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We have given an extension to the study of Kierstead, Slobodkin, and Skellam (KiSS)model.We present the theoretical results based
on the survival and permanence of the species. To guarantee the long-term existence and permanence, the patch size denoted as 𝐿
must be greater than the critical patch size 𝐿

𝑐
. It was also observed that the reaction-diffusion problem can be split into two parts:

the linear and nonlinear terms. Hence, the use of two classical methods in space and time is permitted. We use spectral method
in the area of mathematical community to remove the stiffness associated with the linear or diffusive terms. The resulting system
is advanced with a modified exponential time-differencing method whose formulation was based on the fourth-order Runge-
Kutta scheme. With high-order method, this extends the one-dimensional work and presents experiments for two-dimensional
problem.The complexity of the dynamical model is discussed theoretically and graphically simulated to demonstrate and compare
the behavior of the time-dependent density function.

1. Introduction

The study of reaction-diffusion problems has gained much
attention over the years; such models are largely encountered
in various fields and become increasingly useful tools for
field engineers, mathematicians, conservation biologists, and
population ecologists. In this paper, we describe the current
state of the linear Kierstead-Slobodkin [1] and Skellam [2]
problem (known as KiSS model) and give possible extension
to such reaction-transport problem in a nonlinear form. The
first theoretical approach to the KiSS model dates back to
the early 1950s, studying the dynamic of reaction-diffusion
problem for a population growing on a patch of finite size (say,
𝐿) that is surrounded by a deadly environment with infinite
mortality [3].

Understanding the conditions that could guarantee the
extinction and persistence of species populations in large but
finite domains is another focus area of this paper. Further,
determination of the critical patch size ensuring the suste-
nance of population is another vital area to consider, and the
critical patch size depends on some factor, namely, the species
population in the patch, geometrical patch, boundaries type,

and the reproduction kinetics of species population. In
what follows, we will present the extended nonlinear KiSS
model and determine its critical patch size and reproduction
processes with hostile boundaries.

2. Mathematical Analysis of the Main Equation

To start with, we let the critical patch size be 𝐿 and consider
the reaction-diffusion problem

𝜕𝑢

𝜕𝑡
= 𝛿

𝜕
2

𝑢

𝜕𝑥2
+ 𝜏F (𝑢)

𝜌 (1)

on the closed interval [0, 𝐿] subject to homogeneousDirichlet
boundary and initial conditions

𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

F
󸀠

(0) > 0,

(2)

where 𝑢(𝑥, 𝑡) is the species density, 𝛿 > 0 is the diffusion
coefficient, 𝜏 is the growth rate, and 𝜌 > 0 is the critical
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exponent parameter that determines whether model (1) is
linear (𝜌 = 1) or nonlinear (𝜌 ≥ 2). From the given bound-
ary conditions, we observed that the critical patch size
corresponds to the borderline between species population
extinction and existence; we thus linearize (1) and (2) about
𝑢 ≡ 0, the washout state. If 𝑢 = 0 is stable, we have a
total extinction of the species population. But if 𝑢 = 0 is
unstable (nontrivial case), we have a state that corresponds
to the persistence or survival of the species. For simplicity, we
relax the nonlinear condition and let 𝜌 = 1. We linearize (1)
and (2) about 𝑢(𝑥) = 0 to obtain

𝜕𝑢

𝜕𝑡
= 𝛿

𝜕
2

𝑢

𝜕𝑥2
+ 𝜏F
󸀠

(0) 𝑢,

𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0, 𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , F

󸀠

(0) > 0.

(3)

For linear dynamics, it is permitted to seek for solutions
of the form

𝑢 (𝑥, 𝑡) = exp (𝜏F󸀠 (0) 𝑡)𝑈 (𝑥, 𝑡) . (4)

By using this ansatz in (3), we obtain a simple diffusion
equation:

𝜕𝑈

𝜕𝑡
= 𝛿

𝜕
2

𝑈

𝜕𝑥2
,

𝑈 (0, 𝑡) = 𝑈 (𝐿, 𝑡) = 0, 𝑈 (𝑥, 0) = 𝑈
0
(𝑥) ,

(5)

and the solution of (3) is given by [4, 5]

𝑢 (𝑥, 𝑡)

=

∞

∑

𝑘=1

𝜔
𝑘
exp{[𝜏F󸀠 (0) − 𝛿(𝜋𝑘

𝐿
)

2

] 𝑡} sin(𝜋𝑘𝑥
𝐿
) ,

(6)

where 𝜔
𝑘
are the coefficients to be determined by the Fourier

series expansion of 𝑢
0
(𝑥).The unstable trivial solution 𝑢(𝑥) ≡

0 could result in the growth and persistence of the species
population if 𝜆

𝑘
= 𝜏F󸀠(0) − 𝛿(𝜋𝑘/𝐿)

2

> 0 for some values of
𝑘. The growth rates 𝜆

𝑘
usually decreased monotonically with

𝑘, and 𝜆
1
< 0. By setting the dominant mode 𝑘 = 1, we can

determine the fate of species population 𝐿 < 𝜋√𝛿/𝜏F󸀠(0)
which guarantee the total washout of the species. The critical
patch size known as the KiSS size is defined by the expression

𝐿
𝑐
= 𝜋√

𝛿

𝜏F󸀠 (0)
. (7)

If 𝐿 < 𝐿
𝑐
, 𝑢(𝑥, 𝑡) → 0 as 𝑡 → ∞. The population is

wiped out from its initial condition; no nontrivial steady state
develops. Instability (bifurcation) could only arise if the patch
size 𝐿 is increased. The state 𝑢(𝑥) = 0 loses its stability at the
point 𝐿

𝑐
, and due to nonlinear effect 𝑢 begins to grow and

saturates with time 𝑡. So as 𝑢(𝑥, 𝑡) → 𝑢̂(𝑥), a steady state (1)
is determined by

𝛿
𝜕
2

𝑢̂

𝜕𝑥2
+ 𝜏F (𝑢̂)

𝜌

= 0, 𝑢̂ (0) = 𝑢̂ (𝐿) = 0, 𝜌 = 1. (8)

It is obvious that, for any value of 𝐿, the trivial solution
𝑢̂(𝑥) ≡ 0 holds for (8). The interest of the present work
is in the solutions for which 𝑢̂(𝑥) ≥ 0. As a result of the
spatial symmetry of (1) and (8), one expects the solution in
𝑥 to be symmetric about the midpoint 𝑥 = 𝐿/2, and it is
reasonable to assume that the species density of nontrivial
steady states could reach its maximum point, say 𝑢max at the
midpoint 𝑑𝑢̂(𝑥)/𝑑𝑥(𝐿/2) = 0, since 𝑢̂ = 0 at the boundaries.
Multiplying (8) with 𝑑𝑢̂/𝑑𝑥 and integrating the result with
respect to 𝑥 on [0, 𝐿] yield

𝛿

2
(
𝑑𝑢̂

𝑑𝑥
)

2

+ 𝜏Ψ (𝑢̂) = 𝜏Ψ (𝑢max) , (9)

where Ψ(𝑢̂) = ∫𝑢̂
0

F(𝑠)𝑑𝑠. If we simplify (9) by separating the
variables and integrate it from 0 to 𝐿/2 with respect to 𝑥, we
obtain

𝐿 = √
2𝛿

𝜏
∫

𝑢max

0

𝑑𝑢̂

√Ψ (𝑢max) − Ψ (𝑢̂)
. (10)

We can rescale with 𝜇 = 𝑢̂/𝑢max to obtain

𝐿 = √
2𝛿

𝜏
∫

1

0

𝑑𝜇

√Ψ (𝑢max) − Ψ (𝑢̂)
. (11)

Equation (11) is usually called a time map, from where 𝑢max
can be determined implicitly as a function of 𝐿. We can also
change the origin to 𝐿/2; that is, by setting 𝑥 → 𝑥 − 𝐿/2, set
𝑧 = 2𝑥/𝐿 − 1; we have

𝛿
𝑑
2

𝑢̂

𝑑𝑧2
+ 𝜆F (𝑢̂) = 0,

𝑢̂ (0) = 𝑢max, 𝑢̂ (1) = 0,
𝑑𝑢̂

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0

,

(12)

where 𝜆 = 𝐿2𝜏/4𝛿 is the eigenvalue. In the spirit of [4], we
have

𝐿
2

≈
𝛿𝜋
3

4𝜏
𝑢max

[
[

[

∫

1

0

𝜇F (𝜇𝑢max) 𝑑𝜇

√1 − 𝜇2

]
]

]

−1

. (13)

By taking the limit as 𝑢m𝑎x → 0, we obtain the critical
patch size

𝐿
2

𝑐
≈ lim
𝑢max→0

𝐿
2

=
𝛿𝜋
3

4𝜏F󸀠 (0)

[
[

[

∫

1

0

𝜇
2

𝑑𝜇

√1 − 𝜇2

]
]

]

−1

=
𝛿𝜋
2

𝜏F󸀠 (0)
,

(14)

which is similar to (7). In conclusion, we can say that
the nonuniform stationary solution of reaction-diffusion
equation (1) exists if 𝐿 > 𝐿

𝑐
and that the trivial solution 𝑢̂ ≡ 0

coexists.
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In other physical contexts, (1) is referred to as a blow-up
problem [6–9]. It is a known theory fromODEs that solutions
may not exist for 𝑡 → ∞ (global existence) but could tend
to ∞ for a finite time 𝑡 (local existence). So, similar things
happen to reaction-diffusion problems. On a large but finite
interval, say [−𝐿, 𝐿], problem (1) can be written in integral
form:

𝑢 (𝑡) = 𝑒
𝑡Δ

𝑢
0
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)Δ

𝑢 (𝑠)
𝑝

𝑑𝑠, (15)

where 𝑢(𝑡) = 𝑢(⋅, 𝑡) and Δ = (𝑑/𝑑𝑥)
2 are subject to homo-

geneous Dirichlet boundary conditions on [−𝐿, 𝐿]. The non-
linear term F(𝑢)

𝑝 is locally Lipschitz on 𝐶
0
([−𝐿, 𝐿]), and

continuous functions vanished at ±𝐿. By argument, if 𝑢
0

is nonnegative function in 𝐶
0
([−𝐿, 𝐿]), then there exists a

nonnegative local solution 𝑢(𝑡) of (15). A reasonable question
to ask is, does 𝑢(𝑥, 𝑡) → ∞ as 𝑡 → 𝑇 for all 𝑥 ∈ (−𝐿, 𝐿) or
singularity is restricted to a smaller interval? To answer this,
we give the following theorem [10].

Theorem 1. LetF(𝑢) = 𝑢𝑝 and 𝑢 : [−𝐿, 𝐿] → [0,∞) be the
𝐶
2 solution of the stationary problem

0 =
𝑑
2

𝑢

𝑑𝑥2
+ 𝑢
𝑝

, 0 = 𝑢 (±𝐿) , 0 < 𝑢, −𝐿 < 𝑥 < 𝐿. (16)

Let 𝜑 = 𝑘𝑢, where 𝑘 > 1 is chosen so that the maximum
solution 𝑢(𝑡) of (15) poses finite existence time, say 𝑇. If 𝑝 ≥ 2
and is sufficiently large, then lim

𝑡→𝑇
𝑢(𝑥, 𝑡) exist and are finite

for all 𝑥 ̸= 0. In other words, singularity (discontinuity) occurs
at the point 𝑥 = 0.

Proof. The proof of Theorem 1 can be found in [10].

3. Formulation of Adaptive Methods in
Space and Time

Considerations have been given to the use of spectral
methods as alternative to conventional finite differences [11],
because they are capable of removing the stiffness property
in the linear term of (1). Knowing that the reaction-diffusion
problem can be split into the linear and nonlinear terms,
the use of time and space methods is permitted [12–14].
Also, based on the known integrating factor technique, we
are going to formulate the theory of spectral method in
two spatial dimensions. By applying the integrating factor
technique to Fourier transform systems (1), we have

𝑈
𝑡
(𝜒
𝑥
, 𝜒
𝑦
, 𝑡) = − (𝜒

2

𝑥
+ 𝜒
2

𝑦
)𝑈 (𝜒

𝑥
, 𝜒
𝑦
, 𝑡)

+F [𝑓 (𝑢 (𝑥, 𝑦, 𝑡))] ,

(17)

where 𝑈 is the double Fourier transforms of species density
𝑢(𝑥, 𝑦, 𝑡). In other words,

F [𝑢 (𝑥, 𝑦, 𝑡)] = 𝑈 (𝜒
𝑥
, 𝜒
𝑦
, 𝑡)

= ∬

∞

−∞

𝑢 (𝑥, 𝑦, 𝑡) 𝑒
−𝑖(𝜒
𝑥
𝑥+𝜒
𝑦
𝑦)

𝑑𝑥 𝑑𝑦.

(18)

To explicitly remove the adherent stiffness in the second
partial derivatives, we letΩ2 = (𝜒2

𝑥
+ 𝜒
2

𝑦
) and set 𝑈 = 𝑒−Ω

2

𝑡

𝑈,
so that

𝜕
𝑡
𝑈 = 𝑒

Ω
2

𝑡

F [𝑓 (𝑢, V, 𝑤)] . (19)

Next, we need to discretize the square domain by considering
the equispaced points 𝑁

𝑥
and 𝑁

𝑦
in the spatial directions

of 𝑥 and 𝑦. We employ the discrete fast Fourier transform
(DFFT) [12, 13, 15] to transform (19) to a system of ordinary
differential equations (ODEs):

𝜕
𝑡
𝑈
𝑖,𝑗
= 𝑒
Ω
2

𝑖,𝑗
𝑡

F [𝑓 (𝑢
𝑖,𝑗
, V
𝑖,𝑗
, 𝑤
𝑖,𝑗
)] , (20)

where 𝑢
𝑖,𝑗
= 𝑢(𝑥

𝑖
, 𝑦
𝑗
), V
𝑖,𝑗
= V(𝑥

𝑖
, 𝑦
𝑗
), 𝑤
𝑖,𝑗
= 𝑤(𝑥

𝑖
, 𝑦
𝑗
), and

Ω
2

𝑖,𝑗
= 𝜒
2

𝑥
(𝑖) + 𝜒

2

𝑦
(𝑗). Boundary conditions are now set at

extremes of the domain. Also in the experiment, we use a
square Fourier node of 256×256 for𝑁

𝑥
= 𝑁
𝑦
= 𝑁 = 256. At

this stage, we have converted the system to ODEs; also, the
stiffness has been removed. It should be mentioned that we
can now use any explicit scheme to advance in time.

By adopting the notation of order 𝑠 Runge-Kutta (RK)
methods, with time step Δ𝑡, we can advance from 𝑡

𝑛
= 𝑛Δ𝑡

to 𝑡
𝑛+1

= (𝑛 + 1)Δ𝑡 for the ODE:

𝑢
𝑡
= 𝑓 (𝑢, 𝑡) : 𝑢

𝑛+1
=

𝑠

∑

𝑖=1

𝑐
𝑖
𝑘
𝑖
, (21)

where

𝑘
𝑖
= Δ𝑡𝑓(𝑡

𝑛
+ 𝛼
𝑖
Δ𝑡, 𝑢
𝑛
+

𝑖−1

∑

𝑗=1

𝛽
𝑖𝑗
𝑘
𝑗
) . (22)

In the interest of the present paper, we apply the general
explicit Runge-kutta scheme to (20) for 𝑈

𝑖𝑗
. For brevity, we

denote 𝜇
𝑖
to be 𝑘󸀠 in 𝑈

𝑖𝑗
and set the replacement variable as

𝜇
𝑖
= 𝜇
𝑖
exp (−Ω2𝑡

𝑛
) . (23)

Finally, the s-stage RK scheme becomes

𝑈
𝑛+1

= exp (−Ω2Δ𝑡) [𝑈
𝑛
+

𝑠

∑

𝑖=1

𝑐
𝑖
𝜇
𝑖
] , (24)

with modified term

𝜇
𝑖
= exp (Ω2𝛼

𝑖
Δ𝑡) Δ𝑡F [𝑓 (F

−1

(𝑈
𝑛+𝛼
𝑖

))] (25)

and 𝑈 values at intermediate step

𝑈
𝑛+𝛼
𝑖

= exp (−Ω2𝛼
𝑖
Δ𝑡)[

[

𝑈
𝑛
+

𝑖−1

∑

𝑗=1

𝛽
𝑖𝑗
𝜇
𝑗

]

]

. (26)

The indication here is that one experiments entirely in the
spectral domain and inverts transform to get 𝑢. It should
be noted that, by removing the associated stiffness, one can
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accurately implement the resulting system of ODEs with any
higher-order time stepping schemes; see [16–19] for details.

Next, we formulate the fourth-order exponential time-
differencing Runge-Kutta (ETDRK4) method by following
closely most notations used by Cox and Matthews [16].
By multiplying through by the term 𝑒

−L𝑡, known as the
integrating factor, we obtain (17) in the form

𝑒
−L𝑡
𝑈
𝑡
= 𝑒
−L𝑡L𝑢 + 𝑒−L𝑡N (𝑢, 𝑡) . (27)

On integrating (27) over a single time step in the interval of
length ℎ, that is, [𝑡 = 𝑡

𝑛
, 𝑡
𝑛+1

= 𝑡
𝑛
+ ℎ], we have

𝑈 (𝑡
𝑛+1
) = 𝑒

Lℎ
𝑈 (𝑡
𝑛
)

+ 𝑒
Lℎ
∫

ℎ

0

𝑒
−L𝜏N (𝑢 (𝑡

𝑛
+ 𝜏) , 𝑡

𝑛
+ 𝜏) 𝑑𝜏,

(28)

where L is the linear operator andN is the Fourier transform
of the nonlinear reaction functions. A direct application of
the standard fourth-order Runge-Kutta method leads to a
scheme by Cox and Matthew [16], known as the ETDRK4.
Numerical experiments have shown that the cancellation
errors in their scheme were too pronounced, which caused
the method to suffer serious numerical instability and order
reduction in its computation. We utilize in this work the
modified Krogstad [18, 20] version of the ETDRK4 scheme
that has been formulated to overcome the inherent numerical
stability with smaller local truncation error,

𝑈
𝑛+1

= 𝑒
Lℎ
𝑈
𝑛

+ ℎ [4𝜑
3
(Lℎ) − 3𝜑

2
(Lℎ) + 𝜑

1
(Lℎ)]N (𝑢

𝑛
, 𝑡
𝑛
)

+ 2ℎ [𝜑
2
(Lℎ) − 2𝜑

3
(Lℎ)]N(𝜇

2
, 𝑡
𝑛
+
ℎ

2
)

+ 2ℎ [𝜑
2
(Lℎ) − 2𝜑

3
(Lℎ)]N(𝜇

3
, 𝑡
𝑛
+
ℎ

2
)

+ ℎ [𝜑
3
(Lℎ) − 2𝜑

2
(Lℎ)]N (𝜇

4
, 𝑡
𝑛
+ ℎ) ,

(29)

with the stages 𝜇
𝑖
given as

𝜇
2
= 𝑒

Lℎ/2
𝑈
𝑛
+ (

Lℎ
2
)𝜑
1
(
Lℎ
2
)N (𝑢

𝑛
, 𝑡
𝑛
) ,

𝜇
3
= 𝑒

Lℎ/2
𝑈
𝑛

+ (
Lℎ
2
) [𝜑
1
(
Lℎ
2
) − 2𝜑

2
(
Lℎ
2
)]N (𝑢

𝑛
, 𝑡
𝑛
)

+ ℎ𝜑
2
(
Lℎ
2
)N(𝜇

2
, 𝑡
𝑛
+
ℎ

2
) ,

𝜇
4
= 𝑒

Lℎ
𝑈
𝑛
+ ℎ [𝜑

1
(Lℎ) − 2𝜑

2
(Lℎ)]N (𝑢

𝑛
, 𝑡
𝑛
)

+ 2ℎ𝜑
2
(Lℎ)N (𝜇

3
, 𝑡
𝑛
+ ℎ) ,

(30)

and with functions 𝜑
1,2,3

defined as

𝜑
1
(𝑧) =

𝑒
𝑧

− 1

𝑧
,

𝜑
2
=
𝑒
𝑧

− 1 − 𝑧

𝑧2
,

𝜑
3
=
𝑒
𝑧

− 1 − 𝑧 − 𝑧
2

/2

𝑧3

(31)

which precisely coincide with the terms in the Lie group
methods by Munthe-Kaas [21].

4. Numerical Experiments

In this section, we intend to present the numerical results
in one and two dimensions. We expect our results to reflect
the mathematical results. We simulate the KiSS model in
one and two dimensions with the ETDRK4 method pre-
sented in Section 3. Its stability analysis and comparison with
other existing higher-order schemes when applied to some
reaction-diffusion problems can be found in [18–20, 22] and
references therein.

4.1. One-Dimensional Example. In one dimension, consider
the nonlinear KiSS model

𝑢
𝑡
= 𝛿𝑢
𝑥𝑥
+ 𝜏𝑢
𝑝 (32)

subject to the boundary conditions 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 and
initial population

𝑢 (𝑥, 0) =
1

2 cosh𝜔𝑥
(33)

which has exponential decay 𝑒−𝜔|𝑥| as 𝑥 → ∞. Mathemat-
ically, one expects traveling waves to arise from such initial
condition on an infinite domain (−∞,∞) which we have
truncated in the interest of the work here at some large but
finite value, 𝐿 > 0. For the extended nonlinear example, we
choose 𝑝 = 2. In Figure 1, we illustrate the permanence effect
and stability of the existence state via numerical simulations
of (32). Ecological parameters 𝜔 = 0.25, 𝛿 = 0.5, and
𝑝 = 2 are chosen to ensure the long-term survival of the
species population. It is noticeable that the ETDRK4 scheme
converged even at the expense of variability of the growth
rates 𝜏 = 1/2, 1/4, 1/8, and 1/16 for panels (a–d), respectively.
It should be noted that the numerical simulation depicts the
convergence of the solution to a positive survival state with
population density of 1, for all 𝑡 > 0 and 𝐿 ∈ [0, 1].

In the second experiment, we utilize a random initial
condition which we computed as

u = zeros(N,1) + .02 * rand(N,1),

to permit the use of large domain size: 𝐿 = 200.
In Figure 2, we demonstrate the effect of diffusion on

model (32) by allowing the species population to evolve from
the random initial condition; parameters are fixed as 𝜏 =

2.5, 𝑝 = 2, and 𝑡 = 1200; others are given in the figure
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Figure 1: Permanence and existence of one-dimensional model (32) with Dirichlet boundary conditions at 𝑡 = 1.

caption. In the experiment, as the value of 𝛿 is decreasing,
the species population oscillate in phase, but a stable steady-
state solution is obtained for 𝛿 > 1. We should also mention
that if 𝑝 ≫ 2 as 𝑡 → ∞, blow-up phenomena occur which
correspond to the total extinction of the species.

4.2. Two-Dimensional Example. Bear in mind that it is in
higher dimensions that the mathematical ideas reported in
this paper become of serious value. Hence, we give an exten-
sion to the numerical experiments in two-dimensional space.
Also, we experiment with two different initial conditions to
study the behavior of the problem.

In two dimensions, we consider the reaction-diffusion
problem

𝑢
𝑡
= 𝛿 (𝑢

𝑥𝑥
+ 𝑢
𝑦𝑦
) + 𝜏𝑢

𝑝

,

(𝑥, 𝑦) ∈ [−𝐿, 𝐿] × [−𝐿, 𝐿] .

(34)

We choose to illustrate the numerical algorithms with choice
of initial condition:

𝑢 (𝑥, 𝑦, 0) = 10 exp [−8 ((𝑥 + 1)2 + (𝑦 + 1)2)]

+ 10 exp [−8 ((𝑥 − 1)2 + (𝑦 − 1)2)] ,
(35)

taken to induce nontrivial dynamical structures.We observed
in Figure 3 that the solution is bounded for 𝑡 > 0, and,
at smaller time, say 𝑡 = 0.1, two separate structures
interpreted as isolation of the species population emerged
(like solitons), but as simulation time is increasing, the two
separate structures combined as one. At 𝑡 > 6, the domain
is completely covered by the species which shows that the
population of 𝑢 is increasing with time.This result guarantees
the permanence and existence of model (34).

For the second case, we consider the initial condition

𝑢 (𝑥, 𝑦, 0) = 11.3 exp (−10 ((𝑥 + 2)2 + (𝑦 + 4)2)) ,

+10 exp (−10 ((𝑥 − 2)2 + (𝑦 − 2)2)) ,
(36)

+10.2 exp (−15 ((𝑥 + 2)2 + (𝑦 − 4)2)) , (37)

to mimic a case with four peaks.
In Figure 4, we present the numerical solution of problem

(34) with initial population (36). To ensure the long-term
survival of the species, we increase the growth rate 𝜏. In
the simulations, at 𝑡 = 0.1 we observe the emergence of
four peaks which may represent the existence of species in
a confined area of dimensions: 𝑥 = 𝑦. As simulation time
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Figure 2: The snapshots (a, c) and surface plots (b, d) of one-dimensional KiSS model (32) showing the effect of diffusion (a) at 𝛿 = 1 and
(b) at 𝛿 = 0.1. Simulation runs for𝑁 = 200.
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Figure 3: Persistence and existence of two-dimensional KiSS model (34) with initial population (35) at different time 𝑡 levels. Parameters are
𝛿 = 0.5, 𝑝 = 2, 𝜏 = 2.5, and 𝐿 = 12.
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Figure 4: Persistence and existence of two-dimensional KiSS model (34) with initial population (36) at different time 𝑡 levels. Parameters are
𝛿 = 0.5, 𝑝 = 2, 𝜏 = 3, and 𝐿 = 12.

is increasing, so also the isolated species (representing four
peaks) spread within the domain to become one. Readers are
to compare the results obtained at 𝑡 = 4 in Figures 3 and 4 for
clarity.

5. Conclusion

In this research paper, we have given an extension to the study
of nonlinear reaction-diffusion problem. The case study is
that of Kierstead, Slobodkin, and Skellam (KiSS) model, for
population growing on a patch of finite size 𝐿. We investigate
the model for permanence and existence of the species
population over a period of time. Also, our aim has been to
formulate and provide goodworking, versatile spectralmeth-
ods in conjunction with the exponential time-differencing
scheme, which avoids stiffness problem associated with the
linear term of the reaction-diffusion problem. Numerical
simulations of the diffusive KiSS model are provided to
demonstrate and compare the theoretical results. It should be
noted that the mathematical approach reported here can be
extended to multispecies reaction-diffusion problems.
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