46285𝐸 − 8 5.52825𝐸 − 11

0.5 0.0001 4.52156𝐸 − 10 2.73373𝐸 − 10 2.00697𝐸 − 12

1 0.0001 5.22150𝐸 − 10 9.47077𝐸 − 10 1.29584𝐸 − 12

HOL

0.5 0.01 1.10985𝐸 − 5 6.7033𝐸 − 6 2.27002𝐸 − 7

1 0.01 1.29380𝐸 − 5 2.34557𝐸 − 5 2.27002𝐸 − 7

0.5 0.001 1.1285𝐸 − 7 6.82285𝐸 − 8 2.27173𝐸 − 10

1 0.001 1.3043𝐸 − 7 2.36571𝐸 − 7 2.27181𝐸 − 10

0.5 0.0001 1.13038𝐸 − 9 6.8343𝐸 − 10 2.18404𝐸 − 12

1 0.0001 1.30538𝐸 − 9 2.36771𝐸 − 9 1.15477𝐸 − 12

HBDF

0.5 0.01 2.89796𝐸 − 5 1.75273𝐸 − 5 9.67763𝐸 − 7

1 0.01 3.40875𝐸 − 5 6.18349𝐸 − 5 9.67763𝐸 − 7

0.5 0.001 2.99655𝐸 − 7 1.81172𝐸 − 7 9.67982𝐸 − 10

1 0.001 3.46637𝐸 − 7 6.28731𝐸 − 7 9.67637𝐸 − 10

0.5 0.0001 3.00632𝐸 − 9 1.81762𝐸 − 9 8.01653𝐸 − 13

1 0.0001 3.47202𝐸 − 9 6.29754𝐸 − 9 5.0231𝐸 − 13

Table 3: The errors of solutions for the third test.

𝑡 ℎ Er(𝑥
1
(𝑡)) Er(𝑥

2
(𝑡)) Er(𝑦(𝑡))

HMS

1 0.01 1.0116𝐸 − 5 1.011656𝐸 − 5 5.88302𝐸 − 5

3 0.01 1.58952𝐸 − 6 1.58952𝐸 − 6 2.0603𝐸 − 6

1 0.001 1.03830𝐸 − 7 1.03831𝐸 − 7 6.02688𝐸 − 7

3 0.001 1.61765𝐸 − 8 1.61766𝐸 − 8 2.07402𝐸 − 8

1 0.0001 1.04072𝐸 − 9 1.04072𝐸 − 9 6.0429𝐸 − 9

3 0.0001 1.64812𝐸 − 10 1.64812𝐸 − 10 2.12782𝐸 − 10

HOL

1 0.01 4.47718𝐸 − 6 4.47718𝐸 − 6 1.0808𝐸 − 4

3 0.01 4.05837𝐸 − 6 4.05837𝐸 − 6 5.02559𝐸 − 6

1 0.001 5.35857𝐸 − 8 5.35858𝐸 − 8 8.50777𝐸 − 8

3 0.001 3.97665𝐸 − 8 3.97665𝐸 − 8 5.01833𝐸 − 8

1 0.0001 9.21768𝐸 − 10 9.21768𝐸 − 10 9.21768𝐸 − 10

3 0.0001 3.94626𝐸 − 10 3.94624𝐸 − 10 5.00513𝐸 − 10

HBDF

1 0.01 5.77901𝐸 − 7 5.77901𝐸 − 7 676543𝐸 − 5

3 0.01 1.07426𝐸 − 6 1.07427𝐸 − 6 1.2481𝐸 − 5

1 0.001 2.5353𝐸 − 8 2.5353𝐸 − 8 7.15841𝐸 − 7

3 0.001 1.1663𝐸 − 8 1.1663𝐸 − 8 1.24319𝐸 − 7

1 0.0001 2.71828𝐸 − 10 2.71828𝐸 − 10 7.19898𝐸 − 9

3 0.0001 1.11241𝐸 − 10 1.11242𝐸 − 10 1.23669𝐸 − 9

method [3] (with 𝑘 = 2 and 𝑠 = 0.3) at different values of 𝑡. In
solving the tests, Newton-Raphson method is used and the
initial guesses are obtained by an interpolating polynomial.
The errors of solutions of tests 1, 2, and 3 are tabulated in
Tables 1, 2, and 3.

5. Conclusion

This paper focuses on the implementation of hybridmultistep
classes and their twin one-leg classes on implicit mixed

differential algebraic equations.Theorders of convergence for
these classes are discussed. Numerical tests are introduced,
which show that the introduced methods give better results
than HBDF.
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