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We use a new method for constructing some differential equations which are equivalent to a given equation in the sense of having
the same reflecting function. We completely solve the problem: when is a polynomial differential equation equivalent to a given
polynomial differential equation? Many sufficient conditions have been established for one differential equation to be equivalent
to a given differential equation. We apply the obtained results to study the boundary value problem of two equivalent differential
equations.

1. Introduction

By [1, 2] we know that some polynomial differential system

�̇� = 𝑈 (𝑢, V) ,

V̇ = 𝑉 (𝑢, V) ,
(1)

where 𝑈(𝑢, V) and 𝑉(𝑢, V) are polynomial functions, can be
transformed to an equation of the form

𝑑𝑥

𝑑𝑡

= 𝑝

0
(𝑡) + 𝑝

1
(𝑡) 𝑥 + ⋅ ⋅ ⋅ + 𝑝

𝑛
(𝑡) 𝑥

𝑛
= 𝑃 (𝑡, 𝑥) ,

𝑡, 𝑥 ∈ R,

(2)

where𝑝
𝑖
(𝑡) are polynomial in cos 𝑡, sin 𝑡.The fact that systems

with a homogeneous nonlinearity can be transformed to (2)
with 𝑛 = 3 has been exploited in a number of previous
papers [1–4].The limit cycles of (1) correspond to 2𝜋-periodic
solutions of (2). This fact has been used to facilitate certain
computations and to provide some information about the
global phase portrait of the system. In this paper we will use
the method of Mironenko [5] to construct some differential
equations which are equivalent to (2) in the sense of having
the same reflecting function.

Now, we simply introduce the concept of the reflecting
function.

Consider differential system

𝑥


= 𝑋 (𝑡, 𝑥) , 𝑡 ∈ R, 𝑥 ∈ 𝐷 ⊂ R

𝑛
, (3)

which has a continuously differentiable right-hand side and
general solution 𝜑(𝑡; 𝑡

0
, 𝑥

0
). For each such system, the reflect-

ing function is defined as 𝐹(𝑡, 𝑥) := 𝜑(−𝑡, 𝑡, 𝑥) [5].
If system (3) is 2𝜋-periodic with respect to 𝑡, then𝑇(𝑥) :=

𝐹(−𝜋, 𝑥) is the Poincaré mapping of (3) over the period
[−𝜋, 𝜋]. Thus, the solution 𝑥 = 𝜑(𝑡; −𝜋, 𝑥

0
) of (3) defined on

[−𝜋, 𝜋] is 2𝜋-periodic if and only if 𝑥
0
is a fixed point of𝑇(𝑥).

A differentiable function 𝐹(𝑡, 𝑥) is a reflecting function of
system (3) if and only if it is a solution of the Cauchy problem

𝐹

𝑡
(𝑡, 𝑥) + 𝐹

𝑥
(𝑡, 𝑥)𝑋 (𝑡, 𝑥) + 𝑋 (−𝑡, 𝐹 (𝑡, 𝑥)) = 0,

𝐹 (0, 𝑥) = 𝑥.

(4)

If the reflecting functions of two differential systems
coincide in their common domain, then these systems are
said to be equivalent [5].

If 𝐹(𝑡, 𝑥) is the reflecting function of (3), then it is also the
reflecting function of any system

𝑥


= 𝑋 (𝑡, 𝑥) + 𝐹

−1

𝑥
𝑅 (𝑡, 𝑥) − 𝑅 (−𝑡, 𝐹 (𝑡, 𝑥)) , (5)

where 𝑅(𝑡, 𝑥) is an arbitrary vector function such that the
solutions of every system above are uniquely determined by
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its initial conditions. The systems (3) and (5) have the same
operators of translation along solutions on the symmetric
time interval [−𝜔, 𝜔], and therefore the initial data 𝑥(−𝜔)

of solutions of the boundary value problems of the form
Φ(𝑥(𝜔), 𝑥(−𝜔)) = 0, where Φ is an arbitrary function,
coincide for such systems.

In general, it is very difficult to find out the reflecting
function of (3), so to writ out system (5) is difficult, too. How
to judge if two systems are equivalent when we do not know
their reflecting function? This is a very interesting problem!
Mironenko in [5–7] has studied it and obtained some good
results.

Lemma 1 (see [6]). If continuously differentiable vector func-
tions Δ

𝑖
(𝑡, 𝑥) (𝑖 = 1, 2, . . . , 𝑚) are solutions of differential

system

Δ

𝑡
(𝑡, 𝑥) + Δ

𝑥
(𝑡, 𝑥)𝑋 (𝑡, 𝑥) = 𝑋

𝑥
(𝑡, 𝑥) Δ (𝑡, 𝑥) , (6)

then all perturbed systems of the form

𝑥


= 𝑋 (𝑡, 𝑥) +

𝑚

∑

𝑖=1

𝛼

𝑖
(𝑡) Δ

𝑖
(𝑡, 𝑥) , (7)

where 𝛼
𝑖
(𝑡) are arbitrary continuous scalar odd functions, are

equivalent to each other and to system (3).

The theory of reflecting function has been used for
studying the qualitative behavior of solutions of differential
systems by many authors [5–13].

Now, for a given equation (2), we present a method for
constructing other first-order differential equationswhich are
equivalent to (2), that is, to find out the solution of (6) with
𝑋(𝑡, 𝑥) = 𝑃(𝑡, 𝑥). However, it is impossible to find all the
solutions in most cases. Therefore, we take only polynomial
solutions of (6), that is, its solutions of the form

Δ = 𝑎

0
(𝑡) + 𝑎

1
(𝑡) 𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝑛
(𝑡) 𝑥

𝑛
, (8)

where the coefficients 𝑎
𝑖
(𝑡) (𝑖 = 0, 1, 2, . . . , 𝑛) are assumed to

be differentiable functions on R and 𝑎

𝑛
(𝑡) is not to be zero

identically.
Bel’skii in papers [8–10] has discussed, respectively, when

a first-order polynomial differential equation is equivalent
to a linear equation (𝑛 = 1) and Riccati equation (𝑛 = 2)
and Abel equation (𝑛 = 3). In this paper, we will in detail
discuss when is a first-order equation equivalent to (2) with
𝑛 ≥ 3. We have obtained the sufficient conditions for (6) has
solution in form of (8) and we give the explicit expressions
of Δ(𝑡, 𝑥). At the same time, in addition, we also find out
somenonpolynomial solutions of (6).The results of this paper
generalize the results of Bel’skii [8–10], and the method of
proof in this paper is more simple and efficient than in the
previous papers.

2. Main Results

Now, we consider (2) and assume that 𝑝
𝑛
(𝑡) is not to be zero

identically in R and 𝑛 > 1. By Bel’skii [8], we know that if
𝑝

𝑛
̸= 0, then the degree of polynomial Δ(𝑡, 𝑥) is equal to 𝑛. In

the following, we suppose that 𝑛 ≥ 3 and 𝑝
𝑛
(𝑡) ̸= 0.

Theorem 2. For (2), suppose that 𝑛 ≥ 3 and 𝑝

𝑛
(𝑡) ̸= 0. Then

the function Δ(𝑡, 𝑥) of the form (8) is a solution of (6), if and
only if

𝑎



0
= 𝑝

1
𝑎

0
− 𝑎

1
𝑝

0
, (9)

𝑎



𝑘
= (𝑘 + 1) (𝑝

𝑘+1
𝑎

0
− 𝑎

𝑘+1
𝑝

0
)

+ (𝑘 − 1) (𝑝𝑘
𝑎

1
− 𝑝

1
𝑎

𝑘
) ,

𝑘 = 1, 2, . . . , 𝑛 − 2,

(10)

𝑎

𝑖
=

𝑝

𝑖

𝑝

𝑛

𝑎

𝑛
, 𝑖 = 2, 3, . . . , 𝑛 − 1, (11)

𝑎

1
=

𝑝

1

𝑝

𝑛

𝑎

𝑛
+

𝑎



𝑛

(𝑛 − 1) 𝑝

𝑛

,
(12)

𝑎

0
=

𝑝

0

𝑝

𝑛

𝑎

𝑛
+

𝑎

𝑛

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



+

𝑎



𝑛
𝑝

𝑛−1

𝑛 (𝑛 − 1) 𝑝

2

𝑛

. (13)

Therefore, Δ can be represented in the form

Δ =

𝑎

𝑛

𝑝

𝑛

𝑃 (𝑡, 𝑥) +

𝑎



𝑛

(𝑛 − 1) 𝑝

𝑛

(𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

)

+

𝑎

𝑛

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



.

(14)

Proof. Let us substitute the function Δ(𝑡, 𝑥) of the form (8)
into (6); we get

𝑎



0
+ 𝑎



1
𝑥 + ⋅ ⋅ ⋅ + 𝑎



𝑛
𝑥

𝑛
+ (𝑎

1
+ 2𝑎

2
𝑥 + ⋅ ⋅ ⋅ + 𝑛𝑎

𝑛
𝑥

𝑛−1
)

⋅ (𝑝

0
+ 𝑝

1
𝑥 + ⋅ ⋅ ⋅ + 𝑝

𝑛
𝑥

𝑛
)

= (𝑝

1
+ 2𝑝

2
𝑥 + ⋅ ⋅ ⋅ + 𝑛𝑝

𝑛
𝑥

𝑛−1
)

⋅ (𝑎

0
+ 𝑎

1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥

𝑛
) .

(15)

Equating the coefficients of the like power of 𝑥, we obtain

𝑎



𝑘
=

𝑘+1

∑

𝑖=1

𝑖 (𝑝

𝑖
𝑎

𝑘+1−𝑖
− 𝑎

𝑖
𝑝

𝑘+1−𝑖
) ,

𝑘 = 0, 1, 2, . . . , 2𝑛 − 1,

(16)

where 𝑎
𝑘
= 0 and 𝑝

𝑘
= 0, when 𝑘 > 𝑛.

From (16) when 𝑘 = 2𝑛 − 1 we get 𝑛𝑎
𝑛
𝑝

𝑛
= 𝑛𝑝

𝑛
𝑎

𝑛
. Taking

𝑘 = 2𝑛 − 2 in (16), we have 𝑎
𝑛−1

= (𝑝

𝑛−1
/𝑝

𝑛
)𝑎

𝑛
. Similarly for

𝑘 = 2𝑛 − 3, 2𝑛 − 4, . . . , 𝑛 + 1, we get

𝑎

𝑖
=

𝑝

𝑖

𝑝

𝑛

𝑎

𝑛
, 𝑖 = 2, 3, . . . , 𝑛 − 1; (17)

that is, relation (11) is true.
Substituting (11) into (16) and simplifying we get (10).
Using relation (11) and taking 𝑘 = 𝑛 in (16), we get

𝑎



𝑛
= (𝑛 − 1) (𝑎

1
𝑝

𝑛
− 𝑝

1
𝑎

𝑛
) ; (18)

it implies relation (12).
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Using relation (12) and taking 𝑘 = 𝑛 − 1 in (16), we have

𝑎



𝑛−1
= 𝑛 (𝑝

𝑛
𝑎

0
− 𝑝

0
𝑎

𝑛
) +

𝑛 − 2

𝑛 − 1

𝑝

𝑛−1

𝑝

𝑛

𝑎



𝑛
; (19)

substituting 𝑎

𝑛−1
= (𝑝

𝑛−1
/𝑝

𝑛
)𝑎

𝑛
into the above, we get that

relation (13) is held.
Substituting (11)–(13) into (8), we get

Δ (𝑡, 𝑥) =

𝑎

𝑛

𝑝

𝑛

(𝑝

0
+ 𝑝

1
𝑥 + ⋅ ⋅ ⋅ + 𝑝

𝑛
𝑥

𝑛
)

+

𝑎



𝑛

(𝑛 − 1) 𝑝𝑛

(𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

) +

𝑎

𝑛

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



=

𝑎

𝑛

𝑝

𝑛

𝑃 (𝑡, 𝑥) +

𝑎



𝑛

(𝑛 − 1) 𝑝

𝑛

(𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

)

+

𝑎

𝑛

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



,

(20)

which completes the proof.

We rewrite 𝑃(𝑡, 𝑥) as follows:

𝑃 (𝑡, 𝑥) = 𝑝

𝑛
((𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛

+ 𝛿

𝑛−2
(𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−2

+ ⋅ ⋅ ⋅ + 𝛿

1
(𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

) + 𝛿

0
) ,

(21)

in which

𝛿

𝑘
=

1

𝑘!𝑝

𝑛

𝜕

𝑘
𝑃 (𝑡, 𝑥)

𝜕𝑥

𝑘

















𝑥=−𝑝
𝑛−1
/𝑛𝑝
𝑛

,

𝑘 = 0, 1, . . . , 𝑛 − 2, 𝛿

𝑛−1
≡ 0.

(22)

Lemma 3. If 𝛿
𝑖
= 0, 𝑖 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑛 − 2, 𝑘 ≥ 0, then

𝛿

𝑘
=

𝑝

𝑘

𝑝

𝑛

− 𝐶

𝑘

𝑛
(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−𝑘

,
(23)

𝑝

𝑘+1

𝑝

𝑛

= 𝐶

𝑘+1

𝑛
(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−𝑘−1

.
(24)

Proof. As 𝛿
𝑖
= 0, 𝑖 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑛 − 1, so (21) goes to

𝑃 (𝑡, 𝑥)

𝑝

𝑛

= (𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛

+ 𝛿

𝑘
(𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑘

+ 𝛿

𝑘−1
(𝑥 +

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑘−1

+ ⋅ ⋅ ⋅ + 𝛿

0
,

(25)

equating the coefficients of 𝑥𝑘 and 𝑥

𝑘+1; from here we get
relations (23) and (24).

Theorem 4. Suppose that 𝛿
𝑖
= 0, 𝑖 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑛 − 2,

𝛿

𝑘
̸= 0 (1 < 𝑘 < 𝑛 − 1), and

(𝑚 + 1) 𝑝

𝑚+1
𝜇

𝑘0
+ (𝑚 − 1) 𝑝

𝑚
𝜇

𝑘1

= (

𝑝

𝑚

𝑝

𝑛

)



−

𝑛 − 1

𝑛 − 𝑘

𝑝

𝑚

𝑝

𝑛

𝛿



𝑘

𝛿

𝑘

, (𝑚 = 2, 3, . . . , 𝑘 − 1) ,

(26)

𝑎



0
= 𝑝

1
𝑎

0
− 𝑎

1
𝑝

0
, (27)

𝑎



1
= 2𝑝

2
𝑎

0
− 2𝑝

0
𝑎

2
, (28)

𝑎

𝑚
=

𝑝

𝑚

𝑝

𝑛

𝑎

𝑛
, (𝑚 = 2, 3, . . . , 𝑛 − 1) , (29)

where

𝜇

𝑘0
=

1

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



−

𝑝

𝑛−1

𝑛 (𝑛 − 𝑘) 𝑝

2

𝑛

𝛿



𝑘

𝛿

𝑘

,

𝜇

𝑘1
= −

𝛿



𝑘

(𝑛 − 𝑘) 𝑝𝑛
𝛿

𝑘

,

(30)

𝑎

0
=

𝑝

0

𝑝

𝑛

𝑎

𝑛
+ 𝜇

𝑘0
𝑎

𝑛
, (31)

𝑎

1
=

𝑝

1

𝑝

𝑛

𝑎

𝑛
+ 𝜇

𝑘1
𝑎

𝑛
, (32)

𝑎

𝑛
= 𝛿

−(𝑛−1)/(𝑛−𝑘)

𝑘
.

(33)

Then the function Δ(𝑡, 𝑥) in (8) is a solution of (6); that is, (2)
is equivalent to equation

𝑥


= 𝑃 (𝑡, 𝑥) + 𝛼 (𝑡) Δ (𝑡, 𝑥) , (34)

where 𝛼(𝑡) is an arbitrary continuous odd function.

Proof. For 𝑘 ≤ 𝑚 ≤ 𝑛 − 2, by Lemma 3, substituting (12) and
(13) into (10), we obtain

𝑎



𝑚

= (𝑚 + 1) (𝑝

𝑚+1
𝑎

0
− 𝑎

𝑚+1
𝑝

0
)

+ (𝑚 − 1) (𝑝𝑚
𝑎

1
− 𝑎

𝑚
𝑝

1
)

= (𝑚 + 1)(

𝑝

𝑚+1

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



𝑎

𝑛
+

𝑝

𝑚+1

𝑛 (𝑛 − 1)

𝑝

𝑛−1

𝑝

2

𝑛

𝑎



𝑛
)

+ (𝑚 − 1)

𝑝

𝑚
𝑎



𝑛

(𝑛 − 1) 𝑝𝑛

.

(35)

Substituting (24) into this relation, we obtain

𝑎



𝑚
=

𝑚 + 1

𝑛 − 𝑚

𝐶

𝑚+1

𝑛
((

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−𝑚

)



𝑎

𝑛

+

𝑚 + 1

𝑛 − 1

𝐶

𝑚+1

𝑛
(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−𝑚

𝑎



𝑛
+

𝑚 − 1

𝑛 − 1

𝑝

𝑚

𝑝

𝑛

𝑎



𝑛
.

(36)
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By (11) and (23), we get

𝑎

𝑛
𝛿



𝑚
+

𝑛 − 𝑚

𝑛 − 1

𝛿

𝑚
𝑎



𝑛
= 0. (37)

As 𝛿
𝑚

= 0 (𝑚 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑛 − 1), (37) is an identity
when𝑚 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑛 − 1. For𝑚 = 𝑘, solving (37), we
have

𝑎

𝑛
= 𝛿

−(𝑛−1)/(𝑛−𝑘)

𝑘
.

(38)

Substituting (38) into (11)–(13), we obtain (29)–(32).
On the other hand, by relation (10), for 1 < 𝑚 < 𝑘, we

have

𝑎



𝑚
= (𝑚 + 1) (𝑝

𝑚+1
𝑎

0
− 𝑎

𝑚+1
𝑝

0
)

+ (𝑚 − 1) (𝑝

𝑚
𝑎

1
− 𝑎

𝑚
𝑝

1
) .

(39)

Substituting (29)–(32) and (37) into the above, we obtain

(

𝑝

𝑚

𝑝

𝑛

)



𝑎

𝑛
−

𝑛 − 1

𝑛 − 𝑘

𝑝

𝑚
𝑎

𝑛
𝛿



𝑘

𝑝

𝑛
𝛿

𝑘

= (𝑚 + 1) 𝑝𝑚+1
𝜇

𝑘0
𝑎

𝑛
+ (𝑚 − 1) 𝑝𝑚

𝜇

𝑘1
𝑎

𝑛
,

(40)

which deduces that relation (26) is true. ByTheorem 2 and in
(10) taking 𝑘 = 1 we get that relations (27) and (28) are held.

By Lemma 1 andTheorem 2, the proof is completed.

Theorem 5. Supposing that 𝑛 > 3,

𝛿

𝑖
= 0, 𝑖 = 2, 3, . . . , 𝑛 − 2,

𝛿

1
=

𝑝

1

𝑝

𝑛

− 𝐶

1

𝑛
(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−1

̸= 0,

𝜂


𝑎

𝑛
+

𝑛

𝑛 − 1

𝜂𝑎



𝑛
= 0,

𝑎

𝑘
=

𝑝

𝑘

𝑝

𝑛

𝑎

𝑛
, (𝑘 = 2, 3, . . . , 𝑛 − 1)

(41)

𝑎

0
= (

𝑝

0

𝑝

𝑛

−

𝑝

𝑛−1
𝛿

1

𝑛𝑝

𝑛

+

1

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



)𝑎

𝑛
+

𝜆

0
𝑝

𝑛−1

𝑛𝑝

𝑛

, (42)

𝑎

1
= 𝑛(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−1

𝑎

𝑛
+ 𝜆

0
,

(43)

where

𝜂 :=

𝑝

0

𝑝

𝑛

− (

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛

+

1

𝑝

𝑛

(

𝑝

𝑛−1

𝑛𝑝

𝑛

)



−

𝑝

𝑛−1

𝑛𝑝

𝑛

𝛿

1
, (44)

𝑎

𝑛
= 𝑒

−(𝑛−1) ∫ 𝛿
1
𝑝
𝑛
𝑑𝑡
[𝜆

1

+ 𝜆

0 (
𝑛 − 1) ∫𝑝

𝑛
𝑒

(𝑛−1) ∫ 𝛿
1
𝑝
𝑛
𝑑𝑡
𝑑𝑡] ,

(45)

where 𝜆

0
and 𝜆

1
are arbitrary constants. Then the function

Δ(𝑡, 𝑥) of the form (8) is a solution of (6); that is, (2) is
equivalent to (34).

Proof. As 𝛿
𝑚
= 0,𝑚 = 2, 3, . . . , 𝑛−1 and 𝛿

1
̸= 0, by Lemma 3,

we have

𝛿

1
=

𝑝

1

𝑝

𝑛

− 𝐶

1

𝑛
(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−1

,

𝑝

2

𝑝

𝑛

= 𝐶

2

𝑛
(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−2

.

(46)

Using 𝛿
𝑚
= 0 (𝑚 = 2, 3, . . . , 𝑛 − 1), it is not difficult to check

that (37) is an identity when𝑚 = 2, 3, . . . , 𝑛 − 2. For𝑚 = 1, in
relation (10) taking 𝑘 = 1 and computing, it follows that

𝑎



1
= 𝑛(𝑎

𝑛
(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−1

)



,
(47)

which implies that

𝑎

1
= 𝑛(

𝑝

𝑛−1

𝑛𝑝

𝑛

)

𝑛−1

𝑎

𝑛
+ 𝜆

0
.

(48)

Combining relation (12), it yields

𝑎



𝑛
= − (𝑛 − 1) 𝛿

1
𝑝

𝑛
𝑎

𝑛
+ (𝑛 − 1) 𝜆

0
𝑝

𝑛
; (49)

solving this equation we get the expression (45).
Substituting (49) into (13) implies (42). Substituting (42)–

(45) into equation 𝑎



0
= 𝑝

1
𝑎

0
− 𝑝

0
𝑎

1
and simplifying we get

𝜂


𝑎

𝑛
+(𝑛/(𝑛−1))𝜂𝑎



𝑛
= 0. ByTheorem 2, the proof is finished.

Similarly, we get the following.

Theorem 6. Supposing that 𝛿
𝑚
= 0, 𝑚 = 1, 2, . . . , 𝑛 − 2 and

𝛿

0
= 𝑝

0
/𝑝

𝑛
− (𝑝

𝑛−1
/𝑛𝑝

𝑛
)

𝑛
̸= 0,

(𝛿

0
+

1

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



)



𝑎

𝑛

+

𝑛

𝑛 − 1

𝑎



𝑛
(𝛿

0
+

1

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



) = 0,

𝑎

𝑘
=

𝑝

𝑘

𝑝

𝑛

𝑎

𝑛
, 𝑘 = 2, 3, . . . , 𝑛 − 1,

𝑎

0
=

𝑝

0

𝑝

𝑛

𝑎

𝑛
+

𝑎

𝑛

𝑛𝑝

𝑛

(

𝑝

𝑛−1

𝑝

𝑛

)



+

𝑝

𝑛−1

𝑛𝑝

𝑛

𝜆

0
,

𝑎

1
=

𝑝

1

𝑝

𝑛

𝑎

𝑛
+ 𝜆

0
,

(50)

where

𝑎

𝑛
= (𝑛 − 1) 𝜆

0
∫𝑝

𝑛
𝑑𝑡 + 𝜆

1
; (51)

𝜆

0
and 𝜆

1
are arbitrary constants. Then (2) is equivalent to

(34).
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Theorem 7. Supposing that 𝛿
𝑚
= 0,𝑚 = 0, 1, 2, . . . , 𝑛 − 2,

𝑎

𝑛
(

𝑝

𝑛−1

𝑝

𝑛

)



+ 𝜆

0
𝑝

𝑛−1
= 𝜆

2
𝑛𝑝

𝑛
,

𝑎

0
=

𝑝

0

𝑝

𝑛

𝑎

𝑛
+ 𝜆

2
,

𝑎

1
=

𝑝

1

𝑝

𝑛

𝑎

𝑛
+ 𝜆

0
,

𝑎

𝑘
=

𝑝

𝑘

𝑝

𝑛

𝑎

𝑛
, 𝑘 = 2, 3, . . . , 𝑛 − 1,

(52)

where

𝑎

𝑛
= (𝑛 − 1) 𝜆0

∫𝑝

𝑛
𝑑𝑡 + 𝜆

1
; (53)

𝜆

𝑖
(𝑖 = 0, 1, 2) are arbitrary constants. Then (2) is equivalent

to (34).

By the literature [5], we know the following.

Corollary 8. If all the conditions of one of the above four
theorems (Theorems 4–7) are satisfied and (2) is 2𝜋-periodic
in 𝑡, then the initial data 𝑥(−𝜋) of solutions of the boundary
value problems of the formΦ(𝑥(𝜋), 𝑥(−𝜋)) = 0, whereΦ is an
arbitrary function, coincide for systems (2) and (34).

Example 9. The equation

𝑥


= (𝑥 − sin 𝑡)4 + cos 𝑡 (54)

has the only one 2𝜋-periodic solution 𝑥 = sin 𝑡. For this
equation, we have

𝑝

0
= cos 𝑡 + sin4𝑡,

𝑝

1
= −4 sin3𝑡,

𝑝

2
= 6 sin2𝑡,

𝑝

3
= −4 sin 𝑡,

𝑝

4
= 1,

𝛿

3
= 𝛿

2
= 𝛿

1
= 0,

𝛿

0
= cos 𝑡.

(55)

ByTheorem 6, we get

𝑎

4
= 3𝜆

0
𝑡 + 𝜆

1
, (56)

where 𝜆
0
and 𝜆

1
are constants:

𝑎

3
= −4𝑎

4
sin 𝑡,

𝑎

2
= 6𝑎

4
sin2𝑡,

𝑎

1
= −4𝑎

4
sin3𝑡 + 𝜆

0
,

𝑎

0
= 𝑎

4
sin4𝑡 − 𝜆

0
sin 𝑡.

(57)

As

𝛿

0
+

1

4𝑝

4

(

𝑝

3

𝑝

4

)



= cos 𝑡 − cos 𝑡 = 0, (58)

then

(𝛿

0
+

1

4𝑝

4

(

𝑝

3

𝑝

4

)



)



𝑎

4
+

4

3

𝑎



4
(𝛿

0
+

1

4𝑝

4

(

𝑝

3

𝑝

4

)



)

= 0;

(59)

that is, the first condition of Theorem 6 is satisfied. Thus

Δ

0
= (3𝜆

0
𝑡 + 𝜆

1
) (𝑥 − sin 𝑡)4 + 𝜆

0
(𝑥 − sin 𝑡) . (60)

Taking 𝜆
0
= 0 and 𝜆

1
= 1, we get

Δ

1
= (𝑥 − sin 𝑡)4 . (61)

Taking 𝜆
0
= 1 and 𝜆

1
= 0, we have

Δ

2
= 3𝑡 (𝑥 − sin 𝑡)4 + (𝑥 − sin 𝑡) . (62)

Therefore, (54) is equivalent to equation

𝑥


= (𝑥 − sin 𝑡)4 + cos 𝑡 + 𝛼

0
(𝑡) Δ

0
+ 𝛼

1
(𝑡) Δ

1

+ 𝛼

2 (
𝑡) Δ 2

,

(63)

where 𝛼

𝑖
(𝑡) (𝑖 = 0, 1, 2) are arbitrary continuously odd

functions. ByCorollary 8, (63) has only one solution such that
𝑥(−𝜋) = 𝑥(𝜋).

Now, taking 𝑛 = 3 in the above theorems, we get the
following corollaries.

Corollary 10. Suppose that 𝑝
3

̸= 0; then

𝜁


𝑎

3
+

3

2

𝜁𝑎



3
= 0,

𝜁 :=

𝑝

0

𝑝

3

− (

𝑝

2

3𝑝

3

)

3

+

1

𝑝

3

(

𝑝

2

3𝑝

3

)



−

𝑝

2

3𝑝

3

𝜎

1
,

𝑎

0
= (

𝑝

0

𝑝

3

−

𝑝

2

3𝑝

3

𝜎

1
)𝑎

3
+

𝑎

3

3𝑝

3

(

𝑝

2

𝑝

3

)



+

𝑝

2

3𝑝

3

𝜆

0
,

𝑎

1
=

𝑝

2

2

3𝑝

2

3

𝑎

3
+ 𝜆

0
,

𝑎

2
=

𝑝

2

𝑝

3

𝑎

3
,

(64)

where

𝑎

3
= 𝑒

−2∫𝜎
1
𝑝
3
𝑑𝑡
[𝜆

1
+ 2𝜆

0
∫𝑝

3
𝑒

2 ∫ 𝑎
3
𝜎
1
𝑑𝑡
𝑑𝑡] ; (65)
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𝜆

0
and 𝜆

1
are arbitrary constants; 𝜎

1
= 𝑝

1
/𝑝

3
− 𝑝

2

2
/3𝑝

2

3
. Then

the Abel equation

𝑥


= 𝑝

0
+ 𝑝

1
𝑥 + 𝑝

2
𝑥

2
+ 𝑝

3
𝑥

3 (66)

is equivalent to equation

𝑥


= 𝑝

0
+ 𝑝

1
𝑥 + 𝑝

2
𝑥

2
+ 𝑝

3
𝑥

3

+ 𝛼 (𝑡) (𝑎

0
+ 𝑎

1
𝑥 + 𝑎

2
𝑥

2
+ 𝑎

3
𝑥

3
) ,

(67)

where 𝛼(𝑡) is an arbitrary continuously odd function.

Corollary 11. Suppose that 𝑝
3

̸= 0, 𝜎
1
= 𝑝

1
/𝑝

3
− 𝑝

2

2
/3𝑝

2

3
= 0,

and 𝜎
0
= 𝑝

0
/𝑝

3
− 𝑝

3

2
/27𝑝

3

3
̸= 0;

(𝜎

0
+

1

3𝑝

3

(

𝑝

2

𝑝

3

)



)



𝑎

3
+

3

2

𝑎



3
(𝜎

0
+

1

3𝑝

3

(

𝑝

2

𝑝

3

)



)

= 0,

𝑎

0
=

𝑝

0

𝑝

3

𝑎

3
+

𝑎

3

3𝑝

3

(

𝑝

2

𝑝

3

)



+

𝑝

2

3𝑝

3

𝜆

0
,

𝑎

1
=

𝑝

1

𝑝

3

𝑎

3
+ 𝜆

0
,

𝑎

2
=

𝑝

2

𝑝

3

𝑎

3
,

(68)

where

𝑎

3
= 2𝜆

0
∫𝑝

3
𝑑𝑡 + 𝜆

1
; (69)

𝜆

0
and 𝜆

1
are arbitrary constants. Then Abel equation (66) is

equivalent to (67).

Corollary 12. Suppose that 𝑝
3

̸= 0, 𝜎
1
= 𝑝

1
/𝑝

3
− 𝑝

2

2
/3𝑝

2

3
= 0,

and 𝜎
0
= 𝑝

0
/𝑝

3
− 𝑝

3

2
/27𝑝

3

3
= 0;

𝑎

3
(

𝑝

2

𝑝

3

)



+ 𝜆

0
𝑝

2
= 3𝜆

2
𝑝

3
,

𝑎

0
=

𝑝

0

𝑝

3

𝑎

3
+ 𝜆

2
,

𝑎

1
=

𝑝

1

𝑝

3

𝑎

3
+ 𝜆

0
,

𝑎

2
=

𝑝

2

𝑝

3

𝑎

3
,

(70)

where

𝑎

3
= 2𝜆

0
∫𝑝

3
𝑑𝑡 + 𝜆

1
; (71)

𝜆

𝑖
(𝑖 = 0, 1, 2) are arbitrary constants.ThenAbel equation (66)

is equivalent to (67).

Example 13. Abel equation

𝑥


= 𝑥

3
+ 6𝑥

2
+ 3𝑥 − 10 = (𝑥 + 2)

3
− 9 (𝑥 + 2) (72)

has three constant solutions 𝑥
1
(𝑡) = −2, 𝑥

2
(𝑡) = −5, and

𝑥

3
(𝑡) = 1. For this equation,we have𝑝

0
= −10,𝑝

1
= 3,𝑝

2
= 6,

𝑝

3
= 1, and 𝜎

1
= −9.

Thus

𝜁 =

𝑝

0

𝑝

3

− (

𝑝

2

3𝑝

3

)

3

+

1

𝑝

3

(

𝑝

2

3𝑝

3

)



−

𝑝

2

3𝑝

3

𝜎

1

= −18 + 18 = 0,

(73)

and 𝜁


𝑎

3
+ (3/2)𝜁𝑎



3
= 0.

Solving 𝑎
3
= 18𝑎

3
+ 2𝜆

0
, we get

𝑎

3
= 𝜆

1
𝑒

18𝑡
−

1

9

𝜆

0
, (74)

where 𝜆
0
, 𝜆
1
are arbitrary constants. Therefore

𝑎

1
= 3 (𝜆

1
𝑒

18𝑡
−

1

9

𝜆

0
) + 9𝜆

1
𝑒

18𝑡
,

𝑎

0
= −10 (𝜆

1
𝑒

18𝑡
−

1

9

𝜆

0
) + 18𝜆

1
𝑒

18𝑡
,

Δ

0
= (𝜆

1
𝑒

18𝑡
−

1

9

𝜆

0
) (𝑥

3
+ 6𝑥

2
+ 3𝑥 − 10)

+ 9𝜆

1
𝑒

18𝑡
(𝑥 + 2) .

(75)

Taking 𝜆
1
= 0 and 𝜆

1
= −9, we obtain

Δ

1
= 𝑥

3
+ 6𝑥

2
+ 3𝑥 − 10. (76)

Taking 𝜆
0
= 0 and 𝜆

1
= 1, we get

Δ

2
= 𝑒

18𝑡
(𝑥

3
+ 6𝑥

2
+ 12𝑥 + 8) . (77)

Consequently, by Lemma 1 and Corollary 10, Abel equation
(72) is equivalent to equation

𝑥


= 𝑥

3
+ 6𝑥

2
+ 3𝑥 − 10 + 𝛼

0
(𝑡) Δ

0
+ 𝛼

1
(𝑡) Δ

1

+ 𝛼

2
(𝑡) Δ

2
,

(78)

where 𝛼

𝑖
(𝑡) (𝑖 = 0, 1, 2) are arbitrary continuously odd

functions. By Corollary 8, (78) has only three solutions such
that 𝑥(−𝑎) = 𝑥(𝑎) (𝑎 is a nonzero constant).

Remark 14. The conclusions of the above three corollaries
have been proven by Bel’skii and Mironenko in [9].

Because (6) is a linear equation, if Δ
𝑖
(𝑖 = 1, 2, . . . , 𝑚)

are solutions of (6), then Δ = ∑

𝑚

𝑖=1
𝐶

𝑖
Δ

𝑖
also is solution of

(6), where 𝐶
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are arbitrary constants. In the

following, we will find out some solutions Δ
𝑖
of (6) in the

other form.

Theorem 15. For the first-order differential equation 𝑥


=

𝑋(𝑡, 𝑥)(𝑡, 𝑥 ∈ R), if Δ
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are solutions of (6),

then Δ = Δ

𝑘
1
Δ

𝑘
2
⋅ ⋅ ⋅ Δ

𝑘
𝑚 , ∑𝑚
𝑖=1

𝑘

𝑖
= 1, is a solution of (6), too.
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Proof. As

𝜕Δ

𝑖

𝜕𝑡

+

𝜕Δ

𝑖

𝜕𝑥

𝑋 (𝑡, 𝑥) −

𝜕𝑋

𝜕𝑥

Δ

𝑖
= 0, (𝑖 = 1, 2, . . . , 𝑚)

(79)

and 𝑘

1
+ 𝑘

2
+ ⋅ ⋅ ⋅ + 𝑘

𝑚
= 1,

𝜕Δ

𝜕𝑡

+

𝜕Δ

𝜕𝑥

𝑋 (𝑡, 𝑥) −

𝜕𝑋

𝜕𝑥

Δ = 𝑘

1
Δ

𝑘
1
−1

1
Δ

𝑘
2

2

⋅ ⋅ ⋅ Δ

𝑘
𝑚

𝑚
(

𝜕Δ

1

𝜕𝑡

+

𝜕Δ

1

𝜕𝑥

𝑋 (𝑡, 𝑥) −

𝜕𝑋

𝜕𝑥

Δ

1
)

+ 𝑘

2
Δ

𝑘
1

1
Δ

𝑘
2
−1

2

⋅ ⋅ ⋅ Δ

𝑘
𝑚

𝑚
(

𝜕Δ

2

𝜕𝑡

+

𝜕Δ

2

𝜕𝑥

𝑋 (𝑡, 𝑥) −

𝜕𝑋

𝜕𝑥

Δ

2
) + ⋅ ⋅ ⋅

+ 𝑘

𝑚
Δ

𝑘
1

1
Δ

𝑘
2

2

⋅ ⋅ ⋅ Δ

𝑘
𝑚
−1

𝑚
(

𝜕Δ

𝑚

𝜕𝑡

+

𝜕Δ

𝑚

𝜕𝑥

𝑋 (𝑡, 𝑥) −

𝜕𝑋

𝜕𝑥

Δ

𝑚
) = 0.

(80)

Thus, the proof is completed.

By Example 9 andTheorem 15 we get that equation

𝑥


= (𝑥 − sin 𝑡)4 + cos 𝑡 (81)

is also equivalent to equation

𝑥


= (𝑥 − sin 𝑡)4 + cos 𝑡 +

𝑚

∑

𝑖=1

𝛼

𝑖
(𝑡) Δ

𝑘
𝑖0

0
Δ

𝑘
𝑖1

1
Δ

1−𝑘
𝑖0
−𝑘
𝑖1

2
, (82)

where 𝛼
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑚) are arbitrary continuously odd

functions, 𝑘
𝑖0
, 𝑘
𝑖1
are arbitrary constants, and Δ

𝑖
(𝑖 = 0, 1, 2)

are the same as in Example 9. This equation has only one
solution such that 𝑥(−𝜋) = 𝑥(𝜋).

UsingTheorem 15 and Corollary 10 we get the following.

Corollary 16. Supposing that 𝑝
3

̸= 0,

𝜁 :=

𝑝

0

𝑝

3

− (

𝑝

2

3𝑝

3

)

3

+

1

𝑝

3

(

𝑝

2

3𝑝

3

)



−

𝑝

2

3𝑝

3

𝜎

1
= 0.

(83)

Then Abel equation

𝑥


= 𝑝

0
+ 𝑝

1
𝑥 + 𝑝

2
𝑥

2
+ 𝑝

3
𝑥

3 (84)

is equivalent to equation

𝑥


= 𝑝

0
+ 𝑝

1
𝑥 + 𝑝

2
𝑥

2
+ 𝑝

3
𝑥

3
+ 𝛼

1
Δ + 𝛼

2
Δ

1
+ 𝛼

3
Δ

2

+ 𝛼

4
Δ

𝑘

1
Δ

1−𝑘

2
,

(85)

where 𝛼

𝑖
(𝑡) (𝑖 = 1, 2, 3, 4) are arbitrary continuously odd

functions and 𝑘 is a constant:

Δ = 𝑎

0
+ 𝑎

1
𝑥 + 𝑎

2
𝑥

2
+ 𝑎

3
𝑥

3
, (86)

in which

𝑎

0
= (

𝑝

0

𝑝

3

−

𝑝

2

3𝑝

3

𝜎

1
)𝑎

3
+

𝑎

3

3𝑝

3

(

𝑝

2

𝑝

3

)



+

𝑝

2

3𝑝

3

𝜆

0
,

𝑎

1
=

𝑝

2

2

3𝑝

2

3

𝑎

3
+ 𝜆

0
,

𝑎

2
=

𝑝

2

𝑝

3

𝑎

3
,

𝑎

3
= 𝑒

−2∫𝜎
1
𝑝
3
𝑑𝑡
[𝜆

1
+ 2𝜆

0
∫𝑝

3
𝑒

2 ∫ 𝑎
3
𝜎
1
𝑑𝑡
𝑑𝑡] ;

(87)

𝜆

0
, 𝜆
1
are arbitrary constants, and 𝜎

1
= 𝑝

1
/𝑝

3
− 𝑝

2

2
/3𝑝

2

3
.

Consider

Δ

𝑖
= 𝑎

0𝑖
+ 𝑎

1𝑖
𝑥 + 𝑎

2𝑖
𝑥

2
+ 𝑎

3𝑖
𝑥

3
, (𝑖 = 1, 2)

𝑎

𝑗1
= 𝑎

𝑗









𝜆
0
=1,𝜆
1
=0
,

𝑎

𝑗2
= 𝑎

𝑗









𝜆
0
=0,𝜆
1
=1
,

(𝑗 = 0, 1, 2, 3) .

(88)

Theorem 17. For equation

𝑥


= 𝛽 (𝑡) 𝑓 (𝑥) , 𝑡, 𝑥 ∈ R, 𝑓 (𝑥) ̸= 0, (89)

Δ = 𝑓 (𝑥) 𝜙(∫

1

𝑓 (𝑥)

𝑑𝑥 − ∫𝛽 (𝑡) 𝑑𝑡) (90)

is a solution of (6). Thus, (89) is equivalent to equation

𝑥


= 𝛽 (𝑡) 𝑓 (𝑥) + 𝛼 (𝑡) Δ (𝑡, 𝑥) , (91)

where 𝛼(𝑡) is an arbitrary continuously odd function, 𝜙(𝑢) is
an arbitrary differentiable function, and 𝛽(𝑡) is a continuous
function.

This result is easy to be proven.

Obviously, from Theorem 17, we see that if 𝑓(𝑥) is a
polynomial of 𝑥, then the corresponding equation (6) has at
least one polynomial solution Δ = 𝑓(𝑥). This is implied by
taking 𝜙(𝑢) = 1 in (90).

ByTheorem 17, (72) is also equivalent to

𝑥


= (𝑥

3
+ 6𝑥

2
+ 3𝑥 − 10)

⋅ (1 + 𝛼 (𝑡) 𝜙(

(𝑥 + 2)

2
− 9

(𝑥 + 2)

2
𝑒

−18𝑡
)) .

(92)

If in (92) we put 𝜙(𝑢) = 1/(1 + 𝑢

2
), then we obtain

𝑥


= (𝑥

3
+ 6𝑥

2
+ 3𝑥 − 10)

⋅ (1 + 𝛼 (𝑡)

(𝑥 + 2)

4
𝑒

36𝑡

(𝑥 + 2)

4
𝑒

36𝑡
+ ((𝑥 + 2)

2
− 9)

2
) ,

(93)

where 𝛼(𝑡) is an arbitrary continuously odd function. This
equation has only three solutions such that 𝑥(−𝑎) = 𝑥(𝑎) (𝑎
is a nonzero constant).
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