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Self-similar blow-up solutions for the generalized deterministic KPZ equation 𝑢
𝑡
= 𝑢
𝑥𝑥

+ |𝑢
𝑥
|
𝑞 with 𝑞 > 2 are considered. The

asymptotic behavior of self-similar solutions is studied.

1. Introduction

We consider the generalized deterministic KPZ equation

𝜕𝑢

𝜕𝑡

=

𝜕
2
𝑢

𝜕𝑥
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑢

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞

for (𝑥, 𝑡) ∈ 𝑆
𝑇
:= R × (0, 𝑇) , (1)

where 𝑞 > 2 and 𝑇 > 0. Equation (1) was first considered
in the case 𝑞 = 2 by Kardar et al. [1] in connection with the
study of the growth of surfaces. When 𝑞 = 2, (1) has since
been referred to as the deterministic KPZ equation. For 𝑞 ̸= 2

it also called the generalized deterministic KPZ equation or
Krug-Spohn equation because it was introduced in [2]. We
refer to the review article [3] for references and a detailed
historical account of the KPZ equation.

The existence and uniqueness of a classical solution of
the Cauchy problem for (1) with 𝑞 = 1 and initial function
𝑢
0

∈ 𝐶
3

0
(R𝑛) were proven in [4]. This result was extended

to 𝑢
0

∈ 𝐶
2
(R𝑛) ∩ 𝑊

2,∞
(R𝑛) and 𝑞 ≥ 1 in [5] and to 𝑢

0
∈

𝐶(R𝑛) ∩ 𝐿
∞
(R𝑛) and 𝑞 ≥ 0 in [6]. Several papers [7–11]

were devoted to the investigation of the Cauchy problem for
irregular initial data, namely, for 𝑢

0
∈ 𝐿
𝑝
(R𝑛), 1 ≤ 𝑝 < ∞,

or for bounded measures. The existence and uniqueness of
a solution to the Cauchy problem with unbounded initial
datum are proved in [12]. To confirm the optimality of
obtained existence conditions, the authors of [12] analyze the
asymptotic behavior of self-similar blow-up solutions of (1)
for 𝑞 < 2.

In this paper we investigate the asymptotic behavior of
self-similar blow-up solutions of (1) with 𝑞 > 2 having the
form

𝑢 (𝑥, 𝑡) = (𝑇 − 𝑡)
𝛼
𝑓 (𝜉) ,

where 𝜉 = |𝑥| (𝑇 − 𝑡)
𝛽
, 0 < 𝑡 < 𝑇.

(2)

After substitution of (2) into (1) we find that

𝛼 =

𝑞 − 2

2 (𝑞 − 1)

,

𝛽 = −

1

2

(3)

and 𝑓 should satisfy the following equation:

𝑓
󸀠󸀠
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠󵄨󵄨
󵄨
󵄨
󵄨

𝑞

−

1

2

𝜉𝑓
󸀠
+ 𝛼𝑓 = 0 on (0, +∞) . (4)

We will add to (4) the following initial data:

𝑓 (0) = −𝑓
0
< 0,

𝑓
󸀠
(0) = 0.

(5)

Put

𝐶 = [

1

𝑞 − 1

(

𝑞 − 1

𝑞

)

𝑞

]

1/(𝑞−1)

. (6)

Let us state the main result.
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Theorem 1. Let 𝑢 be a self-similar blow-up solution of (1) with
𝑞 > 2 which is defined in (2)–(5). Then

lim
𝑡→𝑇

𝑢 (𝑥, 𝑡) (𝑇 − 𝑡)
1/(𝑞−1)

= 𝐶 |𝑥|
𝑞/(𝑞−1)

. (7)

A simple computation shows that Theorem 1 is a conse-
quence of the following statement.

Theorem 2. Let 𝑞 > 2 and let 𝑓 be a solution of problem (4),
(5). Then

lim
𝜉→∞

𝑓 (𝜉)

𝜉
𝑞/(𝑞−1)

= 𝐶. (8)

The behavior of self-similar solutions for (1) of the type
𝑢(𝑥, 𝑡) = 𝑡

𝛼
𝑔(𝑥𝑡
𝛽
) has been analyzed in [13].

2. The Proof of Theorem 2

We start with a simple result which is used later on.

Lemma 3. Let 𝑓 be a solution of problem (4), (5) defined on
[0, 𝜉). Then

𝑓
󸀠
(𝜉) > 0,

𝑓
󸀠󸀠
(𝜉) > 0

𝑓𝑜𝑟 𝜉 ∈ (0, 𝜉) .

(9)

Proof. Obviously, 𝑓󸀠󸀠(0) = 𝛼𝑓
0
> 0. Therefore, by continuity,

𝑓
󸀠󸀠
> 0 and𝑓

󸀠
> 0 in some right-neighborhood of 0. Suppose

that there exists 𝜉
0
such that 0 < 𝜉

0
< 𝜉, 𝑓󸀠󸀠 > 0 on [0, 𝜉

0
)

and 𝑓
󸀠󸀠
(𝜉
0
) = 0. Then 𝑓

󸀠
> 0 on (0, 𝜉

0
] and 𝑓

󸀠󸀠󸀠
(𝜉
0
) ≤ 0.

From (4) we find that 𝑓󸀠󸀠󸀠(𝜉
0
) = 𝑓

󸀠
(𝜉
0
)/[2(𝑞 − 1)] > 0. This

contradiction proves (9).

Now we will obtain the upper bound for 𝑓󸀠.

Lemma 4. There exists 𝜉
0
> 0 such that

𝑓
󸀠
(𝜉) < {

𝜉

2

}

1/(𝑞−1)

𝑓𝑜𝑟 𝜉 ≥ 𝜉
0
. (10)

Proof. Lemma 3 implies that 𝑓(𝜉) → ∞ as 𝜉 → 𝜉 and that
there exists unique point 𝜉

0
∈ (0, 𝜉) such that 𝑓 < 0 on (0, 𝜉

0
)

and 𝑓 > 0 on (𝜉
0
, 𝜉). Substituting 𝑓

󸀠󸀠
> 0 and 𝑓 ≥ 0 in (4)

yields 𝑓
󸀠
(𝜉) < {𝜉/2}

1/(𝑞−1) for 𝜉 ∈ [𝜉
0
, 𝜉). Thus, 𝜉 = ∞ and

(10) holds.

Changing variables in (4)

𝑓
󸀠
(𝜉) = 𝜉

1/(𝑞−1)
𝑔 (𝑡) , 𝜉 = exp 𝑡, (11)

we get the new equation

𝑔
󸀠󸀠
+

3 − 𝑞

𝑞 − 1

𝑔
󸀠
−

𝑞 − 2

(𝑞 − 1)
2
𝑔

= {

1

2

𝑔
󸀠
− (𝑔
𝑞
)
󸀠

+

1

𝑞 − 1

𝑔 −

𝑞

𝑞 − 1

𝑔
𝑞
} exp (2𝑡) .

(12)

By (9), (10), and (11), there hold

𝑔 (𝑡) > 0 for any 𝑡 ∈ R, (13)

𝑔 (𝑡) < {

1

2

}

1/(𝑞−1)

,

𝑔
󸀠
(𝑡) > −

𝑔

𝑞 − 1

(14)

for large values of 𝑡. Put

𝐶
0
= {

1

𝑞

}

1/(𝑞−1)

,

𝐶
1
= {

1

2𝑞

}

1/(𝑞−1)

.

(15)

It is obvious that 𝐶
0

> 𝐶
1
. Now we will establish the

asymptotic behavior of 𝑔(𝑡) as 𝑡 → +∞.

Lemma 5. Assume that 𝑔 is defined in (11). Then

lim
𝑡→+∞

𝑔 (𝑡) = 𝐶
0
. (16)

Proof. From a careful inspection of (12) we conclude that a
local maximum of 𝑔(𝑡) can happen only when 𝑔(𝑡) > 𝐶

0
.

At first we suppose that 𝑔(𝑡) does not tend to 𝐶
0
as 𝑡 →

+∞ and 𝑔(𝑡) is monotonic solution of (12) for large values of
𝑡. Then there exists 𝐶 ̸= 𝐶

0
such that lim

𝑡→∞
𝑔(𝑡) = 𝐶. It is

not difficult to show that for any 𝜀 > 0 there exist 𝐴 > 0 and
a sequence {𝑡

𝑘
}
∞

𝑘=1
with the properties:

lim
𝑘→∞

𝑡
𝑘
= +∞,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠󸀠
(𝑡
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐴,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑡
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀.

(17)

Indeed, let 𝑔󸀠 ≥ 0 for the definiteness. We suppose that 𝑔󸀠(𝑡)
is notmonotonic function for large values of 𝑡 since otherwise
(17) is obvious. Denote by {𝜏

𝑘
}
∞

𝑘=1
a sequence of local minima

for 𝑔󸀠. Then (17) holds for some subsequence of {𝜏
𝑘
}
∞

𝑘=1
.

Passing to the limit in (12) as 𝑡 = 𝑡
𝑘

→ +∞ and choosing
𝜀 in a suitable way we get that the left-hand side is bounded,
while the right-hand side tends to infinity if𝐶 ̸= 0. Let𝐶 = 0.
Using (13) and (14) we conclude from (12) that

𝑔
󸀠󸀠
+

3 − 𝑞

𝑞 − 1

𝑔
󸀠
≥

𝑔

3 (𝑞 − 1)

exp (2𝑡) (18)

for large values of 𝑡. Then for large values of 𝑘 (17) and (18)
imply

𝑔 (𝑡
𝑘
) ≤ 𝛾 exp (−2𝑡

𝑘
) , (19)

where positive constant 𝛾 does not depend on 𝑘. Setting 𝜉
𝑘
=

exp𝑡
𝑘
, from (11) and (19), we get

𝑓
󸀠
(𝜉
𝑘
) ≤ 𝛾𝜉

(3−2𝑞)/(𝑞−1)

𝑘
(20)

that contradicts (9).
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Now until the end of the proof we assume that 𝑔(𝑡) is not
monotonic solution of (12) for large values of 𝑡. Suppose that
lim inf

𝑡→∞
𝑔(𝑡) < 𝐶

0
. Then there exist positive unbounded

increasing sequences {𝑠
𝑘
}
∞

𝑘=1
and {𝑡

𝑘
}
∞

𝑘=1
such that 𝑡

𝑘
> 𝑠
𝑘
,

𝑔
󸀠
(𝑡) ≤ 0 for 𝑡 ∈ [𝑠

𝑘
, 𝑡
𝑘
] , (21)

and 𝑔(𝑠
𝑘
) = 𝐶
0
, 𝑔(𝑡
𝑘
) = 𝐶
⋆
, where 𝐶

1
< 𝐶
⋆
< 𝐶
0
.Then

1

2

𝑔
󸀠
− (𝑔
𝑞
)
󸀠

= −𝑞 (𝑔
𝑞−1

− 𝐶
𝑞−1

1
) 𝑔
󸀠

≥ −𝑞 (𝐶
𝑞−1

⋆
− 𝐶
𝑞−1

1
) 𝑔
󸀠
≥ 0 on [𝑠

𝑘
, 𝑡
𝑘
] .

(22)

So, (12) and (22) imply that

𝑔
󸀠󸀠
(𝑡) +

3 − 𝑞

𝑞 − 1

𝑔
󸀠
(𝑡)

≥ −𝑞 (𝐶
𝑞−1

⋆
− 𝐶
𝑞−1

1
) 𝑔
󸀠
(𝑡) exp (2𝑠

𝑘
)

for 𝑡 ∈ [𝑠
𝑘
, 𝑡
𝑘
] .

(23)

Hence, integrating with respect to 𝑡 from 𝑠
𝑘
to 𝑡
𝑘
, we get

{𝑔
󸀠
(𝑡) +

3 − 𝑞

𝑞 − 1

𝑔 (𝑡)}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡𝑘

𝑠𝑘

≥ 𝑞 (𝐶
𝑞−1

⋆
− 𝐶
𝑞−1

1
) (𝐶
0
− 𝐶
⋆
) exp (2𝑠

𝑘
) .

(24)

This leads to a contradiction, since (13), (14), and (21) imply
that the left-hand side of the last inequality is bounded, while
the right-hand side becomes unbounded as 𝑘 → ∞.

Let us prove that lim inf
𝑡→∞

𝑔(𝑡) = 𝐶
0
. Indeed, other-

wise, there exist 𝜀 > 0 and a sequence {𝜏
𝑘
}
∞

𝑘=1
of local minima

for 𝑔 with the properties 𝜏
𝑘

→ +∞ as 𝑘 → +∞ and

𝑔 (𝜏
𝑘
) ≥ 𝐶
0
+ 𝜀. (25)

Passing in (12) to the limit as 𝑡 = 𝜏
𝑘

→ +∞ we get a
contradiction.

To end the proof we show that lim sup
𝑡→∞

𝑔(𝑡) =

𝐶
0
. Otherwise, lim sup

𝑡→∞
𝑔(𝑡) > 𝐶

0
. Then there exist

unbounded increasing sequences {𝑠
𝑘
}
∞

𝑘=1
and {𝑡

𝑘
}
∞

𝑘=1
such that

𝑡
𝑘
> 𝑠
𝑘
> 2,

𝑔
󸀠
(𝑠
𝑘
) = 0,

𝑔
󸀠
(𝑡
𝑘
) = 0,

𝑔
󸀠
(𝑡) ≥ 0

𝑔 (𝑡
𝑘
) > 𝐶
0
+ 𝛿,

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑠
𝑘
) − 𝐶
0

󵄨
󵄨
󵄨
󵄨
< 𝜀,

for 𝑡 ∈ [𝑠
𝑘
, 𝑡
𝑘
] ,

(26)

where 𝛿 > 0 and

𝜀 = min{

𝛿

2

,

𝑞 − 1

4𝐶
0

𝛿
2
, [1 − (

7

8

)

1/(𝑞−1)

]𝐶
0
} . (27)

Without loss of a generality we can suppose

𝐶
0
− 𝜀 < 𝑔 (𝑠

𝑘
) < 𝐶
0

(28)

or

𝐶
0
≤ 𝑔 (𝑠

𝑘
) < 𝐶
0
+ 𝜀. (29)

Let (28) be valid. If (29) is realized, the arguments are similar
and simpler. Denote by {𝑡

𝑘
}
∞

𝑘=1
a sequence such that

𝑡
𝑘
∈ (𝑠
𝑘
, 𝑡
𝑘
) ,

𝑔 (𝑡
𝑘
) = 𝐶
0
.

(30)

Applying Hölder’s inequality we derive

∫

𝑡𝑘

𝑡𝑘

𝑔
󸀠
(𝜏) 𝑑𝜏 ≤ (∫

𝑡𝑘

𝑡𝑘

(𝑔
󸀠
(𝜏))

2

exp (2𝜏) 𝑑𝜏)

1/2

⋅ (∫

𝑡𝑘

𝑡𝑘

exp (−2𝜏) 𝑑𝜏)

1/2

(31)

and therefore

∫

𝑡𝑘

𝑡𝑘

(𝑔
󸀠
(𝜏))

2

exp (2𝜏) 𝑑𝜏 ≥ 2𝛿
2 exp (2𝑡

𝑘
) . (32)

We multiply (12) by 𝑔
󸀠
(𝑡) and integrate after over [𝑠

𝑘
, 𝑡
𝑘
].

Using (15), (26)–(28), (30), and (32) we obtain

−

𝑞 − 2

2 (𝑞 − 1)
2
𝑔
2
(𝑡
𝑘
) ≤

𝑞 − 3

𝑞 − 1

∫

𝑡𝑘

𝑠𝑘

(𝑔
󸀠
(𝜏))

2

𝑑𝜏

+ ∫

𝑡𝑘

𝑠𝑘

(𝑔
󸀠
(𝜏))

2

[

1

2

− 𝑞𝑔
𝑞−1

(𝜏)] exp (2𝜏) 𝑑𝜏

+

exp (2𝑡
𝑘
)

𝑞 − 1

⋅ ∫

𝑡𝑘

𝑠𝑘

[

1

2

(𝑔
2
(𝜏))

󸀠

−

𝑞

𝑞 + 1

(𝑔
𝑞+1

(𝜏))

󸀠

] 𝑑𝜏 ≤ −

1

4

⋅ ∫

𝑡𝑘

𝑡𝑘

(𝑔
󸀠
(𝜏))

2

exp (2𝜏) 𝑑𝜏

+

exp (2𝑡
𝑘
)

𝑞 − 1

(

𝑔
2
(𝜏)

2

−

𝑞𝑔
𝑞+1

(𝜏)

𝑞 + 1

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑡𝑘

𝑠𝑘

≤ [−

𝛿
2

2

+

𝜀𝐶
0

𝑞 − 1

] exp (2𝑡
𝑘
) ≤ −

𝛿
2

4

exp (2𝑡
𝑘
) .

(33)

Passing to the limit as 𝑘 → ∞ we get a contradiction with
(14).

Now (8) is a simple consequence of Lemma 5 and the
definition of 𝑔(𝑡).

Remark 6. Note thatTheorem 2 demonstrates the optimality
of Theorem 2.3 in [12]. The arguments are the same as in
Remark 4.6 of that paper.
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Our next result shows that (4) with initial data

𝑓 (0) = 𝑓
0
> 0,

𝑓
󸀠
(0) = 0

(34)

has no global solution.

Theorem 7. Let 𝑞 > 2 and let 𝑓 be a solution of problem (4),
(34). Then there exists 𝜉

⋆
such that 0 < 𝜉

⋆
< +∞ and 𝑓(𝜉) →

−∞ as 𝜉 ↑ 𝜉
⋆
.

Proof. Suppose that problem (4), (34) has a solution 𝑓 that
is infinitely extendible to the right. Using the arguments of
Lemma 3 we show that 𝑓󸀠 < 0 and 𝑓

󸀠󸀠
< 0 on (0, +∞). From

(4) we obtain

𝑓
󸀠󸀠󸀠

(𝜉) < − (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑞

)

󸀠

. (35)

After the integration of (35) over [0, 𝜉] we conclude that

𝑓
󸀠󸀠
(𝜉) < −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑞

. (36)

Integrating (36) over [𝜉
1
, 𝜉] (0 < 𝜉

1
< 𝜉) we infer

1

(𝑞 − 1)
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝜉
1
)
󵄨
󵄨
󵄨
󵄨

𝑞−1
> 𝜉 − 𝜉

1
. (37)

Passing to the limit as 𝜉 → ∞ we obtain a contradiction
which proves the theorem.
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