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Circulant type matrices have played an important role in networks engineering. In this paper, firstly, some bounds for the norms
and spread of Fibonacci row skew first-minus-last right (RSFMLR) circulant matrices and Lucas row skew first-minus-last right
(RSFMLR) circulant matrices are given. Furthermore, the spectral norm of Hadamard product of a Fibonacci RSFMLR circulant
matrix and a Lucas RSFMLR circulantmatrix is obtained. Finally, the Frobenius normofKronecker product of a Fibonacci RSFMLR
circulant matrix and a Lucas RSFMLR circulant matrix is presented.

1. Introduction

Circulant type matrices have been put on the firm basis with
the work in [1–4] and so on. Circulant type matrices have
significant applications in networks systems. In [5], some
preliminary results on the dynamical behaviours of some
specific nonmonotone Boolean automata networks which are
called xor circulant networks were showed. In [6], the authors
proposed a special class of the feedback delay network using
circulant matrices. In [7], the impact of interior symmetries
on the multiplicity of the eigenvalues of the Jacobian matrix
at a fully synchronous equilibrium for the coupled cell sys-
tems associated with homogeneous networks was analyzed
by Aguiar and Ruan, which was based on the circulant
adjacency matrices of the networks induced by these interior
symmetries. Exploiting the circulant structure of the channel
matrices, the realistic near fast fading scenarios with circulant
frequency selective channels were analysed by Eghbali et al.
in [8]. The existence of doubly periodic travelling waves in
cellular networks involving the discontinuous Heaviside step
function by circulant matrix was studied byWang and Cheng
in [9].

The Fibonacci and Lucas sequences 𝐹
𝑛
and 𝐿

𝑛
are defined

by the recurrence relations [10, 11]:

𝐹
0

= 0, 𝐹
1

= 1, 𝐹
𝑛

= 𝐹
𝑛−1

+ 𝐹
𝑛−2

for 𝑛 ≥ 2, (1)
𝐿
0

= 2, 𝐿
1

= 1, 𝐿
𝑛

= 𝐿
𝑛−1

+ 𝐿
𝑛−2

for 𝑛 ≥ 2. (2)

If we start from 𝑛 = 0, then Fibonacci and Lucas sequences
are given by

𝑛 0 1 2 3 4 5 6 7 ⋅ ⋅ ⋅

𝐹
𝑛

0 1 1 2 3 5 8 13 ⋅ ⋅ ⋅

𝐿
𝑛

2 1 3 4 7 11 18 29 ⋅ ⋅ ⋅

(3)

In [10], their Binet forms are given by

𝐹
𝑛

=
1

√5
[(

1 + √5

2
)

𝑛

− cos (𝜋𝑛) (
1 + √5

2
)

−𝑛

] ,

𝐿
𝑛

= (
1 + √5

2
)

𝑛

+ cos (𝜋𝑛) (
1 + √5

2
)

−𝑛

.

(4)

The following sum formulations for the Fibonacci and
Lucas numbers are well known [11]:

𝑛−1

∑

𝑠=1

𝐹
2

𝑠
= 𝐹
𝑛

𝐹
𝑛−1

, (5)

𝑛−1

∑

𝑠=1

𝐿
2

𝑠
= 𝐿
𝑛

𝐿
𝑛−1

− 2, (6)

𝑛

∑

𝑠=1

𝐹
𝑠
𝐹
𝑠−1

= {
𝐹
2

𝑛
, 𝑛 even,

𝐹
2

𝑛
− 1, 𝑛 odd,

𝑛

∑

𝑠=1

𝐿
𝑠
𝐿
𝑠−1

= {
𝐿
2

𝑛
− 4, 𝑛 even,

𝐿
2

𝑛
+ 1, 𝑛 odd.

(7)
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Lately, some authors studied the problems of the norms
of some special matrices [11–21]. The author [11] found
upper and lower bounds for the spectral norms of Toeplitz
matrices such that 𝑎

𝑖𝑗
≡ 𝐹
𝑖−𝑗

and 𝑏
𝑖−𝑗

≡ 𝐿
𝑖−𝑗
. In [13],

the authors obtain upper and lower bounds for the spectral
norms of matrices 𝐴 = 𝐶

𝑟
(𝐹
𝑘,0

, 𝐹
𝑘,1

, . . . , 𝐹
𝑘,𝑛−1

) and 𝐵 =

𝐶
𝑟
(𝐿
𝑘,0

, 𝐿
𝑘,1

, . . . , 𝐿
𝑘,𝑛−1

), where {𝐹
𝑘,𝑛

}
𝑛∈𝑁

and {𝐿
𝑘,𝑛

}
𝑛∈𝑁

are 𝑘-
Fibonacci and 𝑘-Lucas sequences, respectively, and they also
give the bounds for the spectral norms of Kronecker and
Hadamard products of these special matrices, respectively
[14]. Solak and Bozkurt [16] have found out upper and
lower bounds for the spectral norms of Cauchy-Toeplitz and
Cauchy-Hankel matrices. Solak [18–20] has defined 𝐴 = [𝑎

𝑖𝑗
]

and 𝐵 = [𝑏
𝑖𝑗

] as 𝑛 × 𝑛 circulant matrices, where 𝑎
𝑖𝑗

≡

𝐹
(mod (𝑗−𝑖,𝑛)) and 𝑏

𝑖𝑗
≡ 𝐿
(mod (𝑗−𝑖,𝑛)); then he has given some

bounds for the 𝐴 and 𝐵 matrices concerned with the spectral
and Euclidean norms.

In this paper, we define two kinds of special matrices as
follows.

A Fibonacci row skew first-minus-last right (RSFMLR)
circulant matrix is defined as a square matrix of the form

(

𝐹
0

𝐹
1

⋅ ⋅ ⋅ 𝐹
𝑛−1

−𝐹
𝑛−1

𝐹
0

− 𝐹
𝑛−1

𝐹
1

𝐹
𝑛−2

.

.

. −𝐹
𝑛−1

− 𝐹
𝑛−2

d
.
.
.

−𝐹
2

d d 𝐹
1

−𝐹
1

−𝐹
2

− 𝐹
1

⋅ ⋅ ⋅ 𝐹
0

− 𝐹
𝑛−1

) . (8)

A Lucas row skew first-minus-last right (RSFMLR) circu-
lant matrix is defined as a square matrix of the form

(

𝐿
0

𝐿
1

⋅ ⋅ ⋅ 𝐿
𝑛−1

−𝐿
𝑛−1

𝐿
0

− 𝐿
𝑛−1

𝐿
1

𝐿
𝑛−2

.

.

. −𝐿
𝑛−1

− 𝐿
𝑛−2

d
.
.
.

−𝐿
2

d d 𝐿
1

−𝐿
1

−𝐿
2

− 𝐿
1

⋅ ⋅ ⋅ 𝐿
0

− 𝐿
𝑛−1

) . (9)

Obviously, the RSFMLR circulant matrix is determined by its
first row, andRSFMLR circulantmatrix is a𝑥

𝑛

+𝑥+1 circulant
matrix [22].

We define Θ
(−1,−1)

as the basic RSFMLR circulant matrix;
that is,

Θ
(−1,−1)

= (

(

0 1 0 ⋅ ⋅ ⋅ 0

.

.

. d d d
.
.
.

.

.

. d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1

−1 −1 0 ⋅ ⋅ ⋅ 0

)

)𝑛×𝑛

= RSFMLRcircfr (0, 1, 0, . . . , 0) .

(10)

It is easily verified that 𝑔(𝑥) = 𝑥
𝑛

+𝑥+1 has no repeated roots
in its splitting field and 𝑔(𝑥) = 𝑥

𝑛

+ 𝑥 + 1 is both the minimal
polynomial and the characteristic polynomial of the matrix
Θ
(−1,−1)

. In addition, Θ
(−1,−1)

is nonderogatory and satisfies
Θ
𝑗

(−1,−1)
= RFMLRcircfr(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑗−1

) and Θ
𝑛

(−1,−1)
=

−𝐼
𝑛

+ Θ
(−1,−1)

.

As we all know, letting 𝐴 = RSFMLRcircfr(𝑎
0
, 𝑎
1
, . . .,

𝑎
𝑛−1

) be a RSFMLR circulant matrix with the first row (𝑎
0
,

𝑎
1
, . . . , 𝑎

𝑛−1
), it is clear that

𝐴 = RSFMLRcircfr (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
)

=

𝑛−1

∑

𝑖=0

𝑎
𝑖
Θ
𝑖

(−1,−1)
.

(11)

Thus, 𝐴 is a RSFMLR circulant matrix if and only if
𝐴 = 𝑓(Θ

(−1,−1)
) for some polynomial 𝑓(𝑥). The polynomial

𝑓(𝑥) = ∑
𝑛−1

𝑖=0
𝑎
𝑖
𝑥
𝑖will be called the representer of theRSFMLR

circulant matrix 𝐴. By (11), it is clear that 𝐴 is a RSFMLR
circulant matrix if and only if 𝐴 commutes with Θ

(−1,−1)
; that

is, 𝐴Θ
(−1,−1)

= Θ
(−1,−1)

𝐴.
In addition to the algebraic properties that can be eas-

ily derived from the representation (11), we mention that
RSFMLR circulant matrices have very nice structure. The
product of two RSFMLR circulant matrices is a RSFMLR
circulant matrix and 𝐴

−1 is a RSFMLR circulant matrix too.
Let 𝐴 = (𝑎

𝑖𝑗
) be an 𝑛 × 𝑛 matrix. The Euclidean (or

Frobenius) norm, the spectral norm, the maximum column
sum matrix norm, and the maximum row sum matrix norm
of the matrix 𝐴 are, respectively [11],

‖𝐴‖
𝐹

= (

𝑛

∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

, (12)

‖𝐴‖
2

= (max
1≤𝑖≤𝑛

𝜆
𝑖
(𝐴
∗

𝐴))

1/2

, (13)

‖𝐴‖
1

= max
1≤𝑗≤𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, (14)

‖𝐴‖
∞

= max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, (15)

where𝐴
∗ denotes the conjugate transpose of𝐴.The following

inequality holds:

1

√𝑛
‖𝐴‖
𝐹

≤ ‖𝐴‖
2

≤ ‖𝐴‖
𝐹

. (16)

Let 𝐴 = [𝑎
𝑖𝑗

] and 𝐵 = [𝑏
𝑖𝑗

] be 𝑛 × 𝑛 matrices. The Hadamard
product of 𝐴 and 𝐵 is defined by 𝐴 ∘ 𝐵 = [𝑎

𝑖𝑗
𝑏
𝑖𝑗

]. If ‖ ⋅ ‖ is any
norm on 𝑛 × 𝑚 matrices, then [18, 23]

‖𝐴 ∘ 𝐵‖ ≤ ‖𝐴‖ ⋅ ‖𝐵‖ . (17)

Kronecker product of 𝐴 and 𝐵 is given to be [18]

𝐴 ⊗ 𝐵 =
[
[

[

𝑎
11

𝐵 ⋅ ⋅ ⋅ 𝑎
1𝑚

𝐵

.

.

.
.
.
.

𝑎
𝑛1

𝐵 ⋅ ⋅ ⋅ 𝑎
𝑛𝑚

𝐵

]
]

]

. (18)

Then [18]

‖𝐴 ⊗ 𝐵‖
𝐹

= ‖𝐴‖
𝐹

‖𝐵‖
𝐹

. (19)
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Let 𝐴 = (𝑎
𝑖𝑗

) be an 𝑛 × 𝑛 matrix with eigenvalues 𝜆
𝑖
, 𝑖 =

1, 2, . . . , 𝑛. The spread of 𝐴 is defined as [24, 25]

𝑠 (𝐴) = max
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖

− 𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
. (20)

An upper bound for the spread due to Mirsky [24] states that

𝑠 (𝐴) ≤ √2 ‖𝐴‖
2

𝐹
−

2

𝑛
|tr𝐴|
2

, (21)

where ‖𝐴‖
𝐹
denotes the Frobenius norm of 𝐴 and tr𝐴 is the

trace of 𝐴.

2. Norms and Spread of Fibonacci RSFMLR
Circulant Matrices

Theorem 1. Let 𝐴 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
) be a

Fibonacci RSFMLR circulant matrix, where {𝐹
𝑖
}
0≤𝑖≤𝑛−1

denote
Fibonacci numbers given by (1); then two kinds of norms of 𝐴

are given by

‖𝐴‖
1

= ‖𝐴‖
∞

= 2 (𝐹
𝑛+1

− 1) . (22)

Proof. The matrix 𝐴 is of the form (8), by (14), (15); then we
have

‖𝐴‖
1

= max
1≤𝑗≤𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

=

𝑛−1

∑

𝑖=1

𝐹
𝑖

+ 𝐹
𝑛+1

− 𝐹
2
,

‖𝐴‖
∞

= max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

=

𝑛−1

∑

𝑖=1

𝐹
𝑖

+ 𝐹
𝑛+1

− 𝐹
2
.

(23)

Since the Fibonacci sequences 𝐹
𝑛
are defined by the recur-

rence relations (1), then we obtain

𝐹
𝑛−1

= 𝐹
𝑛

− 𝐹
𝑛−2

𝑛 ≥ 2. (24)

To sum up, we can get
𝑛−1

∑

𝑠=1

𝐹
𝑠

= 𝐹
𝑛+1

− 𝐹
2
. (25)

Then

‖𝐴‖
1

= ‖𝐴‖
∞

= 2 (𝐹
𝑛+1

− 1) , (26)

which completes the proof.

Theorem 2. Let 𝐴 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
) be a

Fibonacci RSFMLR circulant matrix, where {𝐹
𝑖
}
0≤𝑖≤𝑛−1

denote
Fibonacci numbers given by (1); then

√
Γ

𝑛
≤ ‖𝐴‖

2
,

‖𝐴‖
2

≤ 2 (𝐹
𝑛+1

− 1) ,

(27)

where

Γ = 𝐹
2

1
+ (3𝑛 − 4) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
.

(28)

Proof. Since 𝐹
𝑛+2

= 𝐹
𝑛+1

+ 𝐹
𝑛
and 𝐹(0) = 0 given by (1), the

matrix 𝐴 is of the form

(
(
(

(

𝐹
0

𝐹
1

𝐹
𝑛−2

𝐹
𝑛−1

−𝐹
𝑛−1

−𝐹
𝑛−1

⋅ ⋅ ⋅ 𝐹
𝑛−2

.

.

. −𝐹
𝑛−1

− 𝐹
𝑛−2

d
.
.
.

−𝐹
2

.

.

. d 𝐹
1

−𝐹
1

−𝐹
3

−𝐹
𝑛−1

− 𝐹
𝑛−2

−𝐹
𝑛−1

)
)
)

)

. (29)

We know that (1/√𝑛)‖𝐴‖
𝐹

≤ ‖𝐴‖
2

≤ ‖𝐴‖
𝐹
from equivalent

norms. By (5), we can get

‖𝐴‖
2

𝐹
= 𝑛

𝑛−1

∑

𝑖=0

𝐹
2

𝑖
+

𝑛−1

∑

𝑖=1

𝑖𝐹
2

𝑖
+ 2

𝑛−2

∑

𝑖=1

𝑖𝐹
𝑖
𝐹
𝑖+1

= 𝑛

𝑛−1

∑

𝑖=0

𝐹
2

𝑖
+

𝑛−1

∑

𝑘=1

𝑛−1

∑

𝑖=𝑛−𝑘

𝐹
2

𝑖
+ 2

𝑛−2

∑

𝑘=1

𝑛−2

∑

𝑖=𝑛−𝑘−1

𝐹
𝑖
𝐹
𝑖+1

= 𝑛

𝑛−1

∑

𝑖=0

𝐹
2

𝑖
+

𝑛−1

∑

𝑘=1

(

𝑛−1

∑

𝑖=0

𝐹
2

𝑖
−

𝑛−𝑘−1

∑

𝑖=0

𝐹
2

𝑖
)

+ 2

𝑛−2

∑

𝑘=1

(

𝑛−2

∑

𝑖=0

𝐹
𝑖
𝐹
𝑖+1

−

𝑛−𝑘−2

∑

𝑖=0

𝐹
𝑖
𝐹
𝑖+1

)

= 𝐹
2

1
+ (3𝑛 − 4) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
.

(30)

Then

1

√𝑛
‖𝐴‖
𝐹

= √
Γ

𝑛
, (31)

where

Γ = 𝐹
2

1
+ (3𝑛 − 4) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
.

(32)

We have

√
Γ

𝑛
≤ ‖𝐴‖

2
. (33)
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On the other hand, suppose that

𝑀
1

=
(
(

(

0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 1 d 0 0

0 0 0 d 0 0

.

.

.
.
.
.

.

.

. d d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 0 1

−1 0 0 ⋅ ⋅ ⋅ 0 0

)
)

)

,

𝑀
2

=
(
(

(

0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

.

.

. d d d
.
.
.

.

.

.

0 0 0 d 0 0

0 0 0 ⋅ ⋅ ⋅ 1 0

)
)

)

,

𝑀
3

=
(
(

(

0 0 0 ⋅ ⋅ ⋅ 0 0

0 −1 0 ⋅ ⋅ ⋅ 0 0

0 0 −1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
.

.

.

. d
.
.
.

.

.

.

0 0 0 ⋅ ⋅ ⋅ −1 0

0 0 0 ⋅ ⋅ ⋅ 0 −1

)
)

)

.

(34)

Then

𝐴 =

𝑛−1

∑

𝑖=0

𝐹
𝑖
𝑀
𝑖

1
−

𝑛−2

∑

𝑖=1

𝐹
𝑛−𝑖−1

𝑀
𝑖

2
+ 𝐹
𝑛−1

𝑀
3
. (35)

We can get

‖𝐴‖
2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛−1

∑

𝑖=0

𝐹
𝑖
𝑀
𝑖

2
+

𝑛−2

∑

𝑖=1

𝐹
𝑛−𝑖−1

𝑀
𝑖

2
+ 𝐹
𝑛−1

𝑀
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤

𝑛−1

∑

𝑖=0

𝐹
𝑖

󵄩󵄩󵄩󵄩𝑀
1

󵄩󵄩󵄩󵄩

𝑖

2
−

𝑛−2

∑

𝑖=1

𝐹
𝑛−𝑖−1

󵄩󵄩󵄩󵄩𝑀
2

󵄩󵄩󵄩󵄩

𝑖

2
+ 𝐹
𝑛−1

󵄩󵄩󵄩󵄩𝑀
3

󵄩󵄩󵄩󵄩2
.

(36)

Furthermore,

𝑀
𝐻

1
𝑀
1

= (

1 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 1

) ,

𝑀
𝐻

2
𝑀
2

= (

0 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
. d

.

.

.
.
.
.

0 0 ⋅ ⋅ ⋅ 1 0

0 0 ⋅ ⋅ ⋅ 0 0

) ,

𝑀
𝐻

3
𝑀
3

= (

0 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 1

) .

(37)

We obtain
󵄩󵄩󵄩󵄩𝑀
1

󵄩󵄩󵄩󵄩2
=

󵄩󵄩󵄩󵄩𝑀
2

󵄩󵄩󵄩󵄩2
=

󵄩󵄩󵄩󵄩𝑀
3

󵄩󵄩󵄩󵄩2
= 1. (38)

The other result is obtained as follows:

‖𝐴‖
2

≤

𝑛−1

∑

𝑖=1

𝐹
𝑖

󵄩󵄩󵄩󵄩𝑀
1

󵄩󵄩󵄩󵄩

𝑖

2
+

𝑛−2

∑

𝑖=1

𝐹
𝑛−𝑖−1

󵄩󵄩󵄩󵄩𝑀
2

󵄩󵄩󵄩󵄩

𝑖

2
+ 𝐹
𝑛−1

󵄩󵄩󵄩󵄩𝑀
3

󵄩󵄩󵄩󵄩2

= 2

𝑛−1

∑

𝑖=0

𝐹
𝑖

= 2 (𝐹
𝑛+1

− 1) ,

(39)

which completes the proof.

Theorem 3. Let 𝐴 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
) be a

Fibonacci RSFMLR circulant matrix, where {𝐹
𝑖
}
0≤𝑖≤𝑛−1

denote
Fibonacci numbers given by (1); then the bound for the spread
of 𝐴 is

𝑠 (𝐴) ≤ √𝜏
1

(𝑛) −
2

𝑛
𝜏
2

(𝑛), (40)

where

𝜏
1

(𝑛) = 2 (𝐹
2

1
+ (2𝑛 − 1) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
) ,

𝜏
2

(𝑛) = [(𝑛 − 1) 𝐹
𝑛−1

]
2

.

(41)

Proof. The trace of 𝐴 is tr𝐴 = 𝑛𝐹
0

+(𝑛−1)𝐹
𝑛−1

. ByTheorem 2
and inequation (21), we have

𝑠 (𝐴) ≤ √2 ‖𝐴‖
2

𝐹
−

2

𝑛
tr𝐴2, (42)

where

‖𝐴‖
2

𝐹
= 𝐹
2

1
+ (3𝑛 − 4) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
,

tr𝐴 = 𝑛𝐹
0

− (𝑛 − 1) 𝐹
𝑛−1

.

(43)

We can get

𝑠 (𝐴) ≤ √𝜏
1

(𝑛) −
2

𝑛
𝜏
2

(𝑛), (44)

where

𝜏
1

(𝑛) = 2 (𝐹
2

1
+ (2𝑛 − 1) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
) ,

𝜏
2

(𝑛) = [(𝑛 − 1) 𝐹
𝑛−1

]
2

,

(45)

which completes the proof.

3. Norms and Spread of Lucas RSFMLR
Circulant Matrices

Theorem 4. Let 𝐵 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
) be

a Lucas RSFMLR circulant matrix, where {𝐿
𝑖
}
0≤𝑖≤𝑛−1

denote
Lucas numbers given by (2); then two kinds of norms of 𝐵 are
given by

‖𝐵‖
1

= ‖𝐵‖
∞

= 2 (𝐿
𝑛+1

− 3) + 2. (46)
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Proof. The matrix 𝐵 is of the form (9), by (14), (15); then we
get

‖𝐵‖
1

= max
1≤𝑗≤𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
=

𝑛−1

∑

𝑖=1

𝐿
𝑖

+ 𝐿
0

+ 𝐿
𝑛+1

− 𝐿
2
,

‖𝐵‖
∞

= max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
=

𝑛−1

∑

𝑖=1

𝐿
𝑖

+ 𝐿
0

+ 𝐿
𝑛+1

− 𝐿
2
.

(47)

Since the Lucas sequences 𝐿
𝑛
are defined by the recurrence

relations (2), then we obtain

𝐿
𝑛−1

= 𝐿
𝑛

− 𝐿
𝑛−2

𝑛 ≥ 2. (48)

To sum up, we can get

𝑛−1

∑

𝑠=1

𝐿
𝑠

= 𝐿
𝑛+1

− 𝐿
2
. (49)

Then

‖𝐵‖
1

= ‖𝐵‖
∞

= 2 (𝐿
𝑛+1

− 3) + 2, (50)

which completes the proof.

Theorem 5. Let 𝐵 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
) be

a Lucas RSFMLR circulant matrix, where {𝐿
𝑖
}
0≤𝑖≤𝑛−1

denote
Lucas numbers given by (2); then

√
Π

𝑛
≤ ‖𝐵‖

2
,

‖𝐵‖
2

≤ 2 (𝐿
𝑛+1

− 2) ,

(51)

where

Π = 𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2.

(52)

Proof. Since 𝐿
𝑛+2

= 𝐿
𝑛+1

+ 𝐿
𝑛
and 𝐿(0) = 2, the matrix 𝐵 is

of the form

(

(

𝐿
0

𝐿
1

𝐿
𝑛−2

𝐿
𝑛−1

−𝐿
𝑛−1

𝐿
0

− 𝐿
𝑛−1

⋅ ⋅ ⋅ 𝐿
𝑛−2

.

.

. −𝐿
𝑛−1

− 𝐿
𝑛−2

d
.
.
.

−𝐿
2

.

.

. d 𝐿
1

−𝐿
1

−𝐿
3

−𝐿
𝑛−1

− 𝐿
𝑛−2

𝐿
0

− 𝐿
𝑛−1

)

)

.

(53)

We know that (1/√𝑛)‖𝐵‖
𝐹

≤ ‖𝐵‖
2

≤ ‖𝐵‖
𝐹
from equivalent

norms. By (6), we can get

‖𝐵‖
2

𝐹
= 𝑛

𝑛−1

∑

𝑖=0

𝐿
2

𝑖
+

𝑛−1

∑

𝑖=1

𝑖𝐿
2

𝑖
+ 2

𝑛−2

∑

𝑖=1

𝑖𝐿
𝑖
𝐿
𝑖+1

− 4 (𝑛 − 1) 𝐿
𝑛−1

= 𝑛

𝑛−1

∑

𝑖=0

𝐿
2

𝑖
+

𝑛−1

∑

𝑘=1

𝑛−1

∑

𝑖=𝑛−𝑘

𝐿
2

𝑖
+ 2

𝑛−2

∑

𝑘=1

𝑛−2

∑

𝑖=𝑛−𝑘−1

𝐿
𝑖
𝐿
𝑖+1

− 4 (𝑛 − 1) 𝐿
𝑛−1

= 𝑛

𝑛−1

∑

𝑖=0

𝐿
2

𝑖
+

𝑛−1

∑

𝑘=1

(

𝑛−1

∑

𝑖=0

𝐿
2

𝑖
−

𝑛−𝑘−1

∑

𝑖=0

𝐿
2

𝑖
)

+ 2

𝑛−2

∑

𝑘=1

(

𝑛−2

∑

𝑖=0

𝐿
𝑖
𝐿
𝑖+1

−

𝑛−𝑘−2

∑

𝑖=0

𝐿
𝑖
𝐿
𝑖+1

)

− 4 (𝑛 − 1) 𝐿
𝑛−1

= 𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2.

(54)

Then

1

√𝑛
‖𝐵‖
𝐹

= √
Π

𝑛
. (55)

We have

√
Π

𝑛
≤ ‖𝐵‖

2
, (56)

where

Π = 𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2.

(57)

On the other hand, supposing that

𝑀
1

=
(
(

(

0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 1 d 0 0

0 0 0 d 0 0

.

.

.
.
.
.

.

.

. d d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 0 1

−1 0 0 ⋅ ⋅ ⋅ 0 0

)
)

)

,

𝑀
2

=
(
(

(

0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

.

.

. d d d
.
.
.

.

.

.

0 0 0 d 0 0

0 0 0 ⋅ ⋅ ⋅ 1 0

)
)

)

,

𝑀
3

=
(
(

(

0 0 0 ⋅ ⋅ ⋅ 0 0

0 −1 0 ⋅ ⋅ ⋅ 0 0

0 0 −1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
.

.

.

. d
.
.
.

.

.

.

0 0 0 ⋅ ⋅ ⋅ −1 0

0 0 0 ⋅ ⋅ ⋅ 0 −1

)
)

)

,

(58)

then

𝐵 =

𝑛−1

∑

𝑖=0

𝐿
𝑖
𝑀
𝑖

1
−

𝑛−2

∑

𝑖=1

𝐿
𝑛−𝑖−1

𝑀
𝑖

2
+ 𝐿
𝑛−1

𝑀
3
. (59)
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We obtain

‖𝐵‖
2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛−1

∑

𝑖=0

𝐿
𝑖
𝑀
𝑖

2
+

𝑛−2

∑

𝑖=1

𝐿
𝑛−𝑖−1

𝑀
𝑖

2
+ 𝐿
𝑛−1

𝑀
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤

𝑛−1

∑

𝑖=0

𝐿
𝑖

󵄩󵄩󵄩󵄩𝑀
1

󵄩󵄩󵄩󵄩

𝑖

2
−

𝑛−2

∑

𝑖=1

𝐿
𝑛−𝑖−1

󵄩󵄩󵄩󵄩𝑀
2

󵄩󵄩󵄩󵄩

𝑖

2
+ 𝐿
𝑛−1

󵄩󵄩󵄩󵄩𝑀
3

󵄩󵄩󵄩󵄩2
.

(60)

We have

𝑀
𝐻

1
𝑀
1

= (

1 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 1

) ,

𝑀
𝐻

2
𝑀
2

= (

0 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
. d

.

.

.
.
.
.

0 0 ⋅ ⋅ ⋅ 1 0

0 0 ⋅ ⋅ ⋅ 0 0

) ,

𝑀
𝐻

3
𝑀
3

= (

0 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 1

) .

(61)

We get
󵄩󵄩󵄩󵄩𝑀
1

󵄩󵄩󵄩󵄩2
=

󵄩󵄩󵄩󵄩𝑀
2

󵄩󵄩󵄩󵄩2
=

󵄩󵄩󵄩󵄩𝑀
3

󵄩󵄩󵄩󵄩2
= 1. (62)

The other result is obtained as follows:

‖𝐵‖
2

≤

𝑛−1

∑

𝑖=1

𝐿
𝑖

󵄩󵄩󵄩󵄩𝑀
1

󵄩󵄩󵄩󵄩

𝑖

2
+

𝑛−2

∑

𝑖=1

𝐿
𝑛−𝑖−1

󵄩󵄩󵄩󵄩𝑀
2

󵄩󵄩󵄩󵄩

𝑖

2
+ 𝐿
𝑛−1

󵄩󵄩󵄩󵄩𝑀
3

󵄩󵄩󵄩󵄩2

= 2

𝑛−1

∑

𝑖=0

𝐿
𝑖

= 2 (𝐿
𝑛+1

− 2) ,

(63)

which completes the proof.

Theorem 6. Let 𝐵 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
) be

a Lucas RSFMLR circulant matrix, where {𝐿
𝑖
}
0≤𝑖≤𝑛−1

denote
Lucas numbers given by (2); then

𝑠 (𝐵) ≤ √𝜅
1

(𝑛) −
2

𝑛
𝜅
2

(𝑛), (64)

where

𝜅
1

(𝑛) = 2 (𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2) ,

𝜅
2

(𝑛) = [𝑛𝐿
0

− (𝑛 − 1) 𝐿
𝑛−1

]
2

.

(65)

Proof. The trace of 𝐵 is tr𝐵 = 𝑛𝐿
0

+(𝑛−1)𝐿
𝑛−1

. ByTheorem 5
and by inequation (21), we have

𝑠 (𝐵) ≤ √2 ‖𝐵‖
2

𝐹
−

2

𝑛
tr𝐵2, (66)

where

‖𝐵‖
2

𝐹
= 𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2,

tr𝐵 = 𝑛𝐿
0

− (𝑛 − 1) 𝐿
𝑛−1

.

(67)

We obtain

𝑠 (𝐵) ≤ √𝜅
1

(𝑛) −
2

𝑛
𝜅
2

(𝑛), (68)

where

𝜅
1

(𝑛) = 2 (𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2) ,

𝜅
2

(𝑛) = [𝑛𝐿
0

− (𝑛 − 1) 𝐿
𝑛−1

]
2

,

(69)

which completes the proof.

Corollary 7. Let 𝐴 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
)

be a Fibonacci RSFMLR circulant matrix and let 𝐵 =

𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
) be a Lucas RSFMLR circu-

lant matrix, where {𝐹
𝑖
}
0≤𝑖≤𝑛−1

and {𝐿
𝑖
}
0≤𝑖≤𝑛−1

denote Fibonacci
numbers and Lucas numbers, respectively; then the spectral
norm of Hadamard product of 𝐴 and 𝐵 satisfies the following
inequality:

‖𝐴 ∘ 𝐵‖
2

≤ 4 (𝐹
𝑛+1

− 1) × (𝐿
𝑛+1

− 2) . (70)

Proof. The proof is trivial by Theorems 2 and 5; we obtain

‖𝐴‖
2

≤ 2 (𝐹
𝑛+1

− 1) , ‖𝐵‖
2

≤ 2 (𝐿
𝑛+1

− 2) . (71)

By inequation (17), we have

‖𝐴 ∘ 𝐵‖
2

≤ 4 (𝐹
𝑛+1

− 1) × (𝐿
𝑛+1

− 2) , (72)

which completes the proof.

Corollary 8. Let 𝐴 = 𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐹
0
, 𝐹
1
, . . . , 𝐹

𝑛−1
)

be a Fibonacci RSFMLR circulant matrix and let 𝐵 =

𝑅𝑆𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
) be a Lucas RSFMLR circu-

lant matrix, where {𝐹
𝑖
}
0≤𝑖≤𝑛−1

and {𝐿
𝑖
}
0≤𝑖≤𝑛−1

denote Fibonacci
numbers and Lucas numbers, respectively; then the Frobenius
norm of Kronecker product of 𝐴 and 𝐵 is

‖𝐴 ⊗ 𝐵‖
𝐹

= √Γ × √Π, (73)

where

Γ = 𝐹
2

1
+ (3𝑛 − 4) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
,

Π = 𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2.

(74)
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Proof. Since the proof is trivial by Theorems 2 and 5, we
obtain

‖𝐴‖
2

𝐹
= 𝐹
2

1
+ (3𝑛 − 4) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
,

‖𝐵‖
2

𝐹
= 𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2.

(75)

By (19), then

‖𝐴 ⊗ 𝐵‖
𝐹

= √Γ × √Π, (76)

where

Γ = 𝐹
2

1
+ (3𝑛 − 4) 𝐹

2

𝑛−1
+ (𝑛 − 1) 𝐹

𝑛−3
𝐹
𝑛−2

+ (2𝑛 − 4) 𝐹
𝑛−1

𝐹
𝑛−2

+ (2𝑛 − 3) 𝐹
2

𝑛−2
,

Π = 𝐿
2

1
+ (3𝑛 − 4) 𝐿

2

𝑛−1
+ (𝑛 − 1) 𝐿

𝑛−3
𝐿
𝑛−2

+ (2𝑛 − 3) 𝐿
2

𝑛−2
− (4𝑛 − 4) 𝐿

𝑛−1

+ (2𝑛 − 4) 𝐿
𝑛−1

𝐿
𝑛−2

+ 2𝑛 + 2,

(77)

which completes the proof.

4. Conclusion

In this study, we define matrices of the following forms: let
𝐴 = RSFMLRcircfr(𝐹

0
, 𝐹
1
, . . . , 𝐹

𝑛−1
) be a Fibonacci RSFMLR

circulant matrix and let 𝐵 = RSFMLRcircfr(𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑛−1
)

be a Lucas RSFMLR circulant matrix. Firstly, we get lower
and upper bounds for the spectral norms of these matrices.
Upper bounds for the spread of the matrix 𝐴 and the matrix
𝐵 are given. Afterwards, we obtain some corollaries related
to norms of Hadamard and Kronecker products of these
matrices. Based on the existing problems in [26–28], we
will explore solving these problems by circulant matrices
technology.
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