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We are concerned with both regular and degenerate first-order identification problems related to systems of differential equations
of weakly parabolic type in Banach spaces. Several applications to partial differential equations and systems will be given in a
subsequent paper to show the fullness of our abstract results.

1. Introduction

Thebasic aim of this paper consists in extending the results in
[1] and in solving some identification problems in a product
space 𝑋 × 𝑋, where 𝑋 is a Banach space 𝑋, endowed with
a norm ‖⋅‖, related to systems of two possibly degenerate
first-order differential equations in time. More precisely, we
will consider the differential problem: determine a pair of
functions 𝑦 = (𝑦

1
, 𝑦

2
) : [0, 𝜏] → 𝑋 × 𝑋 and 𝑓 : [0, 𝜏] → R,

𝜏 ∈ R
+
, such that

(𝑀
1,1
𝑦
1
)


(𝑡) + (𝑀
1,2
𝑦
2
)


(𝑡) + 𝐿
1,1
𝑦
1
(𝑡)

+ 𝐿
1,2
𝑦
2
(𝑡) = 𝑓 (𝑡) 𝑧

1
, 0 ≤ 𝑡 ≤ 𝜏,

(𝑀
2,1
𝑦
1
)


(𝑡) + (𝑀
2,2
𝑦
2
)


(𝑡) + 𝐿
2,1
𝑦
1
(𝑡)

+ 𝐿
2,2
𝑦
2
(𝑡) = 𝑓 (𝑡) 𝑧

2
, 0 ≤ 𝑡 ≤ 𝜏,

𝑀
1,1
𝑦
1
(0) + 𝑀

1,2
𝑦
2
(0) = 𝑀

1,1
𝑦
1,0

+𝑀
1,2
𝑦
2,0
,

𝑀
2,1
𝑦
1
(0) + 𝑀

2,2
𝑦
2
(0) = 𝑀

2,1
𝑦
1,0

+𝑀
2,2
𝑦
2,0
,

Ψ
1
[𝑀

1,1
𝑦
1
(𝑡) + 𝑀

1,2
𝑦
2
(𝑡)]

+ Ψ
2
[𝑀

2,1
𝑦
1
(𝑡) + 𝑀

2,2
𝑦
2
(𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏.

(1)

In particular, the regular choice corresponds to the casewhere

𝑀
1,1

= 𝑀
2,1

= 𝐼, 𝑀
1,2

= 𝑀
2,2

= 0. (2)

The starting point for this paper is provided by [1] (cf. also
[2]) where the identification degenerate problem

𝐷
𝑡
𝑀𝑦(𝑡) + 𝐿𝑦 (𝑡) = 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

(𝑀𝑦) (0) = 𝑀𝑦
0
,

Φ [𝑦 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(3)

is studied in the Banach space 𝑋 under assumptions of weak
parabolicity (cf. [3]) on the linear closed linear operators 𝐿
and𝑀.

Existence of solutions to evolution equations with
matrix-valued operator coefficients has been considered very
recently by Engel [4] where no degeneration is involved.

Abstract systems of parabolic equations of relevant
importance in applications are described in the monograph
by Yagi [5].

Here we study both the regular and the degenerate cases
using the basic results in [1] and the different methods intro-
duced therein. This will allow us to handle, in particular,
systems of elliptic-parabolic equations and systems of degen-
erate parabolic equations in different functional spaces.

We indicate now the plan of the paper.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2015, Article ID 393624, 42 pages
http://dx.doi.org/10.1155/2015/393624

http://dx.doi.org/10.1155/2015/393624


2 Abstract and Applied Analysis

In Section 2, we will consider an identification problem
for first-order regular systems of differential equations.

In Section 3, we will deal with identification problems for
first-order in time systems of PDE’s, treating in particular
some nonstandard boundary conditions.

Section 4 contains the main contributions to the degen-
erate case.The first two results—Theorems 14 and 18—can be
easily extended to matrix-valued operators of the form

[
𝐴 𝐵

𝐶 𝐷
] , (4)

where operators 𝐴 and 𝐶 map from 𝑋 to 𝑋 and 𝑌, respec-
tively, while operators 𝐵 and 𝐷 map from 𝑌 to 𝑋 and 𝑌,
respectively, and 𝑌 being a suitable Banach space.

Different levels of degeneration for operator matrices
not entering the time derivative will be considered and
corresponding conditions for the solvability of the related
identification problems will be given.

Section 5 contains some extensions of the basic results in
[1], which will play a key role for the present paper.

Section 6 contains a number of applications to systems
of PDE’s enlightening the concrete applications and the strict
conditions to be satisfied by the single equations to guarantee
both existence, uniqueness, and the regularity of solutions.

The Appendix section describes a general approach to
inverse problems using a perturbation theory of generators.
In such a way, the inverse problem under consideration is
reduced to a direct problem with a new generator.

A number of specific examples illustrate the extension
and the strength of this method.

2. Identification Problems for
First-Order Regular Differential
Systems in Banach Spaces

Let𝑋 be a complex Banach space with norm ‖⋅‖ and let

Σ
𝛼
= {𝜆 ∈ C : Re 𝜆 ≥ −𝑐

0
(1 + |Im 𝜆|)

𝛼
} , 𝑐

0
> 0. (5)

The space𝑋 × 𝑋 is endowed with the product norm.
Let 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑋, 𝐵 : D(𝐵) ⊂ 𝑋 → 𝑋,

𝐶 : D(𝐶) ⊂ 𝑋 → 𝑋, 𝐷 : D(𝐷) ⊂ 𝑋 → 𝑋 be four closed
linear operators satisfying the following properties, where
𝜌(𝐿) denotes the resolvent set of a linear closed operator 𝐿 :

L(𝐵) ⊂ 𝑋 × 𝑋:

(H1) D(𝐴) ⊂ D(𝐶) andD(𝐷) ⊂ D(𝐵);

(H2) ‖(𝜆 + 𝐴)−1‖L(𝑋)
≤ 𝐶

1
(1 + |𝜆|)

−𝛽
1 for all 𝜆 ∈ Σ

𝛼
;

(H3) ‖(𝜆 + 𝐷)−1‖L(𝑋)
≤ 𝐶

2
(1 + |𝜆|)

−𝛽
2 for all 𝜆 ∈ Σ

𝛼
;

(H4) ‖𝐶(𝜆 + 𝐴)−1‖L(𝑋)
≤ 𝐶

3
(1 + |𝜆|)

−𝜎
1 for all 𝜆 ∈ Σ

𝛼
;

(H5) ‖𝐵(𝜆 + 𝐷)−1‖L(𝑋)
≤ 𝐶

4
(1 + |𝜆|)

−𝜎
2 for all 𝜆 ∈ Σ

𝛼
;

(H6) 𝛽
𝑗
∈ (0, 1], 𝜎

𝑗
∈ R, 𝑗 = 1, 2, 𝜎

1
+ 𝜎

2
∈ R

+
;

(H7) Φ
𝑗
∈ 𝑋

∗, 𝑗 = 1, 2.

We consider here the problem consisting in recovering the
unknown scalar function 𝑓 : [0, 𝑇] → R in the following dif-
ferential system in𝑋 × 𝑋:

𝐷
𝑡
[
𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐴 𝐵

𝐶 𝐷
][

𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] , 0 ≤ 𝑡 ≤ 𝜏, (6)

subject to the initial conditions

𝑥 (0) = 𝑥
0
, 𝑦 (0) = 𝑦

0
, (7)

and to the additional information

Φ
1 [𝑥 (𝑡)] + Φ2

[𝑦 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏. (8)

First we consider the following resolvent system in 𝑋 × 𝑋,
where 𝜆 ∈ Σ

𝛼
and 𝑤, 𝑧 ∈ 𝑋:

(𝜆 + 𝐴) 𝑥 + 𝐵𝑦 = 𝑧,

𝐶𝑥 + (𝜆 + 𝐷) 𝑦 = 𝑤

(9)

that we rewrite in the vector form:

[
𝜆 + 𝐴 𝐵

𝐶 𝜆 + 𝐷
][

𝑥

𝑦
] = [

𝑧

𝑤
] . (10)

Note that according to our assumption (H3) we get

𝑦 = − (𝜆 + 𝐷)
−1
𝐶𝑥 + (𝜆 + 𝐷)

−1
𝑤,

[𝐼 − 𝐵 (𝜆 + 𝐷)
−1
𝐶 (𝜆 + 𝐴)

−1
] (𝜆 + 𝐴) 𝑥 = 𝑧 − 𝐵 (𝜆 + 𝐷)

−1
𝑤.

(11)

Observe now that

𝐵 (𝜆 + 𝐷)

−1
𝐶 (𝜆 + 𝐴)

−1L(𝑋)

≤

𝐵 (𝜆 + 𝐷)

−1L(𝑋)


𝐶(𝜆 + 𝐴)

−1L(𝑋)

≤ 𝐶
3
𝐶
4
(1 + |𝜆|)

−𝜎
1
−𝜎
2 <

1

2
,

(12)

if

|𝜆| > (2𝐶
3
𝐶
4
)
1/(𝜎
1
+𝜎
2
)

− 1. (13)

Then for all 𝜆 ∈ Σ
𝛼
∩ 𝐵(0, 𝑟

0
)
𝑐

=: 𝑆(𝛼, 𝑟
0
) the linear operator

𝐼 − 𝐵(𝜆 + 𝐷)
−1
𝐶(𝜆 + 𝐴)

−1 admits an inverse 𝑅(𝜆) in L(𝑋)

satisfying the estimate

[𝐼 − 𝐵 (𝜆 + 𝐷)

−1
𝐶 (𝜆 + 𝐴)

−1
]
−1L(𝑋)

≤ 2. (14)

Hence the solution to system (9) is given by

𝑥 = (𝜆 + 𝐴)
−1
𝑅 (𝜆) 𝑧 − (𝜆 + 𝐴)

−1
𝑅 (𝜆) 𝐵 (𝜆 + 𝐷)

−1
𝑤,

𝑦 = − (𝜆 + 𝐷)
−1
𝐶 (𝜆 + 𝐴)

−1
𝑅 (𝜆) 𝑧

+ (𝜆 + 𝐷)
−1
[𝐼 + 𝐶 (𝜆 + 𝐴)

−1
𝑅 (𝜆) 𝐵 (𝜆 + 𝐷)

−1
]𝑤.

(15)
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Therefore, for all 𝜆 ∈ 𝑆(𝛼, 𝑟
0
), we deduce the estimates

‖𝑥‖ ≤ 𝐶
5
(1 + |𝜆|)

−𝛽
1
‖𝑧‖ + 𝐶6

(1 + |𝜆|)
−𝛽
1
−𝜎
2
‖𝑤‖ ,

𝑦
 ≤ 𝐶

7
(1 + |𝜆|)

−𝛽
2
−𝜎
1
‖𝑧‖

+ 𝐶
8
(1 + |𝜆|)

−𝛽
2 {1 + (1 + |𝜆|)

−𝜎
1
−𝜎
2} ‖𝑤‖ .

(16)

Since 𝜎
1
+ 𝜎

2
> 0, we conclude that the operator matrix

A = [
𝐴 𝐵

𝐶 𝐷
] , D (A) = D (𝐴) ×D (𝐷) , (17)

satisfies the following bound in the product space𝑋 × 𝑋:


(𝜆 +A)

−1L(𝑋×𝑋)
≤ 𝐶

9 |𝜆|
−𝛽
, 𝜆 ∈ 𝑆 (𝛼, 𝑟

0
) , (18)

where

𝛽 = min {𝛽
1
, 𝛽

2
, 𝛽

1
+ 𝜎

2
, 𝛽

2
+ 𝜎

1
} . (19)

Remark 1. If operators 𝐵 and 𝐶 are bounded, then 𝜎
𝑗
= 𝛽

𝑗
,

𝑗 = 1, 2; thus, 𝜎
1
+ 𝜎

2
> 0 is trivially verified.

Remark 2. IfD(𝐵) ≃ D(𝐷), then 𝜎
2
= 𝛽

2
−1 ≤ 0. Indeed, for

any 𝜆
0
∈ −𝜌(𝐷) it follows


(𝜆

0
+ 𝐷) (𝜆 + 𝐷)

−1L(𝑋)

≤

𝜆
0
(𝜆 + 𝐷)

−1
+ 𝐼 − 𝜆 (𝜆 + 𝐷)

−1L(𝑋)

≤ 𝐶
2

𝜆0

 (1 + |𝜆|)
−𝛽
2 + 1 + 𝐶

2 |𝜆| (1 + |𝜆|)
−𝛽
2

≤ 𝐶
10
(1 + |𝜆|)

1−𝛽
2 .

(20)

Moreover, the closed graph theorem implies 𝐵(𝜆
0
+ 𝐷)

−1
∈

L(𝑋). This and the previous estimate imply


𝐵 (𝜆 + 𝐷)

−1L(𝑋)
≤ 𝐶

11
(1 + |𝜆|)

1−𝛽
2 . (21)

The relation 𝜎
2
≤ 0, along with H9, implies 𝜎

1
> −𝜎

2
= 1 −

𝛽
2
≥ 0. Consequently, the set relations D(𝐶) ≃ D(𝐴) and

D(𝐵) ≃ D(𝐷) cannot occur simultaneously.

Taking the results in [1] into account (reported and
improved a bit in Section 5), we deduce the following
Theorem 3.

Theorem 3. Let −𝐴 and −𝐷 be the generators of two differen-
tiable (not necessarily densely defined) semigroups of parabolic
type in the complex Banach space X satisfying (H1)–(H3). Let
𝐵 and 𝐶 be two linear closed operators satisfying properties
(H4)–(H6) and let Φ

𝑗
, 𝑗 = 1, 2, be two linear functionals with

properties (H7). Let (𝛼, 𝛽, 𝜃) be a triplet of real numbers such
that (cf. (19))

𝛼 + 𝛽 >
3

2
, 2 − 𝛼 − 𝛽 < 𝜃 < 𝛼 + 𝛽 − 1. (22)

Let the data (𝑔, 𝑧
1
, 𝑧

2
) satisfy the properties

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ; ∗ ∗ ∗C ∗ ∗∗) , 𝑧
1
∈ D (𝐴) ,

𝑧
2
∈ D (𝐷) , ∗ ∗ ∗Φ

1
[𝑧

1
] + Φ

2
[𝑧

2
] ̸= 0, ∗ ∗ ∗

(23)

(𝐴𝑢
0
+ 𝐵V

0
, 𝐶𝑢

0
+ 𝐷V

0
) ∈ D (𝐴) ×D (𝐷) ,

𝑔 (0) = ∗ ∗ ∗Φ
1
[𝑢

0
] + Φ

2
[V

0
] . ∗ ∗∗

(24)

Then the identification problem

𝑢

(𝑡) = −𝐴𝑢 (𝑡) − 𝐵V (𝑡) + 𝑓 (𝑡) 𝑧

1
, 0 ≤ 𝑡 ≤ 𝜏,

V (𝑡) = −𝐶𝑢 (𝑡) − 𝐷V (𝑡) + 𝑓 (𝑡) 𝑧
2
, 0 ≤ 𝑡 ≤ 𝜏,

𝑢 (0) = 𝑢
0
, V (0) = V

0

Φ
1 [𝑢 (𝑡)] + Φ2 [V (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏

(25)

admits a unique global solution (𝑢, V, 𝑓) ∈ [𝐶
1+𝜃

([0, 𝜏]; 𝑋) ∩

𝐶
𝜃
([0, 𝜏],D(𝐴))] × [𝐶

1+𝜃
([0, 𝜏] ; 𝑋) ∩ 𝐶

𝜃
([0, 𝜏],D(𝐷))] ×

𝐶
𝜃
([0, 𝜏];C).

Remark 4. If 𝐶 = 𝑘𝐴 for some 𝑘 ∈ R
+
and 𝐵 ∈ L(𝑋), then

𝜎
1
= 𝛽

1
− 1, 𝜎

2
= 𝛽

2
. Thus 𝜎

1
+ 𝜎

2
= 𝛽

1
+ 𝛽

2
− 1 > 0 implies

𝛽
1
+𝛽

2
> 1. In this case, owing to (19), we have 𝛽 = 𝛽

1
+𝛽

2
−1,

so that we need to require 𝛼 + 𝛽
1
+ 𝛽

2
> 5/2.

In most applications, 𝛼 = 1, so that this relation reduces
to 𝛽

1
+ 𝛽

2
> 3/2.

3. Identification Problems for Regular
First-Order in Time Systems of PDE’s

In this section, wewill deal with some identification problems
related to systems of PDE’s.

Problem 5. Let Ω be a bounded domain in R𝑛 with a 𝐶∞-
boundary 𝜕Ω.

We want to recover the scalar function 𝑓 : [0, 𝜏] → R in
the initial-boundary value problem:

𝐷
𝑡
𝑢 (𝑡, 𝑥) + 𝐴 (𝑥,𝐷

𝑥
) 𝑢 (𝑡, 𝑥)

+ 𝐵 (𝑥,𝐷
𝑥
) V (𝑡, 𝑥) = 𝑓 (𝑡) 𝑧

1
(𝑥) , (𝑡, 𝑥) ∈ (0, 𝜏) × Ω,

𝐷
𝑡
V (𝑡, 𝑥) + 𝐶 (𝑥,𝐷

𝑥
) 𝑢 (𝑡, 𝑥)

+ 𝐷 (𝑥,𝐷
𝑥
) V (𝑡, 𝑥) = 𝑓 (𝑡) 𝑧

2
(𝑥) , (𝑡, 𝑥) ∈ (0, 𝜏) × Ω,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , V (𝑥, 0) = V

0
(𝑥) , 𝑥 ∈ Ω,

𝑎 (𝑥)𝐷]𝑢 (𝑡, 𝑥) + 𝛼 (𝑥) ⋅ ∇𝑢 (𝑡, 𝑥) + 𝑏 (𝑥) 𝑢 (𝑡, 𝑥) = 0,

(𝑡, 𝑥) ∈ (0, 𝜏) × 𝜕Ω,

𝑐 (𝑥)𝐷]V (𝑡, 𝑥) + 𝛽 (𝑥) ⋅ ∇V (𝑡, 𝑥) + 𝑑 (𝑥) 𝑢 (𝑡, 𝑥) = 0,

(𝑡, 𝑥) ∈ (0, 𝜏) × 𝜕Ω,

(26)



4 Abstract and Applied Analysis

under the additional information

∫
Ω

[𝜂
1
(𝑥) 𝑢 (𝑥, 𝑡) + 𝜂

2
(𝑥) V (𝑥, 𝑡)] 𝑑𝑥 = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] .

(27)

Here

−𝐴 (𝑥,𝐷
𝑥
) =

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥)𝐷

𝑥
𝑖

𝐷
𝑥
𝑗

+

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑥)𝐷

𝑥
𝑖

+ 𝑎
0
(𝑥) ,

−𝐷 (𝑥,𝐷
𝑥
) =

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥)𝐷

𝑥
𝑖

𝐷
𝑥
𝑗

+

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑥)𝐷

𝑥
𝑖

+ 𝑎
0
(𝑥)

(28)

are two second-order linear elliptic differential operators with
real-valued 𝐶∞-coefficients onΩ such that

𝑎
𝑖,𝑗
(𝑥) = 𝑎

𝑗,𝑖
(𝑥) ,

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≥ 𝑐

0

𝜉


2

,

(𝑥, 𝜉) ∈ Ω ×R
𝑛
,

𝑎
𝑖,𝑗
(𝑥) = 𝑎

𝑗,𝑖
(𝑥) ,

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≥ 𝑐

0

𝜉


2

,

(𝑥, 𝜉) ∈ Ω ×R
𝑛
,

(29)

𝑐
0
being a positive constant.

Assume for the time being that 𝐵(𝑥,𝐷
𝑥
) and𝐶(𝑥,𝐷

𝑥
) are

multiplication operators defined, respectively, by two𝐶∞
(Ω)-

functions 𝑟 and 𝑠. In this case we have 𝜎
𝑗
= 𝛽

𝑗
.

Concerning the linear boundary differential operators
defined by

𝐴𝑢 = 𝑎𝐷
𝑦
𝑢 + 𝛼 ⋅ ∇𝑢 + 𝑏𝑢, 𝐷𝑢 = 𝑎𝐷

𝑦
𝑢 + �̃� ⋅ ∇𝑢 + �̃�𝑢,

(30)

assume that 𝑎, 𝑎, 𝑏, �̃� and 𝛼, �̃� are real-valued 𝐶∞ functions
and vector fields on 𝜕Ω such thatT𝑢 = 𝛼⋅∇𝑢. and T̃V = �̃�⋅∇V
are real 𝐶∞-tangential operators on 𝜕Ω, 𝐷] and 𝐷]̃ standing
for the conormal derivatives associated with the matrices
(𝑎

𝑖,𝑗
(𝑥)) and (�̃�

𝑖,𝑗
(𝑥)), respectively; that is,

𝐷] = (

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝑛

𝑖
(𝑥) 𝑛

𝑗
(𝑥))

−1
𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝑛

𝑖
(𝑥)𝐷

𝑥
𝑖

,

𝐷]̃ = (

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝑛

𝑖
(𝑥) 𝑛

𝑗
(𝑥))

−1
𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝑛

𝑖
(𝑥)𝐷

𝑥
𝑖

,

(31)

𝑛(𝑥) denoting the unit outward normal vector to 𝜕Ω at 𝑥.
Assume further (cf. page 515 in [6]) that the vector field 𝛼

(resp., �̃�) does not vanish on Γ
0
= {𝑥 ∈ 𝜕Ω : 𝑎(𝑥) = 0} (resp.,

Γ̃
0
= {𝑥 ∈ 𝜕Ω : 𝑎(𝑥) = 0}) and the function 𝑡 → 𝑎(𝑥(𝑡, 𝑥

0
))

(resp., 𝑡 → 𝑎(𝑥(𝑡, 𝑥
0
))) has zeros of even order not greater

than 2𝜅
1
(resp., 2𝜅

2
) along the integral curve 𝑥(𝑡, 𝑥

0
) of 𝛼

(resp., �̃�) passing through 𝑥
0
∈ Γ

0
(resp., 𝑥

0
∈ Γ̃

0
) at 𝑡 = 0.

In other words, the so-called (𝐻)
𝛿
-condition holds with 𝛿 =

𝛿
1
= 1/(1 + 2𝜅

1
) and 𝛿 = 𝛿

2
= 1/(1 + 2𝜅

2
), respectively.

It is shown on page 516 in [6] that the operator 𝐿
1
and 𝐿

2

defined by

D (𝐿
1
) = {𝑢 ∈ 𝐿

2
(Ω) : 𝐴 (𝑥,𝐷

𝑥
) 𝑢 ∈ 𝐿

2
(Ω) , 𝐴𝑢 = 0} ,

𝐿
1
𝑢 = − 𝐴 (𝑥,𝐷

𝑥
) 𝑢, 𝑢 ∈ D (𝐿

1
) ,

D (𝐿
2
) = {V ∈ 𝐿2 (Ω) : 𝐷 (𝑥,𝐷

𝑥
) V ∈ 𝐿2 (Ω) , 𝐷V = 0} ,

𝐿
2
V = − 𝐷 (𝑥,𝐷

𝑥
) 𝑢, V ∈ D (𝐿

2
) ,

(32)

satisfy in 𝐿2(Ω) the resolvent estimates


(𝜆 + 𝐿

1
)
−1L(𝐿

2
(Ω))

≤ 𝐶 |𝜆|
−(1+𝛿

1
)/2

,


(𝜆 + 𝐿

2
)
−1L(𝐿

2
(Ω))

≤ 𝐶 |𝜆|
−(1+𝛿

2
)/2

(33)

for all complex 𝜆 in a sector | arg 𝜆| ≤ 𝜑, with 𝜑 ∈ (𝜋/2, 𝜋)

and |𝜆| suitable large.
We are in the subelliptic case:

𝛽 = min {𝛽
1
, 𝛽

2
} = min{1 + 𝛿1

2
,
1 + 𝛿

2

2
} >

1

2
. (34)

Choose now 𝜃 ∈ (1 − 𝛽, 𝛽) and make the following assump-
tions:

𝑧
𝑗
∈ D (𝐿

𝑗
) , 𝜂

𝑗
∈ 𝐿

2
(Ω) , 𝑗 = 1, 2,

𝑢
0
∈ D (𝐿

1
) , V

0
∈ D (𝐿

2
) ,

𝐴 (⋅, 𝐷) 𝑢
0
+ 𝑟 (⋅) V

0
∈ D (𝐿

1
) ,

𝑠 (⋅) 𝑢
0
+ 𝐷 (⋅, 𝐷) V

0
∈ D (𝐿

2
) ,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) ,

𝑔 (0) = ∫
Ω

[𝜂
1
(𝑥) 𝑢

0
(𝑥) + 𝜂

2
(𝑥) V

0
(𝑥)] 𝑑𝑥 ̸= 0,

∫
Ω

[𝜂
1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)] 𝑑𝑥 ̸= 0.

(35)

Then our identification problem admits a unique global
solution (𝑢, V, 𝑓) ∈ [𝐶

1+𝜃
([0, 𝜏]; 𝐿

2
(Ω))∩𝐶

𝜃
([0, 𝜏],D(𝐿

1
))]×

[𝐶
1+𝜃

([0, 𝜏]; 𝐿
2
(Ω)) ∩ 𝐶

𝜃
([0, 𝜏],D(𝐿

2
))] × 𝐶

𝜃
([0, 𝜏];R).

We consider now themore general case where𝐶(𝑥,𝐷
𝑥
) =

𝑘𝐴(𝑥,𝐷
𝑥
), 𝑘 ∈ R

+
, and 𝐵 is the multiplication operator by

𝑠 ∈ 𝐶
∞
(Ω).

FromRemark 4 we get 𝛽 = 𝛽
1
+𝛽

2
−1, so that 𝛼+𝛽 > 3/2

reduces to 𝛽
1
+ 𝛽

2
> 3/2, that is, to 𝛿

1
+ 𝛿

2
> 1. Since

𝛿
1
+ 𝛿

2
=

1

1 + 2𝜅
1

+
1

1 + 2𝜅
2

< 1, if 𝜅
1
, 𝜅

2
∈ N \ {0} ,

(36)
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we are compelled to require that either of 𝛿
1
or 𝛿

2
must

coincide with 1.
Note that, if 𝛿

2
= 1, then the corresponding boundary

value problem is elliptic and this holds if and only if 𝑎(𝑥) ̸= 0

for all 𝑥 ∈ 𝜕Ω (cf. [7], on page 515). In this case 𝛽 = 𝛽
1
=

(1 + 𝛿
1
)/2 > 1/2 so that 1 − 𝛽 = (1 − 𝛿

1
)/2.

Choose now 𝜃 ∈ ((1 − 𝛿
1
)/2, (1 + 𝛿

1
)/2) and make the

same assumptions as in the previous case, except for (𝑢
0
, V

0
).

The related condition has to be changed to the following:

𝐴 (⋅, 𝐷) 𝑢
0
+ 𝑠 (⋅) V

0
∈ D (𝐿

1
) ,

𝑘𝐴 (⋅, 𝐷) (⋅) 𝑢
0
+ 𝐷 (⋅, 𝐷) V

0
∈ D (𝐿

2
) .

(37)

Then the given identification problem admits a unique
global solution (𝑢, V, 𝑓) ∈ [𝐶

1+𝜃
([0, 𝜏]; 𝐿

2
(Ω)) ∩ 𝐶

𝜃
([0, 𝜏],

D(𝐿
1
))] × [𝐶

1+𝜃
([0, 𝜏]; 𝐿

2
(Ω)) ∩ 𝐶

𝜃
([0, 𝜏],D(𝐿

2
))] × 𝐶

𝜃
([0,

𝜏];R).
A corresponding result holds when 𝛿

2
= 1.

Problem 6. We note that in Problem 5 the domain of
the operator-matrix is a product of domains. However,
Corollary 31 allows to handle also decoupled domains. For
this purpose, we will consider a problem related to a reaction
diffusion model describing a man-environment epidemic
system investigated in [8]. Such a model consists in a
parabolic equation coupled with an ordinary differential
equation via a boundary feedback operator (cf. also [7]).

In order to obtain stability results the authors linearize
themodel and arrive at the following evolution system, where
𝑢(𝑡, 𝑥) and V(𝑡, 𝑥) stand, respectively, for the concentration of
the infection agent and the density of the infective population
at time 𝑡 and point 𝑥:

𝐷
𝑡
𝑢 (𝑡, 𝑥) = Δ𝑢 (𝑡, 𝑥) − 𝑎 (𝑥) 𝑢 (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧

1
,

(𝑡, 𝑥) ∈ (0, +∞) × Ω,

𝐷
𝑡
V (𝑡, 𝑥) = 𝑐 (𝑥) 𝑢 (𝑡, 𝑥) − 𝑑 (𝑥) V (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧

2
,

(𝑡, 𝑥) ∈ (0, 𝜏) × Ω,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , V (0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω,

𝐷]𝑢 (𝑡, 𝑥) + 𝛽 (𝑥) 𝑢 (𝑡, 𝑥) = ∫
Ω

𝑘 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦,

(𝑡, 𝑥) ∈ (0, +∞) × 𝜕Ω,

(38)

whereΩ is a bounded domain inR𝑛 with a smooth boundary
𝜕Ω, Δ is the Laplacian, 𝑎, 𝑐, 𝑑 ∈ 𝐶(Ω), 𝛽 ∈ 𝐶(𝜕Ω), 𝑘 ∈

𝐿
∞
(𝜕Ω × Ω) are nonnegative functions, and 𝐷] denoted the

outward normal derivative on 𝜕Ω.

We define 𝐸 = 𝐶(Ω), 𝑋 = 𝐸 × 𝐸 and denote by 𝑀
ℎ
the

multiplication operator induced by the function ℎ. Moreover,
we introduce the operator matrix

𝐴 = [
Δ −𝑀

𝑎
𝑂

𝑀
𝑐

−𝑀
𝑑

] ,

D (𝐴) = (𝑢, V) ∈ 𝑋 : 𝑢 ∈ 𝐻
2
(Ω) , Δ𝑢 ∈ 𝐸,

(39)

𝐷]𝑢 (𝑥) + 𝛽 (𝑥) 𝑢 (𝑥) = ∫
Ω

𝑘 (𝑥, 𝑦) V (𝑦) 𝑑𝑦 on 𝜕Ω. (40)

It can be proved (cf. [7, page 126]) that 𝐴 generates an
analytic semigroup on𝑋.

Consider then the identification problem consisting in
finding a triplet (𝑢, V, 𝑓), 𝑓 being a scalar function satisfying
the direct Problem (38) as well as the additional condition:

𝜎𝑢 (𝑡, 𝑥) + 𝜇V (𝑡, 𝑥) = 𝑔 (𝑡) , 𝑡 ∈ (0, 𝜏) , (41)

where 𝑧
1
, 𝑧

2
, 𝑢

0
, V

0
∈ 𝐶(Ω), 𝑔 ∈ 𝐶([0, 𝜏];R), 𝑥, 𝑥 are fixed

points inΩ, (𝜎, 𝜇) ∈ R2
\{0}. As a consequence of [2,Theorem

3.2] we get

Proposition 7. Let 𝜃 ∈ (0, 1), 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R), (𝑢
0
, V

0
) ∈

𝐷
−𝐴
(1 + 𝜃,∞), (𝑧

1
, 𝑧

2
) ∈ 𝐷

−𝐴
(𝜃

0
,∞), 𝜎𝑢

0
(𝑥) + 𝜇V

0
(𝑥) =

𝑔(0), 𝜎𝑧
1
(𝑥) + 𝜇𝑧

2
(𝑥) ̸= 0. Then the identification Problem

(38), (41) admits a unique global strict solution ((𝑢, V), 𝑓) ∈

[𝐶
1+𝜃

([0, 𝜏]; 𝑋) ∩ 𝐶
𝜃
([0, 𝜏] ;D (𝐴))] × 𝐶

𝜃
([0, 𝜏];R).

Notice that the interpolation spaces D
−𝐴
(𝜃,∞) are well

characterized both in an abstract form and for many bound-
ary conditions (cf. [4, 9]), but in this concrete case it seems
to be difficult to translate them as on page 321 in [4].
Therefore, one can use the more restrictive assumptions
(𝑢

0
, V

0
), (𝑧

1
, 𝑧

2
) ∈ 𝐷(𝐴) that can be easily checked.

Problem 8. We solve here an identification problem inHölder
spaces.

Let Ω be a bounded domain in R𝑛 with a smooth
boundary 𝜕Ω. Then 𝐶

]+𝜔
(Ω), ] ∈ N \ {0}, and 𝜔 ∈ (0, 1)

denote the Banach space of all functions in 𝐶
]
(Ω) whose

derivatives of order ] are all Hölder continuous with expo-
nent 𝜔. Such a space will be endowed with the natural norm
‖⋅‖]+𝜔.

We introduce now some notation and assumption. As
usual, �̃� = (𝛼

1
, . . . , 𝛼

𝑛
) ∈ N𝑛 denotes a multi-index and we

associate with it the monomial differential operator 𝐷�̃�
=

∏
𝑛

𝑗=1
𝐷

𝛼
𝑗

𝑗
, 𝐷

𝑗
= 𝑖

−1
𝜕/𝜕𝑥

𝑗
. Finally, for any (fixed) 𝑚 ∈ N and

𝜔 ∈ (0, 1/3) let the functions �̃� : Ω → C, |�̃�| ≤ 2𝑚, satisfy,
for some positive constant𝑀 > 1, the relations:

𝑎
�̃�
∈ 𝐶

1+𝜔
(Ω;C) , |�̃�| ≤ 2𝑚,

𝑎
�̃�
(𝑥) ∈ R, |�̃�| ∈ {0, 2𝑚} , ∀𝑥 ∈ Ω,

𝑀
−1 𝜉



2𝑚

≤ ∑

|�̃�|=2𝑚

𝑎
�̃�
(𝑥) 𝜉

�̃�
≤ 𝑀

𝜉


2𝑚

,

∀𝑥 ∈ Ω, 𝜉 ∈ R
𝑛
.

(42)

Introduce now the linear operator𝐴 in𝑋 = 𝐶
1+𝜔

(Ω) defined
by

D (𝐴) = {𝑢 ∈ 𝐶
2𝑚+1+𝜔

(Ω) : 𝐷
�̃�
𝑢 = 0

on 𝜕Ω, |�̃�| ≤ 𝑚 − 1} ,

𝐴𝑢 (𝑥) = ∑

|�̃�|≤2𝑚

𝑎
�̃�
(𝑥)𝐷

�̃�
𝑢 (𝑥) , 𝑥 ∈ Ω, 𝑢 ∈ D (𝐴) .

(43)
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A remarkable result by vonWahl (cf. [10] on page 241) estab-
lishes the resolvent bound


(𝑧 + 𝐴)

−1
𝑢
1+𝜔

≤ 𝐶 |𝑧|
−1+(1+𝜔)/(2𝑚)

‖𝑢‖1+𝜔 ,

∀𝑢 ∈ 𝐶
1+𝜔

(Ω) , 𝑧 ∈ Σ
1
\ 𝐵 (0, 𝑅) ,

(44)

for a large 𝑅 > 0, where Σ
1
= {𝑧 ∈ C : Re 𝑧 ≥ −𝑐

0
(1 +

|Im 𝑧|)}, 𝑐0 > 0.
For our application is not restrictive to assume that such

a condition is satisfied for all 𝑧 ∈ Σ
1
. In this case the resolvent

estimate

(𝜆 + 𝐴)

−1L(𝐶
1+𝜔

(Ω))
≤ 𝐶 (1 + |𝜆|)

−𝛽
1 , 𝜆 ∈ Σ

1 (45)

holds with 𝛽
1
= 1 − (1 + 𝜔)/(2𝑚).

Let now𝐷 be another linear differential operator of order
2𝑟, with properties similar to those of 𝐴, defined by

D (𝐷) = {V ∈ 𝐶2𝑟+1+𝜔
(Ω) : 𝐷

�̃�V = 0 on 𝜕Ω, |�̃�| ≤ 𝑟 − 1} ,

𝐷V (𝑥) = ∑

|�̃�|≤2𝑟

𝑑
�̃�
(𝑥)𝐷

�̃�V (𝑥) , 𝑥 ∈ Ω, V ∈ D (𝐷) ,

(46)

where 𝜔 ∈ (0, 1/3).
Likewise as above, the spectral estimate


(𝜆 + 𝐷)

−1L(𝐶
1+𝜔

(Ω))
≤ 𝐶 (1 + |𝜆|)

−𝛽
2 , 𝜆 ∈ Σ

1 (47)

holds with 𝛽
2
= 1 − (1 + 𝜔)/(2𝑟).

Notice that 𝛽
1
> 1/2 and 𝛽

2
> 1/2 imply𝑚 ≥ 2 and 𝑟 ≥ 2.

Let now 𝐵 and 𝐶 be linear differential operators, with
smooth coefficients (e.g., in 𝐶1+𝜔

(Ω)), defined by

D (𝐵) = 𝐶
𝑝+1+𝜔

(Ω) , D (𝐶) = 𝐶
𝑞+1+𝜔

(Ω) ,

𝐵 = ∑

|𝛽|≤𝑝

𝑏
𝛽
(𝑥)𝐷

𝛽
, 𝐶 = ∑

|𝛾|≤𝑞

𝑐
𝛾
(𝑥)𝐷

𝛾
,

(48)

where 0 ≤ 𝑝 < 2𝑟 and 0 ≤ 𝑞 < 2𝑚.
In view of Satz II on page 239 in [10] we have


𝐵(𝑧 + 𝐷)

−1L(𝐶
1+𝑤

(Ω))
≤ 𝐶 (1 + |𝑧|)

−𝜎
2 , 𝑧 ∈ Σ

1
, |𝑧| large,


𝐶 (𝑧 + 𝐴)

−1L(𝐶
1+𝜔

(Ω))
≤ 𝐶 (1 + |𝑧|)

−𝜎
1 , 𝑧 ∈ Σ

1
, |𝑧| large,

(49)

where

𝜎
1
= 1 −

𝑞 + 1 + 𝜔

2𝑚
, 𝜎

2
= 1 −

𝑝 + 1 + 𝜔

2𝑟
. (50)

We introduce now the operator matrix

D (A) = D (𝐴) ×D (𝐷) , A = [
𝐴 𝐵

𝐶 𝐷
] . (51)

We can now apply Theorem 3 with𝑋 = 𝐶
1+𝜔

(Ω), 𝛼 = 1 and

𝜔 ∈ (0,
1

3
) , 𝑟𝑞 + 𝑚𝑝 + (1 + 𝜔) (𝑟 + 𝑚) < 4𝑚𝑟, (52)

𝛽 = min {1 − 1 + 𝜔

2𝑚
, 1 −

1 + 𝜔

2𝑟
, 2 −

1 + 𝜔

2𝑚
−
𝑝 + 1 + 𝜔

2𝑟
,

2 −
1 + 𝜔

2𝑟
−
𝑞 + 1 + 𝜔

2𝑚
} >

1

2
.

(53)

Under such hypotheses the identification problem

𝐷
𝑡
𝑢 (𝑡, 𝑥) + 𝐴𝑢 (𝑡, 𝑥) + 𝐵V (𝑡, 𝑥) = 𝑓 (𝑡) 𝑧

1
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏) × Ω,

𝐷
𝑡
V (𝑡, 𝑥) + 𝐶𝑢 (𝑡, 𝑥) + 𝐷V (𝑡, 𝑥) = 𝑓 (𝑡) 𝑧

2
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏) × Ω,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , V (0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω,

𝐷
�̃�
𝑢 (𝑡, 𝑥) = 0, |�̃�| ≤ 𝑚 − 1, 𝐷

𝛿V (𝑡, 𝑥) = 0,


𝛿

≤ 𝑟 − 1, (𝑡, 𝑥) ∈ (0, 𝜏) × 𝜕Ω,

𝜎𝑢 (𝑡, 𝑥) + 𝜇V (𝑡, 𝑥) = 𝑔 (𝑡) , 𝑡 ∈ (0, 𝜏) ,

(54)

𝑥 and 𝑥 being two fixed elements in Ω, admits a unique
solution ((𝑢, V), 𝑓) ∈ [𝐶

1+𝜃
([0, 𝜏]; 𝐶

1+𝜔
(Ω) × 𝐶

1+𝜔
(Ω)) ∩

𝐶
𝜃
([0, 𝜏] ;D (𝐴) × D (𝐷))] × 𝐶

𝜃
([0, 𝜏];R) provided that the

following conditions are satisfied:

(H1) 𝑢
0
∈ D(𝐴), V

0
∈ D(𝐷), 𝐴𝑢

0
+ 𝐵V

0
∈ D(𝐴), 𝐶𝑢

0
+

𝐷V
0
∈ D(𝐷);

(H2) 𝑧
1
∈ D(𝐴), 𝑧

2
∈ D(𝐷), 𝜎𝑧

1
(𝑥) + 𝜇𝑧

2
(𝑥) ̸= 0;

(H3) 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R), 1 − 𝛽 < 𝜃 < 𝛽, 𝑔(0) = 𝜎𝑢
0
(𝑥) +

𝜇V
0
(𝑥).

Notice that, if𝑝 ≤ 2𝑟−2 and 𝑞 ≤ 2𝑚−2, then 𝛽 = min{𝛽
1
, 𝛽

2
}

and condition 𝑟𝑞 + 𝑚𝑝 + (1 + 𝜔)(𝑟 + 𝑚) < 4𝑚𝑟 is satisfied.

Problem 9. Here we solve an identification problem related
to the Ornstein-Uhlenbeck operator in R𝑛, 𝑛 ≥ 1. For this
purpose, we refer to the monograph [11]. Such an operator
is the prototype of an elliptic operator with unbounded
coefficients and is defined on smooth functions 𝜑 by

A𝜑 (𝑥) =
1

2
Tr (𝑄𝐷2

𝜑) (𝑥) + ⟨𝐵𝑥,𝐷𝜑⟩ , 𝑥 ∈ R
𝑛
, (55)

where 𝐷𝜑 and 𝐷
2
𝜑 denote, respectively, the gradient and

the Hessian matrix of 𝜑, while 𝑄 and 𝐵 ̸= 𝑂 are 𝑛 × 𝑛

constant matrices, 𝑄 being strictly positive definite and the
spectrum 𝜎(𝐵) of 𝐵 being contained in the left complex half-
plane Re 𝑧 < 0.
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It is well known that the realization L
𝑝
of A in the

weighted space 𝐿𝑝
𝜇
(R𝑛

), where

𝜇 (𝑑𝑥) = (2𝜋)
−𝑛/2

(det 𝑄
∞
)
−1/2

𝑒
−⟨𝑄
−1

∞
𝑥,𝑥⟩/2

𝑑𝑥,

𝑄
∞
= ∫

+∞

0

𝑒
𝑠𝐵
𝑄𝑒

𝑠𝐵
∗

𝑑𝑠,

(56)

generates an analytic semigroup with domain 𝑊
2,𝑝

𝜇
(R𝑛

),
where

𝑊
𝑘,𝑝

𝜇
(R

𝑛
) = {𝑢 ∈ 𝐿

𝑝

𝜇
(R

𝑛
) : 𝐷

𝛼
𝑢 ∈ 𝐿

𝑝

𝜇
(R

𝑛
) , |𝛼| ≤ 𝑘} (57)

and is endowed with the norm ‖𝑢‖
𝑊
𝑘,𝑝

𝜇 (R𝑛)
=

∑
|𝛼|≤𝑘

‖𝐷
𝛼
𝑢‖

𝐿
𝑝

𝜇(R
𝑛
)
, where ‖𝑓‖

𝐿
𝑝

𝜇(R
𝑛
)
= (∫

R𝑛
|𝑓(𝑥)|

𝑝
𝑑𝜇(𝑥))

1/𝑝.
Moreover, the spectrum ofL

𝑝
is the discrete set

𝜎 (L
𝑝
) =

{

{

{

𝜆 =

𝑟

∑

𝑗=1

𝑛
𝑗
𝜆
𝑗
: 𝑛

𝑗
∈ N ∪ {0} , 𝑗 = 1, . . . , 𝑟

}

}

}

,

(58)

𝜆
1
, . . . , 𝜆

𝑟
denoting the (distinct) eigenvalues of 𝐵.

We note also that (cf. [11, Theorem 9.3.4])

‖∇𝑢‖
𝐿
𝑝

𝜇(R
𝑛
)
≤ 𝐶

1 ‖𝑢‖
1/2

𝐿
𝑝

𝜇(R
𝑛
)


L

𝑝
𝑢 − 𝑢



1/2

𝐿
𝑝

𝜇(R
𝑛
)
,

𝑢 ∈ 𝑊
2,𝑝

𝜇
(R

𝑛
) ,

‖|𝑥| 𝑢‖
𝐿
𝑝

𝜇(R
𝑛
)
≤ 𝐶

0 ‖𝑢‖𝑊
1,𝑝

𝜇 (R𝑛)
, 𝑢 ∈ 𝑊

2,𝑝

𝜇
(R

𝑛
) ,

|𝑥| = (

𝑛

∑

𝑗=1

𝑥
2

𝑗
)

1/2

.

(59)

Whence, since the operatorL
𝑝
−1 is continuously invertible,

we easily deduce the estimates

‖|𝑥| 𝑢‖
𝐿
𝑝

𝜇(R
𝑛
)

≤ 𝐶
0
[‖𝑢‖

𝐿
𝑝

𝜇(R
𝑛
)
+ 𝐶

1 ‖𝑢‖
1/2

𝐿
𝑝

𝜇(R
𝑛
)


L

𝑝
𝑢 − 𝑢



1/2

𝐿
𝑝

𝜇(R
𝑛
)
]

≤ 𝐶
0
[𝐶

2 ‖𝑢‖
1/2

𝐿
𝑝

𝜇(R
𝑛
)


L

𝑝
𝑢 − 𝑢



1/2

𝐿
𝑝

𝜇(R
𝑛
)

+ 𝐶
1 ‖𝑢‖

1/2

𝐿
𝑝

𝜇(R
𝑛
)


L

𝑝
𝑢 − 𝑢



1/2

𝐿
𝑝

𝜇(R
𝑛
)
]

= 𝐶
3 ‖𝑢‖

1/2

𝐿
𝑝

𝜇(R
𝑛
)


L

𝑝
𝑢 − 𝑢



1/2

𝐿
𝑝

𝜇(R
𝑛
)
, 𝑢 ∈ 𝑊

2,𝑝

𝜇
(R

𝑛
) .

(60)

Likewise we get the estimates
𝑛

∑

𝑖,𝑗=1


𝑥
𝑖
𝐷

𝑥
𝑗

𝑢
𝐿
𝑝

𝜇(R
𝑛
)

≤ 𝐶
4
[‖∇𝑢‖

𝐿
𝑝

𝜇(R
𝑛
)
+

𝐷

2
𝑢
𝐿
𝑝

𝜇(R
𝑛
)
]

≤ 𝐶
5


L

𝑝
𝑢 − 𝑢

𝐿
𝑝

𝜇(R
𝑛
)
, 𝑢 ∈ 𝑊

2,𝑝

𝜇
(R

𝑛
) .

(61)

Finally, recall that the dual space to 𝐿𝑝
𝜇
(R𝑛

) can be identified
with 𝐿𝑞

𝜇
(R𝑛

), 1/𝑝 + 1/𝑞 = 1.
Consider now the linear differential operator𝐵defined by

𝐵𝑢 =

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

𝑢 +

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑥) 𝑥

𝑗
𝑢, 𝑢 ∈ 𝑊

1,𝑝

𝜇
(R

𝑛
) , (62)

where 𝑎
𝑗
, 𝑏

𝑗
are uniformly continuous and bounded functions

in R𝑛.
The previous estimates yield

‖𝐵𝑢‖
𝐿
𝑝

𝜇(R
𝑛
)
≤ 𝐶

7 ‖𝑢‖
1/2

𝐿
𝑝

𝜇(R
𝑛
)


L

𝑝
𝑢 − 𝑢



1/2

𝐿
𝑝

𝜇(R
𝑛
)
, 𝜆 ∈ 𝜌 (L

𝑝
) .

(63)

Consider then the linear operator

𝐵
1
𝑢 =

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝑥

𝑖
𝐷

𝑥
𝑗

𝑢, 𝑢 ∈ 𝑊
1,𝑝

𝜇
(R

𝑛
) , (64)

where 𝑎
𝑖,𝑗
are uniformly continuous and bounded functions

in R𝑛.
Reasoning as above, we conclude that 𝐵

1
satisfies the

estimate

𝐵
1
(L

𝑝
− 𝜆)

−1
𝑓
𝐿
𝑝

𝜇(R
𝑛
)
≤ 𝐶

8

𝑓
𝐿
𝑝

𝜇(R
𝑛
)
, 𝜆 ∈ 𝜌 (L

𝑝
) .

(65)

Consider now the identification problem:

𝐷
𝑡
𝑢 (𝑡, 𝑥) = (L

𝑝
− 𝜆

0
) 𝑢 (𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

V (𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑥) 𝑥

𝑗
V (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧

1
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] ×R
𝑛
,

(66)

𝐷
𝑡
V (𝑡, 𝑥) =

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

𝑢 (𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑥) 𝑥

𝑗
𝑢 (𝑡, 𝑥)

+ (L
𝑝
− 𝜆

0
) V (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧

2
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] ×R
𝑛
,

(67)

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , V (0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ R

𝑛
, (68)

∫
R𝑛
{𝜂

1
(𝑥) 𝑢 (𝑡, 𝑥) + 𝜂

2
(𝑥) V (𝑡, 𝑥)} 𝑑𝜇 (𝑥) = 𝑔 (𝑡) ,

𝑡 ∈ [0, 𝜏] ,

(69)

where 𝜂
1
, 𝜂

2
∈ 𝐿

𝑞
(R𝑛

), 1/𝑝 + 1/𝑞 = 1, 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R),
𝜃 ∈ (0, 1), and

𝑔 (0) = ∫
R𝑛
{𝜂

1
(𝑥) 𝑢

0
(𝑥) + 𝜂

2
(𝑥) V

0
(𝑥)} 𝜇 (𝑑𝑥) . (70)

Theorem 3 applies with 𝑋 = 𝐿
𝑝

𝜇
(R𝑛

), 𝑝 ∈ (1, +∞). Here 𝛼 =

1, 𝛽
1
= 𝛽

2
= 1, 𝜎

1
= 𝜎

2
= 1/2, so that 𝛽 = 1. Assume
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further that 𝑧
1
, 𝑧

2
, 𝑢

0
, V

0
∈ 𝑊

2,𝑝

𝜇
(R𝑛

) possess the additional
properties:

(L
𝑝
− 𝜆

0
) 𝑢

0
+∑

𝑗

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

V
0

+∑

𝑗

𝑏
𝑗
(𝑥) 𝑥

𝑗
V
0
∈ 𝑊

2,𝑝

𝜇
(R

𝑛
) ,

∑

𝑗

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

𝑢
0
+∑

𝑗

𝑏
𝑗
(𝑥) 𝑥

𝑗
𝑢
0

+ (L
𝑝
− 𝜆

0
) V

0
∈ 𝑊

2,𝑝

𝜇
(R

𝑛
) ,

∫
R𝑛
{𝜂

1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)} 𝑑𝜇 (𝑥) ̸= 0, 𝑡 ∈ [0, 𝜏] .

(71)

Then the identification Problems (66)–(321) admit a unique
strict global solution (𝑢, V, 𝑓) with 𝑢, V ∈ 𝐶

1+𝜃
([0, 𝜏];

𝐿
𝑝

𝜇
(R𝑛

)) ∩ 𝐶
𝜃
([0, 𝜏];𝑊

2,𝑝

𝜇
(R𝑛

)), 𝑓 ∈ 𝐶
𝜃
([0, 𝜏];R).

We note that a corresponding result still holds if either
of the lower order operators is replaced with 𝐵

1
𝑢 =

∑
𝑛

𝑖,𝑗=1
𝑎
𝑖,𝑗
(𝑥)𝑥

𝑖
𝐷

𝑥
𝑗

𝑢.
Since R𝑛 is an unbounded domain of cone type, the real

interpolation spaces (𝐿𝑝
𝜇
(R𝑛

),𝑊
2,𝑝

𝜇
(R𝑛

))
𝜃,𝑝
, 𝜃 ∈ (0, 1) are well

characterized. Exactly we have (cf. [9, Theorem 3.3.1]):

(𝐿
𝑝

𝜇
(R

𝑛
) ,𝑊

2,𝑝

𝜇
(R

𝑛
))

𝜃,∞
= 𝐵

2𝜃

𝑝,∞
(R

𝑛
; 𝜇) . (72)

Assumenow that our data (𝑢
0
, V

0
, 𝑧

1
, 𝑧

2
)possess the following

properties:

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) , 0 < 𝜃 < 𝜃
0
< 1,

𝑢
0
, V

0
∈ 𝑊

2,𝑝

𝜇
(R

𝑛
) ,

(L
𝑝
− 𝜆

0
) 𝑢

0
+

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

V
0

+

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑥) 𝑥

𝑗
V
0
∈ 𝐵

2𝜃

𝑝,∞
(R

𝑛
; 𝜇) ,

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

𝑢
0
+

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑥) 𝑥

𝑗
𝑢
0

+ (L
𝑝
− 𝜆

0
) V

0
∈ 𝐵

2𝜃

𝑝,∞
(R

𝑛
; 𝜇) ,

𝑔 (0) = ∫
R𝑛
{𝜂

1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)} 𝑑𝜇 (𝑥) ̸= 0,

𝑡 ∈ [0, 𝜏] ,

𝑧
1
, 𝑧

2
∈ 𝐵

2𝜃
0

𝑝,∞
(R

𝑛
; 𝜇) .

(73)

Therefore, we can apply Theorem 3 or Proposition 5.1 in [1]
and deduce the same conclusion as above.

We can analogously deal with the case when either
of the lower order operators is replaced with 𝐵

1
𝑢 =

∑
𝑖,𝑗
𝑎
𝑖,𝑗
(𝑥)𝑥

𝑗
𝐷

𝑥
𝑗

𝑢.

Problem 10. In [12] the following remarkable result is proved.
Let 𝑋 be a Hilbert space, letA : D(A) be a densely defined,
strictly positive self-adjoint operator, and let 𝑀 = [𝑚

𝑖,𝑗
]
𝑛

𝑖,𝑗=1

be a constant complex-valued matrix. Then the operator 𝐴,
defined by

D (𝐴) = D (A)
𝑛
, 𝐴 = A𝑀 = [

𝑚
𝑛,1
A, . . . , 𝑚

𝑛,𝑛
A

𝑚
𝑛,1
A, . . . , 𝑚

𝑛,𝑛
A
] ,

(74)

generates a strongly continuous analytical semigroup in𝐻 =

𝑋
𝑛 if and only if (cf. [12, page 311]) the eigenvalues 𝜆

𝑖
of the

matrix𝑀 satisfy (i) Re 𝜆
𝑖
< 0 if 𝜆

𝑖
is complex and (ii) 𝜆

𝑖
≤ 0

if 𝜆
𝑖
is real.

This result allows to deal with a lot of very important
problems related to evolution PDE’s. We confine ourselves
to describe an identification problem related to one of such
models.

Suppose that𝐴 = A𝑀 generates an analytical semigroup
in 𝐻 = 𝑋

𝑛. Then owing to [1, Theorem 2.1, page 45] (as
improved in a following paper for Al Horani and Favini) the
identification problem

𝑦

(𝑡) − 𝐴𝑦 (𝑡) = 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

𝑦 (0) = 𝑦
0
,

Φ [𝑦 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(75)

admits a unique global solution (𝑦, 𝑓) ∈ [𝐶
𝜃
([0, 𝜏];D(𝐴)) ∩

𝐶
1+𝜃

([0, 𝜏]; 𝑋)] × 𝐶
𝜃
([0, 𝜏];R), provided that

𝑦
0
∈ D (𝐴) , 𝐴𝑦

0
∈ D

𝐴
(𝜃,∞) = DA (𝜃,∞) ,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) , Φ [𝑦
0
] = 𝑔 (0) 𝑧 ∈ D

𝐴
(𝜃,∞) .

(76)

Let us apply this result to the following thermoelastic PDE
problem with simplified “hinged” homogeneous boundary
conditions and Dirichlet thermal boundary conditions (cf.
[12, page 317]), where the reference bounded domain Ω has
a smooth boundary 𝜕Ω: determine a triplet of functions 𝑤, V :
(0, 𝜏) × Ω → R and 𝑓 : [0, 𝜏] → R such that

𝐷
2

𝑡
𝑤 (𝑡, 𝑥) + Δ

2
𝑤 (𝑡, 𝑥) + 𝛼ΔV (𝑡, 𝑥) = 𝑓 (𝑡) 𝑧

1
(𝑥) ,

(𝑡, 𝑥) ∈ 𝑄,

𝐷
𝑡
V (𝑡, 𝑥) − 𝜂ΔV (𝑡, 𝑥) − 𝛼Δ𝐷

𝑡
𝑤 (𝑡, 𝑥) = 𝑓 (𝑡) 𝑧

2
(𝑥) ,

(𝑡, 𝑥) ∈ 𝑄,

𝑤 (0, 𝑥) = 𝑤
0
(𝑥) , 𝐷

𝑡
𝑤 (0, 𝑥) = 𝑤

1
(𝑥) , V (0, 𝑥) = V

0
(𝑥) ,

𝑥 ∈ Ω,

𝑤 (𝑡, 𝑥) = 0, Δ𝑤 (𝑡, 𝑥) = 0, V (𝑡, 𝑥) = 0,

(𝑡, 𝑥) ∈ (0, 𝜏) × 𝜕Ω,

⟨𝜂
1
, 𝑤 (𝑡, ⋅)⟩ + ∫

Ω

𝜂
2
(𝑥) V (𝑡, 𝑥) 𝑑𝑥 = 𝑔 (𝑡) ,

𝑡 ∈ (0, 𝜏) ,

(P)
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where 𝑄 := (0, 𝜏) × Ω and ⟨⋅, ⋅⟩ denotes the duality pairing
between𝐻2

(Ω) ∩ 𝐻
1

0
(Ω) and its dual space.

Introduce now the positive self-adjoint operator A
defined by

D (A) = 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) ⊂ 𝑋 = 𝐿

2
(Ω) , A = −Δ. (77)

This definition implies

D (A
2
) = {ℎ ∈ 𝐻

4
(Ω) : 𝑢|𝜕Ω = Δ𝑢|𝜕Ω = 0} , A = Δ

2
.

(78)

The previous differential equations read now

𝐷
2

𝑡
𝑤 (𝑡, 𝑥) +A

2
𝑤 (𝑡, 𝑥) − 𝛼AV (𝑡, 𝑥) = 𝑓 (𝑡) 𝑧

1
(𝑥) ,

(𝑡, 𝑥) ∈ 𝑄 := (0, 𝜏) × Ω,

𝐷
𝑡
V (𝑡, 𝑥) + 𝜂AV (𝑡, 𝑥) + 𝛼A𝐷

𝑡
𝑤 (𝑡, 𝑥)

= 𝑓 (𝑡) 𝑧
2
(𝑥) , (𝑡, 𝑥) ∈ 𝑄.

(∗)

Introduce then the Banach space 𝑌, the new variable 𝑢, the
vector 𝑦, and the operator 𝐴

𝑙
defined by

𝑌 = D (A) × 𝐿
2
(Ω) × 𝐿

2
(Ω) , 𝑢 = 𝐷

𝑡
𝑤,

𝑦 = (𝑤, 𝑢, V)𝑇 ,

D (𝐴
𝑒
) = D (A

2
) ×D (A) ×D (A) ,

𝐴
𝑒
= [

[

𝑂 𝐼 𝑂

−A2
𝑂 𝛼A

𝑂 −𝛼A −𝜂A

]

]

.

(79)

Then system (∗) can be rewritten as the single equation:

𝑦

(𝑡) −A

𝑒
𝑦 (𝑡) = 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏. (80)

In [12, page 318] it is shown that operator 𝐴
𝑒
generates an

analytic semigroup on 𝑌 if and only if the operator

𝐴 = [

[

𝑂 A 𝑂

−A 𝑂 𝛼A
𝑂 −𝛼A −𝜂A

]

]

(81)

generates a strongly continuous analytic semigroup in the
space𝐻 = 𝐿

2
(Ω)

3.
Indeed, in this case we have𝐴 = A𝑀, where the constant

matrix𝑀 is defined by

𝑀 = [

[

0 1 0

−1 0 𝛼

0 −𝛼 −𝜂

]

]

. (82)

Consider then the eigenvalue equation𝑚(𝜆) =: det(𝜆𝐼−𝑀) =

𝜆
3
+ 𝜂𝜆

2
+ (𝛼

2
+ 1)𝜆 + 𝜂 = 0 and observe that (i) since

𝑚(−𝜂) = −𝛼
2
𝜂 < 0 and 𝑚(0) = 𝜂 > 0, the matrix𝑀 admits

a real negative eigenvalue 𝜆
1
= −𝑎(𝛼, 𝜂) ∈ (−𝜂, 0); (ii) all the

real eigenvalues of𝑀 are strictly negative; (iii) all the nonreal
eigenvalues 𝜆 have negative real parts Re 𝜆 = [𝑎(𝛼, 𝜂) − 𝜂]/2,

since the sum of is −𝜂. Consequently, all the eigenvalues of
𝑀 have negative real parts so that 𝐴 generates an analytic
semigroup in𝐻 (resp., 𝑌).

Let us consider first our identification problem in𝑌. Since

𝑧 = [0, 𝑧
1
, 𝑧

2
]
𝑇

,

Φ [𝑦] = ∫
Ω

[𝜂
1
(𝑥) 𝑦

1
(𝑥) + 𝜂

2
(𝑥) 𝑦

3
(𝑥)] 𝑑𝑥,

𝜂
1
, 𝜂

2
∈ 𝐿

2
(Ω)

(83)

we must require

Φ [𝑧] = ∫
Ω

𝜂
2
(𝑥) 𝑧

2
(𝑥) 𝑑𝑥 ̸= 0. (84)

Moreover, we assume

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) ,

𝑔 (0) = ∫
Ω

[𝜂
1
(𝑥) 𝑤

0
(𝑥) + 𝜂

2
(𝑥) V

0
(𝑥)] 𝑑𝑥,

(𝑤
0
, 𝑤

1
, V

0
) ∈ 𝑌,

(85)

[

[

𝑂 𝐼 𝑂

−A2
𝑂 𝛼A

𝑂 −𝛼A −𝜂A

]

]

[

[

𝑤
0

𝑤
1

V
0

]

]

= [

[

𝑤
1

−A2
𝑤
0
+ 𝛼AV

0

−𝛼A𝑤
1
− 𝜂AV

0

]

]

∈ (𝑌;D (𝐴
𝑙
))

𝜃,∞

= (D (A) × 𝐿
2
(Ω) × 𝐿

2
(Ω) ;

D (A
2
) ×D (A) ×D (A))

𝜃,∞

= (D (A) ;D (A
2
))

𝜃,∞
× (𝐿

2
(Ω) ;D (A))

𝜃,∞

× (𝐿
2
(Ω) ;D (A))

𝜃,∞
,

(0, 𝑧
1
, 𝑧

2
) ∈ (D (A) ;D (A

2
))

𝜃
0
,∞

× (𝐿
2
(Ω) ;D (A))

𝜃
0
,∞

× (𝐿
2
(Ω) ;D (A))

𝜃
0
,∞

⇐⇒ 𝑧
1
, 𝑧

2
∈ (𝐿

2
(Ω) ;D (𝐴))

𝜃
0
,∞

.

(86)

Note that the previous spaces are well characterised as Besov
spaces (cf. [9]). More precisely, sinceA is a positive operator
we have (cf. [9, page 105])

(D (A) ;D (A
2
))

𝜃,∞
= (𝐿

2
(Ω) ;D (A

2
))

(1+𝜃)/2,∞
. (87)

On the other hand, if Λ : D (A) ⊂ 𝑋 → 𝑋 is a
positive operator, from [9, Theorem 1.14.3(b)] it follows that
(𝑋,D(Λ

2
))
𝜎,∞

, 𝜎 ∈ (1/2, 1), coincides with {𝑥 ∈ D (A) :
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‖𝑡
2𝜎−1

[Λ(Λ + 1)
−1
]Λ𝑥‖𝐿∗

∞
(𝑋)
} < ∞ = {𝑥 ∈ D(Λ) : Λ𝑥 ∈

(𝑋,𝐷(Λ))
2𝜎−1,∞

}. Therefore,

(𝐿
2
(Ω) ,D (A

2
))

(1+𝜃)/2,∞

= {𝑢 ∈ D (A) : A𝑢 ∈ (𝐿
2
(Ω) ,D (A))

𝜃,∞
} .

(88)

Using now the notation in [9, page 321],

D (A) = 𝐻
2

𝑝,𝐵
1

, 𝐵
1
𝑢 = 𝑢|𝜕Ω , (89)

we deduce the following characterization in terms of Besov
spaces:

(𝐿
2
(Ω) ,D (A))

𝜃,∞

= 𝐵
2𝜃

2,∞,𝐵
1

(Ω) , if 𝜃 ̸=
1

4
,

= {𝑓 ∈ 𝐵
1/2

2,2,𝐵
1

(Ω) : 𝐵
1
𝑓 = 𝑓

𝜕Ω
, ∈ 𝐵

1/2

2,2,𝐵
1

(Ω)} , if 𝜃 = 1

4
,

(90)

cf. [9, Definition 4.3.2, page 317].
Therefore, we assume that our data satisfy the following

properties:

(𝑤
0
, 𝑤

1
, V

0
) ∈ D (A

2
) ×D (A) ×D (A) ,

A𝑤
1
, −A

2
𝑤
0
+ 𝛼AV

0
, −𝛼A𝑤

1

− 𝜂AV
0
∈ (𝐿

2
(Ω) ,D (A))

𝜃,∞

⇐⇒ A
2
𝑤
0
,A𝑤

1
,AV

0
∈ (𝐿

2
(Ω) ,D (A))

𝜃,∞
,

𝑧
1
, 𝑧

2
∈ (𝐿

2
(Ω) ,D (A))

𝜃
0
,∞

, 0 < 𝜃 < 𝜃
0
< 1,

∫
Ω

𝜂
2
(𝑥) 𝑧

2
(𝑥) 𝑑𝑥 ̸= 0,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) ,

𝑔 (0) = ∫
Ω

[𝜂
1
(𝑥) 𝑤

0
(𝑥) + 𝜂

2
(𝑥) V

0
(𝑥)] 𝑑𝑥.

(91)

Under these assumptions the identification Problem (P)
admits a unique solution (𝑤, V, 𝑓) such that 𝑤 ∈ [𝐶

2+𝜃
([0, 𝜏];

𝐿
2
(Ω)) × 𝐶

1+𝜃
([0, 𝜏];D(A)) × 𝐶

𝜃
([0, 𝜏];D(A2

))], V ∈

[𝐶
1+𝜃

([0, 𝜏]; 𝐿
2
(Ω)) × 𝐶

𝜃
([0, 𝜏];D(A))] and 𝑓 ∈ 𝐶

𝜃
([0,

𝜏];R).

Remark 11. Since A is a strictly positive and self-adjoint
operator in the Hilbert space 𝑋, we could treat in the same
way the case when𝑋 = 𝐿

2

𝜇
(R𝑁

), as in Problem 9. Indeed, the
realization is thatA of −L

2
+𝐼, with 𝐵𝑄 = 𝑄𝐵

∗, 𝐵 = −𝑄
−1

∞
is

strictly positive and self-adjoint [11, Proposition 9.3.10, page
251].

Remark 12. If we consider the identification Problem (P)with
the additional information

∫
Ω

𝜂
3
(𝑥)𝐷

𝑡
𝑤 (𝑡, 𝑥) 𝑑𝑥 = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] , (92)

then, setting

Φ[𝑦] = (0, ∫
Ω

𝜂
3
(𝑥) 𝑦

2
(𝑥) 𝑑𝑥, 0) , (93)

under the assumptions

∫
Ω

𝜂
3
(𝑥) 𝑧

1
(𝑥) 𝑑𝑥 ̸= 0,

(𝑧
1
, 𝑧

2
) ∈ (𝐿

2
(Ω) ,D (AA))

𝜃
0
,∞

,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) , 𝑔 (0) = ∫
Ω

𝜂
3
(𝑥)𝑤

1
(𝑥) 𝑑𝑥,

𝜂
3
∈ 𝐿

2
(Ω) ,

A
2
𝑤
0
,A𝑤

1
,AV

0
∈ (𝐿

2
(Ω) ,D (A))

𝜃,∞
.

(94)

Problem (P), admits a unique solution (𝑤, V, 𝑓).

4. First-Order Systems of Singular
Differential Equations in Banach Spaces
and Identification Problems

Here we face identification problems for systems of singular
first-order differential equations in the Banach space 𝑋 × 𝑋,
both applying the general results described in Section 5
and developing ad hoc methods in order to improve the
corresponding consequences in some cases. For this purpose,
we need somepreliminary lemmas on the resolvent estimates.

Theorem 13. Suppose that the closed linear operators 𝐿
1
, 𝐿

2
,

𝐿
4
,𝑀

1
,𝑀

2
,𝑀

4
in 𝑋 satisfy the conditions:


𝑀

1
(𝑧𝑀

1
+ 𝐿

1
)
−1L(𝑋)

≤ 𝐶 (1 + |𝑧|)
−𝛽
1 , ∀𝑧 ∈ Σ

𝛼
, (95)


𝑀

4
(𝑧𝑀

4
+ 𝐿

4
)
−1L(𝑋)

≤ 𝐶 (1 + |𝑧|)
−𝛽
4 , ∀𝑧 ∈ Σ

𝛼
, (96)

𝑀2
𝑥
 ≤ 𝐶

𝑀4
𝑥


𝛿

‖𝑥‖
1−𝛿

, 0 < 𝛿 ≤ 1, 𝑥 ∈ 𝐷 (𝑀
4
) ,

(97)

D (𝐿
4
) ⊆ D (𝐿

2
) 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑙𝑦. (98)

Then the matrix operators 𝐴 and 𝐵 defined by

𝐴 = [
𝐿
1
𝐿
2

0 𝐿
4

] , 𝐵 = [
𝑀

1
𝑀

2

0 𝑀
4

] (99)

withD(𝐴) = D(𝐿
1
)×D(𝐿

4
),D(𝐵) = D(𝑀

1
)×𝐷(𝑀

4
), satisfy

the estimate

𝐵 (𝑧𝐵 + 𝐴)

−1L(𝑋×𝑋)
≤ 𝐶 (1 + |𝑧|)

−𝛽
,

∀𝑧 ∈ Σ
𝛼
∩ 𝐵 (0, 𝑅)

𝑐

, 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ 𝑅,

(100)

where 𝛽 = 𝛽
1
+ 𝛽

4
+ 𝛿 − 2.
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Proof. First of all, we need to verify that 𝐴 and 𝐵 are closed
linear operators.

Let 𝑥
𝑛
∈ D(𝑀

1
), 𝑦

𝑛
∈ 𝐷(𝑀

4
), 𝑥

𝑛
→ 𝑥, 𝑦

𝑛
→ 𝑦,

𝑀
1
𝑥
𝑛
+ 𝑀

2
𝑦
𝑛

→ 𝜉, 𝑀
4
𝑦
𝑛

→ 𝜂 as 𝑛 → +∞. We
immediately deduce that 𝑦 ∈ 𝐷(𝑀

4
) ad𝑀

4
𝑦 = 𝜂. Moreover,

𝑀2
𝑦
𝑛
−𝑀

2
𝑦
𝑚

 ≤ 𝐶
𝑀4

𝑦
𝑚
−𝑀

4
𝑦
𝑚



𝛿 𝑦𝑛 − 𝑦𝑚


1−𝛿

(101)

implies that 𝑀
2
𝑦
𝑛

→ 𝜎 as 𝑛 → +∞ for some 𝜎 ∈ 𝑋.
Since 𝑀

2
is closed 𝛿 = 𝑀

2
𝑦. But 𝑀

1
is closed too, so that

𝑥 ∈ D(𝑀
1
) and 𝑀

1
𝑥 + 𝑀

2
𝑦 = 𝜉. Analogously, if 𝑥

𝑛
∈

D(𝐿
1
), 𝑦

𝑛
∈ D(𝐿

4
), 𝑥

𝑛
→ 𝑥, 𝑦

𝑛
→ 𝑦 as 𝑛 → +∞,

𝐿
1
𝑥
𝑛
+ 𝐿

2
𝑦
𝑛
→ 𝜉, 𝐿

4
𝑦
𝑛
→ 𝜂, then 𝑦 ∈ D(𝐿

4
) and 𝐿

4
𝑦 = 𝜂.

SinceD(𝐿
4
) ⊆ D(𝐿

2
)

𝑦𝑛 − 𝑦𝑚
 +

𝐿2
𝑦
𝑛
− 𝐿

2
𝑦
𝑚



≤ 𝐶 [
𝑦𝑛 − 𝑦𝑚

 +
𝐿4

𝑦
𝑛
− 𝐿

4
𝑦
𝑚

]

(102)

and thus 𝐿
2
𝑦
𝑛
has a limit 𝜎 as 𝑛 → +∞. It follows that 𝐿

2
𝑦
𝑛

tends to 𝜎 = 𝐿
2
𝑦 so that we can conclude as the above.

We easily see that

(𝑧𝐵 + 𝐴)
−1

= [
(𝑧𝑀

1
+ 𝐿

1
)
−1

− (𝑧𝑀
1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1

0 (𝑧𝑀
4
+ 𝐿

4
)
−1

]

(103)

so that

𝐵 (𝑧𝐵 + 𝐴)
−1
= [

𝑀
1
(𝑧𝑀

1
+ 𝐿

1
)
−1

−𝑀
1
(𝑧𝑀

1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1

+𝑀
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

0 𝑀
4
(𝑧𝑀

4
+ 𝐿

4
)
−1 ] . (104)

Notice that if 𝑧 ̸= 0, then

−𝑀
1
(𝑧𝑀

1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1

+𝑀
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

=
−1

𝑧
[𝐼 − 𝐿

1
(𝑧𝑀

1
+ 𝐿

1
)
−1

]

× (𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1

+𝑀
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

= − [𝐼 − 𝐿
1
(𝑧𝑀

1
+ 𝐿

1
)
−1

]𝑀
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

−
1

𝑧
[𝐼 − 𝐿

1
(𝑧𝑀

1
+ 𝐿

1
)
−1

] 𝐿
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

+𝑀
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

= 𝐿
1
(𝑧𝑀

1
+ 𝐿

1
)
−1

𝑀
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

− 𝑧
−1
[𝐼 − 𝐿

1
(𝑧𝑀

1
+ 𝐿

1
)
−1

] 𝐿
2
(𝑧𝑀

4
+ 𝐿

4
)
−1

.

(105)

Therefore, from (97)


𝑀

2
(𝑧𝑀

4
+ 𝐿

4
)
−1L(𝑋)

≤ 𝐶

𝑀

4
(𝑧𝑀

4
+ 𝐿

4
)
−1

𝛿

L(𝑋)


(𝑧𝑀

4
+ 𝐿

4
)
−1

1−𝛿

L(𝑋)

≤ 𝐶 (1 + |𝑧|)
−𝛽
4
𝛿
(1 + |𝑧|)

(1−𝛽
4
)(1−𝛿)

≤ 𝐶 (1 + |𝑧|)
1−𝛽
4
−𝛿
,

(106)

we deduce the bound

−𝑀

1
(𝑧𝑀

1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1

+𝑀
2
(𝑧𝑀

4
+ 𝐿

4
)
−1L(𝑋)

≤ 𝑐
1
(1 + |𝑧|)

2−𝛽
1
−𝛽
4
−𝛿
+ 𝑐

2
(1 + |𝑧|)

−𝛽
1
−𝛽
4
+1

≤ 𝑐 (1 + |𝑧|)
2−𝛽
1
−𝛽
4
−𝛿
.

(107)

Since 𝛽
1
+ 𝛽

4
+ 𝛿 − 2 ≤ min{𝛽

1
, 𝛽

4
}, this completes the proof.

We can now apply Proposition 29 to the identification
problem:

𝑑

𝑑𝑡
[
𝑀

1
𝑀

2

0 𝑀
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
]

+ [
𝐿
1
𝐿
2

0 𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] , ∀ 𝑡 ∈ [0, 𝜏] ,

(𝑀
1
𝑥 +𝑀

2
𝑦) (0) = 𝑀

1
𝑥
0
+𝑀

2
𝑦
0
,

(𝑀
4
𝑦) (0) = 𝑀

4
𝑦
0
,

Φ
1
[𝑀

1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)] + Φ

2
[𝑀

4
𝑦 (𝑡)] = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] .

(108)

Suppose that assumptions (95)–(98) are satisfied, with𝛼+𝛽
1
+

𝛽
4
+𝛿 > 7/2 and let 4−𝛼−𝛽

1
−𝛽

4
−𝛿 < 𝜃 < 𝛼+𝛽

1
+𝛽

4
+𝛿−3.

Further, assume

[
𝑧
1

𝑧
2

] = [
𝑀

1
𝑧
∗

1
+𝑀

2
𝑧
∗

2

𝑀
4
𝑧
∗

2

] ,

[
𝐿
1
𝑥
0
+ 𝐿

2
𝑦
0

𝐿
4
𝑦
0

] = [
𝑀

1
𝑥
∗

0
+𝑀

2
𝑦
∗

0

𝑀
4
𝑦
∗

0

]

(109)
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with

𝑧
∗

1
∈ D (𝐿

1
) , 𝑧

∗

2
∈ D (𝐿

4
) ,

𝑥
∗

0
∈ D (𝐿

1
) , 𝑦

∗

0
∈ D (𝐿

4
) .

(110)

We have the following.

Theorem 14. Under assumptions (95)–(98), if 𝛼+𝛽
1
+𝛽

4
+𝛿 >

7/2, 𝜃 ∈ (4 − 𝛼 − 𝛽
1
− 𝛽

4
− 𝛿, 𝛼 + 𝛽

1
+ 𝛽

4
+ 𝛿 − 3), (109) and

(110) hold together with 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R), Φ
1
, Φ

2
∈ 𝑋

∗,

Φ
1
[𝑧

1
] + Φ

2
[𝑧

2
] ̸= 0, (111)

Φ
1
[𝑀

1
𝑥
0
+𝑀

2
𝑦
0
] + Φ

2
[𝑀

4
𝑦
0
] = 𝑔 (0) , (112)

then the identification Problem (108) admits a unique global
solution (𝑥, 𝑦, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];D(𝐿

4
)) ×

𝐶
𝜃
([0, 𝜏];R),𝑀

1
𝑥 + 𝑀

2
𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋),𝑀

4
𝑦 ∈ 𝐶

1+𝜃
([0,

𝜏]; 𝑋).

Remark 15. When𝑀
2
= 0, we can take 𝛿 = 1 in (97).

Particular attention deserves the casewhen𝛼 = 𝛽
1
= 𝛽

4
=

𝛿 = 1,𝑋 being a reflexive Banach space. Then

𝐵 (𝑧𝐵 + 𝐴)

−1L(𝑋×𝑋)
≤ 𝐶 (1 + |𝑧|)

−1
, ∀𝑧 ∈ 𝑘

0
+ Σ

1
.

(113)

Let T = 𝐵(𝑘
0
𝐵 + 𝐴)

−1; that is,

T :=

[
[
[

[

𝑀
1
(𝑘

0
𝑀

1
+ 𝐿

1
)
−1

𝐿
1
(𝑘

0
𝑀

1
+ 𝐿

1
)
−1

𝑀
2
(𝑘

0
𝑀

4
+ 𝐿

4
)
−1

−𝑘
−1

0
[𝐼 − 𝐿

1
(𝑘

0
𝑀

1
+ 𝐿

1
)
−1

] 𝐿
2
(𝑘

0
𝑀

4
+ 𝐿

4
)
−1

0 𝑀
4
(𝑘

0
𝑀

4
+ 𝐿

4
)
−1

]
]
]

]

. (114)

Then 𝑋 × 𝑋 = 𝑁(T) ⊕ 𝑅(T). Denote by 𝑃 the projection
operator onto 𝑁(T) along 𝑅(T) and suppose 0 < 𝜃 < 𝜃

0
<

1, 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R), Φ
1
, Φ

2
∈ 𝑋

∗, (112) holds, if (𝐼 −
P)[𝑧

1
, 𝑧

2
]
𝑇
= [𝑧

1
, 𝑧

2
]
𝑇,

Φ
1
[𝑧

1
] + Φ

2
[𝑧

2
] ̸= 0, (115)

sup
𝑡>0

𝑡
𝜃



(𝑡T + 𝐼)
−1
(𝐼 − P)

× [

𝑘
0
𝑀

1
+ 𝐿

1
𝑘
0
𝑀

2
+ 𝐿

2

0 𝑘
0
𝑀

4
+ 𝐿

4

][

𝑥
0

𝑦
0

]

𝑅(T)

< +∞,

(116)

sup
𝑡>0

𝑡
𝜃
0



(𝑡T + 𝐼)
−1
[
𝑧
1

𝑧
2

]

𝑅(T)

< +∞. (117)

After applying Proposition 32, we get the following result.

Proposition 16. Let 𝑋 be a reflexive Banach space, suppose
(95)–(98) hold with 𝛼 = 𝛽

1
= 𝛽

4
= 𝛿 = 1, T , P being

as above, 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R), 0 < 𝜃 < 𝜃
0
< 1, (𝑥

0
, 𝑦

0
) ∈

D(𝐿
1
) × D(𝐿

4
), Φ

1
, Φ

2
∈ 𝑋

∗. If (112)–(117) hold, then the

identification Problem (108) admits a unique global solution
(𝑥, 𝑦, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];D(𝐿

4
)) × 𝐶

𝜃
([0, 𝜏];

R), such that𝑀
1
𝑥 + 𝑀

2
𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋),𝑀

4
𝑦 ∈ 𝐶

1+𝜃
([0,

𝜏]; 𝑋). Moreover, if T has a closed range, then (116)-(117) can
be dropped out.

Next we extend Theorem 13 to nontriangular operator
matrices. Precisely, we consider the system (𝐴, 𝐵) where

𝐴 = [
𝐿
1
𝐿
2

𝐿
3
𝐿
4

] , 𝐵 = [
𝑀

1
𝑀

2

0 𝑀
4

] . (118)

We have the following.

Lemma 17. Assume (95)–(98) hold and D(𝑀
1
) ⊆ 𝐷(𝐿

3
),

with

𝐿3
𝑥
 ≤ 𝐶

𝑀1
𝑥


𝛿
1

‖𝑥‖
1−𝛿
1 , 𝑥 ∈ D (𝑀

1
) , 0 < 𝛿

1
≤ 1.

(119)

If 𝛽
1
+ 𝛽

4
+ 𝛿 + 𝛿

1
> 3, then ‖𝐵(𝑧𝐵 + 𝐴)

−1
‖L(𝑋×𝑋)

≤ 𝐶(1 +

|𝑧|)
−𝛽
, ∀𝑧 ∈ Σ

𝛼
, |𝑧| large, when 𝛽 = 𝛽

1
+ 𝛽

4
+ 𝛿 − 2.
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Proof. We proceed by a perturbation argument. Write

[
𝑧𝑀

1
+ 𝐿

1
𝑧𝑀

2
+ 𝐿

2

𝐿
3

𝑧𝑀
4
+ 𝐿

4

]

= [
0 0

𝐿
3
0
] + [

𝑧𝑀
1
+ 𝐿

1
𝑧𝑀

2
+ 𝐿

2

0 𝑧𝑀
4
+ 𝐿

4

]

= ([
𝐼 0

0 𝐼
] + [

0 0

𝐿
3
0
] × [

(𝑧𝑀
1
+ 𝐿

1
)
−1

− (𝑧𝑀
1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1

0 (𝑧𝑀
4
+ 𝐿

4
)
−1 ])

× [
𝑧𝑀

1
+ 𝐿

1
𝑧𝑀

2
+ 𝐿

2

0 𝑧𝑀
4
+ 𝐿

4

]

= ([
𝐼 0

0 𝐼
] + [

0 0

𝐿
3
(𝑧𝑀

1
+ 𝐿

1
)
−1

−𝐿
3
(𝑧𝑀

1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1])

× [
𝑧𝑀

1
+ 𝐿

1
𝑧𝑀

2
+ 𝐿

2

0 𝑧𝑀
4
+ 𝐿

4

] .

(120)

In view of (119), we get first


𝐿
3
(𝑧𝑀

1
+ 𝐿

1
)
−1L(𝑋)

≤ 𝐶 (1 + |𝑧|)
1−𝛽
1
−𝛿
1 ,

(cf. Lemma 17)

(𝑧𝑀

2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1L(𝑋)

≤ |𝑧|

𝑀

2
(𝑧𝑀

4
+ 𝐿

4
)
−1L(𝑋)

+

𝐿
2
(𝑧𝑀

4
+ 𝐿

4
)
−1L(𝑋)

≤ 𝐶 [(1 + |𝑧|)
2−𝛽
4
−𝛿
+ (1 + |𝑧|)

1−𝛽
4]

≤ 𝐶 (1 + |𝑧|)
2−𝛽
4
−𝛿
,

(121)

and then


𝐿
3
(𝑧𝑀

1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1

≤ 𝐶 (1 + |𝑧|)
3−𝛽
1
−𝛽
4
−𝛿−𝛿
1 .

(122)

Notice now that 1 −𝛽
1
−𝛿

1
≤ 3−𝛽

1
−𝛽

4
−𝛿−𝛿

1
implies that

the linear operator

[
𝐼 0

0 𝐼
]

+[
0 0

𝐿
3
(𝑧𝑀

1
+ 𝐿

1
)
−1

−𝐿
3
(𝑧𝑀

1
+ 𝐿

1
)
−1

(𝑧𝑀
2
+ 𝐿

2
) (𝑧𝑀

4
+ 𝐿

4
)
−1]

(123)

has a bounded inverse for |𝑧| large and its inverse can be
estimated in the norm of L(𝑋 × 𝑋) by 1/2, for example. It
follows that 𝐵(𝑧𝐵 + 𝐴)

−1 has precisely the same bound as in
Lemma 17.

Theorem 18. Under assumptions (95)–(98) and (119), if 𝛼 +

𝛽
1
+ 𝛽

4
+ 𝛿 > 7/2 and 𝛽

1
+ 𝛽

4
+ 𝛿 + 𝛿

1
> 3, 𝜃 ∈ (4 − 𝛼 − 𝛽

1
−

𝛽
4
− 𝛿, 𝛼 + 𝛽

1
+ 𝛽

4
+ 𝛿 − 3),

[
𝑧
1

𝑧
2

] = [
𝑀

1
𝑧
∗

1
+𝑀

2
𝑧
∗

2

𝑀
4
𝑧
∗

2

] ,

[
𝐿
1
𝑥
0
+ 𝐿

2
𝑦
0

𝐿
3
𝑥
0
+ 𝐿

4
𝑦
0

] = [
𝑀

1
𝑥
∗

0
+𝑀

2
𝑦
∗

0

𝑀
4
𝑦
∗

0

]

(124)

for some 𝑧∗
1
, 𝑥

∗

0
∈ D(𝐿

1
), 𝑧∗

2
, 𝑦

∗

0
∈ D(𝐿

4
), 𝑔 ∈ 𝐶

1+𝜃
([0, 𝜏];R),

Φ
1
, Φ

2
∈ 𝑋

∗ and (111)-(112) hold, then the identification
problem

𝑑

𝑑𝑡
[
𝑀

1
𝑀

2

0 𝑀
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿
1
𝐿
2

𝐿
3
𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] ,

∀𝑡 ∈ [0, 𝜏] ,

(𝑀
1
𝑥 +𝑀

2
𝑦) (0) = 𝑀

1
𝑥
0
+𝑀

2
𝑦
0
,

(𝑀
4
𝑦) (0) = 𝑀

4
𝑦
0
,

Φ
1
[𝑀

1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)] + Φ

2
[𝑀

4
𝑦 (𝑡)] = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] ,

(125)

admits a unique global solution (𝑥, 𝑦, 𝑓) ∈ 𝐶𝜃
([0, 𝜏];D(𝐿

1
))×

𝐶
𝜃
([0, 𝜏];D(𝐿

4
)) × 𝐶

𝜃
([0, 𝜏];R), such that 𝑀

1
𝑥 + 𝑀

2
𝑦 ∈

𝐶
1+𝜃

([0, 𝜏]; 𝑋),𝑀
4
𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋).

Remark 19. When 𝑀
2
= 0, we can choose 𝛿 = 1; thus, the

first two conditions in the statement ofTheorem 18 involving
𝛼, 𝛽

1
, 𝛽

4
, 𝛽

5
, 𝛿 reduce to 𝛼+𝛽

1
+𝛽

5
> 5/2 and 𝛽

1
+𝛽

4
+𝛿 > 2.
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Remark 20. We could easily establish a result at all analogous
to the one in Proposition 16, concerning this more general
case.

We are now in a position to face the general identification
problem:

𝑑

𝑑𝑡
[

𝑀
1
𝑀

2

𝑀
3
𝑀

4

][

𝑥 (𝑡)

𝑦 (𝑡)
]

+ [

𝐿
1
𝐿
2

𝐿
3
𝐿
4

][

𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(126)

[

𝑀
1
𝑀

2

𝑀
3
𝑀

4

] [
𝑥 (0)

𝑦 (0)
] = [

𝑀
1
𝑀

2

𝑀
3
𝑀

4

] [
𝑥
0

𝑦
0

] , (127)

Φ
1
[𝑀

1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)] + Φ

2
[𝑀

3
𝑥 (𝑡) + 𝑀

4
𝑦 (𝑡)] = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] .

(128)

To this end, we will assume that

𝑀
1
,𝑀

3
have bounded inverses,

with D (𝑀
1
) ⊆ D (𝑀

3
) .

(129)

Multiply the second equation in the system by 𝑀
1
𝑀

−1

3
and

substract the obtained equation from the first one. We obtain
the following system equivalent to (126):

𝑑

𝑑𝑡
[

𝑀
1

𝑀
2

0 𝑀
2
−𝑀

1
𝑀

−1

3
𝑀

4

][

𝑥 (𝑡)

𝑦 (𝑡)
]

+ [

𝐿
1

𝐿
2

𝐿
1
−𝑀

1
𝑀

−1

3
𝐿
3
𝐿
2
−𝑀

1
𝑀

−1

3
𝐿
4

][

𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [

𝑧
1

𝑧
1
−𝑀

1
𝑀

−1

3
𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(130)

together with

[

𝑀
1

𝑀
2

0 𝑀
2
−𝑀

1
𝑀

−1

3
𝑀

4

][

𝑥 (0)

𝑦 (0)
]

= [

𝑀
1

𝑀
2

0 𝑀
2
−𝑀

1
𝑀

−1

3
𝑀

4

][

𝑥
0

𝑦
0

]

(131)

and the additional information

Ψ
1
[𝑀

1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)]

+ Ψ
2
[(𝑀

2
−𝑀

1
𝑀

−1

3
𝑀

4
) 𝑦 (𝑡)] = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] ,

(132)

where Ψ = (Ψ
1
, Ψ

2
) is related to Φ = (Φ

1
, Φ

2
) by

Ψ = Φ[

1 0

𝑀
3
𝑀

−1

1
−𝑀

3
𝑀

−1

1

] , (133)

so that

Ψ[𝑀
1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡) , (𝑀

2
−𝑀

1
𝑀

−1

3
𝑀

4
) 𝑦 (𝑡)]

= Ψ
1
[𝑀

1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)] + Ψ

2
[(𝑀

2
−𝑀

1
𝑀

−1

3
𝑀

4
) 𝑦 (𝑡)]

= Φ[

1 0

𝑀
3
𝑀

−1

1
−𝑀

3
𝑀

−1

1

][

𝑀
1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)

(𝑀
2
−𝑀

1
𝑀

−1

3
𝑀

4
) 𝑦 (𝑡)

]

= Φ[

𝑀
1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)

𝑀
3
𝑀

−1

1
𝑀

1
𝑥 (𝑡) + 𝑀

3
𝑀

−1

1
𝑀

2
𝑦 (𝑡) − 𝑀

3
𝑀

−1

1
𝑀

2
𝑦 (𝑡) + 𝑀

4
𝑦 (𝑡)

]

= Φ[

𝑀
1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)

𝑀
3
𝑥 (𝑡) + 𝑀

4
𝑦 (𝑡)

]

= Φ
1
[𝑀

1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)] + Φ

2
[𝑀

3
𝑥 (𝑡) + 𝑀

4
𝑦 (𝑡)] .

(134)
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Notice that the operator 𝑀
2
− 𝑀

1
𝑀

−1

3
𝑀

4
may have no

bounded inverse. Our next step is to translate to this case the
conditions established inTheorem 14. Assume, in addition to
(95),


(𝑀

2
−𝑀

1
𝑀

−1

3
𝑀

4
)

× (𝑧 (𝑀
2
−𝑀

1
𝑀

−1

3
𝑀

4
) + 𝐿

2
−𝑀

1
𝑀

−1

3
𝐿
4
)
−1L(𝑋)

≤ 𝐶 (1 + |𝑧|)
−𝛽
4 , ∀𝑧 ∈ Σ

𝛼
,

(135)

𝑀2
𝑥
 ≤ 𝐶


(𝑀

2
−𝑀

1
𝑀

−1

3
𝑀

4
) 𝑥



𝛿

‖𝑥‖
1−𝛿

, 0 < 𝛿 ≤ 1,

𝑥 ∈ 𝐷 (𝑀
2
−𝑀

1
𝑀

−1

3
𝑀

4
) ,

(136)

𝐿
1
−𝑀

1
𝑀

−1

3
𝐿
3
has a bounded extension to 𝑋, (137)

and thus 𝛿
1
= 1. Compute now

Ψ[
𝑧
1

𝑧
1
−𝑀

1
𝑀

−1

3
𝑧
2

]

= Φ[
1 0

𝑀
3
𝑀

−1

1
−𝑀

3
𝑀

−1

1

] [
𝑧
1

𝑧
1
−𝑀

1
𝑀

−1

3
𝑧
2

]

= Φ[
𝑧
1

𝑀
3
𝑀

−1

1
𝑧
1
−𝑀

3
𝑀

−1

1
𝑧
1
+ 𝑧

2

]

= Φ
1
[𝑧

1
] + Φ

2
[𝑧

2
] ,

(138)

as desired.
Therefore, we are in a position to establish the following

result.

Theorem 21. Suppose that operators 𝐿
𝑖
,𝑀

𝑖
satisfy (95), (135),

(136), and (137) and that 𝑀
1
,𝑀

3
∈ L(𝑋) have bounded

inverses, 𝛽
1
+ 𝛽

4
+ 𝛿 > 2, and 𝛼 + 𝛽

1
+ 𝛽

4
+ 𝛿 > 7/2,

𝜃 ∈ (4 − 𝛼 − 𝛽
1
− 𝛽

4
− 𝛿, 𝛼 + 𝛽

1
+ 𝛽

4
+ 𝛿 − 3),

[
𝑧
1

𝑧
2

] = [
𝑀

1
𝑧
∗

1
+𝑀

2
𝑧
∗

2

𝑀
3
𝑧
∗

1
+𝑀

4
𝑧
∗

2

] ,

[
𝐿
1
𝐿
2

𝐿
3
𝐿
4

] [
𝑥
0

𝑦
0

] = [
𝑀

1
𝑀

2

𝑀
3
𝑀

4

] [
𝑥
∗

0

𝑦
∗

0

] ,

(139)

where 𝑧∗
1
, 𝑥

∗

0
∈ D(𝐿

1
), 𝑧∗

2
, 𝑦

∗

0
∈ D(𝐿

4
), 𝑔 ∈ 𝐶

1+𝜃
([0, 𝜏];R),

and (111) holds together with the compatibility relation

Φ
1
[𝑀

1
𝑥
0
+𝑀

2
𝑦
0
] + Φ

2
[𝑀

3
𝑥
0
+𝑀

4
𝑦
0
] = 𝑔 (0) . (140)

Then the identification Problems (126)–(128) admit a unique
strict global solution (𝑥, 𝑦, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];

D(𝐿
4
)) × 𝐶

𝜃
([0, 𝜏];R), with 𝑀

1
𝑥 + 𝑀

2
𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋),

𝑀
3
𝑥 +𝑀

4
𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋).

Proof. It is a simple rewriting of the result in Theorem 18
as applied to Problems (130)–(132), taking into account the
relation to the starting Problems (126)–(128).

Of course, the preceding results apply to the abstract
strongly degenerate elliptic-parabolic system

𝑑

𝑑𝑡
[
𝑀

1
𝑀

2

0 0
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿
1
𝐿
2

𝐿
3
𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(141)

(𝑀
1
𝑥 +𝑀

2
𝑦) (0) = 𝑀

1
𝑥
0
+𝑀

2
𝑦
0
, (142)

Φ[𝑀
1
𝑥 (𝑡) + 𝑀

2
𝑦 (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] . (143)

However, in view of this generality, the corresponding
assumptions would yield the restrictions 𝑧

2
= 0 and𝑀

2
= 0.

To overcome this difficulty wewillmake suitable assumptions
on the operators involved.

Clearly, if 𝑧
2
= 0 and𝐿

4
has a bounded inverse, the second

equation in (141) gives 𝑦(𝑡) = −𝐿
−1

4
𝐿
3
𝑥(𝑡), so that (141)–(143)

reduces to the identification problem:
𝑑

𝑑𝑡
(𝑀

1
−𝑀

2
𝐿
−1

4
𝐿
3
) 𝑥 (𝑡) + (𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
) 𝑥 (𝑡)

= 𝑓 (𝑡) 𝑧
1
, 0 ≤ 𝑡 ≤ 𝜏,

(𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
) 𝑥 (0) = 𝑀

1
𝑥
0
+𝑀

2
𝑦
0
,

Φ [(𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
) 𝑥 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏.

(144)

Observe that the compatibility relation 𝑦
0
= 𝐿

−1

4
𝐿
3
𝑥
0
must

hold. On the other hand, all the results in Propositions 29 and
32 apply provided that operators 𝐴 = 𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
and 𝐵 =

𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
satisfy the assumptions described there.

If 𝑧
2

̸= 0, so that 𝑦
4
(𝑡) = 𝑓(𝑡)𝐿

−1

4
𝑧
2
−𝐿

−1

4
𝐿
3
𝑥(𝑡), we arrive

at the following identification problem:
𝑑

𝑑𝑡
(𝑀

1
𝑥 (𝑡) − 𝑀

2
𝐿
−1

4
𝐿
3
𝑥 (𝑡) + 𝑓 (𝑡)𝑀

2
𝐿
−1

4
𝑧
2
)

+ (𝐿
1
− 𝐿

2
𝐿
−1

4
𝐿
3
) 𝑥 (𝑡)

= 𝑓 (𝑡) [𝑧
1
− 𝐿

2
𝐿
−1

4
𝑧
2
] , 0 ≤ 𝑡 ≤ 𝜏,

[(𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
) 𝑥 + 𝑓 (𝑡)𝑀

2
𝐿
−1

4
𝑧
2
] (0) = 𝑀

1
𝑥
0
+𝑀

2
𝑦
0
,

Φ [(𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
) 𝑥 (𝑡) + 𝑓 (𝑡)𝑀

2
𝐿
−1

4
𝑧
2
]

= 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏.

(145)

Notice the extra difficulty arising from the fact that the
unknown term 𝑓(𝑡) is not supposed to be differentiable.
However, if 𝑀

1
− 𝑀

2
𝐿
−1

4
𝐿
3
has a bounded inverse, we can

introduce the new unknown:

(𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
) 𝑥 (𝑡) + 𝑓 (𝑡)𝑀

2
𝐿
−1

4
𝑧
2
= 𝜉 (𝑡) , (146)

so that

𝑥 (𝑡) = (𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
)
−1

𝜉 (𝑡)

− 𝑓 (𝑡) (𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
)
−1

𝑀
2
𝐿
−1

4
𝑧
2
.

(147)
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Then (145) reads equivalently

𝑑

𝑑𝑡
𝜉 (𝑡) + (𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
) (𝑀

1
−𝑀

2
𝐿
−1

4
𝐿
3
)
−1

𝜉 (𝑡)

= 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

𝜉 (0) = 𝑀
1
𝑥
0
+𝑀

2
𝑦
0
,

Φ [𝜉 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(148)

where

𝑧 = [𝑧
1
− 𝐿

2
𝐿
−1

4
𝑧
2

+ (𝐿
1
− 𝐿

2
𝐿
−1

4
𝐿
3
) (𝑀

1
−𝑀

2
𝐿
−1

4
𝐿
3
)
−1

𝑀
2
𝐿
−1

4
𝑧
2
]

(149)

This is a regular identification problem if, for example, (𝐿
1
−

𝐿
2
𝐿
−1

4
𝐿
3
)(𝑀

1
− 𝑀

2
𝐿
−1

4
𝐿
3
)
−1 is a bounded operator. Indeed,

we have the following.

Corollary 22. Let𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
have a bounded inverse and

let (𝐿
1
− 𝐿

2
𝐿
−1

4
𝐿
3
)(𝑀

1
− 𝑀

2
𝐿
−1

4
𝐿
3
)
−1 be bounded. Let the

compatibility relation Φ[𝑀
1
𝑥
0
+ 𝑀

2
𝑦
0
] = 𝑔(0) hold together

withΦ[𝑧] ̸= 0.ThenProblems (141)–(143) admit a unique strict
solution (𝑥, 𝑦, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];D(𝐿

4
)) ×

𝐶
𝜃
([0, 𝜏];R), 0 < 𝜃 < 1.

Corollary 22 can, in fact, be refined weakening the
assumption on (𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
)(𝑀

1
− 𝑀

2
𝐿
−1

4
𝐿
3
)
−1. For this

purpose consider the system

𝑀
1
𝑥 +𝑀

2
𝑦 = 𝜉,

𝐿
3
𝑥 + 𝐿

4
𝑦 = 𝑓 (𝑡) 𝑧

2
.

(150)

If operator𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
:= 𝑆 has an inverse, then

𝑥 = 𝑆
−1
𝜉 − 𝑆

−1
𝑀

2
𝐿
−1

4
𝑧
2
𝑓 (𝑡) ,

𝑦 = −𝐿
−1

4
𝐿
3
𝑆
−1
𝜉 + 𝑓 (𝑡) [𝐿

−1

4
+ 𝐿

−1

4
𝐿
3
𝑆
−1
𝑀

2
𝐿
−1

4
] 𝑧

2
.

(151)

Therefore, the pair (𝜉, 𝑓) satisfies the problem

𝜉

(𝑡) + (𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
) 𝑆

−1
𝜉 (𝑡) = 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

𝜉 (0) = 𝑀
1
𝑥
0
+𝑀

2
𝑦
0
,

Φ [𝜉 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(152)

where
Φ [𝑧] ̸= 0,

𝑧 := 𝑧
1
− 𝐿

2
𝐿
−1

4
𝑧
2
+ (𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
) 𝑆

−1
𝑀

2
𝐿
−1

4
𝑧
2
.

(153)

That is, (𝜉, 𝑓) satisfies (148), as desired.
Let A = (𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
)𝑆

−1. Then, from Theorem 2.1 in
[1] we deduce the following.

Theorem23. Let−A be the generator of an analytic semigroup
of negative type in 𝑋, 0 < 𝜃 < 𝜃

0
< 1, 𝜉

0
= 𝑀

1
𝑥
0
+

𝑀
2
𝑦
0
∈ DA(𝜃 + 1, +∞), 𝑧 ∈ DA(𝜃0, +∞), Φ[𝑧] ̸= 0, 𝑔 ∈

𝐶
1+𝜃

([0, 𝜏];R), Φ[𝜉
0
] = 𝑔(0). Then Problems (141)–(143)

admit a unique strict global solution (𝑥, 𝑦, 𝑓) ∈ 𝐶
𝜃
([0, 𝜏];

D(𝐿
1
)) × 𝐶

𝜃
([0, 𝜏];D(𝐿

4
)) × 𝐶

𝜃
([0, 𝜏];R), such that 𝑀

1
𝑥 +

𝑀
2
𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋).

Applying Corollary 31, we also obtain the following.

Corollary 24. If


(𝑧 + A)

−1L(𝑋)
≤ 𝐶 (1 + |𝑧|)

−𝛽
, ∀𝑧 ∈ Σ

1
, (154)

where 𝛽 ∈ (1/2, 1), 𝑧 ∈ D(A), Φ[𝑧] ̸= 0, 𝜉
0
= 𝑀

1
𝑥
0
+

𝑀
2
𝑦
0
∈ D(A2

), Φ[𝜉
0
] = 𝑔(0), 𝑔 ∈ 𝐶

1+𝜃
([0, 𝜏];R), 1 − 𝛽 <

𝜃 < 𝛽, then Problems (141)–(143) admit a unique strict global
solution (𝑥, 𝑦, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];D(𝐿

4
)) ×

𝐶
𝜃
([0, 𝜏];R), with𝑀

1
𝑥 +𝑀

2
𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋).

Example 25. Consider the identification problem:

𝑑

𝑑𝑡
[
𝐼 𝐼

0 0
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝛼𝐿 𝛽𝐿

𝛾𝐿 𝛿𝐿
] [

𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(𝑥 + 𝑦) (0) = 𝜉
0
,

Φ [(𝑥 + 𝑦) (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] , Φ [𝜉
0
] = 𝑔 (0) ,

(155)

where 𝐿 is a closed linear operator in the Banach space𝑋 and
𝛼, 𝛽, 𝛾, 𝛿 ∈ C.

To apply Theorem 23 we set 𝑆 = ((𝛿 − 𝛾)/𝛿)𝐼 and we
note that 𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
= ((𝛼𝛿 − 𝛽𝛾) /𝛿)𝐿, so that (𝐿

1
−

𝐿
2
𝐿
−1

4
𝐿
3
)𝑆

−1
= ((𝛼𝛿 − 𝛽𝛾)/(𝛿 − 𝛾))𝐿. Moreover,

𝑧 =
(𝛿 − 𝛾) 𝑧

1
+ (𝛼 − 𝛽) 𝑧

2

𝛿 − 𝛾
. (156)

It follows that if ((𝛼𝛿 − 𝛽𝛾)/(−𝛿 + 𝛾))𝐿 generates an analytic
semigroup of negative type and (𝛿 − 𝛾)𝑧

1
+ (𝛼 − 𝛽)𝑧

2
∈

𝐷
𝐿
(𝜃

0
, +∞),Φ[(𝛿−𝛾)𝑧

1
+(𝛼−𝛽)𝑧

2
] ̸= 0, 𝑔 ∈ 𝐶

1+𝜃
([0, 𝜏];R),

0 < 𝜃 < 𝜃
0
< 1, 𝜉

0
∈ 𝐷

𝐿
(𝜃 + 1,∞), then the identifi-

cation Problem (155) admits a unique global strict solution
(𝑥, 𝑦, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿)) × 𝐶

𝜃
([0, 𝜏];D(𝐿)) × 𝐶

𝜃
([0, 𝜏];R),

𝑥 + 𝑦 ∈ 𝐶
1+𝜃

([0, 𝜏]; 𝑋).
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We stress that we have been able to determine a triplet of
functions 𝑢

1
, 𝑢

2
: [0, 𝜏] × Ω → R and 𝑓 : [0, 𝜏] → R in the

following parabolic-elliptic identification problem:

𝐷
𝑡
[𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡)]

+ 𝛼𝐿 (𝑥,𝐷
𝑥
) 𝑢

1
(𝑥, 𝑡) + 𝛽𝐿 (𝑥,𝐷

𝑥
) 𝑢

2
(𝑥, 𝑡)

= 𝑓 (𝑡) 𝑧
1
(𝑥) , 𝑡 ∈ [0, 𝜏] , 𝑥 ∈ Ω,

(157)

𝛾𝐿 (𝑥,𝐷
𝑥
) 𝑢

1
(𝑥, 𝑡) + 𝛿𝐿 (𝑥,𝐷

𝑥
) 𝑢

2
(𝑥, 𝑡)

= 𝑓 (𝑡) 𝑧
2
(𝑥) , 𝑡 ∈ [0, 𝜏] , 𝑥 ∈ Ω,

(158)

𝑢
1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡)

= 𝑢
1,0
(𝑥) + 𝑢

2,0
(𝑥) , 𝑡 ∈ [0, 𝜏] , 𝑥 ∈ 𝜕Ω,

(159)

𝑢
1
(𝑥, 𝑡) = 𝑢

2
(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, (160)

∫
Ω

𝜓 (𝑥) [𝑢
1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡)] 𝑑𝑡 = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] . (161)

Here operator 𝐿(𝑥,𝐷
𝑥
) is defined by

D (𝐿) = 𝑊
2,𝑝

(Ω) ∩𝑊
1,𝑝

0
(Ω) , 𝑝 ∈ (1, +∞) ,

𝐿𝑢 (𝑥) = −

𝑛

∑

𝑖,𝑗=1

𝐷
𝑥
𝑖

[𝑎
𝑖,𝑗
(𝑥)𝐷

𝑥
𝑗

]

+

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑥)𝐷

𝑥
𝑖

+ 𝑎
0
(𝑥) , 𝑥 ∈ Ω,

(162)

where (𝛼𝛿 − 𝛽𝛾)(𝛾 − 𝛿)
−1

< 0 and the coefficients 𝑎
𝑖,𝑗
, 𝑎

𝑗
, 𝑎

0

satisfy the following assumptions:

𝑎
𝑖,𝑗
, 𝐷

𝑥
𝑖

𝑎
𝑖,𝑗
, 𝑎

𝑖
, 𝐷

𝑥
𝑖

𝑎
𝑖
, 𝑎

0
∈ 𝐶 (Ω) , 𝑎

𝑖,𝑗
(𝑥) = 𝑎

𝑗,𝑖
(𝑥) ,

𝑥 ∈ Ω, 𝑖, 𝑗 = 1, . . . , 𝑛,

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≥ 𝑐

0

𝜉


2

, 𝑥 ∈ Ω, 𝜉 ∈ R
𝑛
,

𝑎
0
(𝑥) −

1

𝑝

𝑛

∑

𝑖=1

𝐷
𝑥
𝑖

𝑎
𝑖
(𝑥) ≥ 𝑐

1
, 𝑥 ∈ Ω.

(163)

The same argument applies when 𝐿(𝑥,𝐷) is the opposite of
the realization in 𝑋 = 𝐿

𝑝

𝜇
(R𝑛

), 𝑝 ∈ (1, +∞), of the Ornstein-
Uhlenbeck operatorL

𝑝
, precisely

D (𝐿) = 𝑊
2,𝑝

𝜇
(R

𝑛
) , 𝑝 ∈ (1, +∞) , 𝐿 = −L

𝑝
+ 𝑘𝐼,

𝑘 ∈ R
+

(164)

(for the properties in 𝐿𝑝
𝜇
, 𝑝 ∈ (1, +∞), cf. Problem 9).

In this case (161) changes to

∫
Ω

𝜓 (𝑥) [𝑢
1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡)] 𝜇 (𝑑𝑥) = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] .

(165)

Example 26. Consider the identification problem:

𝑑

𝑑𝑡
[
𝐼 𝐼

𝐼 𝐼
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝛼𝐿 𝛽𝐿

𝛾𝐿 𝛿𝐿
] [

𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(𝑥 + 𝑦) (0) = 𝜉
0
,

Φ
1
[(𝑥 + 𝑦) (𝑡)] + Φ

2
[(𝑥 + 𝑦) (𝑡)]

= (Φ
1
+ Φ

2
) [(𝑥 + 𝑦) (𝑡)] = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] ,

(166)

with (Φ
1
+ Φ

2
)(𝜉

0
) = 𝑔(0).

Such a problem is easily reduced to an equivalent problem
related to the integral differential equation:

𝑑

𝑑𝑡
[
𝐼 𝐼

0 0
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝛼𝐿 𝛽𝐿

(𝛼 − 𝛾) 𝐿 (𝛽 − 𝛿) 𝐿
] [

𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
1
− 𝑧

2

] , ∀𝑡 ∈ [0, 𝜏] .

(167)

Consequently, we have come back to Example 25 with 𝛾, 𝛿, 𝑧
2

being replaced by 𝛼 − 𝛾, 𝛽 − 𝛿, 𝑧
1
− 𝑧

2
, respectively.

Taking this into account, the same conclusions as
Example 25 can be obtained, provided that 𝛼𝛿 − 𝛽𝛾 ̸= 0,
𝛼 − 𝛽 − 𝛾 + 𝛿 ̸= 0, −(𝛼𝛿 − 𝛽𝛾)(𝛼 − 𝛽 − 𝛾 + 𝛿)

−1
𝐿 generates

a holomorphic semigroup in 𝑋, (𝛾 − 𝛿)𝑧
1
− (𝛼 − 𝛽)𝑧

2
∈

𝐷
𝐿
(𝜃

0
, +∞), (Φ

1
+ Φ

2
)[(𝛾 − 𝛿)𝑧

1
− (𝛼 − 𝛽)𝑧

2
] ̸= 0, 𝜉

0
∈

𝐷
𝐿
(𝜃+1, +∞).Then the identification problem above admits

a unique global strict solution (𝑥, 𝑦, 𝑓) ∈ 𝐶
𝜃
([0, 𝜏];D(𝐿)) ×

𝐶
𝜃
([0, 𝜏];D(𝐿)) × 𝐶

𝜃
([0, 𝜏];R), 𝑥 + 𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋).

Consider now the identification problem:

𝑑

𝑑𝑡
[
0 0

𝑀
3
0
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿
1
𝐿
2

𝐿
3
𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] ,

∀𝑡 ∈ [0, 𝜏] ,

(𝑀
3
𝑥) (0) = 𝑀

3
𝑥
0
,

Φ [𝑀
3
𝑥 (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] , Φ [𝑀

3
𝑥
0
] = 𝑔 (0) .

(168)

Under the assumption that 𝐿
2
have a bounded inverse we get

𝑦 = 𝑓(𝑡)𝐿
−1

2
𝑧
1
− 𝐿

−1

2
𝐿
1
𝑥. Therefore we obtain the following

differential equation for the single unknown 𝑥:

𝑑

𝑑𝑡
(𝑀

3
𝑥) (𝑡) + (𝐿

3
− 𝐿

4
𝐿
−1

2
𝐿
1
) 𝑥 = 𝑓 (𝑡) [𝑧

2
− 𝐿

4
𝐿
−1

2
𝑧
1
] .

(169)

Now it suffices to suppose that the pair (𝑀
3
, 𝐿

3
− 𝐿

4
𝐿
−1

2
𝐿
1
)

satisfies the properties described in [1] or in Section 5 in order
to obtain existence and uniqueness for the given identifica-
tion problem.
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If𝑀
3
has an inverse𝑀−1

3
, introduce function 𝜉 defined by

𝑀
3
𝑥 = 𝜉, so that

𝜉

(𝑡) + 𝐿

3
𝑀

−1

3
𝜉 (𝑡) + 𝐿

4
𝑦 (𝑡) = 𝑓 (𝑡) 𝑧

2
. (170)

Assuming that 𝐿
4
has a bounded inverse, we have

𝑦 (𝑡) = 𝑓 (𝑡) 𝐿
−1

4
𝑧
2
− 𝐿

−1

4
𝜉

(𝑡) − 𝐿

−1

4
𝐿
3
𝑀

−1

3
𝜉 (𝑡) . (171)

Substituting in the first equation of the system, we get

𝐿
1
𝑀

−1

3
𝜉 (𝑡)

= 𝐿
2
𝐿
−1

4
𝜉

(𝑡) − 𝐿

2
𝐿
−1

4
𝐿
3
𝑀

−1

3
𝜉 (𝑡)

= 𝑓 (𝑡) [𝑧
1
− 𝐿

2
𝐿
−1

4
𝑧
2
] .

(172)

That is, we have obtained the following differential identifica-
tion problem for 𝜉:

𝐿
2
𝐿
−1

4
𝜉

(𝑡) + [𝐿

2
𝐿
−1

4
𝐿
3
− 𝐿

1
]𝑀

−1

3
𝜉 (𝑡)

= 𝑓 (𝑡) [𝐿
2
𝐿
−1

4
𝑧
2
− 𝑧

1
] , 0 ≤ 𝑡 ≤ 𝜏,

𝜉 (0) = 𝑀
3
𝑥
0
,

Φ [𝜉 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏.

(173)

This identification problem might be treated similarly under
the obvious hypothesis 𝐿

2
𝐿
−1

4
to have a bounded inverse. But

if 𝐿
2
is invertible we come back to the first case.

The assumption requiring 𝐿
2
to be invertible seems really

essential in some sense. As an example, take

𝑑

𝑑𝑡
[
0 0

𝑀
3
0
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿
1

0

0 𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] ,

∀𝑡 ∈ [0, 𝜏] ,

(𝑀
3
𝑥) (0) = 𝜉

0
,

Φ [𝑀
3
𝑥 (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] , Φ [𝜉

0
] = 𝑔 (0) ,

(174)

where 𝐿
1
and 𝐿

2
admit bounded inverses. Then 𝑥(𝑡) =

𝑓(𝑡)𝐿
−1

1
𝑧
1
implies Φ[𝑀

3
𝑥(𝑡)] = Φ[𝑓(𝑡)𝑀

3
𝐿
−1

1
𝑧
1
] = 𝑔(𝑡).

Hence, ifΦ[𝑀
3
𝐿
−1

1
𝑧
1
] ̸= 0, then we necessarily have

𝑓 (𝑡) =
𝑔 (𝑡)

Φ [𝑀
3
𝐿
−1

1
𝑧
1
]
, 𝑥 (𝑡) =

𝑔 (𝑡)

Φ [𝑀
3
𝐿
−1

1
𝑧
1
]
𝐿
−1

1
𝑧
1
.

(175)

Moreover, the second equation furnishes uniquely 𝑦(𝑡). This
shows the importance of the invertibility of𝑀

3
, as expected.

Notice too that no assumption like semigroup generation is
required to operators 𝐿

1
and 𝐿

2
.

Example 27. Let 𝐴, 𝐵 be two bounded linear operators in 𝑋.
Observe first that the identification problem

𝑑

𝑑𝑡
[
𝐴 𝐵

𝐴 𝐵
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿
1
𝐿
2

𝐿
3
𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(𝐴𝑥 + 𝐵𝑦) (0) = 𝜉
0
,

Φ [𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] ,

(176)

is equivalent to the problem

𝑑

𝑑𝑡
[
𝐴 𝐵

0 0
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿
1

𝐿
2

𝐿
1
− 𝐿

3
𝐿
2
− 𝐿

4

] [
𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
1
− 𝑧

2

] , ∀𝑡 ∈ [0, 𝜏] ,

(𝐴𝑥 + 𝐵𝑦) (0) = 𝜉
0
,

Φ [𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] .

(177)

Thus we can apply bothTheorem 23 and Corollary 22. Oper-
ator A is now given by (𝐿

1
− 𝐿

2
(𝐿

2
− 𝐿

4
)
−1
(𝐿

1
− 𝐿

3
))(𝐴 −

𝐵(𝐿
2
−𝐿

4
)
−1
(𝐿

1
−𝐿

3
))
−1, while 𝑧 is given by 𝑧 = 𝑧

1
−𝐿

2
(𝐿

2
−

𝐿
4
)
−1
(𝑧

1
− 𝑧

2
) + A𝐵(𝐿

2
− 𝐿

4
)
−1
(𝑧

1
− 𝑧

2
).

Example 28. Let 𝐴, 𝐵 be two bounded linear operators in 𝑋,
with 0 ∈ 𝜌(𝐵), 0 ∈ 𝜌(𝐴 + 𝑘𝐵) for some 𝑘 ̸= 0.

Consider the identification problem:

𝑑

𝑑𝑡
[
𝐴 𝐴

𝐵 𝐵
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿
1
𝐿
2

𝐿
3
𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
1

] , ∀𝑡 ∈ [0, 𝜏] ,

𝐴 (𝑥 + 𝑦) (0) = 𝐴𝜉
0
, 𝐵 (𝑥 + 𝑦) (0) = 𝐵𝜂

0
,

Φ
1
[𝐴 (𝑥 + 𝑦) (𝑡)] + Φ

2
[𝐵 (𝑥 + 𝑦) (𝑡)]

= 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] ,

(178)

with a compatibility relation 𝑔(0) = Φ
1
[𝐴𝜉

0
] + Φ

2
[𝐵𝜂

0
],

𝐴𝜉
0
= 𝐴𝜂

0
.

Note that, under our assumptions on 𝐴 and 𝐵, such a
problem is equivalent to the following:

𝑑

𝑑𝑡
[
𝐼 𝐼

𝐼 𝐼
] [

𝑥 (𝑡)

𝑦 (𝑡)
]

+ [
(𝐴 + 𝑘𝐵)

−1
(𝐿

1
+ 𝑘𝐿

3
) (𝐴 + 𝑘𝐵)

−1
(𝐿

2
+ 𝑘𝐿

4
)

𝐵
−1
𝐿
3

𝐵
−1
𝐿
4

]

= 𝑓 (𝑡) [
(𝐴 + 𝑘𝐵)

−1
(𝑧

1
+ 𝑘𝑧

2
)

𝐵
−1
𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(𝑥 + 𝑦) (0) = (𝐴 + 𝑘𝐵)
−1
[𝐴𝜉

0
+ 𝑘𝐵𝜂

0
] = 𝜂

0
,

Ψ
1
[𝑥 (𝑡) + 𝑦 (𝑡)] + Ψ

2
[𝑥 (𝑡) + 𝑦 (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] ,

(179)

where Ψ
1
= Φ

1
𝐴, Ψ

2
= Φ

2
𝐵.
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Since, in turn, this identification problem is equivalent to

𝑑

𝑑𝑡
[
𝐼 𝐼

0 0
] [

𝑥 (𝑡)

𝑦 (𝑡)
]

+ [
(𝐴 + 𝑘𝐵)

−1
(𝐿

1
+ 𝑘𝐿

3
) (𝐴 + 𝑘𝐵)

−1
(𝐿

2
+ 𝑘𝐿

4
)

(𝐴 + 𝑘𝐵)
−1
(𝐿

1
+ 𝑘𝐿

3
) − 𝐵

−1
𝐿
3
(𝐴 + 𝑘𝐵)

−1
(𝐿

2
+ 𝑘𝐿

4
) − 𝐵

−1
𝐿
4

] [
𝑥 (𝑡)

𝑦 (𝑡)
]

= 𝑓 (𝑡) [
(𝐴 + 𝑘𝐵)

−1
(𝑧

1
+ 𝑘𝑧

2
)

(𝐴 + 𝑘𝐵)
−1
(𝑧

1
+ 𝑘𝑧

2
) − 𝐵

−1
𝑧
2

] , ∀𝑡 ∈ [0, 𝜏] ,

(𝑥 + 𝑦) (0) = (𝐴 + 𝑘𝐵)
−1
[𝐴𝜉

0
+ 𝑘𝐵𝜂

0
] = 𝜂

0
,

(Ψ
1
+ Ψ

2
) [(𝑥 + 𝑦) (𝑡)] = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] .

(180)

Theorem 23 and Corollary 24 run as well.
As an example, let 𝑋 = 𝐿

𝑝
(Ω), 1 < 𝑝 < +∞, Ω being a

domain in R𝑛 of class 𝐶2. Let 𝐿 = −Δ be the laplacian in 𝑋

endowed with Dirichlet boundary conditions, 𝐿
1
= 𝛼𝐿, and

let 𝐿
2
= 𝛽𝐿, 𝐿

3
= 𝛾𝐿, 𝐿

4
= 𝛿𝐿, 𝛼, 𝛽, 𝛾, 𝛿 ∈ C. Let 𝑚 and 𝑛 be

two real-valued continuous functions on Ω, 𝑛(𝑥) ≥ 𝑐 > 0, 𝑚
being possibly negative. Let 𝑘 ∈ R be such that𝑚(𝑥)+𝑘𝑛(𝑥) >
0 for all 𝑥 ∈ Ω. Given 𝑧

1
, 𝑧

2
∈ 𝐿

𝑝
(Ω), our identification

problem consists in finding a triplet (𝑢, V, 𝑓) such that

𝐷
𝑡
(𝑚 (𝑥) (𝑢 (𝑥, 𝑡) + V (𝑥, 𝑡))) − 𝛼Δ𝑢 (𝑥, 𝑡) − 𝛽ΔV (𝑥, 𝑡)

= 𝑓 (𝑡) 𝑧
1
(𝑥) , 𝑡 ∈ [0, 𝜏] , 𝑥 ∈ Ω,

𝐷
𝑡
(𝑛 (𝑥) (𝑢 (𝑥, 𝑡) + V (𝑥, 𝑡))) − 𝛾Δ𝑢 (𝑥, 𝑡) − 𝛿ΔV (𝑥, 𝑡)
= 𝑓 (𝑡) 𝑧

2
(𝑥) , 𝑡 ∈ [0, 𝜏] , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) = 0, 𝑡 ∈ [0, 𝜏] , 𝑥 ∈ 𝜕Ω,

𝑚 (𝑥) [𝑢 (𝑥, 0) + V (𝑥, 0)] = 𝑚 (𝑥) 𝜉
0
(𝑥) , 𝑥 ∈ Ω,

𝑛 (𝑥) [𝑢 (𝑥, 0) + V (𝑥, 0)] = 𝑛 (𝑥) 𝜂
0
(𝑥) , 𝑥 ∈ Ω,

∫
Ω

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥) 𝑛 (𝑥)] [𝑢 (𝑥, 𝑡) + V (𝑥, 𝑡)] 𝑑𝑡

= 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] ,

(181)

𝜂
1
, 𝜂

2
being given functions in 𝐿

𝑞
(Ω), 1/𝑝 + 1/𝑞 = 1, with

∫
Ω
[𝜂

1
(𝑥)𝑚(𝑥) + 𝜂

2
(𝑥)𝑛(𝑥)]𝜉

0
(𝑥) 𝑑𝑥 = 𝑔(0), 𝑚(𝑥)[𝜉

0
(𝑥) −

𝜂
0
(𝑥)] ≡ 0. If ](𝑥) := 𝑚(𝑥) + 𝑘𝑛(𝑥), let

𝑎 (𝑥) =
𝛼 + 𝑘𝛾

𝛾 (𝑥)
, 𝑏 (𝑥) =

𝛽 + 𝑘𝛿

] (𝑥)
,

𝑐 (𝑥) =
𝛼 + 𝑘𝛾

] (𝑥)
−

𝛾

𝑛 (𝑥)
, 𝑑 (𝑥) =

𝛽 + 𝑘𝛿

] (𝑥)
−

𝛾

𝑛 (𝑥)
.

(182)

Then 𝑆−1 = 𝐿
−1
(𝑑/ (𝑑 − 𝑐))𝐿, 𝐿

1
− 𝐿

2
𝐿
−1

4
𝐿
3
= ((𝑎𝑑 − 𝑏𝑐)/𝑑)𝐿,

so that −A = −((𝑎𝑑 − 𝑏𝑐)/ (𝑑 − 𝑐))𝐿 = ((𝑎𝑑 − 𝑏𝑐)/ (𝑑 − 𝑐))Δ is
assumed to generate an analytic semigroup in 𝐿𝑝(Ω).

Since

𝑧 (𝑥) =
𝑧
1
(𝑥) + 𝑘𝑧

2
(𝑥)

] (𝑥)
−
𝑏 (𝑥)

𝑑 (𝑥)
[
𝑧
1
(𝑥) + 𝑘𝑧

2
(𝑥)

] (𝑥)
−
𝑧
2
(𝑥)

𝑛 (𝑥)
]

+
𝑎𝑑 − 𝑏𝑐

𝑑 − 𝑐
(
𝛽 + 𝑘𝛿

𝑟 (𝑥)
−

𝛿

𝑛 (𝑥)
)

−1

× [
𝑧
1
(𝑥) + 𝑘𝑧

2
(𝑥)

] (𝑥)
−
𝑧
2
(𝑥)

𝑛 (𝑥)
] ,

(183)

our previous abstract assumptions read as

𝑧 ∈ DA (𝜃0,∞) = 𝐷
Δ
(𝜃

0
,∞) ,

∫
Ω

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥) 𝑛 (𝑥)] 𝜂

0
(𝑥) 𝑑𝑥 = 𝑔 (0) ,

∫
Ω

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥) 𝑛 (𝑥)] 𝑧 (𝑥) 𝑑𝑥 ̸= 0.

(184)

Suppose 𝛼, 𝛽, 𝛾, 𝛿 ∈ R. Trivial computations show that

𝑎𝑑 − 𝑏𝑐

𝑑 − 𝑐

= ( (𝛼 + 𝑘𝛾) (𝛽 + 𝑘𝛿) 𝑛 (𝑥) − (𝛼 + 𝑘𝛾) 𝛿] (𝑥)

− (𝛼 + 𝑘𝛾) 𝑛 (𝑥) ] (𝑥) + 𝛾]2 (𝑥))

× (] (𝑥) 𝑛 (𝑥) [𝛽 − 𝛼 + 𝑘 (𝛿 − 𝛾)] + ] (𝑥) (𝛾 − 𝛿))−1

= 𝜔 (𝑥) .

(185)

Weneed𝜔(𝑥) ≥ 𝑐 > 0 for all𝑥 ∈ Ω.Therefore, all the required
elements are determined.

Clearly, if −A generates an infinitely differentiable semi-
group

(𝑧 + A)

−1L(𝑋)
≤ 𝐶 (1 + |𝑧|)

−𝛽
, ∀𝑧 ∈ Σ

1
, 𝛽 ∈ (

1

2
, 1) ,

(186)

we are compelled to require 𝑧 ∈ D(A), as in Corollary 24, (cf.
[10, 13, 14]).
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5. Some Improvements of Known Results

For the reader’s convenience, we report here the main results
in [1] with some minor improvements.

Proposition 29. Let 0 < 𝛽 ≤ 𝛼 ≤ 1, 𝛼 + 𝛽 > 3/2, 2 − 𝛼 − 𝛽 <

𝜃 < 𝛼 + 𝛽 − 1. Let 𝑋 be a Banach space, let Φ ∈ 𝑋
∗ and

𝐴 : D(𝐴) ⊂ 𝑋 → 𝑋 and 𝐵 : D(𝐵) ⊂ 𝑋 → 𝑋 be two
closed linear operators such that (i) D(𝐴) ⊆ D(𝐵)

𝑗
; (ii) 𝐴 is

invertible; (iii) ‖𝐵(𝜆𝐵+𝐴)−1‖L(𝑋)
≤ 𝑐(1+|𝜆|)

−𝛽 for all 𝜆 ∈ Σ
𝛼
,

where

Σ
𝛼
= {𝜆 ∈ C : Re 𝜆 ≥ −𝑐

0
(1 + |𝜆|)

𝛼
} , 𝑐

0
> 0. (187)

Let 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R) and 𝑧 ∈ 𝑋 satisfy the following proper-
ties for some 𝑧∗,V∗ ∈ D(𝐴):

Φ [𝑧] ̸= 0, Φ [𝐵𝑢
0
] = 𝑔 (0) , 𝑧 = 𝐵𝑧

∗
, 𝐴𝑢

0
= 𝐵V∗.

(188)

Then the identification problem

(𝐵𝑢)

(𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

(𝐵𝑢) (0) = 𝐵𝑢
0
,

Φ [𝐵𝑢 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(189)

admits a unique global solution:

(𝑢, 𝑓) ∈ [𝐶
𝜃
([0, 𝜏] ;D (𝐴))] × 𝐶

𝜃
([0, 𝜏] ;R) ,

𝐵𝑢 ∈ 𝐶
1+𝜃

([0, 𝜏] ; 𝑋) .

(190)

Remark 30. Assumptions (ii) and (iii) can be weakened to

(iibis) 𝑘
0
𝐵 + 𝐴 is invertible for some 𝑘

0
∈ R;

(iiibis) ‖𝐵(𝜆𝐵 + 𝐴)−1‖L(𝑋)
≤ 𝑐(1 + |𝜆|)

−𝛽 for all 𝜆 ∈ 𝑘
0
+ Σ

𝛼
.

Indeed, let us introduce the new unknown V(𝑡) =

𝑒
−𝑘
0
𝑡
𝑢(𝑡). Then Problem (189) is equivalent to the following:

(𝐵V) (𝑡) + (𝐴 + 𝑘
0
𝐵) V (𝑡) = 𝑒

−𝑘
0
𝑡
𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

(𝐵V) (0) = 𝐵𝑢
0
,

Φ [𝐵𝑢 (𝑡)] = 𝑒
−𝑘
0
𝑡
𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏.

(191)

Proposition 29 applies immediately provided we replace the
triplet (𝐴, 𝑓, 𝑔) by ((𝐴 + 𝑘

0
𝐵), 𝑒

−𝑘
0
𝑡
𝑓, 𝑒

−𝑘
0
𝑡
𝑔). Once V and

𝑓
1
(𝑡) = 𝑒

−𝑘
0
𝑡
𝑓(𝑡) have been determined so are 𝑢 and 𝑓, with

the same regularity.
As a consequence, we have the following result relative to

the generators −𝐴 of infinitely differentiable semigroups of
parabolic type with nonnecessarily dense domains, satisfying


(𝜆 + 𝐴)

−1L(𝑋)
≤ 𝑐 (1 + |𝜆|)

−𝛽
, 𝜆 ∈ 𝑘

0
+ Σ

𝛼
. (192)

Corollary 31. Let 0 < 𝛽 ≤ 𝛼 ≤ 1, 𝛼+𝛽 > 3/2, and 2−𝛼−𝛽 <

𝜃 < 𝛼 + 𝛽 − 1. Let Ψ ∈ 𝑋
∗ and the closed linear operator 𝐴

satisfy (192) in 𝑋. Let 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R), Φ ∈ 𝑋
∗, 𝑧 ∈ D(𝐴),

Φ[𝑧] ̸= 0, 𝑤
0
∈ 𝐷(𝐴

2
), Φ[𝑤

0
] = 𝑔(0). Then the identification

problem

𝑤

(𝑡) + 𝐴𝑤 (𝑡) = 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

𝑤 (0) = 𝑤
0
,

Ψ [𝑤 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(193)

has a unique global solution (𝑤, 𝑓) ∈ [𝐶1+𝜃
([0, 𝜏]; 𝑋) ∩ 𝐶

𝜃
([0,

𝜏],D(𝐴))] × 𝐶
𝜃
([0, 𝜏];R).

In particular, but very important case, where 𝛼 = 𝛽 = 1,
and 𝑋 is reflexive, it is possible to weaken the assumptions
on the initial data and 𝑧. Notice that in the statement of
Proposition 29 𝑧 must belong to the range of 𝐵𝐴−1 (or of
𝐵(𝐴 + 𝑘

0
𝐵)

−1
) and Φ[𝑧] ̸= 0.

The following extension toTheorem 2.2 in [1] holds.

Proposition 32. Let 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑋 and 𝐵 : D(𝐵) ⊂

𝑋 → 𝑋 be two closed linear operators in the reflexive Banach
space𝑋, withD(𝐴) ⊆ D(𝐵),Φ ∈ 𝑋

∗ and 𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R),
𝜃 ∈ (0, 1). Suppose

Φ[𝐵𝑢
0
] = 𝑔 (0) ,


𝐵 (𝜆𝐵 + 𝐴)

−1L(𝑋)
≤ 𝑐 (1 + |𝜆|)

−1
, 𝜆 ∈ 𝑘

0
+ Σ

𝛼
.

(194)

Let 𝑇 = 𝐵(𝑘
0
𝐵 + 𝐴)

−1 and let 𝑃 be the projection of 𝑋 on the
null space𝑁(𝑇) along 𝑅(𝑇). Suppose 𝜃

0
∈ (𝜃, 1) and

Φ [(𝐼 − 𝑃) 𝑧] ̸= 0, (195)

sup
𝑡>0

𝑡
𝜃 
(𝐴 + 𝑘

0
𝐵) [(𝑡 + 𝑘

0
) 𝐵 + 𝐴]

−1

× (𝐼 − 𝑃) (𝐴 + 𝑘
0
𝐵) 𝑢

0

𝑅(𝑇)
< +∞,

(196)

sup
𝑡>0

𝑡
𝜃
0

(𝐴 + 𝑘

0
𝐵) [(𝑡 + 𝑘

0
) 𝐵 + 𝐴]

−1

(𝐼 − 𝑃) 𝑧
𝑅(𝑇)

< +∞.

(197)

Then the identification Problem (189) admits a unique global
solution

(𝑢, 𝑓) ∈ [𝐶
𝜃
([0, 𝜏] ;D (𝐴))] × 𝐶

𝜃
([0, 𝜏] ;R) ,

𝐵𝑢 ∈ 𝐶
1+𝜃

([0, 𝜏] ; 𝑋) .

(198)

Remark 33. If𝑇 has a closed range, conditions (196)-(197) can
be dropped out. Indeed, it suffices to applyTheorem 2.2 in [1]
to (191) and to observe that (𝐷(�̃�−1), 𝐷(�̃�

−1
))
𝜃,∞

reduces to
𝐷(�̃�

−1
) = 𝑅(�̃�) = 𝑅(𝑇), �̃� denoting the restriction of 𝑇 to

𝑅(𝑇) = 𝑅(𝑇).

Remark 34. Very recently in [8, Theorem 3.1] the above
results have been improved to the case 𝛼 = 𝛽 = 1 and 𝐵 = 𝐼.

Proposition 35. Let 𝐴 be the generator of an analytic semi-
group in the complex Banach space 𝑋, let Φ ∈ 𝑋

∗, 𝑦
0
∈
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D(𝐴), 𝐴𝑦
0
∈ (𝑋,D(𝐴))

𝜃,∞
for some 𝜃 ∈ (0, 1), and let 𝑔 ∈

𝐶
1+𝜃

([0, 𝜏];C), 𝑧 ∈ (𝑋,D(𝐴))
𝜃,∞

, Φ[𝑧] ̸= 0, Φ[𝑦
0
] = 𝑔(0).

Then the inverse problem

𝑦

(𝑡) = 𝐴𝑦 (𝑡) + 𝑓 (𝑡) 𝑧, 0 ≤ 𝑡 ≤ 𝜏,

𝑦 (0) = 𝑦
0
,

Φ [𝑦 (𝑡)] = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(199)

admits a unique solution (𝑦, 𝑓) such that

𝑡 ∈ 𝐶
1+𝜃

([0, 𝜏] ; 𝑋) ∩ 𝐶
𝜃
([0, 𝜏] ;D (𝐴)) ,

𝑓 ∈ 𝐶
𝜃
([0, 𝜏] ;R) .

(200)

As for Problem (199), also the hyperbolic case, corresponding to
the case where𝐴 generates a𝐶

0
-semigroup, has been dealt with

in [8, Corollary 2.1].

Proposition 36. Let 𝐴 be the generator of a 𝐶
0
-semigroup in

the complex Banach space 𝑋, and let Φ ∈ 𝑋
∗, 𝑧 ∈ D(𝐴),

Φ[𝑧] ̸= 0, 𝑦
0
∈ D(𝐴), 𝑔 ∈ 𝐶

1
([0, 𝜏];C), Φ[𝑦

0
] = 𝑔(0). Then

the inverse Problem (199) admits a unique solution (𝑦, 𝑓) ∈

[𝐶
1
([0, 𝜏]; 𝑋) ∩ 𝐶([0, 𝜏];D(𝐴))] × 𝐶([0, 𝜏];R).

In the next section, we are giving specific applications of
the results listed in this section.

6. Applications

In this section, we will give several concrete applications of
our previous abstract results.

Problem 37. First, we recall some previous results from [15–
17]. Let 𝐿 and 𝑀 be two linear differential operators with
domains in 𝐿

𝑝
(Ω), 𝑝 ∈ (1, +∞), Ω ∈ R𝑛 being a bounded

region with a boundary 𝜕Ω of class 𝐶2.𝑀—a multiplication
operator by a nonnegative function 𝑚 ∈ 𝐿

∞
(Ω)—is defined

by

D (𝑀) = 𝐿
𝑝
(Ω) , 𝑀𝑢 (𝑥) = 𝑚 (𝑥) 𝑢 (𝑥) , 𝑥 ∈ Ω. (201)

Operator 𝐿 is defined either by

D (𝐿) = 𝑊
2,𝑝

(Ω) ∩𝑊
1,𝑝

0
(Ω) ,

𝐿𝑢 (𝑥) = L𝑢 (𝑥)

:= −

𝑛

∑

𝑖,𝑗=1

𝐷
𝑥
𝑖

[𝑎
𝑖,𝑗
(𝑥)𝐷

𝑥
𝑗

𝑢 (𝑥)]

+

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥)𝐷

𝑥
𝑗

𝑢 (𝑥) + 𝑎
0
(𝑥) 𝑢 (𝑥) ,

𝑥 ∈ Ω, 𝑢 ∈ D (𝐿) ,

(202)

or by

D (𝐿)

=

{

{

{

𝑢 ∈ 𝑊
2,𝑝

(Ω) :

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) ]

𝑖
(𝑥)𝐷

𝑥
𝑗

𝑢 (𝑥)

+ 𝑏 (𝑥) 𝑢 (𝑥) = 0 on 𝜕Ω

}

}

}

,

𝐿𝑢 (𝑥) = L𝑢 (𝑥) , 𝑥 ∈ Ω, 𝑢 ∈ D (𝐿) .

(203)

We assume that the coefficients 𝑎
𝑖,𝑗
, 𝑎

𝑗
, 𝑎

0
enjoy the following

properties:

𝑎
𝑖,𝑗
, 𝐷

𝑥
𝑖

𝑎
𝑖,𝑗
, 𝑎

𝑖
, 𝐷

𝑥
𝑖

𝑎
𝑖
, 𝑎

0
∈ 𝐶 (Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛,

𝑎
𝑖,𝑗
(𝑥) = 𝑎

𝑗,𝑖
(𝑥) , 𝑥 ∈ Ω,

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≥ 𝑐

0

𝜉


2

, 𝑥 ∈ Ω, 𝜉 ∈ R
𝑛
,

𝑎
0
(𝑥) −

1

𝑝

𝑛

∑

𝑖=1

𝐷
𝑥
𝑖

𝑎
𝑖
(𝑥) ≥ 𝑐

1
, 𝑥 ∈ Ω,

𝑏 (𝑥) +
1

𝑝

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑥) ]

𝑖
(𝑥) ≥ 0, 𝑥 ∈ 𝜕Ω,

(204)

𝑐
0
and 𝑐

1
being two positive constants.

Then it is shown inTheorem2.1 in [17] that the pair (𝐿,𝑀)

satisfies in the sector
Σ (𝑐) = {𝑧 ∈ C : Re 𝑧 ≥ 𝑐 (1 + |𝑧|)} , 𝑐 ∈ R

+ (205)

the following estimate with 𝛽 = 1/𝑝:

𝑀(𝑧𝑀 + 𝐿)

−1L(𝑋)
≤ 𝐶 (1 + |𝑧|)

−𝛽
. (206)

Let us consider the following identification parabolic-elliptic
problem:

𝐷
𝑡
[
𝑚

1
(𝑥) 𝑘𝑚

2
(𝑥)

𝑏

0 𝑚
2
(𝑥)

𝑎 ] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

+ [
𝐿
1
(𝑥,𝐷

𝑥
) 𝐿

2
(𝑥,𝐷

𝑥
)

𝑂 𝐿
4
(𝑥,𝐷

𝑥
)
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [
𝑧
1

𝑧
1

] , ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

[
𝑚

1
(𝑥) 𝑘𝑚

2
(𝑥)

𝑏

0 𝑚
2
(𝑥)

𝑎 ] [
𝑢 (0, 𝑥)

V (0, 𝑥)]

= [
𝑚

1
(𝑥) 𝑘𝑚

2
(𝑥)

𝑏

0 𝑚
2
(𝑥)

𝑎 ] [
𝑢
0
(𝑥)

V
0
(𝑥)

] , ∀𝑥 ∈ Ω,

∫
Ω

{𝜂
1
(𝑥) [𝑚

1
(𝑥) 𝑢 (𝑡, 𝑥) + 𝑘𝑚

2
(𝑥)

𝑏 V (𝑡, 𝑥)]

+ 𝜂
2
(𝑥)𝑚

2
(𝑥)

𝑎 V (𝑡, 𝑥) } 𝑑𝑥 = 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] ,

(207)
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where the linear operators 𝐿
𝑖
(𝑥, 𝐷

𝑥
), 𝑖 = 1, 2, 4, andD(𝐿

4
) ⊂

D(𝐿
2
) enjoy the same properties as 𝐿(𝑥,𝐷

𝑥
) with 𝛽 = 1/𝑝,

𝑚
1
, 𝑚

2
∈ 𝐿

∞
(Ω) with 𝑚

1
≥ 0 and 𝑚

2
≥ 0 a.e. in Ω, 𝑘 ̸= 0

(if 𝑘 = 0 we can apply Remark 19), 0 < 𝑎 ≤ 𝑏, 𝑧
1
, 𝑧

2
, 𝑢

0
, V

0
∈

𝐿
𝑝
(Ω), 𝜂

1
, 𝜂

2
∈ 𝐿

𝑞
(Ω), 1/𝑝 + 1/𝑞 = 1, 𝑔 ∈ 𝐶([0, 𝜏];R).

We know that the pairs (𝐿
1
(𝑥, 𝐷

𝑥
),𝑀

1
), (𝐿

2
(𝑥, 𝐷

𝑥
),𝑀

4
),

where𝑀
4
𝑢(𝑥) = 𝑚

2
(𝑥)

𝑎
𝑢(𝑥), satisfy (206) in 𝐿𝑝(Ω).

In view of the moment inequality (cfr. [18, page 115]),
assumption (97) holds with 𝛿 = 𝑏/𝑎. Therefore, Theorem 14
applies provided that (2/𝑝) + (𝑏/𝑎) > 5/2; that is, 𝑝 <

((5𝑎 − 2𝑏)/4𝑎)
−1. So, we must necessarily have 𝑏 ≤ 𝑎 < 2𝑏

and 1 < 𝑝 < 4/3 respectively.
Let 𝜃 ∈ (3 − (2/𝑝) − (𝑏/𝑎), (2/𝑝) + (𝑏/𝑎) − 2), 1 < 𝑝 <

4𝑎/(5𝑎 − 2𝑏),

[
𝑧
1

𝑧
2

] = [
𝑚

1
𝑧
∗

1
+ 𝑘𝑚

𝑏

2
𝑧
∗

2

𝑚
𝑎

2
𝑧
∗

2

] ,

[
𝐿
1
(⋅, 𝐷

𝑥
) 𝑢

0
+ 𝐿

2
(⋅, 𝐷

𝑥
) V

0

𝐿
4
(⋅, 𝐷

𝑥
) V

0

] = [
𝑚

1
𝑢
∗

0
+ 𝑘𝑚

𝑏

2
V∗
0

𝑚
𝑎

2
V∗
0

] ,

(208)

where 𝑧∗
1
, 𝑢

∗

0
∈ D(𝐿

1
), 𝑧∗

2
, V∗

0
∈ D(𝐿

4
),

∫
Ω

[𝜂
1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)] 𝑑𝑥 ̸= 0,

∫
Ω

{𝜂
1
(𝑥) [𝑚

1
(𝑥) 𝑢

0
(𝑥) + 𝑘𝑚

2
(𝑥)

𝑏 V
0
(𝑥)]

+𝜂
2
(𝑥)𝑚

2
(𝑥)

𝑎 V
0
(𝑥) } 𝑑𝑥 = 𝑔 (0) .

(209)

Then Problem (207) admits a unique global solution (𝑢, V,
𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];D(𝐿

4
)) × 𝐶

𝜃
([0, 𝜏];R),

𝑚
1
𝑢 + 𝑘𝑚

𝑏

2
V,𝑚𝑎

2
V ∈ 𝐶1+𝜃

([0, 𝜏]; 𝐿
𝑝
(Ω)).

Using the same scheme, one could handle the more gen-
eral problem:

𝐷
𝑡
[
𝑚

1
(𝑥) 𝑘𝑚

2
(𝑥)

𝑏

0 𝑚
2
(𝑥)

𝑎 ] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

+ [
𝐿
1
(𝑥,𝐷

𝑥
) 𝐿

2
(𝑥,𝐷

𝑥
)

𝑘
1
𝑚

1
(𝑥)

𝑐
𝐿
4
(𝑥,𝐷

𝑥
)
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [
𝑧
1

𝑧
2

] , ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

(210)

where 𝑐 ∈ (0, 1], 𝑘
1
is constant, provided that (2/𝑝) + (𝑏/𝑎) +

𝑐 > 3 (cf. Theorem 14).
As a particular case, we can also treat the problem

𝐷
𝑡
[
𝑚

1
(𝑥) 𝑚

2
(𝑥)

𝑏

0 𝑚
2
(𝑥)

𝑎] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

+ [
𝐿
1
(𝑥,𝐷

𝑥
) 𝑛

1
(𝑥)

𝑘𝑚
1
(𝑥)

𝑐
𝑛
2
(𝑥)

] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [
𝑧
1

𝑧
2

] , ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

(211)

where 𝑛
1
, 𝑛

2
∈ 𝐶(Ω;R), 𝑛

2
(𝑥) ≥ 𝑐 > 0, 𝑐 ∈ (0, 1], 𝑘 ∈ R.

Problem 37bis. We show here how some more regularity of
functions 𝑚

1
and 𝑚

2
allow to choose a larger exponent 𝑝 in

the reference space 𝐿𝑝(Ω).
We recall that a function 𝑚 ∈ 𝐶

1
(Ω), 𝑚(𝑥) ≥ 0, 𝑥 ∈ Ω,

is said to be 𝜌-regular for some 𝜌 ∈ (0, 1] [3, 15, 16] if there
exists a positive constant 𝐶 such that

|∇𝑚 (𝑥)| ≤ 𝐶𝑚 (𝑥)
𝜌
, 𝑥 ∈ Ω. (212)

If 𝑚
0
∈ 𝐶

1
(Ω), 𝑚

0
(𝑥) ≥ 0, 𝑥 ∈ Ω, and 𝑘 > 1, then 𝑚(𝑥) =

𝑚
0
(𝑥)

𝑘 is 𝜌-regular with 𝜌 = (𝑘 − 1)/𝑘.
If𝑚 is 𝜌-regular and

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑥)𝐷

𝑥
𝑖

𝑚(𝑥) ≤ 0, 𝑥 ∈ Ω,

𝑏 (𝑥) +
1

𝑝
𝑚 (𝑥)

𝑝−1

𝑛

∑

𝑖=1

𝑎
𝑖
(𝑥) ]

𝑖
(𝑥) ≥ 0, 𝑥 ∈ Ω,

(213)

then (cfr. Theorem 3.3 in [17]) the pair (𝐿,𝑀) satisfies (206)
with 𝛼 = 1, 𝛽 = 2[𝑝(2 − 𝜌)]

−1. Note that 𝛽 > 1/2 if and only
if 𝑝 ∈ [2, 4(2 − 𝜌)

−1
).

Let now𝑚
1
be 𝜌

1
-regular, so that (𝐿

1
(𝑥, 𝐷

𝑥
),𝑀

1
) satisfies

(206) with 𝛽
1
= 2[𝑝(2 − 𝜌

1
)]
−1 according to [15]. Moreover,

let𝑚
2
∈ 𝐶

1
(Ω),𝑚

2
(𝑥) ≥ 0, 𝑥 ∈ Ω, 𝑎 > 1. Then, 𝛽

4
= 2[𝑝(1 +

(1/𝑎))]
−1. Thus, we must have

2

𝑝
(

1

2 − 𝜌
1

+
𝑎

1 + 𝑎
) +

𝑏

𝑎
>
5

2
,

𝑏

𝑎
>
1

2
(214)

to find

2 ≤ 𝑝 <
4𝑎

5𝑎 − 2𝑏
(

1

2 − 𝜌
1

+
𝑎

1 + 𝑎
)

⇒
2𝑎

5𝑎 − 2𝑏
(

1

2 − 𝜌
1

+
𝑎

1 + 𝑎
) > 1.

(215)

Let 𝑏 = ]𝑎, 1/2 < ] < 1. Then the right-hand side in (215)
changes to

1

2 − 𝜌
1

+
𝑏

𝑏 + ]
+ ] >

5

2
. (216)

In particular, the last property is achieved if 𝜌
1
tends to 1 and

𝑎 is large enough.
Therefore, Theorem 14 applies in the reference space

𝐿
𝑝
(Ω) with 𝑏 = ]𝑎 and

2 ≤ 𝑝 <
4

5 − 2]
(

1

2 − 𝜌
1

+
𝑎

1 + 𝑎
) , (217)

whenever the following inequalities hold:

1

2 − 𝜌
1

+
𝑎

1 + 𝑎
+ ] >

5

2
,

1

2
< ] < 1. (218)
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Problem 38. We are concerned with the initial and boundary
value problem:

𝐷
𝑡
([

𝑚
1
(𝑥) 𝑚

2
(𝑥)

𝑚
3
(𝑥) 𝑚

4
(𝑥)

] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)
])

+ [
𝛼
1
(𝑥) 𝐿

1
(𝑥,𝐷

𝑥
) 𝛼

2
(𝑥) 𝐿

2
(𝑥,𝐷

𝑥
)

𝛼
3
(𝑥) 𝐿

3
(𝑥,𝐷

𝑥
) 𝛼

4
(𝑥) 𝐿

2
(𝑥,𝐷

𝑥
)
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)
]

= 𝑓 (𝑡) [
𝑧
1

𝑧
1

] , ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

[
𝑚

1
(𝑥) 𝑚

2
(𝑥)

𝑚
3
(𝑥) 𝑚

4
(𝑥)

] [
𝑢 (0, 𝑥)

V (0, 𝑥)
]

= [
𝑚

1
(𝑥) 𝑚

2
(𝑥)

𝑚
3
(𝑥) 𝑚

4
(𝑥)

] [
𝑢
0
(𝑥)

V
0
(𝑥)

] , 𝑥 ∈ Ω,

∫
Ω

{𝜂
1
(𝑥) [𝑚

1
(𝑥) 𝑢 (𝑡, 𝑥) + 𝑚

2
(𝑥) V (𝑡, 𝑥)]

+ 𝜂
2
(𝑥) [𝑚

3
(𝑥) 𝑢 (𝑡, 𝑥) + 𝑚

4
(𝑥) V (𝑡, 𝑥)]} 𝑑𝑥

= 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(219)

where for the sake of simplicity, we have set

𝐿
𝑗
(𝑥,𝐷

𝑥
) = −Δ + 𝑎

𝑗
(𝑥) , 𝑗 = 1, 2, 3 (220)

and have endowed such operators with either the Dirichlet or
the Robin boundary condition.

We will assume that 𝑚
𝑗
∈ 𝐿

∞
(Ω), 𝑗 = 1, . . . , 4, are real-

valued, while 𝛼
𝑗
∈ 𝐶(Ω), 𝑗 = 1, . . . , 4, and 𝑎

𝑖
∈ 𝐶(Ω),

𝑗 = 1, 2, 3, are scalar functions, the 𝑎
𝑖
’s being nonnegative,

satisfying the following properties:

𝑚
𝑗
(𝑥) ≥ 𝐶

𝑗
> 0, 𝑗 = 1, 3,

− 𝐶(
𝑚

1
(𝑥)

𝑚
3
(𝑥)

𝑚
4
(𝑥) − 𝑚

2
(𝑥)) ≤ 𝑚

2
(𝑥)

≤
𝑚

1
(𝑥)

𝑚
3
(𝑥)

𝑚
4
(𝑥) , 𝑥 ∈ Ω,

(221)

𝛼
1
≥ 𝑐 > 0, 𝛼

2
(𝑥) −

𝑚
1
(𝑥)

𝑚
3
(𝑥)

𝛼
4
(𝑥) ≤ −𝑐 < 0,

𝛼
3
(𝑥) =

𝑚
1
(𝑥)

𝑚
3
(𝑥)

𝛼
1
(𝑥) , 𝑥 ∈ Ω.

(222)

We observe that properties (221) hold if 𝑚
2
(𝑥) ≤ 0 and

𝑚
4
(𝑥) ≥ 0 for all 𝑥 ∈ Ω. This choice implies 𝐶 = 1 and

𝛿 = 1 in (97). Moreover, the last condition in (222) implies
(137) and 𝛿

1
= 1.

Assume now that the matrix operator

[

𝛼
1
(𝑥) 𝐿

1
(𝑥,𝐷

𝑥
) 𝛼

2
(𝑥) 𝐿

2
(𝑥,𝐷

𝑥
)

𝛼
3
(𝑥) 𝐿

3
(𝑥,𝐷

𝑥
) 𝛼

4
(𝑥) 𝐿

2
(𝑥,𝐷

𝑥
)
] (223)

is invertible in 𝐿𝑝(Ω)×𝐿𝑝(Ω), 𝑝 ∈ (1, +∞). For this purpose,
it is enough to assume

𝛼1 (𝑥) 𝛼4 (𝑥) − 𝛼2 (𝑥) 𝛼3 (𝑥)
 ≥ 𝐶

0
> 0,

𝛼
1
(𝑥) 𝛼

4
(𝑥) 𝑎

1
(𝑥) − 𝛼

2
(𝑥) 𝛼

3
(𝑥) 𝑎

2
(𝑥)

𝛼
1
(𝑥) 𝛼

4
(𝑥) − 𝛼

2
(𝑥) 𝛼

3
(𝑥)

≥ 0,

(224)

for all 𝑥 ∈ Ω. Further, 𝑧
1
, 𝑧

2
, 𝜂

1
, 𝜂

2
are given functions onΩ.

Relying on the proof of Theorem 18 we are led to the
following equation:

𝐷
𝑡
(
[
[

[

𝑚
1
(𝑥) 𝑚

2
(𝑥)

0 −
𝑚

1
(𝑥)

𝑚
3
(𝑥)

𝑚
4
(𝑥) + 𝑚

2
(𝑥)

]
]

]

[
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)
])

+
[
[

[

𝛼
1
(𝑥) 𝐿

1
(𝑥,𝐷

𝑥
) 𝛼

2
(𝑥) 𝐿

2
(𝑥,𝐷

𝑥
)

−
𝑚

1
(𝑥)

𝑚
3
(𝑥)

𝛼
3
(𝑥) 𝐿

3
(𝑥,𝐷

𝑥
) + 𝛼

1
(𝑥) 𝐿

1
(𝑥,𝐷

𝑥
) (𝛼

2
(𝑥) −

𝑚
1
(𝑥)

𝑚
3
(𝑥)

𝛼
4
(𝑥)) 𝐿

2
(𝑥,𝐷

𝑥
)

]
]

]

× [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)
]

= 𝑓 (𝑡) [

[

𝑧
1
(𝑥)

𝑧
1
(𝑥) −

𝑚
1
(𝑥)

𝑚
3
(𝑥)

𝑧
2
(𝑥)

]

]

, ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω.

(225)
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Under our assumptions (221)–(224) Theorem 18 applies with
𝛼 = 𝛿 = 𝛽

1
= 1, 𝛽

4
= 1/𝑝 > 1/2, that is, 𝑝 ∈ (1, 2),

if the following additional properties are satisfied when
𝑧
∗

1
, 𝑢

∗

0
∈ D(𝐿

1
), 𝑧∗

2
, V∗

0
∈ D(𝐿

2
), 𝑔 ∈ 𝐶

1+𝜃
([0, 𝜏];R), with

𝜃 ∈ (1/𝑝

, 1/𝑝), 𝜂

1
, 𝜂

2
∈ 𝐿

𝑝


(Ω):

[
𝑧
1
(𝑥)

𝑧
2
(𝑥)

] = [
𝑚

1
(𝑥) 𝑧

∗

1
(𝑥) + 𝑚

2
(𝑥) 𝑧

∗

2
(𝑥)

𝑚
3
(𝑥) 𝑧

∗

1
(𝑥) + 𝑚

4
(𝑥) 𝑧

∗

2
(𝑥)

] ,

[
𝛼
1
(𝑥) 𝐿

1
(𝑥,𝐷

𝑥
) 𝑢

0
(𝑥) + 𝛼

2
(𝑥) 𝐿

2
(𝑥,𝐷

𝑥
) V

0
(𝑥)

𝛼
3
(𝑥) 𝐿

3
(𝑥,𝐷

𝑥
) 𝑢

0
(𝑥) + 𝛼

4
(𝑥) 𝐿

2
(𝑥,𝐷

𝑥
) V

0
(𝑥)

]

= [
𝑚

1
(𝑥) 𝑢

∗

0
(𝑥) + 𝑚

2
(𝑥) V∗

0
(𝑥)

𝑚
3
(𝑥) 𝑢

∗

0
(𝑥) + 𝑚

4
(𝑥) V∗

0
(𝑥)

] ,

∫
Ω

{𝜂
1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)} 𝑑𝑥 ̸= 0,

∫
Ω

{𝜂
1
(𝑥) [𝑚

1
(𝑥) 𝑢

0
(𝑥) + 𝑚

2
(𝑥) V

0
(𝑥)]

+ 𝜂
2
(𝑥) [𝑚

3
(𝑥) 𝑢

0
(𝑥) + 𝑚

4
(𝑥) V

0
(𝑥)]} 𝑑𝑥 = 𝑔 (0) .

(226)

Then the identification Problems (221)–(224) admit a unique
global strict solution (𝑢, V, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0,

𝜏];D(𝐿
2
)) × 𝐶

𝜃
([0, 𝜏];R) such that 𝑚

1+2𝑗
𝑢 + 𝑚

2+2𝑗
V ∈

𝐶
1+𝜃

([0, 𝜏]; 𝐿
𝑝
(Ω)), 𝑗 = 0, 1 and 𝑝 ∈ (1, 2).

We observe that if𝑚
𝑗
, 𝛼

𝑗
, 𝑗 = 1, . . . , 4, and 𝑎

𝑖
, 𝑖 = 1, 2, 3,

are more regular, the previous result can be extended to the
case where 𝑝 ∈ [2, +∞) and 𝛽

4
is larger. For this purpose, we

assume that𝑚 := 𝑚
1
𝑚

4
− 𝑚

2
𝑚

3
≥ 0 is 𝜌-regular; that is,

𝑚 ∈ 𝐶
1
(Ω) , |∇𝑚 (𝑥)| ≤ 𝑐𝑚 (𝑥)

𝜌
, 𝑥 ∈ Ω, 𝜌 ∈ (0, 1] .

(227)

Since 𝑛(𝑥) = 𝛼
4
(𝑥)(𝑚

1
(𝑥) /𝑚

3
(𝑥)) − 𝛼

2
(𝑥) ≥ 𝑐 > 0 for all

𝑥 ∈ Ω, we get


𝐷
𝑥
𝑗

(
𝑚 (𝑥)

𝑛 (𝑥)
)



= 𝑛 (𝑥)
−2

𝑛 (𝑥)𝐷

𝑥
𝑗

𝑚(𝑥) − 𝑚 (𝑥)𝐷
𝑥
𝑗

𝑛 (𝑥)


≤ 𝐶
𝑚 (𝑥)

𝜌

𝑛 (𝑥)
+
𝑚 (𝑥)

𝑛 (𝑥)

𝐷
𝑥
𝑗

𝑛 (𝑥)

𝑛 (𝑥)
≤𝐶


(
𝑚 (𝑥)

𝑛 (𝑥)
)

𝜌

,

𝑥 ∈ Ω.

(228)

Therefore, owing to Theorem 3.3 in [15], we can choose 𝛽
4
=

2[𝑝(2 − 𝜌)]
−1, 𝑝 ∈ [2, +∞). This choice implies 𝛽

4
> 1/2 and

𝑝 ∈ [2, 4(2 − 𝜌)
−1
), so that in this case 𝜃 runs in the interval

(1 − 2[𝑝(2 − 𝜌)]
−1
, 2[𝑝(2 − 𝜌)]

−1
).

In the case when 𝑝 ∈ (1, 2) and 𝑚 is 𝜌-regular with 𝜌 ∈

(2 − 𝑝, 1), then, owing to Theorem 4.2 in [15], we can choose
𝛽
4
= [𝑝(2 − 𝜌)]

−1 so that 𝜃 ∈ ((1 − 𝜌)(2 − 𝜌)−1, (2 − 𝜌)−1).

Problem 38bis. We could handle also the case where the
determinant𝑚

1
(𝑥)𝑚

4
(𝑥)−𝑚

2
(𝑥)𝑚

3
(𝑥) vanishes everywhere

in Ω. However, in this case, Theorem 18 forces us to assume
𝑚

2
(𝑥) = 0 for all 𝑥 ∈ Ω.
In view of assumptions (222) the second equation in

system (225) becomes

[
𝑚

1
(𝑥)

𝑚
3
(𝑥)

𝛼
4
(𝑥) − 𝛼

1
(𝑥)] 𝐿

2
(𝑥, 𝐷) V (𝑡, 𝑥)

= 𝑓 (𝑡) [
𝑚

1
(𝑥)

𝑚
3
(𝑥)

𝑧
2
(𝑥) − 𝑧

1
(𝑥)]

− [
𝑚

1
(𝑥)

𝑚
3
(𝑥)

𝛼
3
(𝑥) 𝑎

3
(𝑥) − 𝛼

1
(𝑥) 𝑎

1
(𝑥)] 𝑢 (𝑡, 𝑥) .

(229)

Thus all is reduced to a regular identification problem.
However, usingTheorem 23, in some cases we can handle

the situation when 𝑚
2

̸≡ 0. For the sake of simplicity we
choose 𝐿

1
= 𝐿

2
= 𝐿

3
= 𝐿 and assume 𝛼

4
/𝛼

3
= 𝛼

2
/𝛼

1
= ] =

const., so that

](
𝑚

1

𝑚
3

𝛼
3
− 𝛼

1
) =

𝑚
1

𝑚
3

𝛼
4
− 𝛼

2 (230)

for some constant ] ̸= 0. Therefore our differential equation
becomes

𝐷
𝑡
([

𝑚
1
(𝑥) 𝑚

2
(𝑥)

0 0
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)])

+ [

[

𝛼
1
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) 𝛼

2
(𝑥) 𝐿 (𝑥,𝐷

𝑥
)

(𝛼
1
(𝑥) −

𝑚
1
(𝑥)

𝑚
3
(𝑥)

𝛼
3
(𝑥)) 𝐿 (𝑥,𝐷

𝑥
) (𝛼

2
(𝑥) −

𝑚
1
(𝑥)

𝑚
3
(𝑥)

𝛼
4
(𝑥)) 𝐿 (𝑥,𝐷

𝑥
)
]

]

[
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [

[

𝑧
1
(𝑥)

𝑧
1
(𝑥) −

𝑚
1
(𝑥)

𝑚
3
(𝑥)

𝑧
2
(𝑥)

]

]

, ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω.

(231)
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Referring to the notation inTheorem 23, we get

𝑆 = 𝑀
1
−𝑀

2
𝐿
−1

4
𝐿
3
= (𝑚

1
− ]−1𝑚

2
) 𝐼,

𝐿
1
− 𝐿

2
𝐿
−1

4
𝐿
3
= (𝛼

1
− ]−1𝛼

2
) 𝐿 (⋅, 𝐷) ,

A = (𝛼
1
− ]−1𝛼

2
) 𝐿 (⋅, 𝐷) (𝑚

1
− ]−1𝑚

2
)
−1

.

(232)

Consequently, the linear closed operator −A generates an
analytic semigroup of linear bounded operators provided
𝛼
1
(𝑥) − ]−1𝛼

2
(𝑥) > 0 and𝑚

1
(𝑥) − ]−1𝑚

2
(𝑥) > 0 for all 𝑥 ∈ Ω.

In this case the resolvent of −A admits the representation:

(𝜆 + A)
−1
= (𝑚

1
− ]−1𝑚

2
)

× [𝜆 (𝑚
1
− ]−1𝑚

2
) (𝛼

1
− ]−1𝛼

2
)
−1

+ A]
−1

× (𝛼
1
− ]𝛼

2
)
−1

.

(233)

The element 𝑧 in Theorem 23 can be easily described.

Example 39. Let Ω = 𝐵(0, 1) = {𝑥 ∈ R𝑛
: ‖𝑥‖ < 1} and

let operator 𝐿(𝑥,𝐷) = −Δ + 𝑎(𝑥) be endowed with either
Dirichlet or Robin boundary conditions.

Consider then the following identification problem,
where 𝑟 and 𝑠 are real positive numbers:

𝐷
𝑡
([

[

1 − (1 − ‖𝑥‖
2
)
𝑟

1 (1 − ‖𝑥‖
2
)
𝑠

]

]

[
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)
])

+ [

𝛼
1
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) 𝛼

2
(𝑥) 𝐿 (𝑥,𝐷

𝑥
)

𝛼
1
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) 𝛼

4
(𝑥) 𝐿 (𝑥,𝐷

𝑥
)
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)
]

= 𝑓 (𝑡) [
𝑧
1
(𝑥)

𝑧
2
(𝑥)

] , ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

[

[

1 − (1 − ‖𝑥‖
2
)
𝑟

1 (1 − ‖𝑥‖
2
)
𝑠
]

]

[
𝑢 (0, 𝑥)

V (0, 𝑥)
]

= [

[

1 − (1 − ‖𝑥‖
2
)
𝑟

1 (1 − ‖𝑥‖
2
)
𝑠
]

]

[
𝑢
0
(𝑥)

V
0
(𝑥)

] , 𝑥 ∈ Ω,

∫
Ω

{𝜂
1
(𝑥) [𝑢 (𝑡, 𝑥) − (1 − ‖𝑥‖

2
)
𝑟

V (𝑡, 𝑥)]

+ 𝜂
2
(𝑥) [𝑢 (𝑡, 𝑥) + (1 − ‖𝑥‖

2
)
𝑠

V (𝑡, 𝑥)]} 𝑑𝑥 = 𝑔 (𝑡) ,

0 ≤ 𝑡 ≤ 𝜏.

(234)

If we suppose that

𝛼
1
, 𝛼

2
, 𝛼

4
∈ 𝐶 (Ω) ∩ 𝐶

1
(Ω) , 𝛼

1
(𝑥) ≥ 𝐶 > 0,

𝛼
2
(𝑥) − 𝛼

4
(𝑥) < 0, 𝑥 ∈ Ω,

(235)

all our conditions in the last lines in Problem 37 are verified
for 𝛽

4
= 1/𝑝, 𝑝 ∈ (1, 2). Moreover, if 𝑟, 𝑠 ∈ (1, +∞], then

𝑚(𝑥) = (1 − ‖𝑥‖
2
)
𝑟
+ (1 − ‖𝑥‖

2
)
𝑠 belongs to 𝐶1

(Ω) and from
the inequality ∇(1− ‖𝑥‖2 )𝑟 ≤ 𝐶[(1− ‖𝑥‖

2
)
𝑟
]
(𝑟−1)/𝑟 we deduce

|∇𝑚 (𝑥)| =

∇ [(1 − ‖𝑥‖

2
)
𝑟

+ (1 − ‖𝑥‖
2
)
𝑠

]


≤ 𝐶 {[(1 − ‖𝑥‖
2
)
𝑟

]
(𝑟−1)/𝑟

+ [(1 − ‖𝑥‖
2
)
𝑠

]
(𝑠−1)/𝑠

}

≤ 𝐶{[(1 − ‖𝑥‖
2
)
𝑟

+ (1 − ‖𝑥‖
2
)
𝑠

]
(𝑟−1)/𝑟

+ [(1 − ‖𝑥‖
2
)
𝑟

+ (1 − ‖𝑥‖
2
)
𝑠

]
(𝑠−1)/𝑠

}

≤ 𝑚 (𝑥)
(min(𝑟,𝑠)−1)/min(𝑟,𝑠)

, 𝑥 ∈ Ω.

(236)

That is,𝑚 is 𝜌-regular with 𝜌 = (min(𝑟, 𝑠) − 1)/min(𝑟, 𝑠), and
the arguments in the treatment of Problem 38 apply as well.

Example 40. Consider the identification problem:

𝐷
𝑡
([

𝑚 (𝑥)
2

𝑚(𝑥) 𝑛 (𝑥)

𝑚 (𝑥) 𝑛 (𝑥) 𝑛 (𝑥)
2 ] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)])

+ [
𝛼
1
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) 𝛼

2
(𝑥) 𝐿 (𝑥,𝐷

𝑥
)

𝛼
3
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) 𝛼

4
(𝑥) 𝐿 (𝑥,𝐷

𝑥
)
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [
𝑧
1
(𝑥)

𝑧
2
(𝑥)

] , ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

[
𝑚 (𝑥)

2
𝑚(𝑥) 𝑛 (𝑥)

𝑚 (𝑥) 𝑛 (𝑥) 𝑛 (𝑥)
2 ] [

𝑢 (0, 𝑥)

V (0, 𝑥)]

= [
𝑚 (𝑥)

2
𝑚(𝑥) 𝑛 (𝑥)

𝑚 (𝑥) 𝑛 (𝑥) 𝑛 (𝑥)
2 ] [

𝑢
0
(𝑥)

V
0
(𝑥)

] ,

∫
Ω

𝜂 (𝑥) [𝑚 (𝑥)
2
𝑢 (𝑡, 𝑥) + 𝑚 (𝑥) 𝑛 (𝑥) V (𝑡, 𝑥)] 𝑑𝑥 = 𝑔 (𝑡) ,

0 ≤ 𝑡 ≤ 𝜏,

(237)

where 𝑚(𝑥) ≥ 𝑐 > 0 and 𝑛(𝑥) ≥ 𝑐 > 0 for all 𝑥 ∈ Ω. Observe
that the determinant of the matrix inside the time derivative
vanishes identically inΩ.
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As in the proof of Theorem 18 we obtain the equivalent
problem:

𝐷
𝑡
([

𝑚 (𝑥)
2
𝑚(𝑥) 𝑛 (𝑥)

0 0
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)])

+ [

[

𝛼
1
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) 𝛼

2
(𝑥) 𝐿 (𝑥,𝐷

𝑥
)

(𝛼
1
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝛼
3
(𝑥)) 𝐿 (𝑥,𝐷

𝑥
) (𝛼

2
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝛼
4
(𝑥)) 𝐿 (𝑥,𝐷

𝑥
)

]

]

[
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [

[

𝑧
1
(𝑥)

𝑧
1
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝑧
2
(𝑥)

]

]

, ∀ (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

(238)

[
𝑚 (𝑥)

2
𝑚(𝑥) 𝑛 (𝑥)

0 0
] [

𝑢 (0, 𝑥)

V (0, 𝑥)] = [
𝑚 (𝑥)

2
𝑚(𝑥) 𝑛 (𝑥)

0 0
] [

𝑢
0
(𝑥)

V
0
(𝑥)

] , ∀𝑥 ∈ Ω, (239)

∫
Ω

𝜂 (𝑥) [𝑚 (𝑥)
2
𝑢 (𝑡, 𝑥) + 𝑚 (𝑥) 𝑛 (𝑥) V (𝑡, 𝑥)] 𝑑𝑥 = 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏. (240)

If

𝑚𝛼
3
− 𝑛𝛼

1

𝑚𝛼
4
− 𝑛𝛼

2

= ] = const., (241)

then A in Theorem 23 specifies to

A = (𝛼
1
− ]𝛼

2
) 𝐿 (⋅, 𝐷)𝑚

−1
(𝑚 − ]𝑛)−1 . (242)

We observe that assumptions on A are satisfied if 𝛼
1
(𝑥) −

]𝛼
2
(𝑥) ≥ 𝑐 > 0 and𝑚(𝑥) − ]𝑛(𝑥) ≥ 𝑐 > 0 for all 𝑥 ∈ Ω.
We compute now 𝑧:

𝑧 (𝑥) = 𝑧
1
(𝑥) − 𝛼

2
(𝑥) [𝛼

2
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝛼
4
(𝑥)]

−1

× [𝑧
1
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝑧
2
(𝑥)] + [𝛼

1
(𝑥) − ]𝛼

2
(𝑥)]

× 𝐿 (𝑥,𝐷) [𝑚 (𝑥) − ]𝑛 (𝑥)]−1 𝑛 (𝑥) 𝐿 (𝑥,𝐷)−1

× [𝛼
2
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝛼
4
(𝑥)]

−1

[𝑧
1
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝑧
2
(𝑥)] .

(243)

Finally, observe that in this case we have

𝑆 = 𝑚 (𝑚 − ]𝑛) 𝐼,

𝐿
1
− 𝐿

2
𝐿
−1

4
𝐿
3
= (𝛼

1
− ]𝛼

2
) 𝐿 (⋅, 𝐷) ,

𝐿
2
𝐿
−1

4
= 𝛼

2
(𝛼

2
−
𝑚

𝑛
𝛼
4
) 𝐼,

𝑀
2
𝐿
−1

4
= 𝑚𝑛𝐿 (⋅, 𝐷)

−1
(𝛼

2
−
𝑚

𝑛
𝛼
4
) .

(244)

Assume now that the data satisfy

𝑚
2
𝑢
0
+ 𝑚𝑛V

0
∈ DA (𝜃 + 1,∞) , 𝑧 ∈ DA (𝜃0,∞) ,

0 < 𝜃 < 𝜃
0
< 1,

∫
Ω

𝜂 (𝑥) 𝑧 (𝑥) 𝑑𝑥 ̸= 0,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) ,

𝑔 (0) = ∫
Ω

𝜂 (𝑥) [𝑚 (𝑥)
2
𝑢
0
(𝑥) + 𝑚 (𝑥) 𝑛 (𝑥) V

0
(𝑥)] 𝑑𝑥.

(245)

Then Problem (237) admits a unique strict global solution
(𝑢, V, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿)) × 𝐶

𝜃
([0, 𝜏];D(𝐿)) × 𝐶

𝜃
([0, 𝜏];R)

such that𝑚2
𝑢 + 𝑚𝑛V ∈ 𝐶𝜃

([0, 𝜏]; 𝐿
𝑝
(Ω)), 𝑝 ∈ (1, +∞).

We now face the general case where the additional
information is

∫
Ω

{𝜂
1
(𝑥) [𝑚 (𝑥)

2
𝑢 (𝑡, 𝑥) + 𝑚 (𝑥) 𝑛 (𝑥) V (𝑡, 𝑥)]

+ 𝜂
2
(𝑥) [𝑚 (𝑥) 𝑛 (𝑥) 𝑢 (𝑡, 𝑥) + 𝑛 (𝑥)

2 V (𝑡, 𝑥)]} 𝑑𝑥

= 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏.

(246)

Taking advantage of the identity

𝑚(𝑥) 𝑛 (𝑥) 𝑢 (𝑡, 𝑥) + 𝑛 (𝑥)
2 V (𝑡, 𝑥)

=
𝑛 (𝑥)

𝑚 (𝑥)
[𝑚 (𝑥)

2
𝑢 (𝑡, 𝑥) + 𝑚 (𝑥) 𝑛 (𝑥) V (𝑡, 𝑥)] ,

(247)
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condition (246) takes the form

∫
Ω

(𝜂
1
(𝑥) +

𝑛 (𝑥)

𝑚 (𝑥)
𝜂
2
(𝑥))

× [𝑚 (𝑥)
2
𝑢 (𝑡, 𝑥) + 𝑚 (𝑥) 𝑛 (𝑥) V (𝑡, 𝑥)] 𝑑𝑥

= 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏.

(248)

Moreover, solving (238) for V, we get the following equation
for all (𝑡, 𝑥) ∈ [0, 𝜏] × Ω:

V (𝑡, 𝑥)

= −]𝑢 (𝑡, 𝑥) + 𝑓 (𝑡) 𝐿 (𝑥,𝐷
𝑥
)
−1

× (𝛼
2
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝛼
4
(𝑥))

−1

[𝑧
1
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝑧
2
(𝑥)] ,

(249)

so that

𝑚(𝑥)
2
𝑢 (𝑡, 𝑥) + 𝑚 (𝑥) 𝑛 (𝑥) V (𝑡, 𝑥)

= [𝑚 (𝑥)
2
− 𝑚 (𝑥) 𝑛 (𝑥)] 𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑡)𝑚 (𝑥) 𝑛 (𝑥) 𝐿 (𝑥,𝐷
𝑥
)
−1

(𝛼
2
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝛼
4
(𝑥))

−1

× [𝑧
1
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝑧
2
(𝑥)] ,

𝛼
1
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) 𝑢 (𝑡, 𝑥) + 𝛼

2
(𝑥) 𝐿 (𝑥,𝐷

𝑥
) V (𝑡, 𝑥)

= [𝛼
1
(𝑥) − ]𝛼

2
(𝑥)] 𝐿 (𝑥,𝐷

𝑥
) 𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑡) 𝛼
2
(𝑥) (𝛼

2
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝛼
4
(𝑥))

−1

× [𝑧
1
(𝑥) −

𝑚 (𝑥)

𝑛 (𝑥)
𝑧
2
(𝑥)] .

(250)

Consequently, our identification problem is reduced to the
previous one with 𝜂 being replaced by 𝜂

1
+ 𝑛𝜂

2
/𝑚.

Problem 41. Let Ω be a bounded region in R𝑛 with a smooth
boundary 𝜕Ω. We are concerned with recovering function 𝑓

in the following problem related to a degenerate parabolic
weakly coupled linear system:

𝐷
𝑡
𝑢 (𝑡, 𝑥) = Δ [𝑎 (𝑥) 𝑢 (𝑡, 𝑥)] + 𝑏 (𝑥) V (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧1 (𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

𝐷
𝑡
V (𝑡, 𝑥) = 𝑐 (𝑥) 𝑢 (𝑡, 𝑥) + Δ [𝑑 (𝑥) V (𝑡, 𝑥)] + 𝑓 (𝑡) 𝑧2 (𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , V (0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω,

𝑎 (𝑥) 𝑢 (𝑡, 𝑥) = 0, 𝑑 (𝑥) V (𝑡, 𝑥) = 0,

(𝑡, 𝑥) ∈ (0, 𝜏] × 𝜕Ω,

∫
Ω

{𝜂
1
(𝑥) 𝑢 (𝑡, 𝑥) + 𝜂

2
(𝑥) V (𝑡, 𝑥)} 𝑑𝑥 = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] .

(251)

We assume that functions 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐶(Ω;R) and 𝑎(𝑥) > 0,
𝑑(𝑥) > 0 for a.e. 𝑥 ∈ Ω, while 𝑧

1
, 𝑧

2
, 𝜂

1
, 𝜂

2
∈ 𝐿

2
(Ω) =: 𝑋,

𝑢
0
, V

0
∈ 𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω), and 𝑔 ∈ 𝐶([0, 𝜏];R). Finally, we

assume that the consistency condition

∫
Ω

{𝜂
1
(𝑥) 𝑢

0
(𝑥) + 𝜂

2
(𝑥) V

0
(𝑥)} 𝑑𝑥 = 𝑔 (0) (252)

is fulfilled.

Recall now that if 1/𝑎 ∈ 𝐿𝑟(𝑛)(Ω), where

𝑟 (1) ≥ 2, 𝑟 (2) > 2, 𝑟 (𝑛) ≥ 𝑛, if 𝑛 ≥ 3, (253)

then [3, page 83] operator𝐾 defined by

D (𝐾) = {𝑢 ∈ 𝐿
2
(Ω) : 𝑎𝑢 ∈ 𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω)} ,

𝐾𝑢 = −Δ (𝑎𝑢) ,

𝑢 ∈ D (𝐾) ,

(254)

satisfies the resolvent bound:

(𝜆 + 𝐾)

−1L(𝐿
2
(Ω))

≤ 𝑐 |𝜆|
−(2𝑟−𝑛)/(2𝑟) (255)

for all 𝜆’s in a sector containing the closed half complex plane
Re 𝜆 ≥ 0. This implies 𝛼 = 1 and 𝛽 = (2𝑟 − 𝑛)/(2𝑟).

Suppose now that 1/𝑎 ∈ 𝐿𝑟1(𝑛)(Ω) and 1/𝑑 ∈ 𝐿
𝑟
4
(𝑛)
(Ω), so

that the corresponding differential operators𝐴 and𝐷 defined
by

D (𝐴) = {𝑢 ∈ 𝐿
2
(Ω) : 𝑎𝑢 ∈ 𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω)} ,

𝐴𝑢 = −Δ (𝑎𝑢) ,

𝑢 ∈ D (𝐴) ,

D (𝐷) = {V ∈ 𝐿2 (Ω) : 𝑑V ∈ 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω)} ,

𝐷V = −Δ (𝑑V) ,

V ∈ D (𝐷) ,

(256)
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satisfy (H1) and (H3) in Theorem 3, with 𝐵
1
= 𝐵

4
= 𝐼, 𝛼 = 1,

𝛽
1
= [2𝑟

1
(𝑛) − 𝑛]/[2𝑟

1
(𝑛)], 𝛽

4
= [2𝑟

4
(𝑛) − 𝑛]/[2𝑟

4
(𝑛)].

Let 𝐵 and 𝐶 be the multiplication operators by 𝑏(𝑥) and
𝑐(𝑥) in 𝐿2(Ω), respectively.

Theorem 3 runs provided

min{1 − 𝑛

2𝑟
1
(𝑛)

, 1 −
𝑛

2𝑟
4
(𝑛)

} >
1

2

⇐⇒ min {𝑟
1
(𝑛) , 𝑟

4
(𝑛)} > 𝑛,

(257)

when 𝜃
0
=: 𝑛[2min{𝑟

1
(𝑛), 𝑟

4
(𝑛)}]

−1.
Whence it follows that if 𝜃 ∈ (𝜃

0
, 1 − 𝜃

0
), 𝑧

1
∈ D(𝐴),

𝑧
4
∈ D(𝐷), Δ(𝑎𝑢

0
) + 𝑏V

0
∈ D(𝐿

1
), Δ(𝑏V

0
) + 𝑐𝑢

0
∈ D(𝐿

4
),

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏];R)

∫
Ω

{𝜂
1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)} 𝑑𝑥 ̸= 0,

∫
Ω

{𝜂
1
(𝑥) 𝑢

0
(𝑥) + 𝜂

2
(𝑥) V

0
(𝑥)} 𝑑𝑥 = 𝑔 (0) ,

(258)

then Problem (251) admits a unique strict global solution
(𝑢, V, 𝑓) ∈ 𝐶𝜃

([0, 𝜏];D(𝐿
1
))×𝐶

𝜃
([0, 𝜏];D(𝐿

4
))×𝐶

𝜃
([0, 𝜏];R)

such that 𝑢, V ∈ 𝐶1+𝜃
([0, 𝜏]; 𝐿

2
(Ω)).

More generally, consider the degenerate parabolic identi-
fication problem:

𝐷
𝑡 [𝑚 (𝑥) 𝑢 (𝑡, 𝑥)]

= Δ [𝑎 (𝑥) 𝑢 (𝑡, 𝑥)] + 𝑏 (𝑥) V (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧
1
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

𝐷
𝑡 [𝑛 (𝑥) V (𝑡, 𝑥)]

= 𝑐 (𝑥) V (𝑡, 𝑥) + Δ [𝑑 (𝑥) V (𝑡, 𝑥)] + 𝑓 (𝑡) 𝑧
2
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

lim
𝑡→0+

𝑚(𝑥) 𝑢 (𝑡, 𝑥) = 𝑚 (𝑥) 𝑢
0
(𝑥) ,

lim
𝑡→0+

𝑛 (𝑥) V (𝑡, 𝑥) = 𝑛 (𝑥) V
0
(𝑥) ,

𝑥 ∈ Ω,

𝑎 (𝑥) 𝑢 (𝑡, 𝑥) = 0, 𝑑 (𝑥) V (𝑡, 𝑥) = 0,

(𝑡, 𝑥) ∈ (0, 𝜏] × 𝜕Ω,

∫
Ω

{𝜂
1
(𝑥)𝑚 (𝑥) 𝑢 (𝑡, 𝑥) + 𝜂

2
(𝑥) 𝑛 (𝑥) V (𝑡, 𝑥)} 𝑑𝑥 = 𝑔 (𝑡) ,

𝑡 ∈ [0, 𝜏] ,

(259)

where 𝑚, 𝑛 ∈ 𝐶(Ω;R) and satisfy 𝑚(𝑥) > 0, 𝑛(𝑥) > 0 for all
𝑥 ∈ Ω.

The change of unknown functions 𝑚𝑢 = 𝑢
1
and 𝑛V = V

1

leads to the following (equivalent) identification problem:

𝐷
𝑡
𝑢
1
(𝑡, 𝑥)

= Δ [
𝑎 (𝑥)

𝑚 (𝑥)
𝑢
1
(𝑡, 𝑥)] +

𝑏 (𝑥)

𝑚 (𝑥)
V
1
(𝑡, 𝑥) + 𝑓 (𝑡) 𝑧

1
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

𝐷
𝑡
V
1
(𝑡, 𝑥) =

𝑐 (𝑥)

𝑛 (𝑥)
𝑢
1
(𝑡, 𝑥)

+ Δ [
𝑑 (𝑥)

𝑛 (𝑥)
V
1
(𝑡, 𝑥)] + 𝑓 (𝑡) 𝑧

2
(𝑥) ,

(𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

𝑢
1
(0, 𝑥) = 𝑚 (𝑥) 𝑢

0
(𝑥) ,

V
1
(0, 𝑥) = 𝑛 (𝑥) V

0
(𝑥) ,

𝑥 ∈ Ω,

𝑎 (𝑥)

𝑚 (𝑥)
𝑢
1
(𝑡, 𝑥) = 0,

𝑑 (𝑥)

𝑛 (𝑥)
V
1
(𝑡, 𝑥) = 0,

(𝑡, 𝑥) ∈ (0, 𝜏] × 𝜕Ω,

∫
Ω

{𝜂
1
(𝑥) 𝑢

1
(𝑡, 𝑥) + 𝜂

2
(𝑥) V

1
(𝑡, 𝑥)} 𝑑𝑥 = 𝑔 (𝑡) ,

𝑡 ∈ [0, 𝜏] .

(260)

Suppose that 𝑎/𝑚, 𝑑/𝑛, 𝑏/𝑚, 𝑐/𝑛 ∈ 𝐶(Ω;R)—so that 𝑏 and
𝑐 must vanish on 𝜕Ω if 𝑚 and 𝑛 do. Moreover, we assume
𝑚/𝑎 ∈ 𝐿

𝑟
1
(𝑛)
(Ω)𝑛/𝑑 ∈ 𝐿

𝑟
4
(𝑛)
(Ω), 𝑟

1
(𝑛) and 𝑟

4
(𝑛) being defined

as above and satisfy min{𝑟
1
(𝑛), 𝑟

4
(𝑛)} > 𝑛, as well as

D (L
1
) = {𝑢 ∈ 𝐿

2
(Ω) : (

𝑎

𝑚
)𝑢 ∈ 𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω)} ,

L
1
𝑢 = −Δ((

𝑎

𝑚
)𝑢) ,

𝑢 ∈ D (L
1
) ,

D (L
4
) = {V ∈ 𝐿2 (Ω) : (

𝑑

𝑛
) V ∈ 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω)} ,

L
4
V = −Δ((

𝑑

𝑛
) V) ,

V ∈ D (L
4
) ,

Δ (𝑎𝑢
0
) + 𝑏V

0
∈ D (L

1
) , Δ (𝑑V

0
) + 𝑐𝑢

0
∈ D (L

4
) ,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) , 𝜃 ∈ (𝜃
0
, 1 − 𝜃

0
) ,

∫
Ω

{𝜂
1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)} 𝑑𝑥 ̸= 0,

∫
Ω

{𝜂
1
(𝑥)𝑚 (𝑥) 𝑢

0
(𝑥) + 𝜂

2
(𝑥) 𝑛 (𝑥) V

0
(𝑥)} 𝑑𝑥 = 𝑔 (0) .

(261)



Abstract and Applied Analysis 29

Then Problem (259) admits a unique strict global solution
(𝑢, V, 𝑓) ∈ 𝐶𝜃

([0, 𝜏];D(𝐴)) × 𝐶
𝜃
([0, 𝜏];D(𝐷)) × 𝐶

𝜃
([0, 𝜏];R)

such that𝑚𝑢, 𝑛V ∈ 𝐶1+𝜃
([0, 𝜏]; 𝐿

2
(Ω)).

Problem 42. Consider the following one-dimensional para-
bolic identification problem of Sobolev type:

𝐷
𝑡
[𝑢 (𝑡, 𝑥) + 𝐷

2

𝑥
𝑢 (𝑡, 𝑥)] − 𝐷

2

𝑥
𝑢 (𝑡, 𝑥) + 𝑎 (𝑥)𝐷

2

𝑥
V (𝑡, 𝑥)

+ 𝑏 (𝑥)𝐷
𝑥
V (𝑡, 𝑥) + 𝑐 (𝑥) V (𝑡, 𝑥)

= 𝑓 (𝑡) 𝑧
1
(𝑥) , (𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

𝐷
𝑡
[V (𝑡, 𝑥) + 𝐷2

𝑥
V (𝑡, 𝑥)] − 𝐷2

𝑥
V (𝑡, 𝑥) + 𝑑V (𝑡, 𝑥)

= 𝑓 (𝑡) 𝑧
2
(𝑥) , (𝑡, 𝑥) ∈ (0, 𝜏] × Ω,

(1 + 𝐷
2

𝑥
) 𝑢 (0, 𝑥) = (1 + 𝐷

2

𝑥
) 𝑢

0
(𝑥) ,

(1 + 𝐷
2

𝑥
) V (0, 𝑥) = (1 + 𝐷

2

𝑥
) V

0
(𝑥) ,

𝑥 ∈ Ω,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝐷
𝑥
V (𝑡, 0) = 𝐷

𝑥
V (𝑡, 𝜋) = 0,

𝑡 ∈ (0, 𝜏] ,

∫
Ω

{𝜂
1
(𝑥) (1 + 𝐷

2

𝑥
) 𝑢 (𝑡, 𝑥) + 𝜂

2
(𝑥) (1 + 𝐷

2

𝑥
) V (𝑡, 𝑥)} 𝑑𝑥

= 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] .

(262)

Here 𝑎, 𝑏, 𝑐 ∈ 𝐶([0, 𝜋];R) and 𝑑 is a positive constant.

Introduce now the linear operators 𝐿
𝑖
, 𝑖 = 1, 2, 4, and𝑀

𝑗
,

𝑗 = 1, 2, 3, 4, defined by

D (𝐿
1
) = 𝐻

1

0
((0, 𝜋)) ∩ 𝐻

2
((0, 𝜋)) , 𝐿

1
𝑢 = −𝐷

2

𝑥
𝑢,

𝑢 ∈ D (𝐿
1
) ,

D (𝐿
2
) = 𝐻

2
((0, 𝜋)) , 𝐿

2
V = 𝑎𝐷

2

𝑥
V + 𝑏𝐷

𝑥
V + 𝑐V,

V ∈ D (𝐿
2
) ,

D (𝐿
4
) = {V ∈ 𝐻2

((0, 𝜋)) : 𝐷
𝑥
V (0) = 𝐷

𝑥
V (𝜋) = 0} ,

𝐿
4
V = −𝐷

2

𝑥
V + 𝑑V,

V ∈ D (𝐿
4
) ,

D (𝑀
1+3𝑗

) = D (𝐿
1+3𝑗

) , 𝑀
1+3𝑗

𝑢 = (1 + 𝐷
2

𝑥
) 𝑢,

𝑢 ∈ D (𝐿
1+3𝑗

) , 𝑗 = 0, 1,

𝑀
2
= 𝑀

3
= 𝑂.

(263)

Note that the pairs (𝑀
1
, 𝐿

1
) and (𝑀

4
, 𝐿

4
) satisfy our spec-

tral assumptions with 𝛼 = 𝛽
1
= 𝛽

4
= 1 so that we can

apply Theorem 14 with 𝛿 = 1 provided we make the follow-
ing assumptions:

𝑧
𝑗
= (1 + 𝐷

2

𝑥
) 𝑧

∗

𝑗
, 𝑧

∗

𝑗
∈ D (𝐿

1+3𝑗
) , 𝑗 = 0, 1,

− 𝐷
2

𝑥
𝑢
0
= (1 + 𝐷

2

𝑥
) 𝑢

∗

0
− 𝑎𝐷

2

𝑥
V
0
− 𝑏𝐷

𝑥
V
0
− 𝑐V

0
,

𝑢
∗

0
∈ D (𝐿

1
) ,

−𝐷
2

𝑥
V
0
+ 𝑑V

0
= (1 + 𝐷

2

𝑥
) V∗

0
, V∗

0
∈ D (𝐿

4
) ,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) , 𝜃 ∈ (0, 1) , 𝜂
1
, 𝜂

2
∈ 𝐿

2
((0, 𝜋)) ,

∫
Ω

{𝜂
1
(𝑥) 𝑧

1
(𝑥) + 𝜂

2
(𝑥) 𝑧

2
(𝑥)} 𝑑𝑥 ̸= 0,

∫
Ω

{𝜂
1
(𝑥) (1 + 𝐷

2

𝑥
) 𝑢

0
(𝑥) + 𝜂

2
(𝑥) (1 + 𝐷

2

𝑥
) V

0
(𝑥)} 𝑑𝑥

= 𝑔 (0) .

(264)

Then Problems (262)–(265) admit a unique strict global
solution (𝑢, V, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];D(𝐿

4
)) ×

𝐶
𝜃
([0, 𝜏];R) such that (1 + 𝐷

2

𝑥
)𝑢, (1 + 𝐷

2

𝑥
)V ∈ 𝐶

1+𝜃
([0,

𝜏]; 𝐿
2
((0, 𝜋))).

Problem 43. We want to point out a different approach for
solving the identification problem described in Example 28.
For the sake of simplicity, we confine ourselves to the
problem:

𝐷
𝑡
[
𝑀 𝑀

𝐼 𝐼
] [

𝑥 (𝑡)

𝑦 (𝑡)
]

+ [
𝐿
1

𝑂

𝑂 𝐿
2

] [
𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] ,

∀𝑡 ∈ [0, 𝜏] ,

[
𝑀 𝑀

𝐼 𝐼
] [

𝑥

𝑦
] (0) = [

𝑀 𝑀

𝐼 𝐼
] [

𝑥
0

𝑦
0

] ,

Φ
1
[𝑀 (𝑥 + 𝑦) (𝑡)] + Φ

2
[(𝑥 + 𝑦) (𝑡)] = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] ,

(265)

with a compatibility relation 𝑔(0) = Φ
1
[𝑀(𝑥

0
+𝑦

0
)]+Φ

2
[𝑥

0
+

𝑦
0
].

Here𝑀 is a bounded linear operator in 𝑋, 𝐿
𝑗
: 𝐷(𝐿

𝑗
) ⊂

𝑋 → 𝑋, 𝑗 = 1, 2 are two densely defined linear operators in
𝑋 such that 𝐿

2
,𝑀+𝐿

1
𝐿
−1

2
, and 𝑧(𝑀+𝐿

1
𝐿
−1

2
)+𝐿

1
, Re 𝑧 ≥ 0,

are invertible with inverses inL(𝑋) and


[𝑧 (𝑀 + 𝐿

1
𝐿
−1

2
) + 𝐿

1
]
−1L(𝑋)

≤ 𝐶 (|𝑧| + 1)
−1
, Re 𝑧 ≥ 0,

(266)

𝐿
1
being a sectorial operator withD(𝐿

2
) ⊂ D(𝐿

1
).
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From thematrix equation in (265)we obtain the following
equation for the new unknown 𝑢 = 𝑥 + 𝑦:

𝑓 (𝑡) 𝑧
1
= 𝐷

𝑡
𝑀𝑢 (𝑡) + 𝐿

1
𝑢 (𝑡) − 𝐿

1
𝑦 (𝑡)

= 𝐷
𝑡
𝑀𝑢 (𝑡) + 𝐿

1
𝑢 (𝑡) − 𝐿

1
𝐿
−1

2
[𝑓 (𝑡) 𝑧

2
− 𝐷

𝑡
𝑢 (𝑡)] .

(267)

Introduce now the linear functional defined by

Ψ [𝑤] = Φ
1
[𝑀(𝑀 + 𝐿

1
𝐿
−1

2
)
−1

𝑤]+Φ
2
[(𝑀 + 𝐿

1
𝐿
−1

2
)
−1

𝑤] .

(268)

Then the pair (𝑢, 𝑓) solves the identification problem:

𝐷
𝑡
[𝑀 + 𝐿

1
𝐿
−1

2
] 𝑢 (𝑡) + 𝐿

1
𝑢 (𝑡)

= 𝑓 (𝑡) [𝑧
1
+ 𝐿

1
𝐿
−1

2
𝑧
2
] , 𝑡 ∈ [0, 𝜏] ,

(𝑀 + 𝐿
1
𝐿
−1

2
) 𝑢 (0) = (𝑀 + 𝐿

1
𝐿
−1

2
) (𝑥

0
+ 𝑦

0
) ,

Ψ [(𝑀 + 𝐿
1
𝐿
−1

2
) 𝑢 (𝑡)] = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] .

(269)

Finally, set

𝜉 (𝑡) = [𝑀 + 𝐿
1
𝐿
−1

2
] 𝑢 (𝑡) ⇐⇒ 𝑢 (𝑡) = [𝑀 + 𝐿

1
𝐿
−1

2
]
−1

𝜉 (𝑡) ,

𝑡 ∈ [0, 𝜏] .

(270)

It is immediate to check that function 𝜉 solves the nondegen-
erate identification problem:

𝐷
𝑡
𝜉 (𝑡) + 𝐿

1
(𝑀 + 𝐿

1
𝐿
−1

2
)
−1

𝜉 (𝑡) = 𝑓 (𝑡) [𝑧
1
+ 𝐿

1
𝐿
−1

2
𝑧
2
] ,

𝑡 ∈ [0, 𝜏] ,

𝜉 (0) = (𝑀 + 𝐿
1
𝐿
−1

2
) (𝑥

0
+ 𝑦

0
) ,

Ψ [𝜉 (𝑡)] = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] .

(271)

We can now apply [1,Theorem 2.1] if the following conditions
are satisfied:

0 < 𝜃 < 𝜃
0
< 1, 𝑔 ∈ 𝐶

1+𝜃
([0, 𝜏] ;R) ;

sup
𝑡>0

𝑡
𝜃

𝐿
1
[𝑡 (𝑀 + 𝐿

1
𝐿
−1

2
) + 𝐿

1
]
−1

𝐿
1
(𝑥

0
+ 𝑦

0
)

< +∞

⇐⇒ 𝐿
1
(𝑥

0
+ 𝑦

0
) ∈ D

𝐿
1
(𝑀+𝐿

1
𝐿
−1

2
)
−1 (𝜃,∞) ;

sup
𝑡>0

𝑡
𝜃
0


𝐿
1
[𝑡 (𝑀 + 𝐿

1
𝐿
−1

2
) + 𝐿

1
]
−1

(𝑧
1
+ 𝐿

1
𝐿
−1

2
𝑧
2
)

< +∞

⇐⇒ 𝑧
1
+ 𝐿

1
𝐿
−1

2
𝑧
2
∈ D

𝐿
1
(𝑀+𝐿

1
𝐿
−1

2
)
−1 (𝜃

0
,∞) ;

Φ
1
[𝑀 (𝑥

0
+ 𝑦

0
)] + Φ

2
[𝑥

0
+ 𝑦

0
] = 𝑔 (0) ;

Ψ [𝑧
1
+ 𝐿

1
𝐿
−1

2
𝑧
2
] ̸= 0.

(272)

Since

[𝑡𝐼 + (𝑀 + 𝐿
1
𝐿
−1

2
)
−1

𝐿
1
]

−1

= [𝑡 (𝑀 + 𝐿
1
𝐿
−1

2
) + 𝐿

1
]
−1

(𝑀 + 𝐿
1
𝐿
−1

2
)

= (𝑀 + 𝐿
1
𝐿
−1

2
)
−1

[𝑡𝐼 + 𝐿
1
(𝑀 + 𝐿

1
𝐿
−1

2
)]

−1

× (𝑀 + 𝐿
1
𝐿
−1

2
) ,

(273)

it follows that (𝑀 + 𝐿
1
𝐿
−1

2
)
−1
𝐿
1
is sectorial, too. Moreover,

from

𝑡
𝜃
𝐿
1
(𝑀 + 𝐿

1
𝐿
−1

2
)
−1

[𝑡𝐼 + 𝐿
1
(𝑀 + 𝐿

1
𝐿
−1

2
)
−1

]

−1

= 𝑡
𝜃
𝐿
1
[𝑡 (𝑀 + 𝐿

1
𝐿
−1

2
) + 𝐿

1
]
−1

= 𝑡
𝜃
𝐿
1
[𝑡𝐼 + (𝑀 + 𝐿

1
𝐿
−1

2
)
−1

𝐿
1
]

−1

(𝑀 + 𝐿
1
𝐿
−1

2
)
−1

= 𝑡
𝜃
(𝑀 + 𝐿

1
𝐿
−1

2
) (𝑀 + 𝐿

1
𝐿
−1

2
)
−1

× 𝐿
1
[𝑡𝐼 + (𝑀 + 𝐿

1
𝐿
−1

2
)
−1

𝐿
1
]

−1

(𝑀 + 𝐿
1
𝐿
−1

2
)
−1

,

(274)

we deduce that 𝜉 ∈ D
𝐿
1
(𝑀+𝐿

1
𝐿
−1

2
)
−1(𝜃,∞) if and only if (𝑀 +

𝐿
1
𝐿
−1

2
)
−1
𝜉 ∈ D

(𝑀+𝐿
1
𝐿
−1

2
)
−1
𝐿
1

(𝜃,∞).
Since −(𝑀 + 𝐿

1
𝐿
−1

2
)
−1
𝐿
1
is sectorial and has domain

D(𝐿
1
), from [19] (cf. also [20]), it follows D

(𝑀+𝐿
1
𝐿
−1

2
)
−1
𝐿
1

(𝜃,

∞) = D
𝐿
1

(𝜃,∞). Therefore 𝜉 ∈ D
𝐿
1
(𝑀+𝐿

1
𝐿
−1

2
)
−1(𝜃,∞) if and

only if (𝑀 + 𝐿
1
𝐿
−1

2
)
−1
𝜉 ∈ D

𝐿
1

(𝜃,∞).
Consequently, our condition on the data read equiva-

lently

(𝑀 + 𝐿
1
𝐿
−1

2
)
−1

𝐿
1
(𝑥

0
+ 𝑦

0
) ∈ D

𝐿
1
(𝜃,∞) ,

(𝑀 + 𝐿
1
𝐿
−1

2
)
−1

(𝑧
1
+ 𝐿

1
𝐿
−1

2
𝑧
2
) ∈ D

𝐿
1

(𝜃
0
,∞) .

(275)

Then Problem (265) admits a unique solution (𝜉, 𝑓) ∈

[𝐶
1+𝜃

([0, 𝜏]; 𝑋) ∩ 𝐶
𝜃
([0, 𝜏];D(𝐿

1
(𝑀 + 𝐿

1
𝐿
−1

2
)
−1
))] × 𝐶

𝜃
([0,

𝜏];R). Consequently, since 𝑢(𝑡) = [𝑀 + 𝐿
1
𝐿
−1

2
]
−1
𝜉(𝑡) and

𝜉 ∈ 𝐶
1+𝜃

([0, 𝜏]; 𝑋) ∩ 𝐶
𝜃
([0, 𝜏];D([𝑀 + 𝐿

1
𝐿
−1

2
]
−1
)), then the

solution (𝑢, 𝑓) to Problem (269) has the properties (𝑀 +

𝐿
1
𝐿
−1

2
)
−1
𝑢 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋), (𝑢, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) ×

𝐶
𝜃
([0, 𝜏];R).
Finally, from the latter differential equation in (265) we

easily deduce the following representation formula for the
pair (𝑥, 𝑦):

𝑦 (𝑡) = −𝐿
−1

2
𝑢 (𝑡) + 𝑓 (𝑡) 𝐿

−1

2
𝑧
2
,

𝑥 (𝑡) = 𝑢 (𝑡) − 𝑦 (𝑡) = 𝑢 (𝑡) + 𝐿
−1

2
𝑢 (𝑡) − 𝑓 (𝑡) 𝐿

−1

2
𝑧
2
,

𝑡 ∈ [0, 𝜏] .

(276)

We can conclude by stating that Problem (269) admits a
unique solution (𝑥, 𝑦, 𝑓) ∈ 𝐶

𝜃
([0, 𝜏];D(𝐿

1
)) × 𝐶

𝜃
([0, 𝜏];

D(𝐿
2
)) × 𝐶

𝜃
([0, 𝜏];R) such that 𝑥 + 𝑦 ∈ 𝐶

1+𝜃
([0, 𝜏]; 𝑋).
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Remark 44. If 𝑓 is not differentiable with respect to time,
functions 𝑥 and 𝑦 need not to be differentiable, even though
their sum is.This fact exhibits the degeneracy of our Problem
(265).

Remark 45. Consider the identification problem:

𝐷
𝑡
[
−𝐼 −𝐼

𝐼 𝐼
] [

𝑥 (𝑡)

𝑦 (𝑡)
] + [

𝐿 𝑂

𝑂 𝐿
] [

𝑥 (𝑡)

𝑦 (𝑡)
] = 𝑓 (𝑡) [

𝑧
1

𝑧
2

] ,

∀𝑡 ∈ [0, 𝜏] ,

[
−𝐼 −𝐼

𝐼 𝐼
] [

𝑥

𝑦
] (0) = [

−𝐼 −𝐼

𝐼 𝐼
] [

𝑥
0

𝑦
0

] ,

− Φ
1
[(𝑥 + 𝑦) (𝑡)] + Φ

2
[(𝑥 + 𝑦) (𝑡)] = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] ,

(277)

with a compatibility relation 𝑔(0) = (Φ
1
− Φ

2
)[𝑥

0
+ 𝑦

0
].

Here 𝐿 : 𝐷(𝐿) ⊂ 𝑋 → 𝑋 is a densely defined invertible
linear operator in 𝑋 such that 𝐿−1 ∈ L(𝑋), while 𝑥

0
, 𝑦

0
,

𝑧
1
, 𝑧

2
∈ 𝑋 and 𝑔 ∈ 𝐶

1
([0, 𝜏],R).

First we note that our assumptions are not satisfied, since
𝑧(𝑀+𝐼)+𝐿 = 𝐿 for all 𝑧 ∈ C. However, a trivial computation
yields

(𝑥 + 𝑦) (𝑡) = 𝑓 (𝑡) 𝐿
−1
(𝑧

1
+ 𝑧

2
) , ∀𝑡 ∈ [0, 𝜏] . (278)

Therefore, if

Φ
1
[𝐿

−1
(𝑧

1
+ 𝑧

2
)] ̸= Φ

2
[𝐿

−1
(𝑧

1
+ 𝑧

2
)] , (279)

𝑓 is uniquely determined by

𝑓 (𝑡) = (Φ
2
− Φ

1
) [𝐿

−1
(𝑧

1
+ 𝑧

2
)]

−1

𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] .

(280)

Since

𝐿𝑥 (𝑡) = 𝑓 (𝑡) 𝑧
1
+ 𝑓


(𝑡) 𝐿

−1
(𝑧

1
+ 𝑧

2
) , ∀𝑡 ∈ [0, 𝜏] ,

𝐿𝑦 (𝑡) = 𝑓 (𝑡) 𝑧
2
− 𝑓


(𝑡) 𝐿

−1
(𝑧

1
+ 𝑧

2
) , ∀𝑡 ∈ [0, 𝜏] ,

(281)

then the assumptions on our data imply

𝑥 + 𝑦 ∈ 𝐶
1
([0, 𝜏] , 𝑋) , 𝑓 ∈ 𝐶

1
([0, 𝜏] ,R) , (282)

without any resolvent estimate involving 𝐿, but 0 ∈ 𝜌(𝐿).

Application 1. Let𝑋 = 𝐿
𝑝
(Ω), 𝑝 ∈ (1, +∞),Ω being a domain

in R𝑛 with a boundary 𝜕Ω of class 𝐶2. Let 𝑎
𝑖,𝑗

∈ 𝐶(Ω;R)

with 𝑎
𝑖,𝑗

= 𝑎
𝑗,𝑖
, 𝑖, 𝑗 = 1, . . . , 𝑛, be given function satisfying

the ellipticity condition:

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
(𝑥) 𝜉

𝑖
𝜉
𝑗
≥ 𝑐

0

𝜉


2

, (𝑥, 𝜉) ∈ Ω ×R
𝑛
. (283)

Define then the linear differential second-order operator by

D (𝐿) = 𝑊
2,𝑝

(Ω) ∩𝑊
1,𝑝

0
(Ω) ,

𝐿𝑢 =

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
𝐷

𝑥
𝑖

𝐷
𝑥
𝑗

− 𝑎
0
𝑢,

(284)

where 𝑎
0
∈ 𝐶(Ω;R

+
).

Introduce also two functions 𝑚, 𝑎
1
∈ 𝐶(Ω;R) such that

𝑎
1
(𝑥) > 0 and𝑚(𝑥)+𝑎

1
(𝑥)

−1
≥ 𝑐

1
> 0 for all𝑥 ∈ Ω anddenote

by𝑀 the multiplication operator in 𝐿𝑝(Ω) corresponding to
𝑚.

Following the same steps as in [3, pages 79-80], we can
readily derive the resolvent estimate

[𝑧 (𝑀 + 𝑎

−1

1
𝐼) − 𝐿]

−1L(𝑋)

≤ 𝐶 (1 + |𝑧|)
−1
, if Re 𝑧 ≥ 0.

(285)

Consider then the identification problem:

𝐷
𝑡
[
𝑚 (𝑥) 𝑚 (𝑥)

1 1
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)] − [
𝐿 𝑂

𝑂 𝑎
1
𝐿
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [
𝑧
1
(𝑥)

𝑧
2
(𝑥)

] , ∀𝑡 ∈ [0, 𝜏]

[
𝑚 (𝑥) 𝑚 (𝑥)

1 1
] [

𝑢 (0, 𝑥)

V (0, 𝑥)] = [
𝑚 (𝑥) 𝑚 (𝑥)

1 1
] [

𝑢
0
(𝑥)

V
0
(𝑥)

] ,

∫
Ω

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥)] [𝑢 (𝑡, 𝑥) + V (𝑡, 𝑥)] 𝑑𝑥 = 𝑔 (𝑡) ,

∀𝑡 ∈ [0, 𝜏] .

(286)

We assume that our data satisfy

𝑢
0
, V

0
∈ 𝐿

𝑝
(Ω) ,

𝑢
0
+ V

0
∈ 𝑊

2,𝑝
(Ω) ∩𝑊

1,𝑝

0
(Ω) ,

(𝑚 + 𝑎
−1

1
)
−1

𝐿 (𝑢
0
+ V

0
) ∈ D

𝐿
(𝜃,∞) ,

(𝑚 + 𝑎
−1

1
)
−1

(𝑧
1
+ 𝑎

−1

1
𝑧
2
) ∈ D

𝐿
(𝜃

0
,∞) ,

𝜂
1
+ 𝜂

2
∈ 𝐿

𝑝


(Ω) ,
1

𝑝
+

1

𝑝
= 1,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) ,

𝑔 (0) = ∫
Ω

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥)] [𝑢

0
(𝑥) + V

0
(𝑥)] 𝑑𝑥,

∫
Ω

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥)] [𝑚(𝑥) + 𝑎

1
(𝑥)

−1
]
−1

× [𝑧
1
(𝑥) + 𝑎

1
(𝑥)

−1
𝑧
2
(𝑥)] 𝑑𝑥 ̸= 0.

(287)

We note that the spaces D
𝐿
(𝜃,∞) are well characterised in

[9, page 321].
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By virtue of the previous result we deduce that our degen-
erate parabolic identification problem admits a unique global
strict solution (𝑢, V, 𝑓) ∈ 𝐶𝜃

([0, 𝜏];D(𝐿))×𝐶
𝜃
([0, 𝜏];D(𝐿))×

𝐶
𝜃
([0, 𝜏];R) such that 𝑢 + V ∈ 𝐶1+𝜃

([0, 𝜏]; 𝐿
𝑝
(Ω)) and𝑚(𝑢 +

V) ∈ 𝐶1+𝜃
([0, 𝜏]; 𝐿

𝑝
(Ω)).

Application 2. According to [21] the projection operator 𝑃
onto 𝑁(𝑇) relative to the direct sum representation 𝑁(𝑇) ⊕

𝑅(𝑇) is well characterised.Nowwe showhow the correspond-
ing projection in product space 𝑋 × 𝑋 can be characterised
as well.

For the sake of simplicity we confine ourselves to a bit
less general case than the one discussed in Proposition 16,
choosing here𝑀

2
= 𝑂. Hence the corresponding differential

system becomes

𝐷
𝑡
[
𝑀

1
𝑂

𝑂 𝑀
4

] [
𝑢 (𝑡)

V (𝑡)] + [
𝐿
1
𝐿
2

𝑂 𝐿
4

] [
𝑢 (𝑡)

V (𝑡)] = 𝑓 (𝑡) [
𝑧
1

𝑧
2

] ,

∀𝑡 ∈ [0, 𝜏] .

(288)

Suppose that 𝐿
1
and 𝐿

4
admit bounded inverses satisfying

D (𝐿
2
) ⊂ D (𝐿

4
) , D (𝐿

𝑗
) ⊂ D (𝑀

𝑗
) , 𝑗 = 1, 4,


𝑧𝑀

𝑖
(𝑧𝑀

𝑖
+ 𝐿

𝑖
)
−1D(𝑋)

≤ 𝑐, if Re 𝑧 ≥ 0, 𝑗 = 1, 4.

(289)

From our assumption we deduce the following formula:

[
𝐿
1
𝐿
2

𝑂 𝐿
4

]

−1

= [
𝐿
−1

1
−𝐿

−1

1
𝐿
2
𝐿
−1

4

𝑂 𝐿
−1

4

] . (290)

Setting 𝑇
𝑖
= 𝑀

𝑖
𝐿
−1

𝑖
, 𝑖 = 1, 4, we get

T = [
𝑀

1
𝑂

𝑂 𝑀
4

] [
𝐿
−1

1
−𝐿

−1

1
𝐿
2
𝐿
−1

4

𝑂 𝐿
−1

4

] = [
𝑇
1
−𝑇

1
𝐿
2
𝐿
−1

4

𝑂 𝑇
4

] .

(291)

Hence

(𝑧T + 𝐼)
−1
= [

[

(𝑧𝑇
1
+ 𝐼)

−1

𝐿
2
𝐿
−1

4
(𝑧𝑇

4
+ 𝐼)

−1

− (𝑧𝑇
1
+ 𝐼)

−1

𝐿
2
𝐿
−1

4
(𝑧𝑇

4
+ 𝐼)

−1

𝑂 (𝑧𝑇
4
+ 𝐼)

−1

]

]

. (292)

Whence it follows

(𝑧T + I)

−1L(𝑋×𝑋)
≤ 𝐶, if Re 𝑧 ≥ 0. (293)

Note now that if 𝑋 is a reflexive Banach space, we have the
decomposition:

𝑋 × 𝑋 = 𝑁 (T) ⊕ 𝑅 (T). (294)

Observe then that

(𝑥, 𝑦) ∈ 𝑁 (T) ⇐⇒ 𝑇
4
𝑦 = 0, 𝑇

1
(𝑥 − 𝐿

2
𝐿
−1

4
𝑦) = 0.

(295)

Introduce finally the linear bounded operator:

P = [
𝑃
1
−𝑃

1
𝐿
2
𝐿
−1

4
+ 𝐿

2
𝐿
−1

4
𝑃
2

𝑂 𝑃
2

] , (296)

where 𝑃
1
and 𝑃

2
are the projections on 𝑁(𝑇

1
) and 𝑁(𝑇

4
),

respectively.
It is easily checked that P2

= P and

P [
𝑥

𝑦
] = [

𝑃
1
𝑥 − 𝑃

1
𝐿
2
𝐿
−1

4
𝑦 + 𝐿

2
𝐿
−1

4
𝑃
2
𝑦

𝑃
2
𝑦

] ∈ 𝑁 (T) , (297)

since 𝑇
4
𝑃
2
𝑦 = 0 and

𝑇
1
(𝑃

1
𝑥 − 𝑃

1
𝐿
2
𝐿
−1

4
𝑦 + 𝐿

2
𝐿
−1

4
𝑃
2
𝑦) − 𝑇

1
𝐿
2
𝐿
−1

4
𝑃
2
𝑦

= 𝑇
1
𝐿
2
𝐿
−1

4
𝑃
2
𝑦 − 𝑇

1
𝐿
2
𝐿
−1

4
𝑃
2
𝑦 = 0.

(298)

Once we have characterised P, we obtain the basic formula
𝑅(T) = (I−P)(𝑋×𝑋). Consequently, we have at our disposal
all the elements required in Proposition 16.

As an application, we can handle the identification prob-
lem:

𝐷
𝑡
[
𝑚

1
(𝑥) 0

0 𝑚
4
(𝑥)

] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

− [
𝐿
1
(𝑥, 𝐷) 𝐿

2
(𝑥, 𝐷)

𝑂 𝐿
4
(𝑥, 𝐷)

] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [
𝑧
1
(𝑥)

𝑧
2
(𝑥)

] , ∀𝑡 ∈ [0, 𝜏] ,

[
𝑚

1
(𝑥) 0

0 𝑚
4
(𝑥)

] [
𝑢 (0, 𝑥)

V (0, 𝑥)]

= [
𝑚

1
(𝑥) 0

0 𝑚
4
(𝑥)

] [
𝑢
0
(𝑥)

V
0
(𝑥)

] ,

⟨𝑚
1
𝑢, 𝜂

1
⟩
𝐻
−1
(Ω)×𝐻

1

0
(Ω)

+ ⟨𝑚
2
V, 𝜂

2
⟩
𝐻
−1
(Ω)×𝐻

1

0
(Ω)

= 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] .

(299)

Assume now that 𝑚
1
, 𝑚

2
are nonnegative functions in

𝐿
∞
(Ω), 𝑧

1
, 𝑧

2
∈ 𝐻

−1
(Ω), 𝑢

0
, V

0
, 𝜂

1
, 𝜂

2
∈ 𝐻

1

0
(Ω), while 𝐿

1
(𝑥,

𝐷), 𝐿
4
(𝑥, 𝐷), and 𝐿

2
(𝑥, 𝐷) are second-order linear operators

such that the first two are isomorphisms from 𝐻
1

0
(Ω) into

𝐻
−1
(Ω), while the third one is bounded from 𝐻

1

0
(Ω) into

𝐻
−1
(Ω).
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Under such conditions, the conditions in Proposition 16
ensuring the solvability of the identification Problem (299)
are fulfilled. Such conditions, related to the projection P, are
expressed by means of the projections 𝑃

1
and 𝑃

2
.

Application 3. We generalize here to a system Problem 9
related to the scalar Ornstein-Uhlenbeck equation and use
the same notation.

Let �̃� be a uniformly continuous and bounded function
on R𝑁 such that

�̃� (𝑥) ≥ 𝑐
0
> 0, 𝑥 ∈ R

𝑁
. (300)

Consider first, for all 𝜆 ∈ C
+
= {𝑧 ∈ C : Re 𝑧 ≥ 0} and

𝑓 ∈ 𝐿
2

𝜇
(R𝑁

), the resolvent equation:

𝜆�̃�𝑢 + (−L
2
+ 𝐼) 𝑢 = 𝑓, (301)

where

𝐵𝑄 = 𝑄𝐵
∗
, 𝐵 = −𝑄

−1

∞
. (302)

Then −L
2
is self-adjoint in 𝐿2

𝜇
(R𝑁

) and [19] (cf. [20, Section
9.3.2, page 251]):

∫
R𝑛
𝑔 ⋅L

2
𝑓𝑑𝜇 = −∫

R𝑁
⟨𝑄𝐷𝑓,𝐷𝑔⟩ 𝑑𝜇. (303)

Thus, taking the real and imaginary parts in the equality:

𝜆∫
R𝑁

�̃� |𝑢|
2
𝑑𝜇 + ∫

R𝑁
⟨𝑄𝐷𝑢,𝐷𝑢⟩ 𝑑𝜇

+ ∫
R𝑁

|𝑢|
2
𝑑𝜇 = ∫

R𝑁
𝑓𝑢𝑑𝜇,

(304)

we get the relations as follows:

Re 𝜆∫
R𝑁

�̃� |𝑢|
2
𝑑𝜇 + ∫

R𝑁
⟨𝑄𝐷𝑢,𝐷𝑢⟩𝑑𝜇

+ ∫
R𝑁

|𝑢|
2
𝑑𝜇 = Re∫

R𝑁
𝑓𝑢𝑑𝜇,

Im 𝜆∫
R𝑁

�̃� |𝑢|
2
𝑑𝜇 = Im∫

R𝑁
𝑓𝑢𝑑𝜇.

(305)

They, in turn, imply

[Re 𝜆 + |Im 𝜆|] ∫
R𝑁

�̃� |𝑢|
2
𝑑𝜇

+ ∫
R𝑁

⟨𝑄𝐷𝑢,𝐷𝑢⟩ 𝑑𝜇 + ∫
R𝑁

|𝑢|
2
𝑑𝜇

≤ 2
𝑓
𝐿2
𝜇
(R𝑁) ‖

𝑢‖𝐿2
𝜇
(R𝑁) .

(306)

Since Re 𝜆 + | Im 𝜆| ≥ 0, we deduce

∫
R𝑁

⟨𝑄𝐷𝑢,𝐷𝑢⟩ 𝑑𝜇 + ∫
R𝑁

|𝑢|
2
𝑑𝜇 ≤ 2

𝑓
𝐿2
𝜇
(R𝑁) ‖

𝑢‖𝐿2
𝜇
(R𝑁) .

(307)

implying

𝑐
0 |𝜆| ∫

R𝑁
|𝑢|

2
𝑑𝜇 ≤ |𝜆| ∫

R𝑁
�̃� |𝑢|

2
𝑑𝜇

≤ [Re 𝜆 + |Im 𝜆|] ∫
R𝑁

�̃� |𝑢|
2
𝑑𝜇

≤ 4
𝑓


2

𝐿
2

𝜇
(R𝑁)

= 4
𝜆�̃�𝑢 + (−L2

+ 𝐼)𝑢


2

𝐿
2

𝜇
(R𝑁)

, 𝜆 ∈ C
+
.

(308)

Since [𝜆�̃�𝐼+(−L
2
+𝐼)]

∗
= 𝜆�̃�𝐼+(−L

2
+𝐼), we can conclude

that 𝜆�̃�𝐼 + (−L
2
+ 𝐼) has a bounded inverse and


[𝜆�̃�𝐼 + (−L

2
+ 𝐼)]

−1L(𝐿
2

𝜇
(R𝑁))

≤ 4𝑐
−1

0
|𝜆|

−1
, 𝜆 ∈ C

+
.

(309)

Let us now consider the following degenerate identification
problem related to a matrix-valued Ornstein-Uhlenbeck
operator: look for a triplet of functions 𝑢, V : R𝑁

→ R and
𝑓 : [0, 𝑇] → R such that

𝐷
𝑡
[
𝑚 (𝑥) 𝑚 (𝑥)

𝐼 𝐼
] [

𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

− [
L

2
− 𝐼 𝑂

𝑂 𝑎
1
(𝑥) (L

2
− 𝐼)

] [
𝑢 (𝑡, 𝑥)

V (𝑡, 𝑥)]

= 𝑓 (𝑡) [
𝑧
1
(𝑥)

𝑧
2
(𝑥)

] , ∀𝑡 ∈ [0, 𝜏] , 𝑥 ∈ R
𝑁
,

[
𝑚 (𝑥) 𝑚 (𝑥)

𝐼 𝐼
] [

𝑢 (0, 𝑥)

V (0, 𝑥)]

= [
𝑚 (𝑥) 𝑚 (𝑥)

𝐼 𝐼
] [

𝑢
0
(𝑥)

V
0
(𝑥)

] , 𝑥 ∈ R
𝑁
,

∫
R𝑁

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
] [𝑢 (𝑡, 𝑥) + V (𝑡, 𝑥)] 𝑑𝜇,

= 𝑔 (𝑡) , ∀𝑡 ∈ [0, 𝜏] ,

(310)

where

𝑢
0
, V

0
, 𝜂

1
, 𝜂

2
∈ 𝐿

2

𝜇
(R

𝑁
) . (311)

We now assume that functions 𝑚 and 𝑎
1
are uniformly

continuous, bounded, and strictly positive in R𝑁. Moreover,
we assume that function 𝑚 + (1/𝑎

1
) has the same properties

and satisfies 𝑚(𝑥) + (1/𝑎
1
(𝑥)) ≥ 𝑐

0
> 0 for all 𝑥 ∈ R𝑁. Then

condition (309) is satisfied with �̃� = 𝑚 + (1/𝑎
1
). Further, the

interpolation space is characterised by

(𝐿
2

𝜇
(R

𝑁
) ,𝑊

2,2

𝜇
(R

𝑁
))

𝜃,∞
= 𝐵

2𝜃

2,∞
(R

𝑁
; 𝜇) , 𝜃 ∈ (0, 1) .

(312)
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Assume now that our data enjoy the following properties:

𝑢
0
, V

0
∈ 𝐿

2

𝜇
(R

𝑁
) , 𝑢

0
+ V

0
∈ 𝑊

2,2

𝜇
(R

𝑁
) ,

[
𝑎
1

(𝑚𝑎
1
+ 1)

] (L
2
− 𝐼) (𝑢

0
+ V

0
) ∈ 𝐵

2𝜃

2,∞
(R

𝑁
; 𝜇) ,

𝑧
1
, 𝑧

2
∈ 𝐿

2

𝜇
(R

𝑁
) ,

(𝑎
1
𝑧
1
+ 𝑧

2
)

(𝑚𝑎
1
+ 1)

∈ 𝐵
2𝜃
0

2,∞
(R

𝑁
; 𝜇) ,

𝜃
0
∈ (𝜃, 1) ,

𝑔 ∈ 𝐶
1+𝜃

([0, 𝜏] ;R) ,

𝑔 (0) = ∫
R𝑁

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥)] [𝑢

0
(𝑥) + V

0
(𝑥)] 𝑑𝜇.

∫
R𝑁

[𝜂
1
(𝑥)𝑚 (𝑥) + 𝜂

2
(𝑥)]

× [
1

𝑚 (𝑥) 𝑎
1
(𝑥) + 1

] [𝑎
1
𝑧
1
(𝑥) + 𝑧

2
(𝑥)] 𝑑𝑥 ̸= 0.

(313)

Consequently, our degenerate parabolic identification prob-
lem possesses a unique global strict solution (𝑢, V, 𝑓) ∈

𝐶
𝜃
([0, 𝜏];𝑊

2,2

𝜇
(R𝑁

)) × 𝐶
𝜃
([0, 𝜏];𝑊

2,2

𝜇
(R𝑁

)) × 𝐶
𝜃
([0, 𝜏];R)

such that 𝑢 + V,𝑚(𝑢 + V) ∈ 𝐶1+𝜃
([0, 𝜏]; 𝐿

2

𝜇
(R𝑁

)).

Application 4. We are here concerned with hyperbolic sys-
tems.

Let A𝑗
= (𝑎

𝑗

ℎ,𝑘
)
𝑁

ℎ,𝑘=1
, 𝑗 = 1, . . . , 𝑛, 𝑁, 𝑛 ∈ R \ {0}, be a

𝑁 × 𝑁 Hermitian matrix, that is, 𝑎𝑗
ℎ,𝑘

= 𝑎
𝑗

𝑘,ℎ
, and let 𝑎𝑗

ℎ,𝑘
∈

𝐶
1

𝑏
(R𝑛

;C), the space of all bounded functions along with all
first-order derivatives. LetB = (𝑏

ℎ,𝑘
)
𝑁

ℎ,𝑘=1
be a𝑁 ×𝑁matrix

with 𝑏
ℎ,𝑘

∈ 𝐶
1

𝑏
(R𝑛

;C).
Set 𝑋 = 𝐿

2
(R𝑛

)
𝑁 and for all 𝑢, V ∈ 𝐿

2
(R𝑛

)
𝑁 define the

inner product:

⟨⟨𝑢, V⟩⟩ =
𝑁

∑

𝑗=1

⟨𝑢
𝑗
, V

𝑗
⟩
𝐿
2
(R𝑛)

=

𝑁

∑

𝑗=1

∫
R𝑛
𝑢
𝑗
(𝑥) V

𝑗
(𝑥) 𝑑𝑥, (314)

where 𝑢 = (𝑢
1
, . . . , 𝑢

𝑁
) and V = (V

1
, . . . , V

𝑁
), so that ‖𝑢‖2 =

∑
𝑁

𝑗=1


𝑢
𝑗



2

𝐿
2
(R𝑛)
𝑁 .

If 𝑇 ∈ S
(R𝑛

),𝐷
𝑥
𝑗

𝑇 is the temperate distribution defined
by ⟨𝐷

𝑥
𝑗

𝑇, 𝜑⟩ = −⟨𝑇,𝐷
𝑥
𝑗

𝜑⟩ for all 𝜑 ∈ S(R𝑛
). If 𝑓 ∈ 𝐿

2
(R𝑛

)

and 𝑎 ∈ 𝐶1
(R𝑛

;C) one defines

𝑎𝐷
𝑥
𝑗

𝑓 = 𝐷
𝑥
𝑗

(𝑎𝑓) − 𝑓𝐷
𝑥
𝑗

𝑎. (315)

Of course, 𝑓 ∈ 𝐿
2
(R𝑛

) is identified with the temperate
distribution ⟨𝑓, 𝜑⟩ = ∫

R𝑛
𝑓(𝑥)𝜑(𝑥)𝑑𝑥, 𝜑 ∈ S(R𝑛

).

Therefore the components of ∑𝑛

𝑗=1
A𝑗

(𝑥)𝐷
𝑥
𝑗

𝑢 + B(𝑥)𝑢

are given by

𝑛

∑

𝑗=1

𝑁

∑

𝑙=1

𝑎
𝑗

𝑘,𝑙
(𝑥)𝐷

𝑥
𝑗

𝑢
𝑙
+

𝑁

∑

𝑙=1

𝑏
𝑘,𝑙
(𝑥) 𝑢

𝑙
(𝑥) , 𝑘 = 1, . . . , 𝑁,

(316)

where𝐷
𝑥
𝑗

𝑢
𝑙
is meant in the sense of distributions.

We can now introduce the linear first-order differential
operatorA defined by

A𝑢 =

𝑛

∑

𝑗=1

A
𝑗
(𝑥)𝐷

𝑥
𝑗

𝑢 +B (𝑥) 𝑢 ∈ S

(R

𝑛
) , 𝑢 ∈ 𝑋, (317)

D (𝐴) = {𝑢 ∈ 𝑋 : A𝑢 ∈ 𝑋} , 𝐴𝑢 = A𝑢, 𝑢 ∈ D (𝐴) .

(318)

It is well known (cf. [22]) that𝐴 generates a 𝐶
0
-semigroup in

𝑋. Consequently, our abstract identification problem reduces
to the following: find a pair (𝑢, 𝑓) such that

𝐷
𝑡
𝑢
𝑘
=

𝑛

∑

𝑗=1

𝑁

∑

𝑙=1

𝑎
𝑗

𝑘,𝑙
(𝑥)𝐷

𝑥
𝑗

𝑢
𝑙
+

𝑁

∑

𝑙=1

𝑏
𝑘,𝑙
(𝑥) 𝑢

𝑙
(𝑥) + 𝑓 (𝑡) 𝑧

𝑘
,

(𝑡, 𝑥) ∈ [0, 𝜏] ×R
𝑛
, 𝑘 = 1, . . . , 𝑁,

(319)

𝑢
𝑘
(0, 𝑥) = 𝑢

0,𝑘
(𝑥) , 𝑥 ∈ R

𝑛
, 𝑘 = 1, . . . , 𝑁, (320)

⟨⟨𝜂, 𝑢 (𝑡, ⋅)⟩⟩ = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] , (321)

where 𝑧 = (𝑧
1
, . . . , 𝑧

𝑁
), 𝑢

0
= (𝑢

0,1
, . . . , 𝑢

0,𝑁
), 𝜂 ∈ 𝑋 and 𝑔 ∈

𝐶
1
([0, 𝜏];R) are given.
Theorem 13 allows to conclude that if 𝑧, 𝑢

0
∈ D(𝐴)

(in particular they belong to 𝐻
1
(R𝑛

), ⟨⟨𝜂, 𝑢
0
⟩⟩ = 𝑔(0) and

⟨⟨𝜂, 𝑧⟩⟩ ̸= 0) the problems (319)–(321) admit a unique solu-
tion (𝑢, 𝑓) ∈ [𝐶1

([0, 𝜏]; 𝑋) ∩ 𝐶([0, 𝜏];D(𝐴))] × 𝐶([0, 𝜏];R).
As an example, consider the following identification

problem related to Maxwell equations:

𝐷
𝑡
𝐸 = −𝑐 rot 𝐻 + 𝑓 (𝑡) 𝑧, (𝑡, 𝑥) ∈ [0, 𝜏] ×R

3
, (322)

𝐷
𝑡
𝐻 = −𝑐 rot 𝐸, (𝑡, 𝑥) ∈ [0, 𝜏] ×R

3
, (323)

𝐸 (0, 𝑥) = 𝐸
0
(𝑥) , 𝐻 (0, 𝑥) = 𝐻

0
(𝑥) , 𝑥 ∈ R

3
, (324)

⟨⟨𝜂
1
, 𝐸 (𝑡, ⋅)⟩⟩ + ⟨⟨𝜂

2
, 𝐻 (𝑡, ⋅)⟩⟩ = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] ,

(325)

where 𝑐 ∈ R
+
, 𝑧, 𝐸

0
, 𝐻

0
, 𝜂

1
, 𝜂

2
∈ 𝐿

2
(R3

)
3, div𝐸

0
= 0,

div𝐻
0
= 0 and div 𝑧 = 0 in R3, and 𝑔 ∈ 𝐶

1
([0, 𝜏];R) are

given.
We note that div𝐸

0
= 0, div𝐻

0
= 0, and div 𝑧 = 0 in R3

imply div𝐸(𝑡, ⋅) = 0 and div𝐻(𝑡, ⋅) = 0 in R3, via (322) and
(323).

We notice that our assumption concerning 𝑧 and 𝐸
0

ensure that no electric charges occur in R3.



Abstract and Applied Analysis 35

Introduce now the vector𝑢 = (𝐸,𝐻) ∈ 𝐿
2
(R3

)
6. Recalling

that

rot 𝐾 = (𝐷
𝑥
2

𝐾
3
− 𝐷

𝑥
3

𝐾
2
, 𝐷

𝑥
3

𝐾
1

−𝐷
𝑥
1

𝐾
3
, 𝐷

𝑥
1

𝐾
2
− 𝐷

𝑥
2

𝐾
1
) ,

(326)

we observe that (322) and (323) can be rewritten in the unified
form:

𝐷
𝑡
𝑢 = A

1
𝐷

𝑥
1

𝑢 +A
2
𝐷

𝑥
2

𝑢 +A
3
𝐷

𝑥
3

𝑢 + 𝑓 (𝑡) [
𝑧

0
] ,

(𝑡, 𝑥) ∈ [0, 𝜏] ×R
3
,

(327)

where all the elements in A𝑗
= (𝑎

𝑗

ℎ,𝑘
)
6

ℎ,𝑘=1
vanish but the

following:

𝑎
1

2,6
= 𝑎

1

6,2
= 𝑐, 𝑎

1

3,5
= 𝑎

1

5,3
= −𝑐, 𝑎

2

3,4
= 𝑎

2

4,3
= 𝑐,

𝑎
2

1,6
= 𝑎

2

6,1
= −𝑐, 𝑎

3

1,5
= 𝑎

3

5,1
= 𝑐, 𝑎

3

2,4
= 𝑎

3

4,2
= −𝑐.

(328)

Define now

𝑋 = {𝑢 ∈ 𝐿
2
(R

3
)
6

: div (𝑢
1
, 𝑢

2
, 𝑢

3
)

= div (𝑢
4
, 𝑢

5
, 𝑢

6
) = 0 in R

3
} ,

𝑌 = {𝑢 ∈ 𝐿
2
(R

3
)
6

: rot (𝑢
1
, 𝑢

2
, 𝑢

3
)

= rot (𝑢
4
, 𝑢

5
, 𝑢

6
) = 0 in R

3
} .

(329)

We observe that it is easy to check that 𝑋 is a closed
subspace in 𝐿2(R3

)
6 orthogonal to 𝑌.

We observe now that, according to our assumptions, the
initial value

𝑢
0
= (𝐸

0
, 𝐻

0
) (330)

belongs to𝑋, while the additional condition can be expressed
as

⟨⟨𝜂, 𝑢 (𝑡, ⋅)⟩⟩ = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] , (331)

where 𝜂 = (𝜂
1
, 𝜂

2
) ∈ 𝐿

2
(R3

)
6.

Since operator𝐴 is defined by (318), with𝑁 = 6, it gener-
ates a 𝐶

0
-semigroup in 𝑋. Moreover, D(𝐴) = 𝐿

2
(R3

; rot) ×
𝐿
2
(R3

; rot), where 𝐿2(R3
; rot) = {𝑘 ∈ 𝐿

2
(R3

)
3
: rot 𝑘 ∈

𝐿
2
(R3

)
3
}. Consequently, Corollary 2.1 in [8] applies provided

𝑧, 𝜂
1
, 𝜂

2
∈ 𝐿

2
(R3

; rot), ⟨⟨𝜂, 𝑢
0
⟩⟩ = 𝑔(0), and ⟨⟨𝜂

1
, 𝑧⟩⟩ ̸= 0.

Then the identification Problems (322)–(325) admit a unique
solution (𝐸,𝐻) ∈ [𝐶

1
([0, 𝜏]; 𝑋) ∩ 𝐶([0, 𝜏]; 𝐿

2
(R3

; rot) ×
𝐿
2
(R3

; rot))] × 𝐶([0, 𝜏];R).

Remark 46. Likewise we could treat identification problems
for the Dirac equation in nonrelativistic QuantumMechanics
(cf. [22, page 54]), making use of the function space 𝐿2(R3

)
4.

Application 5. Let 𝐴 be the linear operator defined in 𝑋 =

𝐿
2
(R𝑛

), 𝑛 ∈ N \ {0} by

D (𝐴) = 𝐻
2
(R

𝑛
) , 𝐴𝑢 (𝑥) = 𝑖Δ𝑢 (𝑥) − 𝑉 (𝑥) 𝑢 (𝑥) ,

𝑢 ∈ D (𝐴) ,

(332)

where the potential 𝑉 belongs to 𝐿
𝑝
(R𝑛

;R) for some 𝑝 >

𝑛/2 and 𝑝 ≥ 2. Then it is well known (cf. [23]) that 𝐴
generates a group of unitary operators on 𝐿2(R𝑛

). Therefore,
Proposition 35 yields the following result.

Corollary 47. Let 𝑧, 𝑢
0
∈ 𝐻

2
(R𝑛

), 𝜂 ∈ 𝐿
2
(R𝑛

), ⟨𝜂, 𝑧⟩ ̸= 0,
𝑔 ∈ 𝐶

1
([0, 𝜏];C), ⟨𝜂, 𝑢

0
⟩ = 𝑔(0), 𝑉 ∈ 𝐿

𝑝
(R𝑛

;R) for some
𝑝 > 𝑛/2 and 𝑝 ≥ 2. Then the identification problem

𝐷
𝑡
𝑢 (𝑡, 𝑥) = 𝑖Δ𝑢 (𝑡, 𝑥) − 𝑉 (𝑥) 𝑢 (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧 (𝑥) ,

(𝑡, 𝑥) ∈ [0, 𝜏] ×R
𝑛
,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ R

𝑛
,

∫
R𝑛
𝜂 (𝑥) 𝑢 (𝑡, 𝑥) 𝑑𝑥 = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] ,

(333)

admits a unique solution (𝑢, 𝑓) ∈ [𝐶
1
([0, 𝜏]; 𝐿

2
(R𝑛

)) ∩ 𝐶([0,

𝜏];𝐻
2
(R𝑛

))] × 𝐶([0, 𝜏];R).

Application 6. In a very recent paper [24] Taira exhibits a
functional approach to the existence of Markov processes
endowed with both Dirichlet and oblique derivative and the
so-called first-orderWentzell boundary conditions for second-
order uniformly elliptic differential equations with discon-
tinuous coefficients. More exactly, the related differential
operator is assumed to be of the form

A𝑢 =

𝑁

∑

𝑖,𝑗

𝑎
𝑖,𝑗
𝐷

𝑥
𝑖

𝐷
𝑥
𝑗

𝑢 +

𝑁

∑

𝑖,𝑗

𝑏
𝑖
𝐷

𝑥
𝑖

𝑢 + 𝑐 (𝑥) 𝑢 (334)

on a bounded domainΩ ⊂ R𝑁,𝑁 ≥ 3, with boundary 𝜕Ω of
class 𝐶1,1.

The discontinuous real-valued coefficients are assumed to
satisfy the following properties:

(i) 𝑎𝑖,𝑗 ∈ 𝑉𝑀𝑂(Ω) ∩ 𝐿
∞
(Ω), 𝑎𝑖,𝑗(𝑥) = 𝑎

𝑗,𝑖
(𝑥) for a.e. 𝑥 ∈

Ω and 𝜆−1|𝜉|2 ≤ ∑
𝑁

𝑖,𝑗
𝑎
𝑖,𝑗
(𝑥)𝜉

𝑖
𝜉
𝑗
≤ 𝜆|𝜉|

2 for a.e. 𝑥 ∈ Ω,
all 𝜉 ∈ R𝑁 and some 𝜆 ∈ [1, +∞);

(ii) 𝑏𝑖 ∈ 𝐿∞(Ω);

(iii) 𝑐 ∈ 𝐿∞(Ω) and 𝑐(𝑥) ≤ 0 for a.e. 𝑥 ∈ Ω.

The differential operatorA is a diffusion operator describing
a strong Markov process with continuous paths in Ω such as
Brownian motions.
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Consider also a boundary operator of the form

𝐿𝑢 (𝑥) = 𝜇 (𝑥)𝐷
𝑛
𝑢 (𝑥) + 𝛽 (𝑥) ⋅ ∇

𝜏
𝑢 (𝑥)

+ 𝛾 (𝑥) 𝑢 (𝑥) − 𝛿 (𝑥) (A𝑢)
𝜕Ω

,

𝑥 ∈ 𝜕Ω,

(335)

where ∇
𝜏
denotes the tangential component of the gradient

along 𝜕Ω.
The following assumptions on the coefficients of 𝐿 are

made:

(iv) 𝜇 is Lipschitz continuous on 𝜕Ω and 𝜇(𝑥) ≥ 0 for all
𝑥 ∈ 𝜕Ω;

(v) 𝛽 is a Lipschitz continuous vector field on 𝜕Ω;
(vi) 𝛾 is a Lipschitz continuous on 𝜕Ω and 𝛾(𝑥) ≤ 1 for all

𝑥 ∈ 𝜕Ω;
(vii) 𝛿 is a Lipschitz continuous on 𝜕Ω and 𝛿(𝑥) ≥ 0 for all

𝑥 ∈ 𝜕Ω;
(viii) 𝑛(𝑥) = (𝑛

1
(𝑥), . . . , 𝑛

𝑁
(𝑥)) is the unit interior normal

at 𝑥 to 𝜕Ω.

The terms 𝜇𝐷
𝑛
𝑢, 𝛽 ⋅ ∇

𝜏
𝑢, 𝛾𝑢, 𝛿(A𝑢)

𝜕Ω
correspond, respec-

tively, to the following phenomena: reflection, drift along the
boundary, absorption, and sticking (or viscosity).

Let 𝐶(Ω) be the Banach space of real-valued functions
continuous on Ω endowed with the sup-norm.

Associated with the formal differential operator A we
introduce the realization 𝐴 defined by

D (𝐴) = {𝑢 ∈ 𝐶 (Ω) : A𝑢 ∈ 𝐶 (Ω) , 𝐿𝑢 = 0 on 𝜕Ω} .

(336)

Functions in D(𝐴) are said to satisfy Wentzell conditions of
the first order.

Finally, recall that a strongly continuous semigroup
{𝑇 (𝑡)}

𝑡≥0
on 𝐶(Ω) is called a Feller semigroup if it satisfies

𝑓 ∈ 𝐶 (Ω) , 0 ≤ 𝑓 (𝑥) ≤ 1,

𝑥 ∈ Ω implies 0 ≤ (𝑇 (𝑡) 𝑓) (𝑥) ≤ 1, 𝑥 ∈ Ω.

(337)

This implies that {𝑇 (𝑡)}
𝑡≥0

is nonnegative and contracting on
𝐶(Ω).

Assume now that 𝑝 ∈ (𝑁, +∞) and𝐴 : D(𝐴) ⊂ 𝐶(Ω) →

𝐶(Ω) is defined by

D (𝐴) = {𝑢 ∈ 𝑊
2,𝑝

(Ω) : A𝑢 ∈ 𝐶 (Ω) , 𝐿𝑢 = 0 on 𝜕Ω} ,

𝐴𝑢 = A𝑢,

𝑢 ∈ D (𝐴) .

(338)

ThenTheorem 1.1 in [24, page 717] establishes that𝐴 generates
a Feller semigroup on 𝐶(Ω). Therefore, Theorem 13 applies.
Recall now that the dual𝐶(Ω)∗ consists of realmeasure ]with
finite variation coinciding with ‖𝜇‖

𝐶(Ω)
.

Finally, consider the identification problem:

𝐷
𝑡
𝑢 (𝑡, 𝑥) = A𝑢 (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧 (𝑥) , (𝑡, 𝑥) ∈ [0, 𝜏] × Ω,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ R

𝑛
,

𝐿𝑢 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0, 𝜏] × 𝜕Ω,

∫
Ω

𝑢 (𝑡, 𝑥) ] (𝑑𝑥) = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] .

(339)

If 𝑧, 𝑢
0
∈ D(𝐴), 𝑔 ∈ 𝐶

1
([0, 𝜏];R), ∫

Ω
𝑢
0
(𝑥)](𝑑𝑥) = 𝑔(0),

∫
Ω
𝑧(𝑥)](𝑑𝑥) ̸= 0, then the previous Problems admit a

unique solution (𝑢, 𝑓) ∈ [𝐶1
([0, 𝜏]; 𝐶(Ω))∩𝐶([0, 𝜏];D(𝐴))]×

𝐶([0, 𝜏];R).

Application 7.Weare here again concernedwith theOrnstein-
Uhlenbeck operator, but in 𝐿𝑝(R𝑛

). For this purpose denote
by L̃

𝑝
, 𝑝 ∈ (1, +∞), the realization of the the Ornstein-

Uhlenbeck operator A. Consider now the identification
problem:

𝐷
𝑡
𝑢 (𝑡, 𝑥) = L̃

𝑝
𝑢 (𝑡, 𝑥) + 𝑓 (𝑡) 𝑧 (𝑥) , (𝑡, 𝑥) ∈ [0, 𝜏] ×R

𝑛
,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ R

𝑛
,

∫
Ω

𝑢 (𝑡, 𝑥) 𝑑𝑥 = 𝑔 (𝑡) , 𝑡 ∈ [0, 𝜏] ,

(340)

In viewof [11, Proposition 9.4.2, page 280] operator L̃defined
by

D (L̃
𝑝
) = {𝑢 ∈ 𝑊

2,𝑝
(Ω) : A𝑢 ∈ 𝐿

𝑝
(R

𝑛
)} ,

L̃
𝑝
𝑢 = A𝑢,

𝑢 ∈ D (L̃
𝑝
) ,

(341)

generates a strongly continuous semigroup {𝑇
𝑝
(𝑡)}

𝑡≥0
, which

is not analytic.
In this case, we can apply Theorem 13. Indeed, if 𝑧, 𝑢

0
∈

D(L̃
𝑝
), 𝜂 ∈ 𝐿

𝑝


(R𝑛
), (1/𝑝) + (1/𝑝


) = 1, 𝑔 ∈ 𝐶

1
([0, 𝜏];

R), ∫
Ω
𝜂(𝑥)𝑢

0
(𝑥)𝑑𝑥 = 𝑔(0), ∫

Ω
𝜂(𝑥)𝑧(𝑥)𝑑𝑥 ̸= 0, then the

previous Problems admit a unique solution (𝑢, 𝑓) ∈ [𝐶
1
([0,

𝜏]; 𝐿
𝑝
(R𝑛

)) ∩ 𝐶([0, 𝜏];D(L̃
𝑝
))] × 𝐶([0, 𝜏];R).

Appendices

A. Perturbing Generators:
An Interpolation Approach

Let𝑋 be a complex Banach space with norm ‖⋅‖.
We make the following assumptions, where 𝜌(𝐿) denotes

the resolvent set of a linear closed operator 𝐿 : D(𝐿) ⊂ 𝑋 →

𝑋:

(H1) 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑋 is a (possibly multivalued)
linear closed operator, whose resolvent 𝜌(𝐴) contains
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the set Σ
𝛼
= {𝜆 ∈ C : Re 𝜆 ≥ −𝑐

0
(1+| Im 𝜆|)

𝛼
}, 𝑐

0
> 0,

0 < 𝛽 ≤ 𝛼 ≤ 1;
(H2) ‖(𝜆−𝐴)−1‖L(𝑋)

≤ 𝐶
0
(1+|𝜆|)

−𝛽,𝐶
0
> 0, and𝛽 ∈ (0, 1],

for all 𝜆 ∈ Σ
𝛼
;

(H3) 𝐵 ∈ L(D(𝐴); 𝑋
𝜃

𝐴
) for some 𝜃 ∈ (1 − 𝛽, 1),

where the space 𝑋𝜃

𝐴
, introduced in [3], is defined by 𝑋𝜃

𝐴
=

{𝑢 ∈ 𝑋 : sup
𝑡>0
𝑡
𝜃
‖𝐴(𝑡 − 𝐴)

−1
‖ < +∞}.

Wewant to show that the linear closed operator𝐴 = 𝐴+𝐵

generates a 𝐶∞-semigroup if 𝛽 ∈ (0, 1) (resp., an analytical
semigroup, if 𝛽 = 1) {𝑒𝑡𝐴}

𝑡>0
of linear bounded operators in

L(𝑋). For this purpose, we extend two perturbation results
listed in [20].

For all 𝑓 ∈ 𝑋 and 𝜆 ∈ 𝜆
0
+ Σ

𝛼
, consider the spectral

equation:

𝜆𝑢 − 𝐴𝑢 − 𝐵𝑢 = 𝑓, 𝑢 ∈ D (𝐴) . (A.1)

Applying operator (𝜆 − 𝐴)−1 to both sides in (A.1), we deduce
the following equation:

[𝐼 − (𝜆 − 𝐴)
−1
𝐵] 𝑢 = (𝜆 − 𝐴)

−1
𝑓, 𝑢 ∈ D (𝐴) . (A.2)

Recall now (cf. [3, page 49]) that

𝐴 (𝜆 − 𝐴)

−1
𝑥

≤ 𝑐 |𝜆|

1−𝛽−𝜃
‖𝑥‖

𝑋
𝜃

𝐴

,

𝜆 ∈ 𝜆
0
+ Σ

𝛼
, 𝑥 ∈ 𝑋

𝜃

𝐴
.

(A.3)

Consider now the following resolvent identity:

𝐴
∘
(𝜆 − 𝐴)

−1
= 𝐴 (|𝜆| − 𝐴)

−1

− (𝜆 − |𝜆|) (𝜆 − 𝐴)
−1
𝐴 (|𝜆| − 𝐴)

−1
,

𝜆, |𝜆| ∈ 𝜌 (𝐴) .

(A.4)

If 𝑥 ∈ 𝑋
𝜃

𝐴
, we get the estimate


𝐴 (𝜆 − 𝐴)

−1
𝑥


≤ [𝑐 (1 + |𝜆|)
−𝜃
+ 2𝐶

0 |𝜆| (1 + |𝜆|)
−𝛽
(1 + |𝜆|)

−𝜃
] ‖𝑥‖

𝑋
𝜃

𝐴

≤ 𝑐 (1 + |𝜆|)
1−𝛽−𝜃

‖𝑥‖
𝑋
𝜃

𝐴

, 𝜆 ∈ Σ
𝛼
, 𝑥 ∈ 𝑋

𝜃

𝐴
.

(A.5)

Since 𝑥 → ‖𝐴𝑥‖ is an equivalent norm onD(𝐴), indeed 0 ∈
𝜌(𝐴), we conclude that

(𝜆 − 𝐴)

−1L(𝑋
𝜃

𝐴
;D(𝐴))

≤ 𝑐 (1 + |𝜆|)
1−𝛽−𝜃

, 𝜃 ∈ (1 − 𝛽, 1) .

(A.6)

Since 𝐵 ∈ L(𝑋
𝜃

𝐴
;D(𝐴)), we deduce the estimate


(𝜆 − 𝐴)

−1
𝐵
L(D(𝐴))

≤

(𝜆 − 𝐴)

−1L(𝑋
𝜃

𝐴
;D(𝐴))

‖𝐵‖L(D(𝐴);𝑋
𝜃

𝐴
)

≤ 𝐶
1
(1 + |𝜆|)

1−𝛽−𝜃
‖𝐵‖L(D(𝐴);𝑋

𝜃

𝐴
)
, 𝜆 ∈ Σ

𝛼
.

(A.7)

This implies


(𝜆 − 𝐴)

−1
𝐵
L(D(𝐴))

≤
1

2
, 𝜆 ∈ Σ

𝛼,𝛽,𝜃
, (A.8)

where, recall that, owing to (H3), 𝛽 + 𝜃 > 1,

Σ
𝛼,𝛽,𝜃

= {𝜆 ∈ Σ
𝛼
: (1 + |𝜆|)

𝛽+𝜃−1
> 𝐶

1 ‖𝐵‖L(D(𝐴);𝑋
𝜃

𝐴
)
} .

(A.9)

Then, according to (A.8), we deduce that 𝐼 + (𝜆 − 𝐴)
−1
𝐵

is invertible in D(𝐴) and, for all 𝜆 ∈ Σ
𝛼,𝛽,𝜃

, its inverse is
estimated by


[𝐼 + (𝜆 − 𝐴)

−1
𝐵]

−1L(D(𝐴))

≤ 2, 𝜆 ∈ Σ
𝛼,𝛽,𝜃

. (A.10)

Hence (A.2) admits, for all 𝜆 ∈ Σ
𝛼,𝛽,𝜃

and 𝑓 ∈ 𝑋, the unique
solution:

𝑢 = [𝐼 − (𝜆 − 𝐴)
−1
𝐵]

−1

(𝜆 − 𝐴)
−1
𝑓 ∈ D (𝐴) (A.11)

satisfying the estimate

‖𝑢‖D(𝐴)
≤ 2


𝐴 (𝜆 − 𝐴)

−1
𝑓

≤ 𝐶 (1 + |𝜆|)

1−𝛽 𝑓
 .

(A.12)

Therefore, for all 𝜆 ∈ Σ
𝛼,𝛽,𝜃

the operator 𝜆 − 𝐴 − 𝐵 has a
bounded inverse from𝑋 intoD(𝐴), and, hence, from𝑋 into
itself.

We now estimate 𝑢 in 𝑋. From the equation 𝜆𝑢 = 𝐴𝑢 +

𝐵𝑢 + 𝑓 = 𝐴𝑢 + 𝐵𝐴
−1
𝐴𝑢 + 𝑓, for all 𝜆 ∈ Σ

𝛼,𝛽,𝜃
, we get

|𝜆| ‖𝑢‖ ≤ (1 +

𝐵𝐴

−1L(𝑋)
) ‖𝐴𝑢‖ +

𝑓


= (1 +

𝐵𝐴

−1L(𝑋)
) ‖𝑢‖D(𝐴)

+
𝑓


≤ [𝐶 (1 +

𝐵𝐴

−1L(𝑋)
) (1 + |𝜆|)

1−𝛽
+ 1]

𝑓


≤ 𝐶

(1 + |𝜆|)

1−𝛽 𝑓
 .

(A.13)

As a consequence, from (A.13)we deduce the desired estimate

‖𝑢‖ ≤ 𝐶 (1 + |𝜆|)
−𝛽 𝑓

 , 𝜆 ∈ Σ
𝛼,𝛽,𝜃

. (A.14)

B. A General Approach to
the Identification Problem

Let𝑋,F, andZ be three complex Banach spaces with norms
‖⋅‖, ‖⋅‖F, ‖⋅‖Z, respectively.

We make the following assumptions, where 𝜌(𝐿) denotes
the resolvent set of a linear closed operator 𝐿 : D(𝐿) ⊂ 𝑋 →

𝑋:

(H1) 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑋 is a linear closed operator,
whose resolvent 𝜌(𝐴) contains the set Σ

𝛼
= {𝜆 ∈ C :

Re 𝜆 ≥ −𝑐
0
(1 + | Im 𝜆|)

𝛼
}, 𝑐

0
> 0, and 𝛼 ∈ (0, 1];

(H2) ‖(𝜆 − 𝐴)
−1
‖L(𝑋)

≤ 𝐶
0
(1 + |𝜆|)

−𝛽, 𝐶
0
> 0, and 𝛽 ∈

(0, 𝛼], for all 𝜆 ∈ Σ
𝛼
;
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(H3) 𝑀 ∈ B(F × Z; 𝑋), B(F × Z; 𝑋) standing for
the Banach space of all linear bounded sesquilinear
operators fromF ×Z to𝑋;

(H4) Φ ∈ L(𝑋;F);
(H5) for each fixed 𝑍 ∈ Z and for all𝐻 ∈ F the equation

Φ[𝑀(𝐹, 𝑍)] = 𝐻 is uniquely solvable in F and its
solution can be represented by 𝐹 = Ψ[𝐻,𝑍], where
the (nonlinear) operator Ψ : D(Ψ) ⊂ F × Z →

F is linear continuous as a function of 𝐻; that is
‖Ψ [𝐻,𝑍]‖F ≤ 𝐶

1
(𝑍) ‖𝐻‖F, for all𝐻 ∈ F;

(H6) there exist Banach spaces 𝑋𝜃

𝐴
and Z𝜃

𝐴
in 𝑋 and Z,

respectively, with 𝜃 > 1 − 𝛽, such that

‖𝑀 (𝐹, 𝑍)‖
𝑋
𝜃

𝐴

≤ 𝐶 (𝜃) ‖𝐹‖F ‖𝑍‖Z𝜃 , (𝐹, 𝑍) ∈ F ×Z
𝜃
.

(B.1)

We consider now the following problem: determine a pair of
functions 𝑢 : [0, 𝜏] → 𝑋 and 𝐹 : [0, 𝜏] → F such that

𝑢

(𝑡) − 𝐴𝑢 (𝑡) = 𝑀 (𝐹 (𝑡) , 𝑍) + 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

𝑢 (0) = 𝑢
0
,

Φ [𝑢 (𝑡)] = 𝐻 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

(B.2)

where 𝑢
0
∈ D(𝐴), 𝑔 ∈ 𝐶([0, 𝜏]; 𝑋),𝐻 ∈ 𝐶

1
([0, 𝜏];F).

Apply now operator Φ to both sides of our differential
equation. Using assumptions (H4), we obtain the following
equation:

𝐻

(𝑡) − Φ [𝐴𝑢 (𝑡)]

= Φ [𝑀 (𝐹 (𝑡) , 𝑍)] + Φ [𝑔 (𝑡)] , 0 ≤ 𝑡 ≤ 𝜏.

(B.3)

From assumptions (H3) and (H5) we deduce

𝐹 (𝑡) = Ψ [𝐻

(𝑡) , 𝑍] − Ψ [Φ [𝑔 (𝑡)] , 𝑍] − Ψ [Φ [𝐴𝑢 (𝑡)] , 𝑍] ,

0 ≤ 𝑡 ≤ 𝜏.

(B.4)

Inserting this expression into the differential equation (B.2),
we conclude that the identification Problem (B.2) is equiva-
lent to the unusual following Cauchy problem:

𝑢

(𝑡) − 𝐴𝑢 (𝑡) + 𝑀 (Ψ [Φ [𝐴𝑢 (𝑡)] , 𝑍] , 𝑍)

= 𝑀(Ψ [𝐻

(𝑡) , 𝑍] , 𝑍)

−𝑀(Ψ [Φ [𝑔 (𝑡)] , 𝑍] , 𝑍) + 𝑔 (𝑡) , 0 ≤ 𝑡 ≤ 𝜏,

𝑢 (0) = 𝑢
0
.

(B.5)

Introduce now the linear operator 𝐵 defined by

D (𝐵) = D (𝐴) , 𝐵𝑢 = −𝑀(Ψ [Φ [𝐴𝑢] , 𝑍] , 𝑍) ,

𝑢 ∈ D (𝐵) .

(B.6)

From assumptions (H5) and (H6) we deduce the bounds as
follows:

‖𝐵𝑢‖
𝑋
𝜃

𝐴

≤ 𝐶 (𝜃) ‖Ψ [Φ [𝐴𝑢] , 𝑍]‖F ‖𝑍‖Z𝜃

≤ 𝐶 (𝜃) 𝐶
1
(𝑍) ‖Φ [𝐴𝑢]‖F ‖𝑍‖Z𝜃

≤ 𝐶 (𝜃) 𝐶
1
(𝑍) ‖Φ‖L(𝑋,𝐹) ‖𝐴𝑢‖𝑋 ‖𝑍‖Z𝜃

≤ 𝐶 (𝜃) 𝐶
1
(𝑍) ‖Φ‖L(𝑋,𝐹) ‖𝑍‖Z𝜃 ‖𝑢‖D(𝐴)

.

(B.7)

Consequently, the linear operator 𝐴 + 𝐵, with D(𝐴 + 𝐵) =

D(𝐴), generates a 𝐶∞-semigroup in 𝑋 if 𝛽 ∈ (0, 1) (resp.,
an analytical semigroup, if 𝛽 = 1) {𝑒𝑡𝐴}

𝑡>0

of linear bounded
operators in𝑋 with

(𝜆 − 𝐴 − 𝐵)

−1L(𝑋)
≤ 𝐶 (1 + |𝜆|)

−𝛽
, 𝜆 ∈ Σ

𝛼
, 𝜆 large.

(B.8)

Remark 48. Note that no compactness is required to operator
𝑀(Ψ[Φ[𝐴𝑢], 𝑍], 𝑍) in order that the perturbed operator
generates a 𝐶∞-(or an analytical) semigroup.

Application 8. In the case of Application 8 𝐵 is given by

𝐵𝑢 = −𝑀(Ψ [Φ [𝐴𝑢] , 𝑍] , 𝑍) = −

𝑁

∑

𝑗,𝑘=1

Ψ̃
𝑗,𝑘
(𝑍)Φ

𝑘 [𝐴𝑢] 𝑧𝑗.

(B.9)

In this case one has

𝑋
𝜃

𝐴
⊂ 𝑋

𝜃

𝐴+𝐵
. (B.10)

Proof. Suppose 𝑓 ∈ 𝑋 and 𝑢 = (𝑡 + 𝐴 + 𝐵)
−1
𝑓. Then (𝑡 +

𝐴)𝑢 = 𝑓 − 𝐵𝑢. Hence,

𝐴𝑢 = 𝐴 (𝑡 + 𝐴)
−1
𝑓 − 𝐴 (𝑡 + 𝐴)

−1
𝐵𝑢

= 𝐴 (𝑡 + 𝐴)
−1
𝑓 +

𝑁

∑

𝑗,𝑘=1

Ψ̃
𝑗,𝑘
(𝑍)Φ

𝑘 [𝐴𝑢]𝐴 (𝑡 + 𝐴)
−1
𝑧
𝑗
.

(B.11)

Therefore,
‖𝐴𝑢‖𝑋

≤

𝑘𝐴 (𝑡 + 𝐴)

−1
𝑓
𝑋

+

𝑁

∑

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗ ‖
𝐴𝑢‖𝑋


𝐴 (𝑡 + 𝐴)

−1
𝑧
𝑗

𝑋

≤

𝐴 (𝑡 + 𝐴)

−1
𝑓
𝑋
+ 𝑡

−𝜃

𝑁

∑

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗ ‖
𝐴𝑢‖𝑋


𝑧
𝑗

𝑋𝜃
𝐴

.

(B.12)

This implies

(1 − 𝑡
−𝜃

𝑁

∑

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗

𝑧
𝑗

𝑋𝜃
𝐴

)‖𝐴𝑢‖𝑋

≤

𝐴 (𝑡 + 𝐴)

−1
𝑓
𝑋

.

(B.13)
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Hence, if 𝑡 is sufficiently large,

‖𝐴𝑢‖𝑋 ≤


𝐴 (𝑡 + 𝐴)

−1
𝑓
𝑋

1 − 𝑡−𝜃∑
𝑁

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗

𝑧
𝑗

𝑋𝜃
𝐴

. (B.14)

On the other hand,

‖𝐵𝑢‖
𝑋
≤

𝑁

∑

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗ ‖
𝐴𝑢‖𝑋


𝑧
𝑗

𝑋

≤

∑
𝑁

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗

𝑧
𝑗

𝑋

1 − 𝑡−𝜃∑
𝑁

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗

𝑧
𝑗

𝑋𝜃
𝐴

×

𝐴 (𝑡 + 𝐴)

−1
𝑓
𝑋

.

(B.15)

Consequently,

(𝐴 + 𝐵) (𝑡 + 𝐴 + 𝐵)

−1
𝑓
𝑋

= ‖(𝐴 + 𝐵) 𝑢‖𝑋 ≤

1 + ∑
𝑁

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗

𝑧
𝑗

𝑋

1 − 𝑡−𝜃∑
𝑁

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗

𝑧
𝑗

𝑋𝜃
𝐴

×

𝐴 (𝑡 + 𝐴)

−1
𝑓
𝑋

.

(B.16)
Therefore, one concludes that there exists a constant 𝑐 > 0

such that
sup
𝑡≥𝑐

𝑡
𝜃 
𝐴 (𝑡 + 𝐴)

−1
𝑓
𝑋

< ∞

⇒ sup
𝑡≥𝑐

𝑡
𝜃 
(𝐴 + 𝐵) (𝑡 + 𝐴 + 𝐵)

−1
𝑓
𝑋

< ∞.

(B.17)

We consider the problem

𝑢

(𝑡) − 𝐴𝑢 (𝑡) + 𝑀 (Ψ [Φ [𝐴𝑢 (𝑡)] , 𝑍] , 𝑍)

= 𝑀(Ψ [𝐻

(𝑡) , 𝑍] , 𝑍) −𝑀(Ψ [Φ [𝑔 (𝑡)] , 𝑍] , 𝑍) + 𝑔 (𝑡) ,

0 ≤ 𝑡 ≤ 𝜏,

𝑢 (0) = 𝑢
0
.

(B.18)

Suppose that 𝐴𝑢
0
∈ 𝑋

𝜃

𝐴
, 3 − 𝛼 − 𝛽 − 𝛼𝛽 < 𝜃 < 1, and

𝑀(Ψ[𝐻

(⋅) , 𝑍] , 𝑍)

−𝑀(Ψ [Φ [𝑔 (⋅)] , 𝑍] , 𝑍)

+ 𝑔 ∈ 𝐶 ([0, 𝜏] ; 𝑋) ∩ 𝐵 ([0, 𝜏] ; 𝑋
𝜃

𝐴
) .

(B.19)

Since 𝑅(𝐵) ⊂ 𝑋
𝜃

𝐴
, one has (𝐴 + 𝐵) 𝑢

0
∈ 𝑋

𝜃

𝐴
. In view of (B.9)

one observes

(𝐴 + 𝐵) 𝑢
0
∈ 𝑋

𝜃

𝐴+𝐵
, (B.20)

𝑀(Ψ[𝐻

(⋅) , 𝑍] , 𝑍)

−𝑀(Ψ [Φ [𝑔 (⋅)] , 𝑍] , 𝑍)

+ 𝑔 ⊂ 𝐶 ([0, 𝜏] ; 𝑋) ∩ 𝐵 ([0, 𝜏] ; 𝑋
𝜃

𝐴+𝐵
) .

(B.21)

By virtue of Corollary 3.3 of [25] problem (B.18) one admits
a unique solution such that

𝑢

∈ 𝐶 ([0, 𝜏] ; 𝑋) ∩ 𝐵 ([0, 𝜏] ; 𝑋

(𝜃−3+2𝛼+𝛽)/𝛼

𝐴+𝐵
)

⊂ 𝐶 ([0, 𝜏] ; 𝑋) ∩ 𝐵 ([0, 𝜏] ; 𝑋
(𝜃−3+𝛼+𝛽+𝛼𝛽)/𝛼

𝐴
) ,

(B.22)

(𝐴+𝐵) 𝑢∈𝐶
(𝜃−3+2𝛼+𝛽)/𝛼

([0, 𝜏] ; 𝑋) ∩ 𝐵 ([0, 𝜏] ; 𝑋
(𝜃−3+2𝛼+𝛽)/𝛼

𝐴+𝐵
)

⊂𝐶
(𝜃−3+2𝛼+𝛽)/𝛼

([0,𝜏] ; 𝑋)∩𝐵 ([0,𝜏] ;𝑋
(𝜃−3+𝛼+𝛽+𝛼𝛽)/𝛼

𝐴
) .

(B.23)

Let 𝑘 > 0 be so large that 𝐴 + 𝐵 + 𝑘 has a bounded inverse.
Since by virtue of (B.22) and (B.23)

(𝐴 + 𝐵 + 𝑘) 𝑢 ∈ 𝐶
(𝜃−3+2𝛼+𝛽)/𝛼

([0, 𝜏] ; 𝑋) , (B.24)

one obtains

𝐴𝑢=𝐴 (𝐴 + 𝐵 + 𝑘)
−1
(𝐴 + 𝐵 + 𝑘) 𝑢∈𝐶

(𝜃−3+2𝛼+𝛽)/𝛼
([0, 𝜏] ; 𝑋) .

(B.25)

It follows from

𝑠
𝜃 
𝐴 (𝑠 + 𝐴)

−1
𝐵𝑢 (𝑡)

𝑋

= 𝑠
𝜃



𝑁

∑

𝑗,𝑘=1

Ψ̃
𝑗,𝑘
(𝑍)Φ

𝑘 [𝐴𝑢 (𝑡)] 𝐴 (𝑠 + 𝐴)
−1
𝑧
𝑗

𝑋

≤

𝑁

∑

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗ ‖
𝐴𝑢(𝑡)‖𝑋 𝑠

𝜃 
𝐴 (𝑠 + 𝐴)

−1
𝑧
𝑗

𝑋

(B.26)

that

‖𝐵𝑢(𝑡)‖
𝑋
𝜃

𝐴

≤

𝑁

∑

𝑗,𝑘=1


Ψ̃
𝑗,𝑘
(𝑍)



Φ𝑘

𝑋∗ ‖
𝐴𝑢(𝑡)‖𝑋


𝑧
𝑗

𝑋𝜃
𝐴

.

(B.27)

Hence, with the aid of (B.25), one obtains

𝐵𝑢 ∈ 𝐵 ([0, 𝜏] ; 𝑋
𝜃

𝐴
) . (B.28)

Since 0 < 2 − 𝛽 − 𝛼𝛽, one has

𝜃 (1 − 𝛼) ≤ 1 − 𝛼 < 3 − 𝛼 − 𝛽 − 𝛼𝛽. (B.29)

This implies

(𝜃 − 3 + 𝛼 + 𝛽 + 𝛼𝛽)

𝛼 < 𝜃
. (B.30)

Hence, in view of (B.28), one has

𝐵𝑢 ∈ 𝐵 ([0, 𝜏] ; 𝑋
(𝜃−3+𝛼+𝛽+𝛼𝛽)/𝛼

𝐴
) . (B.31)

From this and (B.23) it follows that

𝐴𝑢 ∈ 𝐵 ([0, 𝜏] ; 𝑋
(𝜃−3+𝛼+𝛽+𝛼𝛽)/𝛼

𝐴
) . (B.32)
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Thus, the unique solution to problem (B.18) satisfies

𝑢

∈ 𝐶 ([0, 𝜏] ; 𝑋) ∩ 𝐵 ([0, 𝜏] ; 𝑋

(𝜃−3+𝛼+𝛽+𝛼𝛽)/𝛼

𝐴
) ,

𝐴𝑢 ∈ 𝐶
(𝜃−3+2𝛼+𝛽)/𝛼

([0, 𝜏] ; 𝑋) ∩ 𝐵 ([0, 𝜏] ; 𝑋
(𝜃−3+𝛼+𝛽+𝛼𝛽)/𝛼

𝐴
) .

(B.33)

It is also possible to show that 𝑢 ∈ 𝐵([0, 𝜏];

𝑋
(𝜃−3+𝛼+𝛽+𝛼𝛽)/𝛼

𝐴
).

Application 9. Let F = 𝑙
2
(R), Z = 𝑙

2
(𝑋), Z𝜃

= 𝑙
2
(𝑋

𝜃

𝐴
), 𝐹 =

{𝑓
𝑗
}
+∞

𝑗=1
∈ 𝑙

2
(R), 𝑍 = {𝑧

𝑗
}
+∞

𝑗=1
∈ Z𝜃, 𝑀(𝐹,𝑍) = ∑

+∞

𝑗=1
𝑓
𝑗
𝑧
𝑗
.

Let Φ = {Φ
𝑗
}
+∞

𝑗=1
∈ 𝑙

2
(𝑋

∗
) such that ∑+∞

𝑗,𝑘=1
|Φ

𝑘
[𝑧

𝑗
]|
2
< 1.

Therefore, equationΦ[𝑀(𝐹, 𝑍)] = 𝐻, with𝐻 ∈ 𝑙
2
(R), means

Φ(

+∞

∑

𝑗=1

𝑓
𝑗
𝑧
𝑗
) = (

+∞

∑

𝑗=1

𝑓
𝑗
Φ

𝑘
[𝑧

𝑗
])

𝑘∈N\{0}

. (B.34)

Suppose that the infinite matrix (Φ
𝑘
[𝑧

𝑗
])
+∞

𝑗,𝑘=1
defines an

invertible operator in L(𝑙
2
(R)), the inverse of which is

denoted by Ψ̃(𝑍), so that 𝐹 = Ψ̃(𝑍)𝐻 = Ψ̃(𝐻,𝑍).
One also has

𝑀(Ψ [Φ [𝐴𝑢] , 𝑍] , 𝑍) =

+∞

∑

𝑗=1

(Ψ̃ (𝑍)Φ [𝐴𝑢])
𝑗
𝑧
𝑗

=

+∞

∑

𝑗,𝑘=1

Ψ̃
𝑗,𝑘
(𝑍)Φ

𝑘 [𝐴𝑢] 𝑧𝑗.

(B.35)

Moreover,

‖𝑀 (𝐹, 𝑍)‖
𝑋
𝜃

𝐴

≤

+∞

∑

𝑗=1


𝑓
𝑗




𝑧
𝑗

𝑋𝜃
𝐴

≤ ‖𝐹‖𝑙2(R)(

+∞

∑

𝑗=1


𝑧
𝑗



2

𝑋
𝜃

𝐴

)

1/2

=: ‖𝐹‖𝑙2(R) ‖𝑍‖Z𝜃 , (𝐹, 𝑍) ∈ 𝑙
2
(R) ×Z

𝜃
.

(B.36)

Therefore, all assumptions (H1)–(H6) are verified. Con-
sequently, we conclude that the linear operator 𝐴𝑢 =

−𝐴𝑢 + ∑
+∞

𝑗=1
(Ψ̃(𝑍))

𝑗,𝑘
Φ

𝑘
[𝐴𝑢]𝑧

𝑗
, 𝑢 ∈ D(𝐴), generates a 𝐶∞-

semigroup if 𝛽 ∈ (0, 1) and 𝜃 ∈ (1 − 𝛽, 1) (resp., an analytical
semigroup, if 𝛽 = 1 and 𝜃 ∈ (0, 1)).

Reasoning as in Application 8, we conclude that if
𝛼 + 2𝛽 + 𝛼𝛽 > 3, 𝛼 + 𝛽 > 3/2, 4 − 𝛼 − 2𝛽 −

𝛼𝛽 < 𝜃 < 1, then the identification Problem (B.40),
with 𝑁 = +∞, admits a unique solution (𝑢, {𝑓

𝑗
}
𝑗∈N\{0})

such that 𝑢 ∈ 𝐶
1
([0, 𝜏]; 𝑋) ∩ 𝐵([0, 𝜏]; 𝑋

−1+[𝛼𝛽+𝜃−2(2−𝛼−𝛽)]/𝛼

𝐴
),

𝐴𝑢∈𝐶
[𝜃−2(2−𝛼−𝛽)]/𝛼

([0, 𝜏]; 𝑋)∩𝐵([0, 𝜏]; 𝑋
−1+[𝛼𝛽+𝜃−2(2−𝛼−𝛽)]/𝛼

𝐴
),

𝑓
𝑗
∈ 𝐶

[𝜃−2(2−𝛼−𝛽)]/𝛼
([0, 𝜏]; 𝑙

2
(R)), 𝑗 ∈ N \ {0}.

Application 10. We consider here the following identification
problem: determine 𝑛(1 + 𝑁) functions 𝑢

𝑗
: [0, 𝜏] → 𝑋,

𝑗 = 1, . . . , 𝑛, and 𝑓
𝑗,𝑘

: [0, 𝜏] → R, 𝑗 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑁

such that

𝑢


𝑗
(𝑡) − 𝐴

𝑗
𝑢
𝑗
(𝑡) − 𝐵

𝑗
(𝑢

1
(𝑡) , . . . , 𝑢

𝑛
(𝑡))

=

𝑁

∑

𝑙=1

𝑓
𝑗,𝑙
(𝑡) 𝑧

𝑙
+ 𝑔

𝑗
(𝑡) , 0 ≤ 𝑡 ≤ 𝜏, 𝑗 = 1, . . . , 𝑛,

𝑢
𝑗
(0) = 𝑢

0,𝑗
, 𝑗 = 1, . . . , 𝑛,

Φ
𝑘
[𝑢

𝑗
(𝑡)]=ℎ

𝑗,𝑘
(𝑡) , 0 ≤ 𝑡 ≤ 𝜏, 𝑗 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑁.

(B.37)

Before stating precise properties involving operators,
functionals and functions in (B.37) we apply (formally)
functional Φ

𝑘
to both sides in the differential equation in

(B.37). We obtain the following equations for all 𝑡 ∈ [0, 𝜏],
𝑗 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑁:

ℎ


𝑗,𝑘
(𝑡) − Φ

𝑘
[𝐴

𝑗
𝑢
𝑗
(𝑡)] − Φ

𝑘
[𝐵

𝑗
(𝑢

1
(𝑡) , . . . , 𝑢

𝑛
(𝑡))]

− Φ
𝑘
[𝑔

𝑗
(𝑡)] =

𝑁

∑

𝑙=1

𝑓
𝑗,𝑙
(𝑡) Φ

𝑘
[𝑧

𝑙
] .

(B.38)

Suppose that (Φ
𝑘
[𝑧

𝑙
])
𝑁

𝑙,𝑘=1
is an invertible matrix and

denote by Ψ̃(𝑍) = (Ψ̃
𝑘,𝑙
(𝑍))

𝑁

𝑘,𝑙=1
its inverse.

Then we can solve system (B.38) for (𝑓
𝑗,𝑙
(𝑡))

𝑛,𝑁

𝑗=1,𝑙=1
. For all

𝑡 ∈ [0, 𝜏], 𝑗 = 1, . . . , 𝑛, 𝑙 = 1, . . . , 𝑁 we obtain

𝑓
𝑗,𝑙
(𝑡) =

𝑁

∑

𝑘=1

{ℎ


𝑗,𝑘
(𝑡) − Φ

𝑘
[𝐴

𝑗
𝑢
𝑗
(𝑡)]

− Φ
𝑘
[𝐵

𝑗
(𝑢

1
(𝑡) , . . . , 𝑢

𝑛
(𝑡))]

−Φ
𝑘
[𝑔

𝑗
(𝑡)]} Ψ̃

𝑘,𝑙
(𝑍) .

(B.39)

Consequently, our identification problem is equivalent to
the following direct problem

𝑢


𝑗
(𝑡) − 𝐴

𝑗
𝑢
𝑗
(𝑡) +

𝑁

∑

𝑘,𝑙=1

Φ
𝑘
[𝐴

𝑗
𝑢
𝑗
(𝑡)] Ψ̃

𝑘,𝑙
(𝑍) 𝑧

𝑙

= 𝐵
𝑗
(𝑢

1
(𝑡) , . . . , 𝑢

𝑛
(𝑡)) + 𝑔

𝑗
(𝑡) ,

0 ≤ 𝑡 ≤ 𝜏, 𝑗 = 1, . . . , 𝑛, 𝑢
𝑗
(0) = 𝑢

0,𝑗
, 𝑗 = 1, . . . , 𝑛,

(B.40)

where

𝐵
𝑗
(𝑢

1
, . . . , 𝑢

𝑛
) = 𝐵

𝑗
(𝑢

1
, . . . , 𝑢

𝑛
)

−

𝑁

∑

𝑙,𝑘=1

Φ
𝑘
[𝐵

𝑗
(𝑢

1
, . . . , 𝑢

𝑛
)] Ψ̃

𝑘,𝑙
(𝑍) 𝑧

𝑙
,

𝑗 = 1, . . . , 𝑛,

𝑔
𝑗
(𝑡)

=

𝑁

∑

𝑘,𝑙=1

{ℎ


𝑗,𝑘
(𝑡) − Φ

𝑘
[𝑔

𝑗
(𝑡)]} Ψ̃

𝑘,𝑙
(𝑍) 𝑧

𝑙
+ 𝑔

𝑗
(𝑡) ,

0 ≤ 𝑡 ≤ 𝜏, 𝑗 = 1, . . . , 𝑛.

(B.41)
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We list now our assumptions. Let𝐴
𝑗
: D(𝐴

𝑗
) ⊂ 𝑋 → 𝑋,

𝑗 = 1, . . . , 𝑛, and assume that each 𝐴
𝑗
satisfy properties

(H1) and (H2). 𝐵
𝑗
is a bounded multilinear operator from

∏
𝑛

𝑘=1
D(𝐴

𝑘
) to 𝑋

𝜃

𝐴
𝑗

, 𝑧
𝑘

∈ ⋂
𝑛

𝑗=1
𝑋

𝜃

𝐴
𝑗

, 𝑢
0,𝑗

∈ D(𝐴
𝑗
) and

𝐴
𝑗
𝑢
0,𝑗

∈ 𝑋
𝜃

𝐴
𝑗

, (0 <)3 − 2𝛼 − 𝛽 < 𝜃 < 1, 𝑔
𝑗
∈ 𝐶([0, 𝜏]; 𝑋

𝜃

𝐴
𝑗

),
ℎ
𝑗,𝑘

∈ 𝐶([0, 𝜏];R), 𝑗 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝑁.
As is easily seen there exists a constant 𝐶

2
such that


𝐵
𝑗
(𝑢

1
, . . . , 𝑢

𝑛
)
𝑋𝜃
𝐴𝑗

≤ 𝐶
2

𝑛

∑

𝑘=1

𝐴𝑘
𝑢
𝑘

𝑋
, (B.42)

𝑔
𝑗
∈ 𝐶 ([0, 𝜏] ; 𝑋

𝜃

𝐴
𝑗

) . (B.43)

Problem (B.40) is solved by transforming it to the follow-
ing system of integral equations

𝑢
𝑗
(𝑡) = 𝑒

𝑡𝐴
𝑗𝑢

0,𝑗

− ∫

𝑡

0

𝑁

∑

𝑘,𝑙=1

Φ
𝑘
[𝐴

𝑗
𝑢
𝑗
(𝑠)] Ψ̃

𝑘,𝑙
(𝑍) 𝑒

(𝑡−𝑠)𝐴
𝑗𝑧

𝑙
𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑗𝐵
𝑗
(𝑢

1
(𝑠) , . . . , 𝑢

𝑛
(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑗𝑔
𝑗
(𝑠) 𝑑𝑠.

(B.44)

Applying 𝐴
𝑗
to both sides one deduces

𝐴
𝑗
𝑢
𝑗
(𝑡) = 𝐴

𝑗
𝑒
𝑡𝐴
𝑗𝑢

0,𝑗

− ∫

𝑡

0

𝑁

∑

𝑘,𝑙=1

Φ
𝑘
[𝐴

𝑗
𝑢
𝑗
(𝑠)] Ψ̃

𝑘,𝑙
(𝑍)𝐴

𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝑧
𝑙
𝑑𝑠

+ ∫

𝑡

0

𝐴
𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝐵
𝑗
(𝑢

1
(𝑠) , . . . , 𝑢

𝑛
(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝐴
𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝑔
𝑗
(𝑠) 𝑑𝑠.

(B.45)

Hence one is led to the following system of integral
equations for new unknown finctions V

𝑗
(𝑡) = 𝐴

𝑗
𝑢
𝑗
(𝑡), 𝑗 =

1, . . . , 𝑛:

V
𝑗
(𝑡) = 𝐴

𝑗
𝑒
𝑡𝐴
𝑗𝑢

0,𝑗

− ∫

𝑡

0

𝑁

∑

𝑘,𝑙=1

Φ
𝑘
[V

𝑗
(𝑠)] Ψ̃

𝑘,𝑙
(𝑍)𝐴

𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝑧
𝑙
𝑑𝑠

+ ∫

𝑡

0

𝐴
𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝐵
𝑗
(𝐴

−1

1
V
1
(𝑠) , . . . , 𝐴

−1

𝑛
V
𝑛
(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝐴
𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝑔
𝑗
(𝑠) 𝑑𝑠.

(B.46)

Let

V
𝑗,0
(𝑡) = 𝐴

𝑗
𝑒
𝑡𝐴
𝑗𝑢

0,𝑗
+ ∫

𝑡

0

𝐴
𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝑔
𝑗
(𝑠) 𝑑𝑠,

V
𝑗,]+1 (𝑡)

= V
𝑗,0
(𝑡) − ∫

𝑡

0

𝑁

∑

𝑘,𝑙=1

Φ
𝑘
[V

𝑗,] (𝑠)] Ψ̃𝑘,𝑙
(𝑍)𝐴

𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝑧
𝑙
𝑑𝑠

+ ∫

𝑡

0

𝐴
𝑗
𝑒
(𝑡−𝑠)𝐴

𝑗𝐵
𝑗
(𝐴

−1

1
V
1,] (𝑠) , . . . , 𝐴

−1

𝑛
V
𝑛,] (𝑠)) 𝑑𝑠,

] = 0, 1, 2, . . . .

(B.47)

In view of (B.43) and [25, Corollary 3.3] one observes

V
𝑗,0

∈ 𝐶
(𝜃−3+2𝛼+𝛽)/𝛼

([0, 𝜏] ; 𝑋)⋂𝐵([0, 𝜏] ; 𝑋
(𝜃−3+2𝛼+𝛽)/𝛼

𝐴
𝑗

) .

(B.48)

From

V
𝑗,]+1 (𝑡) − V

𝑗,] (𝑡)

= −∫

𝑡

0

𝑁

∑

𝑘,𝑙=1

Φ
𝑘
[V

𝑗,] (𝑠)

−V
𝑗,]−1 (𝑠)] Ψ̃𝑘,𝑙

(𝑍)𝐴
𝑗
𝑒
−(𝑡−𝑠)𝐴

𝑗𝑧
𝑙
𝑑𝑠

+ ∫

𝑡

0

𝐴
𝑗
𝑒
−(𝑡−𝑠)𝐴

𝑗𝐵
𝑗
(𝐴

−1

1
V
1,] (𝑠)

− 𝐴
−1

1
V
1,]−1 (𝑠) , . . . , 𝐴

−1

𝑛
V
𝑛,] (𝑠)

− 𝐴
−1

𝑛
V
𝑛,]−1 (𝑠)) 𝑑𝑠

(B.49)

and (B.42) it follows that

V
𝑗,]+1(𝑡) − V

𝑗,](𝑡)
𝑋

≤ 𝐶
2

𝑁

∑

𝑘,𝑙=1

Φ𝑘

𝑋∗

Ψ̃
𝑘,𝑙
(𝑍)



𝑧𝑙
𝑋𝜃
𝐴𝑗

× ∫

𝑡

0


V
𝑗,](𝑠) − V

𝑗,]−1(𝑠)
𝑋

(𝑡 − 𝑠)
(𝛽−2+𝜃)/𝛼

𝑑𝑠

+ 𝐶
1
𝐶
2
∫

𝑡

0

(𝑡 − 𝑠)
(𝛽−2+𝜃)/𝛼

×

𝑛

∑

𝑘=1

V𝑘,](𝑠) − V
𝑘,]−1(𝑠)

𝑋
𝑑𝑠.

(B.50)

Since (𝛽 − 2 + 𝜃)/𝛼 > −1, one can easily show that
the sequence {(V

1,], . . . , V𝑛,])} converges to a set of functions
(V

1
, . . . , V

𝑛
) uniformly in 𝑋

𝑛 and (V
1
, . . . , V

𝑛
) is a solution to

the system (B.46) of integral equations. It is obvious that a
set of functions defined by (𝑢

1
(𝑡), . . . , 𝑢

𝑛
(𝑡)) = (𝐴

−1

1
V
1
(𝑡),

. . . , 𝐴
−1

𝑛
V
𝑛
(𝑡)) is a solution to the system (B.44). Again in view
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of [25, Corollary 3.3] one concludes that (𝑢
1
(𝑡), . . . , 𝑢

𝑛
(𝑡)) is a

unique solution to (B.40) satisfying

𝑢


𝑗
∈ 𝐶 ([0, 𝜏] ; 𝑋)⋂𝐵([0, 𝜏] ; 𝑋

(𝜃−3+2𝛼+𝛽)/𝛼

𝐴
𝑗

) ,

𝐴
𝑗
𝑢
𝑗
∈ 𝐶

(𝜃−3+2𝛼+𝛽)/𝛼
([0, 𝜏] ; 𝑋)⋂𝐵([0, 𝜏] ; 𝑋

(𝜃−3+2𝛼+𝛽)/𝛼

𝐴
𝑗

) ,

𝑗 = 1, . . . , 𝑛.

(B.51)
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