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Circulant and block circulant type matrices are important tools in solving networked systems. In this paper, based on the style
spectral decomposition of the basic circulant matrix and the basic skew circulant matrix, the block style spectral decomposition
of the BCSCB matrix is obtained. And then, the structure perturbation is analysed, which includes the condition number and
relative error of the BCSCB linear system.Then the optimal backward perturbation bound of the BCSCB linear system is discussed.
Simultaneously, the algorithm for the optimal backward perturbation bound is given. Finally, a numerical example is provided to
verify the effectiveness of the algorithm.

1. Introduction

It is an active objective that circulant and block circulant type
matrices are applied to networks engineering. The stability
region in the parameters space is extended by the breaking of
a delayed ring neural network where the form of time-delay
systems is 𝑥̇ + 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡 − 𝜏) = 0, where 𝐵 is a circulant
matrix, if the number of the neurons is sufficiently large
in [1]. In [2], the question of when circulant quantum spin
networks with nearest-neighbor couplings can give perfect
state transfer is solved.The properties of linear diffusion algo-
rithm are investigated both by a worst-case analysis and by a
probabilistic analysis and are shown to depend on the spectral
properties of the circulant matrix in [3]. A viable option for
increasing the lifetime of the sensor network for a small loss
in accuracy of the query results whose matrices are circulant
is offered in [4]. In [5], the authors considered the kinetics
of an autocatalytic reaction network in which replication and
catalytic actions are separated by a translation step. They
found that the behavior of such a system is closely related
to second-order replicator equations, where the second-order
replicator equations are circulant interaction matrices. In
order to obtain the optimal routing in double loop networks,

the problem of finding the shortest path in circulant graphs
with an arbitrary number of jumps is studied in [6].

A block circulant with skew circulant blocks matrix with
the first row (𝑐

11
, . . . , 𝑐

1𝑚
, 𝑐

21
, . . . , 𝑐

2𝑚
, . . . , 𝑐

𝑛1
, . . . , 𝑐

𝑛𝑚
) has the

following form:

C = (

𝐶

1
𝐶

2
⋅ ⋅ ⋅ 𝐶

𝑛−1
𝐶

𝑛

𝐶

𝑛
𝐶

1
𝐶

2
⋅ ⋅ ⋅ 𝐶

𝑛−1

.

.

. d d d
.

.

.

𝐶

3
d 𝐶

𝑛
𝐶

1
𝐶

2

𝐶

2
𝐶

3
⋅ ⋅ ⋅ 𝐶

𝑛
𝐶

1

), (1)

and for any 𝑘 = 1, 2, . . . , 𝑛,

𝐶

𝑘
= (

𝑐

𝑘1
𝑐

𝑘2
⋅ ⋅ ⋅ 𝑐

𝑘(𝑚−1)
𝑐

𝑘𝑚

−𝑐

𝑘𝑚
𝑐

𝑘1
𝑐

𝑘2
⋅ ⋅ ⋅ 𝑐

𝑘(𝑚−1)

.

.

. d d d
.

.

.

−𝑐

𝑘3
d −𝑐

𝑘𝑚
𝑐

𝑘1
𝑐

𝑘2

−𝑐

𝑘2
−𝑐

𝑘3
⋅ ⋅ ⋅ −𝑐

𝑘𝑚
𝑐

𝑘1

). (2)

The matrix C is denoted by BCSCB(𝑐
11
, . . . , 𝑐

1𝑚
, . . . , 𝑐

𝑛1
, . . . ,

𝑐

𝑛𝑚
).
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Rigal and Gaches [7] considered a posteriori analysis of
the compatibility of a computed solution to the uncertain data
of a linear system by some new theorems generalizing a result
of Oettli and Prager. In [8], the style spectral decomposition
of the skew circulant matrix is given and the optimal back-
ward perturbation analysis for the skew circulant linear
system is discussed. Liu and Guo [9] obtained the bound
of the optimal backward perturbation for a block circulant
linear system. J.-G. Sun and Z. Sun [10] studied the optimal
backward perturbation bounds for undetermined systems. In
[11], the optimal backward perturbation analysis for the block
skew circulant linear system with skew circulant blocks is
given by Li et al.

2. The Block Style Spectral Decomposition of
the BCSCB Matrix

LetmatrixC be a BCSCBmatrix as the form (1); then by using
the properties of Kronecker products in [12], the C can be
decomposed as

C =

𝑛

∑

𝑘=1

(Π

𝑘−1
⊗ 𝐶

𝑘
) , (3)

whereΠ is a square matrix of order 𝑛, and it has the following
form:

Π = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

.

.

. d d d
.

.

.

0 ⋅ ⋅ ⋅ 0 0 1

1 0 ⋅ ⋅ ⋅ 0 0

). (4)

Based on (2.5) and (2.6) in [9], the style spectral decom-
position of the matrix Π is

Π = 𝑄Π

0
𝑄

𝑇
, (5)

where 𝑄 is an orthogonal matrix.
When 𝑛 is even,

Π

0
= (

𝜋

1

𝜋

2

d
𝜋

𝑛/2

),

𝜋

𝑛/2
= (

−1 0

0 1

) , 𝜋

𝑗
= (

cos 𝜃
𝑗

sin 𝜃

𝑗

− sin 𝜃

𝑗
cos 𝜃
𝑗

) ,

𝜃

𝑗
=

2𝑗

𝑛

𝜋, 𝑗 = 1, 2, . . . ,

𝑛

2

− 1.

(6)

When 𝑛 is odd,

Π

0
= (

𝜋

1

𝜋

2

d
𝜋

(𝑛−1)/2

1

),

𝜋

𝑗
= (

cos 𝜃
𝑗

sin 𝜃

𝑗

− sin 𝜃

𝑗
cos 𝜃
𝑗

) , 𝜃

𝑗
=

2𝑗

𝑛

𝜋,

𝑗 = 1, 2, . . . ,

𝑛 − 1

2

.

(7)

Taking (3) and (5) into consideration, thematrixC can be
decomposed as

C =

𝑛

∑

𝑘=1

(Π

𝑘−1
⊗ 𝐶

𝑘
)

=

𝑛

∑

𝑘=1

(𝑄Π

𝑘−1

0
𝑄

𝑇
) ⊗ 𝐶

𝑘

=

𝑛

∑

𝑘=1

(𝑄 ⊗ 𝐼

𝑚
) (Π

𝑘−1

0
⊗ 𝐶

𝑘
) (𝑄

𝑇
⊗ 𝐼

𝑚
)

= (𝑄 ⊗ 𝐼

𝑚
)

𝑛

∑

𝑘=1

(Π

𝑘−1

0
⊗ 𝐶

𝑘
) (𝑄

𝑇
⊗ 𝐼

𝑚
) .

(8)

𝑄 ⊗ 𝐼

𝑚
is an orthogonal matrix obviously. So (8) is the block

style spectral decomposition of the matrix C.

3. Analysis of the Structured Perturbation

The structured perturbation analysis for BCSCB linear sys-
tem is given in this section.We discuss the condition number
and the relative error of the BCSCB linear system. The
optimal backward perturbation bound of the BCSCB linear
system is analysed. And, at the end of the section, we give the
algorithm for the optimal backward perturbation bound.

3.1. Condition Number and Relative Error of BCSCB Linear
System. Consider

C𝑥 = 𝑏, (9)

where C is defined in (1).
From (8) and the property of Kronecker products in [12],

thematrixC can be expressed by using the elements in its first
row as

C =

𝑛

∑

𝑘=1

(Π

𝑘−1
⊗ 𝐶

𝑘
)

=

𝑛

∑

𝑘=1

[Π

𝑘−1
⊗ (

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
Ψ

𝑙−1
)]

=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
(Π

𝑘−1
⊗ Ψ

𝑙−1
) ,

(10)

whereΨ is a squarematrix of order𝑚, and it has the following
form:

Ψ = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

.

.

. d d d
.

.

.

0 ⋅ ⋅ ⋅ 0 0 1

−1 0 ⋅ ⋅ ⋅ 0 0

). (11)
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Based on (10) and (11) in [8], the style spectral decompo-
sition of the matrix Ψ is

Ψ = 𝐽Ψ

0
𝐽

𝑇
, (12)

where 𝐽 is an orthogonal matrix.
When 𝑚 is even,

Ψ

0
= (

𝜓

1

𝜓

2

d
𝜓

𝑚/2

). (13)

When 𝑚 is odd,

Ψ

0
= (

𝜓

1

𝜓

2

d
𝜓

(𝑚−1)/2

−1

),

𝜓

ℎ
= (

cos 𝜃
ℎ

sin 𝜃

ℎ

− sin 𝜃

ℎ
cos 𝜃
ℎ

) , 𝜃

ℎ
=

2ℎ − 1

𝑛

𝜋,

ℎ =

{

{

{

{

{

1, 2, . . . ,

𝑚

2

, 𝑚 is even.

1, 2, . . . ,

𝑚 − 1

2

, 𝑚 is odd.

(14)

Furthermore, (10) can be expressed as follows:

C = Q(

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
Π

𝑘−1

0
⊗ Ψ

𝑙−1

0
)Q
𝑇
, (15)

and here Q = (𝑄 ⊗ 𝐼

𝑚
)(𝐼

𝑛
⊗ 𝐽), where 𝐼

𝑛
and 𝐼

𝑚
are identity

matrices with orders 𝑛 and 𝑚, respectively.
The problem will be discussed at two different situations.
(1) When 𝑛 is even,

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
Π

𝑘−1

0
⊗ Ψ

𝑙−1

0
= (

Λ

11

d
Λ

𝑡𝑡

Υ

1

),

Λ

𝑝𝑝
=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
𝜋

𝑘−1

𝑝
⊗ Ψ

𝑙−1

0
,

𝑡 =

𝑛

2

− 1, 𝑝 = 1, 2, . . . , 𝑡,

Υ

1
=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
diag (−Ψ

𝑙−1

0
, Ψ

𝑙−1

0
) .

(16)

(2) When 𝑛 is odd,

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
Π

𝑘−1

0
⊗ Ψ

𝑙−1

0
= (

Λ

11

d
Λ

𝑡𝑡

Υ

2

),

Λ

𝑝𝑝
=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
𝜋

𝑘−1

𝑝
⊗ Ψ

𝑙−1

0
,

𝑡 =

𝑛 − 1

2

, 𝑝 = 1, 2, . . . , 𝑡,

Υ

2
=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
Ψ

𝑙−1

0
.

(17)

We denote by𝜔

𝑖
(𝑖 = 1, 2, . . . , 𝑛) the eigenvalues ofmatrix

Π [9], and 𝛿

𝑗
(𝑗 = 1, 2, . . . , 𝑚) are denoted as the eigenvalues

of matrix Ψ [8], and then the eigenvalues of C are obtained
(refer to [12, 13]). Consider

𝜆

𝑖𝑗
=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
𝜔

𝑘−1

𝑖
𝛿

𝑙−1

𝑗
. (18)

Lemma 1. C is a nonsingular matrix if and only if 𝑓(𝜔

𝑖
, 𝛿

𝑗
) ̸=

0 (𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚), where

𝑓 (𝜔

𝑖
, 𝛿

𝑗
) = 𝜆

𝑖𝑗
=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
𝜔

𝑘−1

𝑖
𝛿

𝑙−1

𝑗
. (19)

Let

𝜎

𝑖𝑗
=

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝜔

𝑖
, 𝛿

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

𝜅 =

max {𝜎

𝑖𝑗
}

min {𝜎

𝑖𝑗
}

.

(20)

Theorem2. IfC = 𝐵𝐶𝑆𝐶𝐵(𝑐

11
, . . . , 𝑐

1𝑚
, . . . , 𝑐

𝑛1
, . . . , 𝑐

𝑛𝑚
), then

the singular values of the matrix C are 𝜎

11
, . . . , 𝜎

1𝑚
, 𝜎

21
, . . . ,

𝜎

2𝑚
, . . . , 𝜎

𝑛1
, . . . , 𝜎

𝑛𝑚
.

Proof. Assume the conjugate transpose of C is

C
∗
=

(

(

(

(

(

𝐶

∗

1
𝐶

∗

𝑛
⋅ ⋅ ⋅ 𝐶

∗

3
𝐶

∗

2

𝐶

∗

2
𝐶

∗

1
⋅ ⋅ ⋅

.

.

. 𝐶

∗

3

.

.

. 𝐶

∗

2
⋅ ⋅ ⋅ 𝐶

∗

𝑛

.

.

.

𝐶

∗

𝑛−1

.

.

. d 𝐶

∗

1
𝐶

∗

𝑛

𝐶

∗

𝑛
𝐶

∗

𝑛−1
⋅ ⋅ ⋅ 𝐶

∗

2
𝐶

∗

1

)

)

)

)

)

. (21)

By a direct calculation, C is a normal matrix as CC∗ =

C∗C.ThenmatrixC is a unitarily diagonalizablematrix based
on Theorem 2.5.4 in [14]. Then there exists a unitary matrix
U ∈ 𝑀

𝑚𝑛
, such that

U
∗
CU = Λ = diag (𝜆

11
, . . . , 𝜆

1𝑚
, . . . , 𝜆

𝑛1
, . . . , 𝜆

𝑛𝑚
) , (22)

where 𝜆

𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚) are the eigenvalues

of matrix C. Taking the conjugate transpose at both sides of
(22), we get

U
∗
C
∗
U = Λ = diag (𝜆

11
, . . . , 𝜆

1𝑚
, . . . , 𝜆

𝑛1
, . . . , 𝜆

𝑛𝑚
) ; (23)
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then

U
∗
(C
∗
C)U

= (U
∗
C
∗
U) (U

∗
CU)

= diag (

󵄨

󵄨

󵄨

󵄨

𝜆

11

󵄨

󵄨

󵄨

󵄨

2

, . . . ,

󵄨

󵄨

󵄨

󵄨

𝜆

1𝑚

󵄨

󵄨

󵄨

󵄨

2

, . . . ,

󵄨

󵄨

󵄨

󵄨

𝜆

𝑛1

󵄨

󵄨

󵄨

󵄨

2

, . . . ,

󵄨

󵄨

󵄨

󵄨

𝜆

𝑛𝑚

󵄨

󵄨

󵄨

󵄨

2

) .

(24)

And |𝜆

𝑖𝑗
|

2 are the eigenvalues of the matrix C∗C, for any
𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚. Therefore, the singular values
of C are

𝜎

𝑖𝑗
(C) = [𝜆

𝑖𝑗
(C
∗
C)]

1/2

=

󵄨

󵄨

󵄨

󵄨

󵄨

𝜆

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

.
(25)

Recall (19) and (20); the proof is completed.

As the definition of the spectral norm of matrix C is

‖C‖

2
= max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

[𝜆

𝑖𝑗
(C
∗
C)]

1/2

, (26)

via Theorem 2, the following corollary is obtained.

Corollary 3. Let C = BCSCB(𝑐
11
, . . . , 𝑐

1𝑚
, . . . , 𝑐

𝑛1
, . . . , 𝑐

𝑛𝑚
);

then the spectrum norm of matrix C is

‖C‖2
= max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎

𝑖𝑗
} . (27)

Let ΔC be a perturbation of the coefficient matrix C

and let Δ𝑏 be a perturbation of the vector 𝑏, where ΔC =

BCSCB(𝜀𝑐
11
, . . . , 𝜀𝑐

1𝑚
, . . . , 𝜀𝑐

𝑛1
, . . . , 𝜀𝑐

𝑛𝑚
) has the following

form:

ΔC = (

Δ𝐶

1
⋅ ⋅ ⋅ Δ𝐶

𝑛−1
Δ𝐶

𝑛

Δ𝐶

𝑛
Δ𝐶

1
⋅ ⋅ ⋅ Δ𝐶

𝑛−1

.

.

. d d
.

.

.

Δ𝐶

2
⋅ ⋅ ⋅ Δ𝐶

𝑛
Δ𝐶

1

), (28)

and for any 𝑘 = 1, 2, . . . , 𝑚,

Δ𝐶

𝑘
= (

𝜀𝑐

𝑘1
⋅ ⋅ ⋅ 𝜀

𝑘(𝑚−1)
𝜀𝑐

𝑘𝑚

−𝜀𝑐

𝑘𝑚
𝜀𝑐

𝑘1
⋅ ⋅ ⋅ 𝜀𝑐

𝑘(𝑚−1)

.

.

. d d
.

.

.

−𝜀𝑐

𝑘2
⋅ ⋅ ⋅ −𝜀𝑐

𝑘𝑚
𝜀𝑐

𝑘1

). (29)

Let

̂C = C + ΔC,

̂

𝑏 = 𝑏 + Δ𝑏, Δ𝑏 = 𝜀𝑏,

̂

𝑓 (𝜔

𝑖
, 𝛿

𝑗
) =

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

(𝑐

𝑘𝑙
+ 𝜀𝑐

𝑘𝑙
) 𝜔

𝑘−1

𝑖
𝛿

𝑙−1

𝑗
.

(30)

If
𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

󵄨

󵄨

󵄨

󵄨

𝜀𝑐

𝑘𝑙

󵄨

󵄨

󵄨

󵄨

< min
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎

𝑖𝑗
} , (31)

then

󵄨

󵄨

󵄨

󵄨

󵄨

̂

𝑓 (𝜔

𝑖
, 𝛿

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

(𝑐

𝑘𝑙
+ 𝜀𝑐

𝑘𝑙
) 𝜔

𝑘−1

𝑖
𝛿

𝑙−1

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝑐

𝑘𝑙
𝜔

𝑘−1

𝑖
𝛿

𝑙−1

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

󵄨

󵄨

󵄨

󵄨

𝜀𝑐

𝑘𝑙

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜔

𝑖

󵄨

󵄨

󵄨

󵄨

𝑘−1 󵄨
󵄨

󵄨

󵄨

󵄨

𝛿

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑙−1

≥ min
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎

𝑖𝑗
} −

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

󵄨

󵄨

󵄨

󵄨

𝜀𝑐

𝑘𝑙

󵄨

󵄨

󵄨

󵄨

> 0;

(32)

through Lemma 1, ̂C is a nonsingular matrix. Let

𝜎min = min
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎

𝑖𝑗
} , 𝜌 =

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

󵄨

󵄨

󵄨

󵄨

𝜀𝑐

𝑘𝑙

󵄨

󵄨

󵄨

󵄨

. (33)

By C𝑥 = 𝑏,

̂C𝑥 =

̂

𝑏, we obtain

𝑥 − 𝑥 =

̂C
−1

̂

𝑏 − C
−1

𝑏

=

̂C
−1

(𝑏 + 𝜀𝑏) − C
−1

𝑏

=

̂C
−1

𝜀𝑏 + (

̂C
−1

− C
−1

) 𝑏

=

̂C
−1

𝜀𝑏 + (

̂C
−1

− C
−1

)C𝑥

=

̂C
−1

𝜀𝑏 +

̂C
−1

(C −

̂C) 𝑥,

‖𝑥 − 𝑥‖

2
≤

󵄩

󵄩

󵄩

󵄩

󵄩

̂C
−1󵄩

󵄩

󵄩

󵄩

󵄩2
‖𝜀𝑏‖2

+

󵄩

󵄩

󵄩

󵄩

󵄩

̂C
−1󵄩

󵄩

󵄩

󵄩

󵄩2

󵄩

󵄩

󵄩

󵄩

󵄩

̂C − C
󵄩

󵄩

󵄩

󵄩

󵄩2
‖𝑥‖2

≤

‖𝜀𝑏‖2

𝜎min − 𝜌

+

󵄩

󵄩

󵄩

󵄩

󵄩

̂C − C
󵄩

󵄩

󵄩

󵄩

󵄩2
‖𝑥‖2

𝜎min − 𝜌

,

‖𝑥 − 𝑥‖2

‖𝑥‖2

≤

‖𝜀𝑏‖2

(𝜎min − 𝜌) ‖𝑥‖

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

̂C − C
󵄩

󵄩

󵄩

󵄩

󵄩2

𝜎min − 𝜌

=

‖C‖2

𝜎min − 𝜌

[

[

‖𝜀𝑏‖2

‖C‖2 ‖
𝑥‖2

+

󵄩

󵄩

󵄩

󵄩

󵄩

̂C − C
󵄩

󵄩

󵄩

󵄩

󵄩2

‖C‖2

]

]

≤

‖C‖2

𝜎min − 𝜌

[

[

‖𝜀𝑏‖2

‖𝑏‖2

+

󵄩

󵄩

󵄩

󵄩

󵄩

̂C − C
󵄩

󵄩

󵄩

󵄩

󵄩2

‖C‖2

]

]

,

(34)

where

‖C‖2
= max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎

𝑖𝑗
} . (35)
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̂C − C = ΔC is a BCSCB matrix apparently, and ‖C −

̂C‖

2
=

| − 1|‖

̂C − C‖

2
= ‖

̂C − C‖

2
. So

󵄩

󵄩

󵄩

󵄩

󵄩

̂C − C
󵄩

󵄩

󵄩

󵄩

󵄩2
= max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝜀𝑐

𝑘𝑙
𝜔

𝑘−1

𝑖
𝛿

𝑙−1

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

󵄨

󵄨

󵄨

󵄨

𝜀𝑐

𝑘𝑙

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜔

𝑖

󵄨

󵄨

󵄨

󵄨

𝑘−1 󵄨
󵄨

󵄨

󵄨

󵄨

𝛿

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑙−1

=

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

󵄨

󵄨

󵄨

󵄨

𝜀𝑐

𝑘𝑙

󵄨

󵄨

󵄨

󵄨

= 𝜌.

(36)

The following theorem can be obtained.

Theorem 4. Let C, ̂C, Δ𝑏, 𝜌, and 𝜎min be defined as above. If
𝜌 < 𝜎min, then

‖𝑥 − 𝑥‖2

‖𝑥‖2

≤

𝜎max
𝜎min − 𝜌

(

‖𝜀𝑏‖2

‖𝑏‖2

+

𝜌

𝜎max
) , (37)

where

𝜎max = ‖C‖2
. (38)

Remark 5. The condition number 𝜅 of the BCSCBmatrix can
be easily computed with the basis of (37) and (38), the same
as the bound of perturbation (37).

3.2. Optimal Backward Perturbation Bound of the BCSCB
Linear System. In this part, a new method is given to obtain
the minimal value of the perturbation bound, which is only
related to the perturbation of the coefficient matrix and the
vector. At the end of this part, the algorithm for the optimal
backward perturbation bound is given.

Let 𝑥 be an approximate solution to C𝑥 = 𝑏 and let

Ω ≡ {(ΔC, Δ𝑏) | (C + ΔC) 𝑥 = 𝑏 + Δ𝑏} ,

𝜉 (𝑥) ≡ inf
(ΔC,Δ𝑏)∈Ω

‖ΔC, Δ𝑏‖ ,

(C + ΔC) 𝑥 = 𝑏 + Δ𝑏,

(39)

which is equal to

(ΔC, Δ𝑏) (

𝑥

−1

) = 𝑏 − C𝑥. (40)

According to [7], we can get

𝜉 (𝑥) =

‖𝑏 − C𝑥‖2

√
1 + ‖𝑥‖

2

2

(‖⋅‖ is unitary invariant norm) .

(41)

Let 𝑥 be an approximate solution to C𝑥 = 𝑏, where C is
defined in (1):

Ω ≡ {(ΔC, Δ𝑏) | (C + ΔC) 𝑥 = 𝑏 + Δ𝑏,

ΔC is a BCSCB matrix} ,

𝜉 (𝑥) ≡ inf
(ΔC,Δ𝑏∈Ω)

{‖ΔC, Δ𝑏‖

𝐹
} .

(42)

SoΩ ̸= 𝜙 (asΔC = 0 is a BCSCBmatrix,Δ𝑏 =

̂C𝑥−𝑏). Hence,

𝜉

2
(𝑥) = inf

(ΔC,Δ𝑏)∈Ω
{‖ΔC‖

2

𝐹
+ ‖ΔC𝑥 + C𝑥 − 𝑏‖

2

𝐹
} . (43)

Since

‖ΔC‖

2

𝐹
= 𝑚𝑛

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

(𝜀𝑐

𝑘𝑙
)

2

,

ΔC = Q(

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝜀𝑐

𝑘𝑙
Π

𝑘−1

0
⊗ Ψ

𝑙−1

0
)Q
𝑇
,

(44)

the question will be analysed in two different conditions.
(1) When 𝑛 is even,

‖ΔC𝑥 + C𝑥 − 𝑏‖

2

𝐹

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

Q(

𝜀Λ

11

d
𝜀Λ

𝑡𝑡

𝜀Υ

1

)Q
𝑇
𝑥 + C𝑥 − 𝑏

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(

𝜀Λ

11

d
𝜀Λ

𝑡𝑡

𝜀Υ

1

)(

𝑥

(0)

1

.

.

.

𝑥

(0)

𝑡

𝑥

(0)

𝑡+1

) − 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(

(

(

(

(

(

(

(

(

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝜀𝑐

𝑘𝑙
𝜋

𝑘−1

1
⊗ Ψ

𝑙−1

0
)𝑥

(0)

1

.

.

.

(

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝜀𝑐

𝑘𝑙
𝜋

𝑘−1

𝑡
⊗ Ψ

𝑙−1

0
)𝑥

(0)

𝑡

(

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝜀𝑐

𝑘𝑙
diag (−Ψ

𝑙−1

0
, Ψ

𝑙−1

0
))𝑥

(0)

𝑡+1

)

)

)

)

)

)

)

)

− 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

,

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

Φ (𝜀𝑐

11
, . . . , 𝜀𝑐

1𝑚
, . . . , 𝜀𝑐

𝑛1
, . . . , 𝜀𝑐

𝑛𝑚
)

𝑇

− 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

,

(45)

where

𝑟

0
= Q
𝑇
(𝑏 − C𝑥) ,

Q
𝑇
𝑥 = (

𝑥

(0)

1
⋅ ⋅ ⋅ 𝑥

(0)

𝑡
𝑥

(0)

𝑡+1
)

𝑇

,

Φ = (Φ

1
, Φ

2
, . . . , Φ

𝑛−1
,

𝑚

∑

𝑙=1

diag (−Ψ

𝑙−1

0
, Ψ

𝑙−1

0
) 𝑥

(0)

𝑡+1
) ,

Φ

𝑘
= (

𝜙

1,𝑘,1
⋅ ⋅ ⋅ 𝜙

1,𝑘,𝑚

.

.

. d
.

.

.

𝜙

𝑡,𝑘,1
⋅ ⋅ ⋅ 𝜙

𝑡,𝑘,𝑚

),

𝜙

𝑝,𝑘,𝑙
= 𝜋

𝑘−1

𝑝
⊗ Ψ

𝑙−1

0
𝑥

(0)

𝑝
,

𝑡 =

𝑛

2

− 1, 𝑝 = 1, 2, . . . , 𝑡,

𝑘 = 1, 2, . . . , 𝑛 − 1, 𝑙 = 1, 2, . . . , 𝑚.

(46)
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(2) When 𝑛 is odd,

‖ΔC𝑥 + C𝑥 − 𝑏‖

2

𝐹

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

Q(

𝜀Λ

11

d
𝜀Λ

𝑡𝑡

𝜀Υ

2

)Q
𝑇
𝑥 + C𝑥 − 𝑏

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(

𝜀Λ

11

d
𝜀Λ

𝑡𝑡

𝜀Υ

2

)(

𝑥

(0)

1

.

.

.

𝑥

(0)

𝑡

𝑥

(0)

𝑡+1

) − 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(

(

(

(

(

(

(

(

(

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝜀𝑐

𝑘𝑙
𝜋

𝑘−1

1
⊗ Ψ

𝑙−1

0
)𝑥

(0)

1

.

.

.

(

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝜀𝑐

𝑘𝑙
𝜋

𝑘−1

𝑡
⊗ Ψ

𝑙−1

0
)𝑥

(0)

𝑡

(

𝑛

∑

𝑘=1

𝑛

∑

𝑙=1

𝜀𝑐

𝑘𝑙
Ψ

𝑙−1

0
)𝑥

(0)

𝑡+1

)

)

)

)

)

)

)

)

− 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

Φ (𝜀𝑐

11
, . . . , 𝜀𝑐

1𝑚
, . . . , 𝜀𝑐

𝑛1
, . . . , 𝜀𝑐

𝑛𝑚
)

𝑇

− 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

,

(47)

where

𝑟

0
= Q
𝑇
(𝑏 − C𝑥) ,

Q
𝑇
𝑥 = (

𝑥

(0)

1
⋅ ⋅ ⋅ 𝑥

(0)

𝑡
𝑥

(0)

𝑡+1
)

𝑇

,

Φ = (Φ

1
, Φ

2
, . . . , Φ

𝑛−1
,

𝑚

∑

𝑙=1

Ψ

𝑙−1

0
𝑥

(0)

𝑡+1
) ,

Φ

𝑘
= (

𝜙

1,𝑘,1
⋅ ⋅ ⋅ 𝜙

1,𝑘,𝑚

.

.

. d
.

.

.

𝜙

𝑡,𝑘,1
⋅ ⋅ ⋅ 𝜙

𝑡,𝑘,𝑚

),

𝜙

𝑝,𝑘,𝑙
= 𝜋

𝑘−1

𝑝
⊗ Ψ

𝑙−1

0
𝑥

(0)

𝑝
,

𝑡 =

𝑛 − 1

2

, 𝑝 = 1, 2, . . . , 𝑡,

𝑘 = 1, 2, . . . , 𝑛 − 1, 𝑙 = 1, 2, . . . , 𝑚.

(48)

Let

𝑔 (𝜀𝑐

11
, . . . , 𝜀𝑐

𝑛𝑚
) = 𝑚𝑛

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

(𝜀𝑐

𝑘𝑙
)

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

Φ(

𝜀𝑐

11

.

.

.

𝜀𝑐

𝑛𝑚

) − 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

,

(49)

and then

𝜕𝑔

𝜕𝜀𝑐

𝑘𝑙

= 0, (50)

which is equal to

(2𝑚𝑛𝐼

𝑚𝑛
+ 2Φ

𝑇
Φ)(

𝜀𝑐

11

.

.

.

𝜀𝑐

𝑛𝑚

) − 2Φ

𝑇
𝑟

0
= 0,

𝜕

2
𝑔

𝜕(𝜀𝑐

𝑘𝑙
)

2
= 2𝑚𝑛𝐼

𝑚𝑛
+ 2Φ

𝑇
Φ > 0.

(51)

As 𝑔 is a convex function of (𝜀𝑐
11
, . . . , 𝜀𝑐

𝑛𝑚
), the point of the

minimal value is

(

𝜀𝑐

11

.

.

.

𝜀𝑐

𝑛𝑚

) = (𝑚𝑛𝐼

𝑚𝑛
+ Φ

𝑇
Φ)

−1

Φ

𝑇
𝑟

0
. (52)

Substituting it back into (49), we obtain the following.

Theorem 6. Consider

𝜉

2
(𝑥) = 𝑚𝑛𝑟

𝑇

0
Φ(𝑚𝑛𝐼

𝑚𝑛
+ Φ

𝑇
Φ)

−2

Φ

𝑇
𝑟

0

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[Φ (𝑚𝑛𝐼

𝑚𝑛
+ Φ

𝑇
Φ)

−1

Φ

𝑇
− 𝐼

𝑚𝑛
] 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

.

(53)

LetΦ = 𝑈Σ𝑉

∗ be the singular value decomposition ofΦ,
where 𝑈 and 𝑉 are unitary matrices, Σ = diag(𝜎󸀠

1
, . . . , 𝜎

󸀠

𝑛𝑚
),

and 𝜎

󸀠

𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛𝑚); then

𝜉

2
(𝑥) = 𝑚𝑛𝑟

𝑇

0
𝑈Σ𝑉

𝑇
(𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−2

𝑉Σ𝑈

𝑇
𝑟

0

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[𝑈Σ𝑉

𝑇
(𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−1

𝑉Σ𝑈

𝑇
− 𝐼

𝑚𝑛
] 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

= 𝑚𝑛𝑟

𝑇

1
Σ (𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−2

Σ𝑟

1

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[Σ (𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−1

Σ − 𝐼

𝑚𝑛
] 𝑟

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

= 𝑚𝑛𝑟

𝑇

1
Σ (𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−2

Σ𝑟

1

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[Σ (𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−1

Σ − 𝐼

𝑚𝑛
] 𝑟

1

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝐹

= 𝑚𝑛𝑟

𝑇

1
Σ (𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−2

Σ𝑟

1

+ 𝑚

2
𝑛

2
𝑟

𝑇

1
(𝑚𝑛𝐼

𝑚𝑛
+ Σ

2
)

−2

𝑟

1

= 𝑟

𝑇

1
(

𝛼

1

d
𝛼

𝑚𝑛

)𝑟

1
,

(54)

where 𝑟

1
= 𝑈

𝑇
𝑟

0
, 𝛼

𝑗
= (𝑚𝑛𝜎

󸀠2

𝑗
+ 𝑚

2
𝑛

2
)/(𝑚𝑛 + 𝜎

󸀠2

𝑗
)

2
=

𝑚𝑛/(𝑚𝑛 + 𝜎

󸀠2

𝑗
), 𝑗 = 1, 2, . . . , 𝑚𝑛.

Remark 7. As 𝜎

2

𝑗
≤ ‖Φ‖

2

𝐹
= 𝑚𝑛‖𝑥‖

2

2
, then 1 + ‖𝑥‖

2

2
≥ 1 +

𝜎

󸀠2

𝑗
/𝑚𝑛 can be obtained; hence,𝑚𝑛/(𝑚𝑛+𝜎

󸀠2

𝑗
) ≥ 1/(1+‖𝑥‖

2

2
).
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From what we analysed above, the following algorithm
can be obtained.

Algorithm 8. We have the following steps.

Step 1. Form the style spectral decomposition of the matrixes
Π and Ψ:

Π = 𝑄Π

0
𝑄

𝑇
, Ψ = 𝐽Ψ

0
𝐽

𝑇
. (55)

Step 2. Form the block style spectral decomposition of the
BCSCB matrix.

Step 3. Compute 𝑟 = 𝑏 − C𝑥.

Step 4. Compute 𝑟

0
= Q𝑇𝑟.

Step 5. Compute

Q
𝑇
𝑥 = (

𝑥

(0)

1

.

.

.

𝑥

(0)

𝑡

𝑥

(0)

𝑡+1

). (56)

Step 6. Form Φ.

Step 7. Compute the singular value decomposition of Φ.

Step 8. Compute 𝜉

2
(𝑥).

4. Numerical Example

In this section, a simple numerical example is given to verify
the conclusion above. Suppose that 𝑛 = 2, 𝑚 = 3 in the
following example.

If the coefficient matrix of the BCSCB linear system is
C = BCSCB(3, 5, 2, 7, 9, 8) and the constant vector 𝑏 =

(11, 8, 10, −8, 9, 3)

𝑇, now, three perturbations are given as
follows:

ΔC
1
= 0.01BCSCB (3, 5, 2, 7, 9, 8) ,

Δ𝑏

1
= 0.01 (1, 3, 2, 3, 1, 5)

𝑇
,

ΔC
2
= BCSCB (0.01, 0.02, 0, 0.015, 0.033, 0.01) ,

Δ𝑏

2
= (0.012, 0.03, 0.02, 0.015, 0.01, 0.021)

𝑇
,

ΔC
3
= BCSCB (0.01, 0.02, 0.015, 0.01, 0, 0.01) ,

Δ𝑏

3
= (0.012, 0.035, 0.02, 0.01, 0.021, 0.015)

𝑇
.

(57)

From the equation ̂C𝑥 =

̂

𝑏, where ̂C, ̂𝑏 are defined as above,
the approximate solution of C𝑥 = 𝑏 can be obtained as
follows:

𝑥 =

(

(

(

−1.0556

0.3472

−0.9306

0.4444

−0.1528

1.5694

)

)

)

, 𝑥

1
=

(

(

(

−1.0556

0.3472

−0.9306

0.4444

−0.1528

1.5694

)

)

)

,

Table 1: The related date of the algorithm.

𝜖 𝜅 𝜉

1
(𝑥) 𝜉

2
(𝑥)

Case 0 0 4.0000 0 0
Case 1 0 4.0000 2.2112𝑒

−15 0.3796
Case 2 1.9396𝑒

−4 4.0024 0.0028 0.1170
Case 3 0.0028 3.9971 0.0202 0.0899

𝑥

2
=

(

(

−1.0553

0.3472

−0.9303

0.4444

−0.1528

1.5694

)

)

, 𝑥

3
=

(

(

−1.0531

0.3439

−0.9297

0.4418

−0.1492

1.5699

)

)

,

(58)

where 𝑥 is the solution of C𝑥 = 𝑏 and 𝑥

𝑖
, 𝑖 = 1, 2, 3, is the

solution of (C + ΔC
𝑖
)𝑥 = 𝑏 + Δ𝑏

𝑖
, 𝑖 = 1, 2, 3, respectively.

Based on Algorithm 8, we obtain Table 1, where 𝜖

is the relative error of the BCSCB linear system, 𝜅 =

max{𝜎
𝑖𝑗
}/min{𝜎

𝑖𝑗
} is the condition number, 𝜉

1
(𝑥) = ‖𝑏 −

C𝑥‖

2
/√1 + ‖𝑥‖

2

2
, and 𝜉

2
(𝑥) can be obtained from the algo-

rithm.
From the numerical example, the accuracy of the conclu-

sion and the effectiveness of the algorithm are verified.

5. Conclusion

In this paper, we consider the problems associated with the
BCSCB matrix. The BCSCB matrix is an extension of the
circulant matrix and skew circulant matrix. We give the form
of the BCSCB matrix and obtain its block style spectral
decomposition. The algorithm of the optimal backward per-
turbation is given. Furthermore, by circulant matrices tech-
nology, we will develop solving problems in [15–17].
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