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This paper aims to study the influence of heat transfer on thin film flow of a reactive third order fluid with variable viscosity
and slip boundary condition. The problem is formulated in the form of coupled nonlinear equations governing the flow together
with appropriate boundary conditions. Approximate analytical solutions for velocity and temperature are obtained using Adomian
Decomposition Method (ADM). Such solutions are also obtained by using Optimal Homotopy Asymptotic Method (OHAM) and
are compared with ADM solutions. Both of these solutions are found identical as shown in graphs and tables. The graphical results
for embedded flow parameters are also shown.

1. Introduction

Thin film fluid flows exist in various aspects of daily life. In
engineering, we see their usage in condensers, distillation
units, and heat exchangers. In geophysical events, we see thin
fluid films in the forms of drillingmud, heat pipes, and debris
flow. In biological sciences, we can see thin fluid films coating
the airways in the lungs and thin tear films covering the
eye. These are a few examples of common use of thin fluid
films. All these occurrences can be modeled using mathe-
matical principles. The material properties such as viscosity
and density change accordingly when a fluid is subjected
to a temperature change. This phenomenon mostly occurs
in heat exchangers, chemical reactors, or processes where
components are cooled.

Properties of isothermal flows (viscosity at constant tem-
perature) are important in many situations. There have also
been many studies done on variety of nonisothermal (tem-
perature dependent viscosity) flows of fluids; particularly,
Goussis andKelly [1, 2] andHwang andWeng [3] investigated
the stability of a fluid film with variable viscosity flowing

down a heated plan, while Reisfeld and Bankoff [4] and Wu
and Hwang [5] independently considered the progression
and final substrate of a fluid film with variable viscosity on a
heated horizontal substrate subjected to surface tension and
van derWaals forces. Sansom et al. [6] considered the scatter-
ing of a thin film flow with temperature dependent viscosity
on a horizontal substrate for different viscosity models for
both heated and cooled substrate without internal heating
within the film and for a substrate at the ambient temperature
with constant internal heating within the film.

Many researchers have contributed relevant work in this
field. Amongst them, Khaled et al. [7] studied heat transfer
inside thin film flow with variable pressure whereas Nadeem
and Awais [8] investigated the thin film unsteady flow with
variable viscosity.The freemicropolar convection for the case
of a symmetric boundary conditions or asymmetric heating
was investigated by Chamkha et al. [9], later on proceeded
by Saleh et al. [10]. Few other relevant studies may be found
in [11, 12] and the references therein. One of the well-known
models amongst non-Newtonian fluids for thin film is a third
grade fluid which has its constitutive equations based on
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strong theoretical foundations, where the relation between
stress and strain is nonlinear. Therefore, in the present work
we have chosen third grade fluid to study its thin film flow
over a vertical belt.

On the other hand, several numerical and approximate
methods are used by many authors to study real world
problems, appearing in mathematics, fluid mechanics, and
engineering sciences. Few of these methods include Keller-
box [13], shooting [14], Homotopy Perturbation Method
(HPM) [15], Homotopy Analysis Method (HAM), and Opti-
mal Homotopy Asymptotic Method (OHAM) [16, 17]. Appli-
cations of OHAM for solving nonlinear equations arising in
heat transfer have been investigated byMarinca andHerisanu
[18]. Marinca et al. [19] analysed steady flow of a fourth grade
fluid past a porous plate using OHAM. Micropolar flow in a
porous channel with highmass transfer has been investigated
by Joneidi [20]. These methods deal with the nonlinear
problems effectively. The work under various configurations
on the thin film flows has been discussed by Siddiqui et al.
[21]. In [22], Siddiqui et al. examined the thin film flows of
Sisko and Oldroyd-6 constant fluids on a moving belt. Using
the same idea, Gul et al. [23, 24] investigated MHD thin film
flow of a third grade fluid for lifting and drainage problems.
Constant and variable viscosity fluid has been used in all
these studies. In [24] they studied variable viscosity with no-
slip boundary conditions. However, in the present problem
we have chosen Reynolds model (exponential expression)
which is based on variable viscosity in the presence of slip
boundary conditions. More exactly, we have shown the effect
of variable viscosity with heat transfer in a thin film fluid flow
such as silicate melts and polymers past a lubricating belt.
In these fluids, viscous friction generates a local increase in
temperature near the belt with a resultant viscosity decrease
and frequent rise of the flow velocity. This velocity increase
may produce an additional growth of the local temperature
discussed by Costa et al. [25]. Analytical solution for MHD
flow in a third grade fluid with variable viscosity has been
discussed by Ellahi and Riaz [26]. Approximate analytical
solution for flow of a third grade fluid through a parallel plate
channel filled with a porousmedium has been investigated by
Aksoy et al. [27].

Based on the above motivation, the present paper aims
to study the effect of heat on viscosity into a thin film flow
of a third grade fluid over a vertical belt with slip boundary
conditions using ADM and OHAM. In 1992, Adomian [28,
29] introduced the ADM for the approximate solutions
for linear and nonlinear problems. Wazwaz [30, 31] used
ADM for reliable treatment of Bratu-type and Emden-Fowler
equations. Alam et al. investigated the thin film flow of
Johnson-Segalman fluids for lifting and drainage problems
[32].

2. Basic Equations

Continuity, momentum, and energy equations of an incom-
pressible isothermal third grade fluid are

∇ ⋅ v = 0, (1)

𝜌

𝐷v
𝐷𝑡

= ∇ ⋅ T + 𝜌g, (2)

𝜌𝑐𝑝

𝐷Θ

𝐷𝑡

= 𝜅∇

2
Θ + tr (T ⋅ L) , (3)

where L = ∇v and𝐷/𝐷𝑡 = 𝜕/𝜕𝑡+(v.∇) denotesmaterial time
derivative.

Cauchy stress tensor T is given by

T = −𝑝I + S, (4)

where −𝑝I denotes spherical stress and shear stress S is
defined as

S = 𝜇A1 + 𝛼1A2 + 𝛼2A
2

1
+ 𝛽1A3 + 𝛽2 (A1A2 + A2A1)

+ 𝛽3 (trA
2

2
)A1.

(5)

Here A1, A2, and A3 are the kinematical tensors given by

A0 = I,

A1 = (∇v) + (∇v)
𝑇
,

A𝑛 =
𝐷A𝑛−1
𝐷𝑡

+ A𝑛−1 (∇v) + (∇v)
𝑇A𝑛−1, 𝑛 ≥ 2.

(6)

3. Formulation of the Lift Problem

Consider a wide flat belt moves vertically upward at constant
speed 𝑉 through a large bath of a third grade liquid. The
belt carries with it a layer of liquid of constant thickness
𝛿. Cartesian coordinate system is chosen for analysis in
which the 𝑦-axis is taken parallel to the belt and 𝑥-axis is
perpendicular to the belt. Assume that the flow is steady
and laminar after a small distance above the liquid surface
layer while external pressure is atmospheric everywhere. The
geometry of the problems is shown in Figures 1(a) and 1(b).

Velocity and temperature fields are

v = (0, V (𝑥) , 0) ,

Θ = Θ (𝑥) .

(7)

Modeled slip boundary conditions are

v = 𝑉 − 𝛾𝑇𝑥𝑦, Θ = Θ0, at 𝑥 = 0,

𝑑v
𝑑𝑥

= 0, Θ = Θ1, at 𝑥 = 𝛿.
(8)

Inserting the velocity field from (7) in continuity equation (1)
and in Cauchy stress equation (4), the continuity equation (1)
satisfies identically while (4) gives the components of stress
tensor as

𝑇𝑦𝑦 = −𝑃 + (2𝛼1 + 𝛼2) (
𝑑v
𝑑𝑥

)

2

,

𝑇𝑥𝑦 = 𝜇
𝑑v
𝑑𝑥

+ 2 (𝛽2 + 𝛽3) (
𝑑v
𝑑𝑥

)

3

,
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Figure 1: (a) Geometry of lift problem. (b) Geometry of drainage problem.

𝑇𝑥𝑥 = −𝑃 + 𝛼2 (
𝑑v
𝑑𝑥

) ,

𝑇𝑧𝑧 = −𝑃,

𝑇𝑥𝑧 = 𝑇𝑦𝑧 = 0.

(9)

Inserting (9) in (2) and (3), the momentum and energy equa-
tions reduce to

0 = 𝜇

𝑑

2v
𝑑𝑥

2
+

𝑑V
𝑑𝑥

𝑑𝜇

𝑑𝑥

+ 6 (𝛽2 + 𝛽3) (
𝑑V
𝑑𝑥

)

2

(

𝑑

2V
𝑑𝑥

2
)

− 𝜌𝑔,

0 = 𝜅

𝑑

2
Θ

𝑑𝑥

2
+ 𝜇(

𝑑v
𝑑𝑥

)

2

+ 2 (𝛽2 + 𝛽3) (
𝑑v
𝑑𝑥

)

4

.

(10)

In addition, we introduce the dimensionless parameters

Ṽ =
v
𝑉

,

𝑥 =

𝑥

𝛿

,

̃Θ =
Θ − Θ0

Θ1 − Θ0
,

𝜇 =

𝜇

𝜇0

,

𝛾 =

𝛾

𝛾0

,

𝐵𝑟 =

𝜇0𝑉
2

𝑘 (Θ1 − Θ0)

,

𝑆𝑡 =

𝛿

2
𝜌𝑔

𝜇0𝑉

,

𝛽 =

(𝛽2 + 𝛽3) 𝑉
2

𝜇0𝛿
2

,

Λ = 𝛾𝜇0.

(11)

For Reynold’s model, the dimensionless viscosity is

𝜇 = exp (−𝑀Θ) . (12)

By making use of Taylor series expansion, one may represent
viscosity and its derivative as

𝜇 ≅ 1 −𝑀Θ,

𝑑𝜇

𝑑𝑥

≅ −𝑀

𝑑Θ

𝑑𝑥

.

(13)

Inserting dimensionless variables from (11) in modeled
boundary conditions (8) and in momentum as well as in
energy equations (10) and dropping out the bar notations, we
obtain

𝑑

2V
𝑑𝑥

2
−𝑀(

𝑑V
𝑑𝑥

𝑑Θ

𝑑𝑥

+ Θ (𝑥)

𝑑

2V
𝑑𝑥

2
)

+ 6𝛽(

𝑑V
𝑑𝑥

)

2

(

𝑑

2V
𝑑𝑥

2
) − 𝑆𝑡 = 0,

(14)

𝑑

2
Θ

𝑑𝑥

2
+ 𝐵𝑟 ((

𝑑V
𝑑𝑥

)

2

−𝑀Θ(

𝑑V
𝑑𝑥

)

2

+ 2𝛽(

𝑑V
𝑑𝑥

)

4

) = 0. (15)
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According to Gul et al. [24] the boundary conditions for zero
component solution are

V𝑛 = 1 − Λ(
𝑑V𝑛
𝑑𝑥

−𝑀Θ

𝑑V𝑛
𝑑𝑥

+ 2𝛽(

𝑑V𝑛
𝑑𝑥

)

3

) ,

Θ𝑛 = 0, at 𝑥 = 0,

(16)

𝑑V𝑛
𝑑𝑥

= 0, Θ𝑛 = 1, at 𝑥 = 1, when 𝑛 = 0. (17)

Similarly the boundary conditions for first, second, and third
components solutions are

V𝑛 = −Λ(
𝑑V𝑛
𝑑𝑥

−𝑀Θ

𝑑V𝑛
𝑑𝑥

+ 2𝛽(

𝑑V𝑛
𝑑𝑥

)

3

) ,

Θ𝑛 = 0, at 𝑥 = 0,

(18)

𝑑V𝑛
𝑑𝑥

= 0, Θ𝑛 = 0, at 𝑥 = 1, when 𝑛 = 1, 2, 3 . . . . (19)

4. Solution of Lifting Problem

4.1. The ADM Solution. The inverse operator 𝐿−1 = ∬𝑑V
of

the Adomian Decomposition Method is used in the second
order coupled equations (14) and (15):

V = 𝑓1 − 6𝛽𝐿
−1
[(

𝑑V
𝑑𝑥

)

2
𝑑

2V
𝑑

2
𝑥

]

+𝑀[

𝑑V
𝑑𝑥

𝑑Θ

𝑑𝑥

+ Θ

𝑑

2V
𝑑𝑥

2
] ,

Θ = 𝑓2 − 𝐵𝑟𝐿
−1
(

𝑑V
𝑑𝑥

)

2

+ 𝐵𝑟𝑀𝐿
−1
Θ(

𝑑V
𝑑𝑥

)

2

− 2𝐵𝑟𝛽𝐿
−1
(

𝑑V
𝑑𝑥

)

4

,

(20)

where𝑓1,𝑓2 are the terms, whichwe get by double integrating
source terms 𝑆𝑡, 0 andusing the boundary (initial) conditions.
As ADM is a series solution method, according to Aksoy et
al. [27], the solutions Θ and the nonlinear terms 𝑁1V, 𝑁2V,
𝑁3V, 𝑁4Θ, 𝑁5Θ, and 𝑁6Θ can be expressed, respectively, in
the following series:

V =
∞

∑

𝑛=0

V𝑛,

Θ =

∞

∑

𝑛=0

Θ𝑛,

𝑁1V =
∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐴 𝑛 = (
𝑑V
𝑑𝑥

)

2

(

𝑑

2V
𝑑𝑥

2
) ,

𝑁2V =
∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐵 𝑛 = (
𝑑V
𝑑𝑥

)(

𝑑Θ

𝑑𝑥

) ,

𝑁3V =
∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐶 𝑛 = Θ(
𝑑

2V
𝑑𝑥

2
) ,

𝑁4Θ =

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐷 𝑛 = (
𝑑V
𝑑𝑥

)

2

,

𝑁5Θ =

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐸 𝑛 = Θ(
𝑑V
𝑑𝑥

)

2

,

𝑁6Θ =

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐹 𝑛 = (
𝑑V
𝑑𝑥

)

4

,

(21)

where ⏞⏞⏞⏞⏞⏞⏞𝐴 𝑛,
⏞⏞⏞⏞⏞⏞⏞

𝐵 𝑛,
⏞⏞⏞⏞⏞⏞⏞

𝐶 𝑛,
⏞⏞⏞⏞⏞⏞⏞

𝐷 𝑛,
⏞⏞⏞⏞⏞⏞⏞

𝐸 𝑛, and
⏞⏞⏞⏞⏞⏞⏞

𝐹 𝑛 are called
the Adomian polynomials. For every nonlinear term these
polynomials are obtained from the following formula:

⏞⏞⏞⏞⏞⏞⏞

𝐴 0 = 𝑓1 (V0) ,

𝐷0 = 𝑓2 (Θ0) ,

⏞⏞⏞⏞⏞⏞⏞

𝐴 𝑖 =
⏞⏞⏞⏞⏞⏞⏞

𝐵 𝑖 =
⏞⏞⏞⏞⏞⏞⏞

𝐶 𝑖 =

𝑖

∑

𝜆=1

𝐶 (𝜆, 𝑛) 𝑓1

(𝜆)
(V0) ,

⏞⏞⏞⏞⏞⏞⏞

𝐷 𝑖 =
⏞⏞⏞⏞⏞⏞⏞

𝐸 𝑖 =
⏞⏞⏞⏞⏞⏞⏞

𝐹 𝑖 =

𝑖

∑

𝜆=1

𝐶 (𝜆, 𝑛) 𝑓2

(𝜆)
(Θ0) .

(22)

Here 𝑓1(V) and 𝑓2(Θ) are the nonlinear functions and 𝑓1
(𝜆),

𝑓2

(𝜆) are the 𝜆th derivative of 𝑓1(V) and 𝑓2(Θ) evaluated at
V = V0 andΘ = Θ0.The (𝜆, 𝑛) is a well-situated representation
of the series coefficients and is formed by forming products
or sumof the products of 𝜆 components of Vwhose subscripts
add up to 𝑖, divided by the factorial of the number of repeated
subscripts [26]. The convergence of this method has been
discussed in [28–30].

The series solutions of (20) are as follows:

∞

∑

𝑛=0

V𝑛 = 𝑓1 − 6𝛽𝐿
−1
[

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐴 𝑛] +𝑀𝐿
−1
[

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐵 𝑛]

+𝑀𝐿

−1
[

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐶 𝑛] ,

∞

∑

𝑛=0

Θ𝑛 = 𝑓2 − 𝐵𝑟𝐿
−1
[

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐷 𝑛]

+ 𝐵𝑟𝑀𝐿
−1
[

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐸 𝑛]

− 2𝐵𝑟𝛽𝐿
−1
[

∞

∑

𝑛=0

⏞⏞⏞⏞⏞⏞⏞

𝐹 𝑛] .

(23)
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The first few Adomian polynomials are derived in (24) and
(27) when 𝑛 ≥ 0:

⏞⏞⏞⏞⏞⏞⏞

𝐴 0 = (
𝑑V0
𝑑𝑥

)

2
𝑑

2V0
𝑑𝑥

2
,

⏞⏞⏞⏞⏞⏞⏞

𝐵 0 =
𝑑V0
𝑑𝑥

𝑑Θ0

𝑑𝑥

,

⏞⏞⏞⏞⏞⏞⏞

𝐶 0 = Θ0 (𝑥)

𝑑

2V0
𝑑𝑥

2
,

(24)

⏞⏞⏞⏞⏞⏞⏞

𝐷 0 = (
𝑑V0
𝑑𝑥

)

2

,

⏞⏞⏞⏞⏞⏞⏞

𝐸 0 = Θ0 (𝑥) (
𝑑V0
𝑑𝑥

)

2

,

⏞⏞⏞⏞⏞⏞⏞

𝐹 0 = (
𝑑V0
𝑑𝑥

)

4

,

(25)

⏞⏞⏞⏞⏞⏞⏞

𝐴 1 = (
𝑑V0
𝑑𝑥

)

2
𝑑

2V1
𝑑𝑥

2
+ 2

𝑑V0
𝑑𝑥

𝑑V
𝑑𝑥

,

⏞⏞⏞⏞⏞⏞⏞

𝐵 1 =
𝑑V1
𝑑𝑥

𝑑Θ0

𝑑𝑥

+

𝑑V0
𝑑𝑥

𝑑Θ1

𝑑𝑥

,

⏞⏞⏞⏞⏞⏞⏞

𝐶 1 = Θ1 (𝑥)

𝑑

2V0
𝑑𝑥

2
+ Θ0 (𝑥)

𝑑

2V1
𝑑𝑥

2
,

(26)

⏞⏞⏞⏞⏞⏞⏞

𝐷 1 = 2
𝑑V0
𝑑𝑥

𝑑V1
𝑑𝑥

,

⏞⏞⏞⏞⏞⏞⏞

𝐸 1 = Θ1 (𝑥) (
𝑑V0
𝑑𝑥

)

2

+ 2Θ0 (𝑥)

𝑑V1
𝑑𝑥

𝑑V0
𝑑𝑥

,

⏞⏞⏞⏞⏞⏞⏞

𝐹 1 = 4(
𝑑V0
𝑑𝑥

)

3
𝑑V1
𝑑𝑥

.

(27)

Solution of (23) in series form is derived as

V0 + V1 + ⋅ ⋅ ⋅ = 𝑓1 − 6𝛽𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐴 0 +
⏞⏞⏞⏞⏞⏞⏞

𝐴 1 + ⋅ ⋅ ⋅ ]

+ 𝑀𝐿

−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐵 0 +
⏞⏞⏞⏞⏞⏞⏞

𝐵 1 + ⋅ ⋅ ⋅ ]

+ 𝑀𝐿

−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐶 0 +
⏞⏞⏞⏞⏞⏞⏞

𝐶 1 + ⋅ ⋅ ⋅ ] ,

Θ0 + Θ1 + ⋅ ⋅ ⋅ = 𝑓2 − 𝐵𝑟𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐷 0 +
⏞⏞⏞⏞⏞⏞⏞

𝐷 1 + ⋅ ⋅ ⋅ ]

+ 𝑀𝐵𝑟𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐸 0 +
⏞⏞⏞⏞⏞⏞⏞

𝐸 1 + ⋅ ⋅ ⋅ ]

− 2𝐵𝑟𝛽𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐹 0 +
⏞⏞⏞⏞⏞⏞⏞

𝐹 1 + ⋅ ⋅ ⋅ ] .

(28)

The velocity and heat components up to second component
are obtained by comparing both sides of (28).

Components of the lift problem are

V0 (𝑥) = 𝑓1, (29)

Θ0 (𝑥) = 𝑓2, (30)

V1 (𝑥) = −6𝛽𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐴 0] + 𝑀𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐵 0]

+𝑀𝐿

−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐶 0] ,

(31)

Θ1 (𝑥) = −𝐵𝑟𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐷 0] + 𝑀𝐵𝑟𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐸 0]

− 2𝐵𝑟𝛽𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐹 0] ,

(32)

V2 (𝑥) = −6𝛽𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐴 1] + 𝑀𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐵 1]

+𝑀𝐿

−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐶 1] ,

(33)

Θ2 (𝑥) = −𝐵𝑟𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐷 1] + Λ𝐵𝑟𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐸 1]

− 2𝐵𝑟𝛽𝐿
−1
[

⏞⏞⏞⏞⏞⏞⏞

𝐹 1] .

(34)

Zero component slip boundary conditions from (16) and (19)
are

V0 = 1 − Λ(
𝑑V0
𝑑𝑥

−𝑀Θ0

𝑑V0
𝑑𝑥

+ 2𝛽(

𝑑V0
𝑑𝑥

)

3

) ,

Θ0 = 0, at 𝑥 = 0,

(35)

𝑑V0
𝑑𝑥

= 0, Θ0 = 1, at 𝑥 = 1. (36)

First component slip boundary conditions from (17) and (19)
are

V1 = −Λ(
𝑑V1
𝑑𝑥

−𝑀Θ0

𝑑V1
𝑑𝑥

−𝑀Θ1

𝑑V0
𝑑𝑥

+ 6𝛽(

𝑑V0
𝑑𝑥

)

2
𝑑V1
𝑑𝑥

) ,

Θ1 = 0, at 𝑥 = 0,
(37)

𝑑V1
𝑑𝑥

= 0, Θ1 = 0, at 𝑥 = 1. (38)

Second component slip boundary conditions from (17) and
(19) are

V2 = −Λ[
𝑑V2
𝑑𝑥

−𝑀(Θ0

𝑑V2
𝑑𝑥

+ Θ1

𝑑V1
𝑑𝑥

+ Θ2

𝑑V0
𝑑𝑥

)

+ 6𝛽((

𝑑V0
𝑑𝑥

)

2
𝑑V2
𝑑𝑥

+ (

𝑑V1
𝑑𝑥

)

2
𝑑V0
𝑑𝑥

)] ,

Θ2 = 0, at 𝑥 = 0,

(39)

𝑑V2
𝑑𝑥

= 0, Θ2 = 0, at 𝑥 = 1. (40)

Inserting slip boundary conditions from (35) and (36) into
(29) and (30), V0(𝑥) and Θ0(𝑥) are

V0 (𝑥) = (1 + Λ𝑆𝑡 + 2𝛽Λ𝑆
3

𝑡
) − (𝑆𝑡) 𝑥 + (

𝑆𝑡

2

) 𝑥

2
,

Θ0 (𝑥) = 𝑥.

(41)
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Figure 2: Comparison of ADM and OHAMmethods for lift velocity profile (a) and temperature distribution (b). 𝑆𝑡 = 0.5,𝑀 = 0.1, 𝛽 = 0.3,
Λ = 0.01, 𝐵𝑟 = 4, 𝐶1 = 0.212619, 𝑆𝑡 = 0.1, 𝑀 = 0.1, 𝛽 = 0.3, Λ = 0.01, 𝐵𝑟 = 4, 𝐶1 = −0.702416, 𝐶2 = −0.24397, 𝐶3 = 0.01611,
𝐶4 = −0.016823. 𝐶2 = −0.03461, 𝐶3 = −4.49647, and 𝐶4 = −16.42906.
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Figure 3: Comparison of ADM and OHAMmethods for drainage velocity profile (a) and temperature distribution (b). 𝑆𝑡 = 0.1,𝑀 = 0.01,
𝛽 = 0.3,Λ = 0.1,𝐵𝑟 = 0.4,𝐶1 = −0.000019, 𝑆𝑡 = 0.1,𝑀 = 0.01,𝛽 = 0.3,Λ = 0.1,𝐵𝑟 = 0.4,𝐶1 = −0.073388,𝐶2 = 0.000069,𝐶3 = 1728.447608,
𝐶4 = 152.167755, 𝐶2 = 0.049829, 𝐶3 = −1.123666, and 𝐶4 = −0.0230394.

Inserting slip boundary conditions from (37) and (38) into
(31) and (32), V1(𝑥) and Θ1(𝑥) are

V1 (𝑥) = (2𝛽Λ𝑆
3

𝑡
+ 12𝛽

2
Λ𝑆

5

𝑡
) + (2𝛽𝑆

3

𝑡
) 𝑥

− (

𝑀𝑆𝑡

2

+ 3𝛽𝑆

3

𝑡
)𝑥

2
+ (

𝑀𝑆𝑡

3

+ 2𝛽𝑆

3

𝑡
)𝑥

3

− (

1

2

𝛽𝑆

3

𝑡
)𝑥

4
,

(42)

Θ1 (𝑥) = (
1

4

𝐵𝑟𝑆
2

𝑡
−

1

20

𝑀𝐵𝑟𝑆
2

𝑡
+

1

3

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

− (

1

2

𝐵𝑟𝑆
2

𝑡
+ 𝛽𝐵𝑟𝑆

4

𝑡
)𝑥

2

+ (

1

3

𝐵𝑟𝑆
2

𝑡
+

1

6

𝑀𝐵𝑟𝑆
2

𝑡
+

4

3

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

3

− (

1

12

𝐵𝑟𝑆
2

𝑡
+

1

6

𝑀𝐵𝑟𝑆
2

𝑡
+ 𝛽𝐵𝑟𝑆

4

𝑡
)𝑥

4

+ (

1

20

𝑀𝐵𝑟𝑆
2

𝑡
+

2

5

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

5

− (

1

15

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

6
.

(43)
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Figure 4: Brinkman number on the lift velocity (a) and temperature distribution (b) when 𝑆𝑡 = 1,Λ = 0.4,𝑀 = 0.1, and 𝛽 = 0.3 and 𝑆𝑡 = 0.5,
Λ = 0.4,𝑀 = 0.1, and 𝛽 = 0.3.
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Figure 5: Effect of the stock number on lift velocity (a) and temperature distribution (b) when𝑀 = 0.01, 𝛽 = 0.3, Λ = 0.1, and 𝐵𝑟 = 4 and
𝛽 = 0.3,𝑀 = 0.01, and 𝐵𝑟 = 100.

The terms V2(𝑥) and Θ2(𝑥) are too large to be written above;
therefore, their expression is mentioned graphically.

5. Formulation of Drainage Problem

The geometry and assumptions of the problem are the same
as in previous problem. Consider a film of non-Newtonian
liquid draining at volume flow rate 𝑄 down the vertical belt.
The belt is stationary and the fluid drains down the belt due
to gravity. The gravity in this case is opposite to the previous
case. Therefore, the stock number is positively mentioned in
(14).The coordinate system is selected the same as in previous
case. Assume the flow is steady and laminar while external
pressure is neglected. Consider fluid shear forces keep the
gravity balanced and the film thickness remains constant.

Modeled slip boundary conditions for drainage problem
are

V = −𝛾𝑇𝑥𝑦, at 𝑥 = 0,

𝑑V
𝑑𝑥

= 0, at 𝑥 = 1.
(44)

Making use of nondimensional variables the slip boundary
conditions in (42) are

V𝑛 = −Λ(
𝑑V𝑛
𝑑𝑥

−𝑀Θ

𝑑V𝑛
𝑑𝑥

+ 2𝛽(

𝑑V𝑛
𝑑𝑥

)

3

) ,

at 𝑥 = 0,

𝑑V𝑛
𝑑𝑥

= 0, at 𝑥 = 1, when 𝑛 = 0, 1, 2, 3, . . . .

(45)
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For heat, the boundary conditions are identical as given in
(36), (38), and (40) regarding both the problems.

6. Solution of Drainage Problem

6.1. The ADM Solution. By making use of ADM in (14)
and (15), the Adomian polynomials in (24)–(27) for both
problems are the same.The different velocity components are
obtained as follows.

Components of Problem.The boundary conditions of first and
second components for drainage velocity profile are the same
as given in (37). The boundary conditions for temperature
distribution are also the same as given in (38), but the solution
of these components is different, dependent on the different
velocity profile of drainage and lift problems.The terms V2(𝑥)
and Θ2(𝑥) are too large to be written above; therefore, their
expression is mentioned graphically.

Inserting slip boundary conditions from (45) and from
(18) and (19) in (29)–(34) the different components solution
is obtained as

V0 (𝑥) =
1

2

(2𝑆𝑡𝑥 − 𝑆𝑡𝑥
2
) ,

Θ0 (𝑥, 𝑡) = 𝑥,

V1 (𝑥) = (−
1

3

𝑀

2
𝑆𝑡 − 𝛽𝑆

3

𝑡
)𝑥

+ (

Λ𝑆𝑡

2

+

3𝛽𝑆

3

𝑡

2

)𝑥

2

+ (

𝑀

2
𝑆𝑡

6

−

Λ𝑆𝑡

3

− 𝛽𝑆

3

𝑡
)𝑥

3

+ (−

1

24

𝑀

2
𝑆𝑡 +

𝛽𝑆

3

𝑡

4

)𝑥

4
,

Table 1: Comparison of present work and existing work [23] for lift
velocity profile when𝑚 = 𝑆𝑡 = 0.5,𝑀 = 0, 𝛽 = 0.6, Λ = 0, 𝛼 = 1.

𝑥 Present work Existing work Absolute error
0.0 1 1 0
0.1 0.95485367 0.95485367 0
0.2 0.91553824 0.91553824 0
0.3 0.88114335 0.88114335 0
0.4 0.85118976 0.85118976 0.148 × 10

−14

0.5 0.82550781 0.82550781 0
0.6 0.80413216 0.80413216 1.11 × 10

−29

0.7 0.78721265 0.787212652 0
0.8 0.77494144 0.77494144 −1.11 × 10

−29

0.9 0.76749627 0.767496272 0
1.0 0.765 0.765 −1.11 × 10

−29

Θ1 (𝑥) = (
1

4

𝐵𝑟𝑆
2

𝑡
−

1

20

Λ𝐵𝑟𝑆
2

𝑡
+

1

6

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

+ (−

1

2

𝐵𝑟𝑆
2

𝑡
−

1

2

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

2

+ (

1

3

𝐵𝑟𝑆
2

𝑡
+

1

6

Λ𝐵𝑟𝑆
2

𝑡
+

2

3

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

3

+ (−

1

12

𝐵𝑟𝑆
2

𝑡
−

1

6

Λ𝐵𝑟𝑆
2

𝑡
−

1

2

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

4

+ (

1

20

Λ𝐵𝑟𝑆
2

𝑡
+

1

5

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

5

+ (−

1

30

𝛽𝐵𝑟𝑆
4

𝑡
)𝑥

6
.

(46)

In the existence work [23]𝑚 is used as gravitational parame-
ter instead of stock number 𝑆𝑡 in the present work. Magnetic
parameter is defined as 𝑀 in the existing work and in the
present work𝑀 is embedding parameter. If we put magnetic
parameter = 0, slip parameter Λ = 0 in the existing work
and embedding parameter𝑀 = 0, slip parameter Λ = 0 in
present work, then comparison of existing and present work
is as shown in Table 1.

OHAM solution of the present work has been obtained
and used only for comparison through Tables 1, 2, 3, 4, and 5.

7. Results and Discussion

In this study, the heat transfer of a third grade fluid on
thin film flow has been examined. The geometry of lift and
drainage problems has been shown in Figures 1(a) and 1(b),
respectively. The velocity and heat transfer analysis for both
lift and drainage problems have been investigated under the
influence of stock number 𝑆𝑡, slip parameterΛ, the Brinkman
number 𝐵𝑟, non-Newtonian parameter 𝛽, and viscosity
parameter 𝑀. The effects of these physical parameters have
been discussed in Figures 2–13. The OHAM solution of the
present work has been shown graphically and numerically
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Figure 7: The effect of viscosity parameter on lift velocity (a) and temperature distribution (b) when 𝐵𝑟 = 40, Λ = 0.1, 𝛽 = 0.3, and 𝑆𝑡 = 0.5
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Figure 8: Effect of 𝛽 on lift velocity (a) and temperature distribution (b) when𝑀 = 0.1, 𝑆𝑡 = 0.4, Λ = 0.5, and 𝐵𝑟 = 50.

only for comparison. The comparison of analytical methods
ADMandOHAMof the presentwork for lift velocity andheat
transfer analysis is shown in Figures 2(a) and 2(b). Figures
3(a) and 3(b) show the comparison of ADM and OHAM for
drainage velocity and temperature distribution. Effect of the
Brinkman number 𝐵𝑟, for lift velocity profile, has been shown
in Figure 4(a). Behavior of the lift velocity field V can be seen
when the velocity of fluid is maximum at the surface of the
belt while it is minimum at the surface of the fluid. It has
been found out that the velocity of the fluid decreases for large
value of𝐵𝑟 as compared to small values of𝐵𝑟.The observation
of Brinkman number 𝐵𝑟 associated with heat in lift problem
has been countered in Figure 4(b). Since 𝐵𝑟 is related with
the viscous dissipation term in energy equation, higher values
of the 𝐵𝑟 should essentially lead to an increase in amount of

heat being generated by the shear forces in the fluid leading
to increase in the fluid temperature.

In Figure 5(a), we observed that the velocity decreases
with an increase in the stock number 𝑆𝑡; due to friction force,
the effect of stock number seems to be smaller near the belt.
It can be seen that there is a point in the domain, where
the velocity of the fluid becomes approximately identical
for different values of stock number 𝑆𝑡. The reason is that
the friction of the belt becomes negligible at this point.
On increasing stock number 𝑆𝑡, after this point in lifting
flow, the velocity decreases due to negligible friction. The
effect of stock number 𝑆𝑡 on temperature distribution has
been illustrated in Figure 5(b). It has been observed that
the temperature Θ increases steadily by increasing 𝑆𝑡. In
Figure 6, it has been noticed that the speed of the fluid near
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Figure 9: Drainage velocity (a) and heat distribution (b) for Brickman number when 𝑆𝑡 = 1, Λ = 0.1,𝑀 = 0.2, and 𝛽 = 0.3 and𝑀 = 0.3,
𝑆𝑡 = 0.5, 𝛽 = 0.5, and Λ = 0.1.
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Figure 10: Effect of stock number on drainage velocity profile (a) and temperature distribution (b) when𝑀 = 0.2, 𝛽 = 0.3, Λ = 0.1, and
𝐵𝑟 = 40.

the belt is greater than the speed at the surface. When we
increase the slip parameter, then, due to decrease in friction
force, the velocity of the fluid decreases gradually towards
the surface of the belt. The effect of viscosity parameter 𝑀
on lift velocity V has been shown in Figure 7(a). The speed
of flow decreases with increasing𝑀. It can also be seen that
the thickness of thin film increases in case of dilatant fluids
and decreases in pseudoplastic fluids. In Figure 7(b), increase
in viscosity parameter 𝑀 results in increasing temperature
distribution steadily. Figure 8(a) indicates the influence of
non-Newtonian effect 𝛽 on lift velocity profile.

For small values of 𝛽, the velocity profile differs little
from theNewtonian one.However, when𝛽 is increased, these
profiles become more flatten showing the shear thinning

effect. Increase in 𝛽 results in decreasing temperature distri-
bution as shown in Figure 8(b). The drain velocity increases
with increase in Brinkman number as shown in Figure 9(a).
Figure 9(b) specifies the effect of 𝐵𝑟 for drain temperature
distribution. The temperature distribution increases as the
𝐵𝑟 increases and becomes more trampled for higher value
of 𝐵𝑟. In Figure 10(a), the effect of stock number 𝑆𝑡 has
been shown for drainage flow. It can be seen that there is a
point near the belt, where the velocity of the fluid becomes
approximately the same for different values of stock number
𝑆𝑡 because friction of the belt becomes negligible at this
point. On increasing the stock number 𝑆𝑡, after this point,
the curvature of velocity increases due to negligible friction.
The effect of stock number 𝑆𝑡 on temperature distribution
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Figure 11: Drain velocity profile for different values of slip parameter
when𝑀 = 0.1, 𝑆𝑡 = 0.5, 𝛽 = 0.3, and 𝐵𝑟 = 40.

Table 2: Comparison of OHAM and ADM for lift velocity profile
when 𝑆𝑡 = 0.5,𝑀 = 0.1, 𝛽 = 0.3, Λ = 0.01, 𝐵𝑟 = 4, 𝐶1 = 0.212619,
𝐶2 = −0.243971, 𝐶3 = 0.016110, 𝐶4 = −0.0168232.

𝑥 OHAM ADM Absolute error
0.0 1.00586 1.0064 0.543 × 10

−3

0.1 0.962821 0.962544 0.277 × 10

−3

0.2 0.923093 0.922658 0.435 × 10

−3

0.3 0.887013 0.886739 0.274 × 10

−3

0.4 0.854908 0.854893 0.148 × 10

−4

0.5 0.827086 0.827304 0.217 × 10

−3

0.6 0.803834 0.804202 0.367 × 10

−3

0.7 0.785409 0.785838 0.428 × 10

−3

0.8 0.77204 0.772463 0.423 × 10

−3

0.9 0.763914 0.764303 0.389 × 10

−3

1.0 0.76118 0.761549 0.369 × 10

−3

Table 3: Comparison of OHAM and ADM for lift heat distribution
when 𝑆𝑡 = 0.1,𝑀 = 0.1, 𝛽 = 0.3, Λ = 0.01, 𝐵𝑟 = 4, 𝐶1 = −0.70242,
𝐶2 = −0.03461, 𝐶3 = −4.49647, 𝐶4 = −16.42906.

𝑥 OHAM ADM Absolute error
0.0 0 0 0.840 × 10

−3

0.1 0.09998 0.10083 0.135 × 10

−2

0.2 0.19998 0.20133 0.159 × 10

−2

0.3 0.29998 0.30157 0.163 × 10

−2

0.4 0.39998 0.40162 0.152 × 10

−2

0.5 0.49998 0.50151 0.130 × 10

−2

0.6 0.59998 0.60129 0.101 × 10

−2

0.7 0.69998 0.70101 0.693 × 10

−3

0.8 0.79999 0.80068 0.423 × 10

−3

0.9 0.863914 0.90034 0.349 × 10

−3

1.0 1.000000 1.000000 0.294 × 10

−19

Table 4: Comparison of OHAM and ADM for drainage velocity
profile when 𝑆𝑡 = 0.1, 𝑀 = 0.01, 𝛽 = 0.3, Λ = 0.1, 𝐵𝑟 = 0.4,
𝐶1 = −0.00002, 𝐶2 = 0.00007, 𝐶3 = 1728.44761, 𝐶4 = 152.16776.

𝑥 OHAM ADM Absolute error
0.0 −0.01012 −0.01012 0.0
0.1 −0.00062 −0.00067 0.461 × 10

−4

0.2 0.00789 0.00781 0.702 × 10

−4

0.3 0.01538 0.01531 0.768 × 10

−4

0.4 0.02188 0.02181 0.708 × 10

−4

0.5 0.02738 0.02733 0.561 × 10

−4

0.6 0.03188 0.03185 0.371 × 10

−4

0.7 0.03538 0.03536 0.168 × 10

−4

0.8 0.03788 0.037881 0.920 × 10

−8

0.9 0.03938 0.03939 0.134 × 10

−3

1.0 0.03988 0.03989 0.182 × 10

−3

Table 5: Comparison of OHAM and ADM for drain heat distri-
bution when 𝑆𝑡 = 0.1, 𝑀 = 0.01, 𝛽 = 0.3, Λ = 0.1, 𝐵𝑟 = 0.4,
𝐶1 = −0.07339, 𝐶2 = 0.049829, 𝐶3 = −1.12367, 𝐶4 = −0.02304.

𝑥 OHAM ADM Absolute error
0.0 0 0 0
0.1 0.100082 0.100081 0.818 × 10

−6

0.2 0.200131 0.20013 0.115 × 10

−5

0.3 0.300154 0.300153 0.118 × 10

−5

0.4 0.400158 0.400157 0.107 × 10

−5

0.5 0.500147 0.500146 0.887 × 10

−6

0.6 0.600126 0.600125 0.689 × 10

−6

0.7 0.700098 0.700097 0.501 × 10

−6

0.8 0.800067 0.800066 0.326 × 10

−6

0.9 0.900034 0.900033 0.161 × 10

−6

1.0 1.000000 1.000000 0.261 × 10

−18

is illustrated in Figure 10(b). In Figure 11, it is noticed that
the speed of the fluid near the belt is smaller than the
speed at the surface. When we increase the slip parameter,
the velocity of the fluid increases because the friction goes
on decreasing. It has been observed that the temperature
Θ increases monotonically on increasing 𝑆𝑡. Figure 12(a)
illustrates the effect of variable viscosity parameter𝑀 on the
drain velocity profile. For higher values of viscosity parameter
𝑀 the velocity of fluid increases gradually towards the surface
of the fluid. Increase in viscosity parameter𝑀 causes increase
in temperature field gradually as shown in Figure 12(b). The
effect of non-Newtonian parameter 𝛽 totally depends on the
shear thining effect as shown in Figure 13(a). Increase in 𝛽
results in increasing speed of the drain velocity profile but
increase in 𝛽 decreases temperature profile dependent on
the shear thinning and thickening properties of fluid film as
shown in Figure 13(b).

8. Conclusion

We have investigated the temperature dependent viscosity
of a third grade thin film fluid flow subject to lifting and



12 Abstract and Applied Analysis

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

x

u
(x
)

𝛽 = 0.1

𝛽 = 0.3

𝛽 = 0.5

𝛽 = 0.7

𝛽 = 0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

𝛽 = 0.1

𝛽 = 0.3

𝛽 = 0.5

𝛽 = 0.7

𝛽 = 0.9

𝜃
(x
)

(b)

Figure 12:The effect of non-Newtonian 𝛽 on velocity profile (a) and temperature distribution (b) when𝑀 = 0.2, 𝑆𝑡 = 1,Λ = 0.3, and 𝐵𝑟 = 50
and𝑀 = 0.3, 𝑆𝑡 = 0.5, Λ = 0.1, and 𝐵𝑟 = 50.
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Figure 13: Effect of the viscosity parameter𝑀 on the drainage velocity (a) and temprature (b) when 𝑆𝑡 = 0.5, 𝛽 = 0.3, Λ = 0.2, and 𝐵𝑟 = 40
and 𝑆𝑡 = 1, 𝛽 = 0.5, and 𝐵𝑟 = 10.

drainage of fluid. Problems have been solved analytically
by using Adomian Decomposition Method (ADM). The
comparison of ADM and Optimal Homotopy Asymptotic
Method (OHAM) has been derived graphically and numer-
ically. Expression for velocity fields and temperature dis-
tribution has been presented and sketched. These solutions
are valid not only for small but also for large values of
emerging parameters. The observation of Brinkman number
𝐵𝑟 associated with heat is countered in both lift and drainage
problems. Since𝐵𝑟 is relatedwith the viscous dissipation term
in heat equation, higher values of the 𝐵𝑟 should essentially
lead to an increase in the amount of heat being generated by
the shear forces in the fluid leading to increase in the fluid
temperature. It has been observed that the temperature Θ

increases monotonically on increasing 𝑆𝑡. The speed of flow
decreases with increasing viscosity parameter𝑀. Increase in
𝑀 increases the temperature distribution. It can also be seen
that the thickness of thin film increases in case of dilatant
fluids and decreases in pseudoplastic fluids. According to the
best of our knowledge, no research has been carried out yet
regarding our study. This is our first attempt to handle this
problemwith variable viscosity and slip boundary conditions.
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