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Exponential robust consensus of stochastic multiagent systems is studied. Coupling structures of multiagent systems are Markov
jump switching; that is, multiagent systems contain Markov jump parameters. Sufficient conditions of almost surely exponential
robust consensus are derived by utilizing the stochastic method and the approach of the matrix inequality. Finally, two simulations
are shown to demonstrate the validity of the achieved theoretical results.

1. Introduction

As we all know, the study of multiagent systems has attracted
a lot of public attention in the last years, partly due to its
extensive applications in enormous fields, such as flocking,
formation control, and cooperative control of unmanned
vehicles. What should not be ignored is that the way of
information exchange among multiagents plays a key role
in well understanding the coordinated behavior among each
individual. Therefore, the consensus problem has become
an interesting and inevitable topic for guaranteeing certain
agreement on some properties or purposes. In particular, the
design of the consensus protocol is a critical and unavoidable
issue when we tackle the consensus control problem for
multiagent systems. How to construct a novel interaction
algorithm such that all agents can realize an agreement
on certain variables of common interest states based on
the limited or unreliable information exchange is full of
indispensable necessary and signification. Consequently, a
great variety of consensus protocols [1–8] have been proposed
for first-order or second-order multiagent systems based on
various perspectives including the kind of communication
time delays, deterministic structure of interaction topol-
ogy, measurement uncertainties, or communication errors.

For instance, the consensus problemwas considered in [6] for
multiagent systems under fixed connected communication
topology where the information contained two cases, that
is, fully available and partially available. In [7], a consensus
protocol was obtained by using the algebraic graph the-
ory and the stochastic tools for second-order multiagent
systems with communication noises under directed fixed
and switching topologies. And, with communication errors
in [8], a distributed dynamic output feedback algorithm
was developed for multiagent systems with only the relative
output information between the individual itself and its
neighbors under a fixed communication topology.

Inmany practical systems, the interaction construction or
coordinated construction among agentsmay change abruptly
for some reasons, such as random failures and repairs of the
components, changes in the interconnections of subsystems,
signal channel, and environment changes. Actually, they are
a special kind of stochastic dynamic systems with finite
operation modes, which may switch from one to another
at different time subject to certain laws. Under the cir-
cumstances, Markov jump which can be determined by a
Markov chain is employed to describe the abrupt phenomena
and the switching of the topology structure for various
dynamic systems. For example, Markov jump stochastic
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Cohen-Grossberg neural networks were considered in [9, 10],
though, with partially known transition rates, new stabil-
ity criteria were obtained for stochastic global exponential
stability. With uncertain Markov transition probability, in
[11], a linear distributed inference protocol was proposed
for the average consensus problem of distributed inference
in wireless sensor network. Addition, a class of Markovian
switching complex networks with mixed time-varying delays
under the delay-partition approach is investigated in [12].

The multiagent system is no exception. A series of works
related to multiagent with Markovian switching topologies
were analyzed; see [13–17]. In [14], based on graph theory
and the approach of stochastic analysis, containment control
problem has been studied for discrete- and continuous-
time second-order and even high-order multiagent systems
under Markovian switching topologies, respectively. And
sufficient conditions for mean square containment control
are achieved. As for distributed output feedback control
for Markov jump multiagent systems, the work in [15] has
considered the case that the information obtainable for
every individual is only dependent on the noisy output and
the Markov jump parameters. Moreover, distributed output
feedback control algorithm has been provided.The following
three studies are all related with leader-following control for
Markov jump multiagent systems; the work in [16] considers
the case that interconnection information among leaders is
subject to unexpected change by employing the reciprocally
convex approach, Lyapunov-Krasovskii functional and lin-
ear matrix inequalities, some conditions for guaranteeing
consensus for the Markov jump multiagent systems were
derived. The containment tracking problem was investigated
in [17], which not only presented the eventually convergence
points for the followers but also obtained some necessary
and sufficient criterions for the containment control for
Markovian switching multiagent systems.

A fact which cannot be neglected is that noises in various
forms often occur in practical systems due to environment
disturbances during transmission, quantization errors, and
measurement errors.The systems with noises can diverge just
as what is shown in the work in [18] if we use the traditional
consensus protocols. However, in [19],manymethods includ-
ing lifting technique and the stochastic Lyapunov theory
are out of work to the analysis of consensus for linear
discrete-time multiagent systems, which is because of the
presence of noises and delays. The necessary and sufficient
conditions were obtained by adopting a new consensus
algorithm. Compared with previous works, the work in [7]
considered a distributed protocol without relative velocity
information for consensus of second-order multiagent sys-
tems with communication noises under directed fixed and
switching topologies. The consensus algorithms derived in
the noisy measurement case were more general to guarantee
asymptotic mean square convergence.

Motivated by the above studies with respect to consensus
of Markovian jumping multiagent systems, there is still space
for development of the consensus problem for multiagent
systems with noises under Markovian switching. In this
paper, exponential robust consensus of Markovian jumping
multiagent systems is investigated. The model investigated

here is general. At each node, the uncoupled system defined
by �̇� = 𝑓(𝑥, 𝑡) can have various dynamical behaviors.
The left eigenvectors of the coupling matrix corresponding
to the eigenvalue 0 that we explored play key role in the
geometrical analysis of the consensus manifold. A critical
Lyapunov functional was constructed to analyze the robust
consensus of stochastic multiagent systems. By utilizing the
approach of thematrix inequality, the criteria were derived to
ensure that multiagent systems can reach exponential robust
consensus almost surely. Finally, as numerical simulations,
there are two systems to be used to illustrate the validity of
these conditions.

Thepaper is organized as follows. Section 2 presents some
preliminaries. Then main results and proof, that is, the anal-
ysis of the consensus protocol associated with stochastically
multiagent system, are given in Section 3. Some simulation
results are shown in Section 4. Some conclusions are given in
Section 5.

2. Preliminaries

2.1. Preliminary in Graph Theory. Preliminaries about graph
theory are mainly introduced in this section.

Let G = (V, 𝜀,A) be a weighted directed network of
order 𝑛, where V = {V

1
, V
2
, . . . , V

𝑛
} is a vertex set of the

directed graph G, and 𝜀(G) ⊆ V(G) × V(G) is a directed
edge set such that each edge is an ordered pair of vertices in
V(G). Let N

𝑖
= {V
𝑗
: (V
𝑖
, V
𝑗
) ∈ 𝜀(G)} be the neighborhood

of the vertex V
𝑖
. A = [𝑎

𝑖𝑗
]

𝑛

𝑖,𝑗=1
is the weighted adjacency

matrix. The weighted matrix elements 𝑎
𝑖𝑗
> 0 if and only if

(V
𝑖
, V
𝑗
) ∈ 𝜀(G), where (V

𝑖
, V
𝑗
) is an edge ofG.Moreover, 𝑎

𝑖𝑖
= 0

for all 𝑖 ∈ {1, 2, . . . , 𝑛}. The in-degree of node V
𝐼
is defined as

degin(V𝑖) = ∑

𝑛

𝑗=1
𝑎

𝑖𝑗
. The degree matrix of A is denoted by

A = diag{degin(V𝑖), 𝑖 = 1, 2, . . . , 𝑛}. The Laplacian matrix of
𝐴 is defined as 𝐴 =A −A.

A network G is called undirected if there is a connection
between two nodes V

𝑖
and V
𝑗
in graph G; then 𝑎

𝑖𝑗
= 𝑎

𝑗𝑖
> 0;

otherwise, 𝑎
𝑖𝑗
= 𝑎

𝑗𝑖
= 0 (𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, 2, . . . , 𝑛). A networkG

is directed if there is a connection from node V
𝑖
to V
𝑗
in graph

G; then 𝑎
𝑖𝑗
> 0; otherwise, 𝑎

𝑖𝑗
= 0 (𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, 2, . . . , 𝑛).

A (directed) path of 𝑙 − length from vertex V
𝑖
to V
𝑗
denotes a

sequence of 𝑙 + 1 distinct vertices V
𝑟
1

, . . . , V
𝑟
𝑙+1

with V
𝑟
1

= V
𝑖

and V
𝑟
𝑙+1

= V
𝑗
such that (V

𝑟
𝑘

, V
𝑟
𝑘+1

) ∈ 𝜀(G) for 𝑘 = 1, . . . , 𝑙. We
call the graphGwhich contains a spanning tree if there exists
a vertex V

𝑖
such that there is a directed path from vertex V

𝑖
to

V
𝑗
for all the other vertices V

𝑗
, and V

𝑖
is called the root vertex.

Remark 1. The Laplacian matrix 𝐴 has a simple eigenvalue
zero, and all the other eigenvalues have positive real parts if
and only if the directed network has a directed spanning tree.
Assume 𝜉 = [𝜉

1
, . . . , 𝜉

𝑛
]

𝑇
∈ R𝑛 is the left eigenvector of the

general Laplacian matrix 𝐴 corresponding to eigenvalue 0,
where ∑𝑛

𝑖=1
𝜉

𝑖
= 1 and 𝜉

𝑖
≥ 0.

2.2. Model Description. Suppose that 𝑥
𝑖
(𝑡) represents the

position of agent 𝑖 (𝑖 = 1, . . . , 𝑛). We just consider the con-
sensus problem for the position of multiagent in this paper.
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Now, exponential robust consensus protocol with Markov
jump parameters is presented as follows:

�̇�

𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝛼

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡)) Γ𝑥

𝑘
(𝑡)

+ 𝛽

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡)) 𝜎 (𝑥

𝑘
(𝑡) , 𝑡)W (𝑡) ,

(1)

where 𝑓(𝑥
𝑖
(𝑡), 𝑡) ∈ Rℎ is dynamically nonlinear term of the

agent 𝑖. 𝐴(𝑚(𝑡)) = [𝑎
𝑖𝑗
(𝑚(𝑡))]

𝑛

𝑖,𝑗=1
is a connection matrix, and

−𝐴(𝑚(𝑡)) is a Laplacian matrix: 𝑎
𝑖𝑗
≥ 0 for 𝑖 ̸= 𝑗 and

𝑎

𝑖𝑗
= −∑

𝑛

𝑘 ̸=𝑖
𝑎

𝑖𝑘
for 𝑖 = 𝑗. 𝛼 and 𝛽 are the global coupling

strength. One has Γ = diag{𝛾
1
, 𝛾

2
, . . . , 𝛾

ℎ
} ∈ Rℎ×ℎ. 𝜎(𝑥

𝑖
(𝑡))

is external disturbance function. W(𝑡) is a standard white
noise. Since the system above is driven by a standard white
noise, system (1) can be rewritten in the form of the Itô
stochastic differential equation:

𝑑𝑥

𝑖
(𝑡) = [𝑓 (𝑥

𝑖
(𝑡) , 𝑡) + 𝛼

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡)) Γ𝑥

𝑘
(𝑡)] 𝑑𝑡

+ 𝛽

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡)) 𝜎 (𝑥

𝑘
(𝑡) , 𝑡) 𝑑𝜔 (𝑡) .

(2)

{𝜔(𝑡), 𝑡 ≥ 0} is a standard Brownian motion. Markovian
process {𝑚(𝑡), 𝑡 ≥ 0} is independent of the Brownian motion
{𝜔(𝑡), 𝑡 ≥ 0}, and {𝑚(𝑡), 𝑡 ≥ 0} is a right-continuous Marko-
vian process on the probability space (Ω,F, {Ft}𝑡≥0,P).𝑚(𝑡)
picks up value in a finite state space S = {1, 2, . . . , 𝑟} with
generator∏ = (𝜋)

𝑛×𝑛
shown by

P {𝑚 (𝑡 + Δ𝑡) = 𝑚 | 𝑚 (𝑡) = 𝑙}

=

{

{

{

𝜋

𝑙𝑚
Δ𝑡 + 𝑜 (Δ𝑡) if 𝑙 ̸= 𝑚;

1 + 𝜋

𝑙𝑙
Δ𝑡 + 𝑜 (Δ𝑡) if 𝑙 = 𝑚,

(3)

where Δ𝑡 > 0 and 𝜋
𝑙𝑚

̸= 0 is the transition rate from 𝑙 to𝑚 if
𝑙 ̸= 𝑚; otherwise, 𝜋

𝑙𝑙
= −∑

𝑙 ̸=𝑚
𝜋

𝑙𝑚
.

Throughout this paper, let (Ω,F, {Ft}𝑡≥0,P) be a com-
plete probability space and {Ft}𝑡≥0 is a filtration satisfying
the usual conditions. 𝜔(𝑡) is a scalar Brownian motion
defined on the probability space (Ω,F, {Ft}𝑡≤0,P); 𝑥

𝑇
(𝑡) =

[𝑥

𝑇

1
(𝑡), . . . , 𝑥

𝑇

𝑛
(𝑡)] ∈ R𝑛×ℎ, and𝑥𝑇

𝑖
(𝑡) = [𝑥

1

𝑖
(𝑡), . . . , 𝑥

ℎ

𝑖
(𝑡)] ∈ Rℎ

for 𝑖 = 1, . . . , 𝑛; 𝑓(𝑥
𝑖
(𝑡), 𝑡) ∈ QUAD(Δ, 𝑃) (see Definition 4).

𝜎(𝑥

𝑖
(𝑡)) is Lipschitz continuous: that is, there exists a positive

constant 𝐿 > 0 such that |𝜎(𝑥) − 𝜎(𝑥)| ≤ 𝐿|𝑥 − 𝑦|.

2.3. Definitions and Lemmas. In this paper, we make the
following definitions, lemma, and two remarks.

Definition 2. A system is called to achieve exponential robust
consensus almost surely if there exist two positive constants
𝜇

1
> 0 and 𝜇

2
> 0, such that

P {𝑥

𝑇
(𝑡) 𝑥 (𝑡) ≤ 𝜇

1
exp {−𝜇

2
𝑡}} = 1. (4)

Namely,

lim
𝑡→+∞

1

𝑡

sup ln𝑥𝑇 (𝑡) 𝑥 (𝑡) ≤ −𝜇
2

W.P.1. (5)

Lemma3 (formore details, see [20]). If𝑉 ∈ 𝐶

2,1
(R𝑛×R

𝜎
×S :

R+), then for any stopping times 0 ≤ 𝑡
1
≤ 𝑡

2
< +∞ there is

𝐸 {𝑉 (𝑥 (𝑡

2
) , 𝑡

2
, 𝑚 (𝑡

2
))}

= 𝐸 {𝑉 (𝑥 (𝑡

1
) , 𝑡

1
, 𝑚 (𝑡

1
))}

+ 𝐸{∫

𝑡
2

𝑡
1

L𝑉 (𝑥 (𝑠) , 𝑠, 𝑚 (𝑠)) 𝑑𝑠}

(6)

as long as the integrations involved exist and are finite.

Definition 4 (see [21]). Function class QUAD(Δ, 𝑃): let 𝑃 =

diag{𝑝
1
, . . . , 𝑝

ℎ
} be a positive definite diagonal matrix and

Δ = diag{𝛿
1
, . . . , 𝛿

ℎ
} is a diagonal matrix. QUAD(Δ, 𝑃)

denotes a class of continuous functions 𝑓(𝑥, 𝑡) : Rℎ ×

[0, +∞) → Rℎ satisfying

(𝑥 − 𝑦)

𝑇

𝑃 {[𝑓 (𝑥, 𝑡) − 𝑓 (𝑦, 𝑡)] − Δ [𝑥 − 𝑦]}

≤ −𝜖 (𝑥 − 𝑦)

𝑇

(𝑥 − 𝑦)

(7)

for some 𝜖 > 0, all 𝑥, 𝑦 ∈ Rℎ and 𝑡 > 0.

Remark 5. The matrix Δ is allowed to be any matrix. Hence,
the resulting nonlinear term of the agent 𝑖may be nonmono-
tonic and more general than the usual sigmoid functions and
Lipschitz-type conditions. In fact, function classQUAD(Δ, 𝑃)
can contain many common chaotic systems, for example, the
Lorenz system [22], the Chen system [23], and the Lü system
[24].

Remark 6. It is worth pointing out that most of the exist-
ing results concern the issue of consensus without noise.
For example, the system in [25] is considered as �̇�

𝑖
(𝑡) =

𝑓(𝑥

𝑖
(𝑡), 𝑡) + 𝛼∑

𝑛

𝑘=1
𝑎

𝑖𝑘
(𝑚(𝑡))Γ𝑥

𝑘
(𝑡), while we introduce noise

into the network considered here. The model of network (1)
is meaningful due to noise which is unavoidable in the real
world.However,most systems in the real worldwill inevitably
be affected by the interference of noise; it is why we consider
the influence of noise on system (1) in this paper whichmakes
our discussion more meaningful and more realistic.

3. Main Results

In fact, it is inevitable that model errors occur in the
process of constructing multiagent systems. Model errors are
inconsistent due to fluctuations of information transmission
with external disturbance. In order to characterize consensus
ofmultiagent systems, a natural and efficient way is to analyze
stability of error systems.

Let 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡)−∑

𝑛

𝑘=1
𝜉

𝑘
(𝑚(𝑡))𝑥

𝑘
(𝑡) = 𝑥

𝑖
(𝑡)−𝑥(𝑡), where

𝜉(𝑚(𝑡)) = [𝜉

1
(𝑚(𝑡)), . . . , 𝜉

𝑛
(𝑚(𝑡))]

𝑇 is the left eigenvector of
𝐴(𝑚(𝑡)) = [𝑎

𝑖𝑗
(𝑚(𝑡))]

𝑛

𝑖,𝑗=1
associated with eigenvalue 0, and
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one can obtain the error dynamical system of system (1) as
follows:

𝑑𝑥

𝑖
(𝑡) =

[

[

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) −

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑚 (𝑡)) 𝑓 (𝑥

𝑘
(𝑡) , 𝑡)

+ 𝛼

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑚 (𝑡)) Γ𝑥

𝑗
(𝑡)

− 𝛼

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑚 (𝑡))

𝑛

∑

𝑗=1

𝑎

𝑘𝑗
(𝑚 (𝑡)) Γ𝑥

𝑗
(𝑡)

]

]

𝑑𝑡

+ 𝛽

[

[

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡)) 𝜎 (𝑥

𝑖
(𝑡) , 𝑡)

−

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑚 (𝑡))

𝑛

∑

𝑗=1

𝑎

𝑘𝑗
(𝑚 (𝑡)) 𝜎 (𝑥

𝑗
(𝑡) , 𝑡)

]

]

𝑑𝜔 (𝑡) .

(8)

Then one obtains the reduced error system as follows:

𝑑𝑥

𝑖
(𝑡) =

[

[

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) −

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑚 (𝑡)) 𝑓 (𝑥

𝑘
(𝑡) , 𝑡)

+ 𝛼

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑚 (𝑡)) Γ𝑥

𝑗
(𝑡)

]

]

𝑑𝑡 + 𝛽

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡))

⋅ [𝜎 (𝑥

𝑘
(𝑡) , 𝑡) − 𝜎 (𝑥 (𝑡) , 𝑡)] 𝑑𝜔 (𝑡) .

(9)

𝜉

𝑇
(𝑚(𝑡))𝐴(𝑚(𝑡)) = 0, ∑𝑛

𝑗=1
𝑎

𝑖𝑗
(𝑚(𝑡)) = 0, such that

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑚 (𝑡))

𝑛

∑

𝑗=1

𝑎

𝑘𝑗
(𝑚 (𝑡)) Γ𝑥

𝑗
(𝑡)

= [(𝜉

𝑇
(𝑚 (𝑡)) 𝐴 (𝑚 (𝑡))) ⊗ Γ] 𝑥 (𝑡) = 0,

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑚 (𝑡)) Γ𝑥

𝑗
(𝑡) =

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑚 (𝑡)) Γ (𝑥

𝑗
(𝑡) − 𝑥 (𝑡))

=

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑚 (𝑡)) Γ𝑥

𝑘
(𝑡) .

(10)

Therefore, through investigating the stability of error
dynamical system (9), one can solve almost surely exponen-
tial robust consensus of stochastic multiagent System (1). In
the following, we show the stability criteria to ensure that
error dynamical system (9) achieves exponentially robust
stable-state; that is, stochastic multiagent System (1) with
Markov jump parameters achieves exponentially robust con-
sensus almost surely.

Theorem 7. Assume that the graph topologies have a span-
ning tree in a directed network G. System (1) achieves
exponential robust consensus almost surely if there exist
a series of definite and diagonal matrices {𝑃(𝑙) = diag{𝑝

1
(𝑙),

. . . , 𝑝

𝑦
(𝑙), . . . , 𝑝

ℎ
(𝑙)}}, a series of matrices {Ξ(𝑙) = diag{𝜉

1
(𝑙),

. . . , 𝜉

𝑛
(𝑙)}} (where∑𝑛

𝑘=1
𝜉

𝑘
(𝑙) = 1, 𝜉(𝑘) > 0), a diagonal matrix

Δ = diag{𝛿
1
, . . . , 𝛿

𝑦
, . . . , 𝛿

ℎ
}, and a series of positive constants

𝜖(𝑙) > 0 such that the following condition holds:

𝑄

𝑇
(𝑙) [−𝜖 (𝑙) Ξ (𝑙) + 𝑝

𝑦
(𝑙) 𝛿

𝑦
Ξ (𝑙)

+ 𝛼𝛾

𝑦
𝑝

𝑦
(𝑙) Ξ (𝑙) 𝐴 (𝑙) + 𝛽

2
𝐿

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) Ξ (𝑙) 𝐴 (𝑙)

+

1

2

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚) Ξ (𝑙)]𝑄 (𝑙) < 0,

(11)

where 𝜖(𝑙) is the minimum positive constant such that 𝑓(𝑥, 𝑡) ∈
𝑄𝑈𝐴𝐷(Δ, 𝑃(𝑙)) holds, 𝑙 ∈ S, and

𝑄 (𝑙) = (

𝐼

𝑛−1

−

𝜉

1
(𝑙)

𝜉

𝑛
(𝑙)

⋅ ⋅ ⋅ −

𝜉

𝑛−1
(𝑙)

𝜉

𝑛
(𝑙)

) . (12)

Proof. Establish a Lyapunov functional as follows:

𝑉 (𝑥 (𝑡) , 𝑚 (𝑡)) =

1

2

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑚 (𝑡)) 𝑥

𝑖
(𝑡) ,

𝑙 ∈ {𝑚 (𝑡)} = S.

(13)

Obviously, the weak infinitesimal generator is shown as
follows:

L𝑉 (𝑥 (𝑡) , 𝑚 (𝑡)) ≜ lim
Δ𝑡→0

sup 𝐸 {𝑉 (𝑥 (𝑡 + Δ𝑡) , 𝑚 (𝑡 + Δ𝑡)) | 𝑚 (𝑡) = 𝑙} − 𝑉 (𝑥 (𝑡) , 𝑙)
Δ𝑡

≤

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙)

[

[

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) −

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑙) 𝑓 (𝑥

𝑘
(𝑡) , 𝑡) + 𝛼

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) Γ𝑥

𝑖
(𝑡)

]

]

+ 𝛽

2
𝑥

𝑇
(𝑡) 𝐴

𝑇
(𝑙) (Ξ (𝑙) ⊗ 𝑃 (𝑙)) 𝐴 (𝑙) 𝑥 (𝑡) +

1

2

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙)

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑚) 𝑥

𝑖
(𝑡) .

(14)
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To obtain L𝑉(𝑥(𝑡), 𝑚(𝑡)) < 0, we are going to analyze
each term of (14) in the following.

Let us start by considering the first termof (14), and let 𝐽 =
𝑓(𝑥(𝑡), 𝑡) − ∑

𝑛

𝑘=1
𝜉

𝑘
(𝑙)𝑓(𝑥

𝑘
(𝑡), 𝑡), where the value of 𝜉

𝑘
(𝑚(𝑡))

is dependent on the matrix 𝐴(𝑚(𝑡)). It is not difficult to see
that

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙) 𝐽

=

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) (𝑥

𝑖
(𝑡) −

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑙) 𝑥

𝑘
(𝑡))𝑃 (𝑙) 𝐽

= [

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑖
(𝑡) −

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙)

𝑛

∑

𝑘=1

𝜉

𝑘
𝑥

𝑘
(𝑡)] 𝑃 (𝑙) 𝐽

= [

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑖
(𝑡) −

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑙) 𝑥

𝑘
(𝑡)] 𝑃 (𝑙) 𝐽 = 0

(15)

due to ∑𝑛
𝑘=1

𝜉

𝑘
(𝑙) = 1 and 𝑥

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − ∑

𝑛

𝑘=1
𝜉

𝑘
(𝑙)𝑥

𝑘
(𝑡).

Then, one can obtain from (15) that

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙)

[

[

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) −

𝑛

∑

𝑘=1

𝜉

𝑘
(𝑙) 𝑓 (𝑥

𝑘
(𝑡) , 𝑡)

+

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) Γ𝑥

𝑖
(𝑡)

]

]

=

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙)

⋅

[

[

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) − 𝑓 (𝑥 (𝑡) , 𝑡) + 𝐽

+

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) Γ𝑥

𝑖
(𝑡)

]

]

=

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙)

⋅

[

[

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) − 𝑓 (𝑥 (𝑡) , 𝑡) +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) Γ𝑥

𝑖
(𝑡)

]

]

=

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙) [𝑓 (𝑥

𝑖
(𝑡) , 𝑡) − 𝑓 (𝑥 (𝑡) , 𝑡)

− Δ (𝑥

𝑖
(𝑡) − 𝑥 (𝑡))] +

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙)

[

[

Δ𝑥

𝑖
(𝑡)

+

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) Γ𝑥

𝑖
(𝑡)

]

]

≤ −𝜖 (𝑙)

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑥

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙) Δ𝑥

𝑖
(𝑡) +

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑥

𝑇

𝑖
(𝑡) 𝑃 (𝑙)

⋅

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) Γ𝑥

𝑖
(𝑡) = −𝜖 (𝑙)

ℎ

∑

𝑦=1

𝑥

𝑦
(𝑡)

𝑇
Ξ (𝑙) 𝑥

𝑦

𝑖
(𝑡)

+

ℎ

∑

𝑦=1

𝑝

𝑦
(𝑙) 𝛿

𝑦
𝑥

𝑦𝑇

(𝑡) Ξ (𝑙) 𝑥

𝑦
(𝑡) +

ℎ

∑

𝑦=1

𝑝

𝑦
(𝑙)

⋅ 𝛾

𝑦
𝑥

𝑦𝑇

(𝑡) Ξ (𝑙) 𝐴 (𝑙) 𝑥

𝑦
(𝑡) ,

(16)

where 𝑥𝑇
𝑖
(𝑡) = [𝑥

1

𝑖

𝑇

(𝑡), . . . , 𝑥

ℎ

𝑖

𝑇

(𝑡)] and 𝑥𝑦𝑇(𝑡) = [𝑥𝑦
1

𝑇

(𝑡), . . .,
𝑥

𝑦

𝑛

𝑇
(𝑡)] for 𝑖 = 1, . . . , 𝑛, 𝑦 = 1, . . . , ℎ. It is worthy to point out

that

𝑛

∑

𝑖=1

𝑥

𝑇

𝑖
(𝑡) 𝑥

𝑖
(𝑡) =

ℎ

∑

𝑦=1

𝑥

𝑦𝑇

(𝑡) 𝑥

𝑦
(𝑡) ,

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙) 𝑃 (𝑙)

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) Γ =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑙) 𝜉

𝑖
(𝑙) 𝑃 (𝑙) Γ

= (𝐴 (𝑙) Ξ (𝑙)) ⊗ (𝑃 (𝑙) Γ) =

ℎ

∑

𝑦=1

𝛾

𝑦
𝑝

𝑦
𝐴 (𝑙) Ξ (𝑙) .

(17)

In the end, one can obtain from the last term of (14) that

𝑛

∑

𝑖=1

𝜉

𝑖
(𝑙)

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑥

𝑇

𝑖
(𝑡) 𝑃

𝑚
𝑥

𝑖
(𝑡)

≤

ℎ

∑

𝑦=1

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚) 𝑥

𝑦𝑇

(𝑡) Ξ (𝑙) 𝑥

𝑦
(𝑡)

(18)

In view of (15) to (18), there is

L𝑉 (𝑥 (𝑡) , 𝑚 (𝑡)) ≤
ℎ

∑

𝑦=1

𝑥

𝑗𝑇

(𝑡) [−𝜖 (𝑙) Ξ (𝑙)

+ 𝑝

𝑦
(𝑙) 𝛿

𝑦
Ξ (𝑙) + 𝛼𝛾

𝑦
𝑝

𝑦
(𝑙) Ξ (𝑙) 𝐴 (𝑙)

+ 𝛽

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) Ξ (𝑙) 𝐴 (𝑙)

+

1

2

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚) Ξ (𝑙)] 𝑥

𝑗
(𝑡) .

(19)

As we know well, ∑𝑛
𝑖=1
𝜉

𝑖
𝑥

𝑦

𝑖
(𝑡) = 0. Let 𝐵 = {(𝑥

1

𝑖
(𝑡), . . .,

𝑥

ℎ

𝑖
(𝑡)) | ∑

𝑛

𝑖=1
𝜉

𝑖
𝑥

𝑦

𝑖
(𝑡) = 0} be a space composed of 𝑥𝑦

1
(𝑡), . . .,

𝑥

𝑦

𝑛
(𝑡). The columns 𝑄

1
(𝑙), . . . , 𝑄

𝑛−1
(𝑙) of matrix 𝑄(𝑙) form a

basis of space 𝐵, where

𝑄 (𝑙) = (

𝐼

𝑛−1

−

𝜉

1

𝜉

𝑛

⋅ ⋅ ⋅ −

𝜉

𝑛−1

𝜉

𝑛

). (20)
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Now, 𝑥𝑦(𝑡) can be shown by 𝑄(𝑙)𝑍, where 𝑍 ∈ Rℎ−1.
Then, one has

L𝑉 (𝑥 (𝑡) , 𝑚 (𝑡)) ≤
ℎ

∑

𝑦=1

𝑍

𝑇
𝑄

𝑇
(𝑙) [−𝜖 (𝑙) Ξ (𝑙)

+ 𝑝

𝑦
(𝑙) 𝛿

𝑦
Ξ (𝑙) + 𝛼𝛾

𝑦
𝑝

𝑦
(𝑙) Ξ (𝑙) 𝐴 (𝑙)

+ 𝛽

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) Ξ (𝑙) 𝐴 (𝑙)

+

1

2

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚) Ξ (𝑙)]𝑄 (𝑙) 𝑍.

(21)

According to Lemma 3 (the generalized Itô formula),
there exists a positive constant 𝜇 > 0 such that

𝐸 {exp {𝜇𝑡} 𝑉 (𝑥 (𝑡) , 𝑚 (𝑡))}

= 𝐸 {𝑉 (𝑥 (0) , 𝑚 (0))}

+ 𝐸∫

𝑡

0

exp {𝜇𝑠}L𝑉 (𝑥 (𝑠) , 𝑚 (𝑠)) 𝑑𝑠

≤ 𝐸 {𝑉 (𝑥 (0) , 𝑚 (0))} .

(22)

One obtains from (13) that 𝑉(𝑥(𝑡), 𝑚(𝑡)) ≥

∑

𝑛

𝑖=1
𝜆min(𝑃(𝑚(𝑡)))𝑥

𝑇

𝑖
𝑥

𝑖
. Then, there is

exp {𝜇𝑡} 𝐸{
𝑛

∑

𝑖=1

𝜆min (𝑃 (𝑚 (𝑡))) 𝑥
𝑇

𝑖
𝑥

𝑖
}

≤ 𝐸 {exp {𝜇𝑡} 𝑉 (𝑥 (𝑡) , 𝑚 (𝑡))}

≤ 𝐸 {𝑉 (𝑥 (0) , 𝑚 (0))} .

(23)

Then, it is obvious that

𝐸{

𝑛

∑

𝑖=1

𝜆min (𝑃 (𝑚 (𝑡))) 𝑥
𝑇

𝑖
𝑥

𝑖
}

≤ exp {−𝜇𝑡} 𝐸 {𝑉 (𝑥 (0) , 𝑚 (0))} .

(24)

Consequently, system (9) achieves exponential robust
stability in mean square sense. Then in terms of Th.7.24 in
[26], system (1) achieves exponential robust consensus almost
surely.

Now, this proof is completed.

Remark 8. In Theorem 7, we just pick up a fixed matrix Δ
since the nonlinear term 𝑓(𝑥

𝑖
(𝑡), 𝑡) of each agent is the same.

For system (1), it should be pointed out that the value of
𝜉

𝑘
(𝑚(𝑡)) is dependent on the matrix 𝐴(𝑚(𝑡)), 𝑚(𝑡) ∈ S.

Note that the system is just analyzed at 𝑚(𝑡) = 𝑙. By utilizing
the stochastic method, the exponential robust consensus
criterion of stochastic multiagent network has been given.
This implies that the state-coupled stochastic multiagent
network can be validly forced to the objective convergence
trajectory by employing coupling controllers.

Remark 9. In [27], the impact of uncertainties and stochastic
coupling on synchronization performance is discussed. Sys-
tem (1) is different from the systems in [27]; the multiagent

system considered in this paper takes Markov jump parame-
ters into account and renders more practical factor.

Remark 10. Reference [25] also studied consensus of system
(1) with Markov jump structures. In [25], it was pointed out
that if the expectation of RV(𝐺

𝑖
)with respect to the stationary

distribution 𝜋 satisfies 𝐸
𝜋
{RV(𝐺

𝑖
) = min

𝑖,𝑗
{𝑎

𝑖𝑗
(𝑚(𝑡)) +

𝑎

𝑗𝑖
(𝑚(𝑡)) + ∑

𝑘 ̸=𝑖,𝑗
min{𝑎

𝑖𝑘
(𝑚(𝑡)), 𝑎

𝑗𝑘
(𝑚(𝑡))}} > 𝐿}, system

(9) will achieve consensus almost surely. If we pick up the
following matrix

𝐴 (𝑚 (𝑡)) ≡ (

−1.0 0.05 0.95

0 −2.0 2

1.5 1.0 −2.5

) (25)

and 𝐿 = 1, the result of [25] in the case is invalid to check
out the consensus problem of system (9) due to RV(𝐺

1
) =

min
1,2
{𝑎

12
(𝑚(𝑡)) + 𝑎

21
(𝑚(𝑡)) + ∑

𝑘 ̸=1,2
min{𝑎

1𝑘
(𝑚(𝑡)),

𝑎

2𝑘
(𝑚(𝑡)) = 1}. But our result is valid. What is more,

compared with [25], we get the condition of exponential
robust consensus almost surely. It implies that we extend the
result of [25].

It is obvious to find that the condition
𝑄

𝑇
(𝑙){[−𝜖(𝑙) + 𝑝

𝑦
(𝑙)𝛿

𝑦
+ 𝐿𝑝

𝑦
(𝑙)]Ξ(𝑙) + 𝑝

𝑦
(𝑙)Ξ(𝑙)𝐴(𝑙) +

(1/2)∑

𝑟

𝑚=1
𝜋

𝑙𝑚
𝑝

𝑦
(𝑚)Ξ(𝑙)}𝑄(𝑙) of Theorem 7 is too complex

to work out matrices𝐴(𝑙) due to matrices 𝜉(𝑙) associated with
𝐴(𝑙). For the convenience of facilitating the controller design
problem, the following theorem is given, and it is equivalent
to Theorem 7.

Theorem11. Assume that the graph topologies have a spanning
tree in a directed network G. System (1) achieves exponential
robust consensus almost surely if there exist a series of definite
and diagonal matrices {𝑃(𝑙) = diag{𝑝

1
(𝑙), . . . , 𝑝

ℎ
(𝑙)}}, a series

of vectors {𝜉𝑇(𝑙) = (𝜉

1
(𝑙), . . . , 𝜉

𝑛
(𝑙))} (where ∑𝑛

𝑘=1
𝜉

𝑘
(𝑙) =

1, 𝜉(𝑘) > 0), a diagonal matrix Δ = diag{𝛿
1
, . . . , 𝛿

ℎ
}, and

a series of positive constants 𝜖(𝑙) > 0 such that the following
condition holds:

(

Ω

1
(𝑙) 𝑄

𝑇
(𝑙)

𝑄 (𝑙) Ω

2
(𝑙)

) < 0, (26)

where 𝜖(𝑙) is the minimum positive constant such that 𝑓(𝑥, 𝑡) ∈
𝑄𝑈𝐴𝐷(Δ, 𝑃(𝑙)) holds, 𝑙 ∈ S, and

𝑄 (𝑙) = (

𝐼

𝑛−1

−

𝜉

1
(𝑙)

𝜉

𝑛
(𝑙)

⋅ ⋅ ⋅ −

𝜉

𝑛−1
(𝑙)

𝜉

𝑛
(𝑙)

) ,

Ω

1
(𝑙) = 𝛼𝛾

𝑦
𝑝

𝑦
(𝑙) 𝑄

𝑇
(𝑙) 𝐴 (𝑙) 𝑄 (𝑙)

+ 𝛽

2
𝐿

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) Ξ (𝑙) 𝐴 (𝑙) ,

Ω

2
(𝑙) = −

1

−𝜖 (𝑙) + 𝑝

𝑦
(𝑙) + (1/2)∑

𝑟

𝑚=1
𝜋

𝑙𝑚
𝑝

𝑦
(𝑚)

𝐼

𝑛
.

(27)
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Proof. Based on the Schur Complement, there is

𝑄

𝑇
(𝑙) {[−𝜖 (𝑙) + 𝑝

𝑦
(𝑙) 𝛿

𝑦
+

1

2

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚)] 𝐼

+ 𝛼𝛾

𝑦
𝑝

𝑦
(𝑙) 𝐴 (𝑙) + 𝛽

2
𝐿

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) Ξ (𝑙) 𝐴 (𝑙)}

⋅ 𝑄 (𝑙) < 0.

(28)

Since 0 ≤ 𝜉
𝑖
≤ 1, 𝑖 = 1, . . . , 𝑛, one can obtain

𝑄

𝑇
(𝑙) {[−𝜖 (𝑙) + 𝑝

𝑦
(𝑙) 𝛿

𝑦
+

1

2

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚)]

⋅max
𝑖

(𝜉

𝑖
) 𝐼 + 𝛼𝛾

𝑦
𝑝

𝑦
(𝑙)max
𝑖

(𝜉

𝑖
) 𝐴 (𝑙)

+ 𝛽

2
𝐿

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) Ξ (𝑙) 𝐴 (𝑙)}𝑄 (𝑙) ≤ 𝑄

𝑇
(𝑙)

⋅ {[−𝜖 (𝑙) + 𝑝

𝑦
(𝑙) 𝛿

𝑦
] Ξ (𝑙) + 𝛼𝛾

𝑦
𝑝

𝑦
(𝑙)

⋅max
𝑖

(𝜉

𝑖
) 𝐴 (𝑙) + 𝛽

2
𝐿

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) Ξ (𝑙)A (𝑙) + 1

2

⋅

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚) Ξ (𝑙)}𝑄 (𝑙) < 0.

(29)

Then, this proof is completed according to the conclusion
of Theorem 7.

Assume that every agent is just governed by internal
communication of all agents; namely, the nonlinear term
𝑓(𝑥

𝑖
(𝑡), 𝑡) of agent 𝑖 systemdoes not exist.Then, we know that

system (1) can be described as

𝑑𝑥

𝑖
(𝑡) = 𝛼

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡)) Γ𝑥

𝑘
(𝑡) 𝑑𝑡

+ 𝛽

𝑛

∑

𝑘=1

𝑎

𝑖𝑘
(𝑚 (𝑡)) 𝜎 (𝑥

𝑖
(𝑡) , 𝑡) 𝑑𝜔 (𝑡) .

(30)

We just analyze the communication exchange term of mul-
tiagent system. In the following corollary, we give the condi-
tion to ensure that multiagent system achieves exponential
consensus almost surely where multiagent system (30) is
composed of 𝑛 agents.

Corollary 12. Assume that the graph topologies have a span-
ning tree in a directed network G. System (30) achieves expo-
nential robust consensus almost surely if there exist a series of
definite and diagonal matrices {𝑃(𝑙)} = diag{𝑝

1
(𝑙), . . . , 𝑝

ℎ
(𝑙)}

and a series of matrices {Ξ(𝑙) = diag{𝜉
1
(𝑙), . . . , 𝜉

𝑛
(𝑙)}} (where

∑

𝑛

𝑘=1
𝜉

𝑘
(𝑙) = 1, 𝜉(𝑘) > 0) such that the following condition

holds:

𝑄

𝑇
(𝑙) [𝛼𝛾

𝑦
𝑝

𝑦
(𝑙) 𝐴 (𝑙) + 𝛽

2
𝐿

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(𝑙) 𝐴 (𝑙)

+

𝑟

∑

𝑚=1

𝜋

𝑙𝑚
𝑝

𝑦
(𝑚)]𝑄 (𝑙) < 0,

(31)

where 𝑙 ∈ S and

𝑄 (𝑙) = (

𝐼

𝑛−1

−

𝜉

1
(𝑙)

𝜉

𝑛
(𝑙)

⋅ ⋅ ⋅ −

𝜉

𝑛−1
(𝑙)

𝜉

𝑛
(𝑙)

) . (32)

Proof. It is obvious to hold in terms of Theorem 7.

4. Simulations

In this section, two examples are presented to demonstrate
the validity ofmain theoretical results. Consider the following
exponential consensus protocol governed by Markov jump
differential equation:

𝑑𝑥

𝑖
(𝑡) =

[

[

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) +

3

∑

𝑗=1

𝑎

𝑖𝑗
(𝑚 (𝑡)) 𝑥

𝑗
(𝑡)

]

]

𝑑𝑡

+ 0.2

3

∑

𝑗=1

𝑎

𝑖𝑗
(𝑚 (𝑡)) 𝜎 (𝑥

𝑗
(𝑡)) 𝑑𝜔 (𝑡) ,

𝑖 = 1, 2, 3,

(33)

where

𝜎 (𝑥

𝑗
(𝑡)) =

{

{

{

{

{

{

{

{

{

2𝑥

1

𝑗
(𝑡)

3𝑥

2

𝑗
(𝑡)

4𝑥

3

𝑗
(𝑡) .

(34)

Consider the state space with three states, which is
denoted by S = {1, 2, 3}. Pick up the coupling matrices (or
connection coefficients) associated with the state space as
follows:

𝐴 (1) = (

−1.0 0.5 0.5

1.0 −2.0 1.0

1.5 1.0 −2.5

) ,

𝐴 (2) = (

−1.2 0.8 0.4

0.8 −2.0 1.2

1.2 1.6 −2.8

) ,

𝐴 (3) = (

−1.40 0.35 1.05

0.70 −1.05 0.35

1.05 0.70 −1.75

) ,

(35)



8 Abstract and Applied Analysis

and then the left eigenvectors of coupling matrices are shown
(there may be many left eigenvectors of each matrix with
respect to eigenvalue 0, and we just pick up one arbitrarily)
as follows:

𝜉 (1) = (0.5517 0.2414 0.2069)

𝜉 (2) = (0.4423 0.3462 0.2115)

𝜉 (3) = (0.3824 0.3235 0.2941) .

(36)

In view of Theorem 7, it is obvious that one can obtain

𝑄 (1) = (

1 0

0 1

−2.6665 −1.1667

) ,

𝑄 (2) = (

1 0

0 1

−2.0913 −1.6369

) ,

𝑄 (3) = (

1 0

0 1

−1.3002 −1.1000

) .

(37)

We take 𝑃(1), 𝑃(2), and 𝑃(3) as follows:

𝑃 (1) = (

1 0 0

0 0.9 0

0 0 0.8

) ,

𝑃 (2) = (

1 0 0

0 1 0

0 0 1

) ,

𝑃 (3) = (

0.9 0 0

0 1 0

0 0 1.1

) .

(38)

Pick up the transition matrix and Δ as follows:

∏ =(

−0.5 0.1 0.4

0.3 −0.6 0.3

0.3 0.4 −0.7

) ,

Δ = (

1 0 0

0 1 0

0 0 1

) .

(39)

4.1. Simulation 1. In this subsection, an example is proposed
to demonstrate the validity of Theorem 7.

Consider agent 𝑖 described by the following system:

𝑓 (𝑥

𝑖
(𝑡) , 𝑡) =

{

{

{

{

{

{

{

{

{

sin (𝑡) 𝑥1
𝑖
(𝑡)

cos (𝑡) 𝑥2
𝑖
(𝑡)

sin (𝑡 + 1) 𝑥3
𝑖
(𝑡) .

(40)

It is obvious that | sin(𝑡)| ≤ 1 and | cos(𝑡)| ≤ 1. Pick up
𝜖(𝑙) = 0 and 𝐿 = 0.4. In view of Theorem 7 and (35)–(39), if
the state of system (33) governed by (40) is 𝑙 = 1, one has

𝑄

𝑇
(1) [−𝜖 (1) Ξ (1) + 𝑝

𝑦
(1) 𝛿

𝑦
Ξ (1) + 𝛼𝛾

𝑦
𝑝

𝑦
(1) Ξ (1)

⋅ 𝐴 (1) + 𝛽

2
𝐿

2
𝑝

𝑦
(1) 𝐴

𝑇
(1) Ξ (1) 𝐴 (1) +

1

2

⋅

𝑟

∑

𝑚=1

𝜋

1𝑚
𝑝

𝑦
(𝑚) Ξ (1)]𝑄 (1)

= {(

−3.1114 −1.2561

−1.4228 −0.9734

) ; (

−2.5110 −1.0384

−1.1885 −0.8013

) ;

(

−1.9106 −0.8208

−0.9541 −0.6291

)} .

(41)

And their eigenvalues are {(−3.7541, −0.3307); (−3.0579,
−0.2543); (−2.3624, −0.1773)}, respectively.

For 𝑙 = 2, one has

𝑄

𝑇
(2) [−𝜖 (2) Ξ (2) + 𝑝

𝑦
(2) 𝛿

𝑦
Ξ (2) + 𝛼𝛾

𝑦
𝑝

𝑦
(2) Ξ (2)

⋅ 𝐴 (2) + 𝛽

2
𝐿

2
𝑝

𝑦
(2) 𝐴

𝑇
(2) Ξ (2) 𝐴 (2) +

1

2

⋅

𝑟

∑

𝑚=1

𝜋

2𝑚
𝑝

𝑦
(𝑚) Ξ (2)]𝑄 (2)

= {(

−1.3194 −1.0654

−1.4293 −1.5247

) ; (

−0.9707 −0.8441

−1.1716 −1.2276

) ;

(

−0.6220 −0.6228

−0.9139 −0.9304

)} .

(42)

And their eigenvalues are {(−0.1838, −2.6603); (−0.0964,
−2.1019); (−0.0062, −1.5463)}, respectively.

For 𝑙 = 3, one has

𝑄

𝑇
(3) [−𝜖 (3) Ξ (3) + 𝑝

𝑦
(3) 𝛿

𝑦
Ξ (3) + 𝛼𝛾

𝑦
𝑝

𝑦
(3) Ξ (3)

⋅ 𝐴 (3) + 𝛽

2
𝐿

2
𝑝

𝑦
(3) 𝐴

𝑇
(3) Ξ (3) 𝐴 (3) +

1

2

⋅

𝑟

∑

𝑚=1

𝜋

3𝑚
𝑝

𝑦
(𝑚) Ξ (3)]𝑄 (1)

= {(

−0.9793 −0.5104

−0.1213 −0.2867

) ; (

−1.0067 −0.6472

−0.3636 −0.4071

) ;

(

−0.8425 −0.5502

−0.2982 −0.3215

)} .

(43)

And their eigenvalues are {(−1.0594, −0.2066); (−1.2771,
−0.1366); (−1.0636, −0.1004)}, respectively. FromTheorem 7,
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Figure 1: Dynamic of multiagent system (33) with 𝑓(𝑥, 𝑡) being
given by (40).

we know that system (33) composed of agents governed by
(40) is exponential robust consensus almost surely with the
given control law.

In the following simulation, the initial values are chosen
randomly. Trajectory of system (33) is shown in Figure 1.
For 𝑖 = 1, 2, 3, agent-𝑖1, agent-𝑖2, and agent-𝑖3 represent
three states of agent 𝑖, respectively. In view of Figure 1, one
can find that, for state 𝑗, agent-1𝑗, agent-2𝑗, and agent-3𝑗
three agents’ trajectories merge into a trajectory along time
𝑡, where 𝑗 = 1, 2, 3. The dynamics of every individual agent
system is shown in Figure 2. Assume the error of system
(33) is ∑3

𝑖=2
∑

3

𝑗=1
|𝑥

𝑗

𝑖
− 𝑥

𝑗

1
|. Next, in view of Figure 3, it

is easy to see that the system error converges fast nearby
0. And then, the error graph demonstrates almost surely
exponential robust consensus of system (33), effectively. From
Figures 1, 2, 3, 4, and 5, the simulation results demonstrate
the validity of achieved theoretical result obviously.

4.2. Simulation 2. In this subsection, in order to analyze
the influence of stochastic disturbances onto the dynamics
of the coupled system, we now consider exponential robust
consensusmodel (30).The coefficients andparameters are the
same as those in Simulation 1 except the following matrices:

𝐴 (1) = (

−0.10 0.05 0.05

0.10 −0.20 0.10

0.15 0.10 −0.25

) ,

𝐴 (2) = (

−0.15 0.10 0.05

0.10 −0.25 0.15

0.15 0.20 −0.35

) ,

𝐴 (3) = (

−0.20 0.05 0.15

0.10 −0.15 0.05

0.15 0.10 −0.25

) .

(44)

In view of Corollary 12, (37)–(39), and (44), if the state of
system (30) governed by (40) is 𝑙 = 1, one has

𝑄

𝑇
(1) [𝛼𝛾

𝑦
𝑝

𝑦
(1) 𝐴 (1) + 𝛽

2
𝐿

2
𝑝

𝑦
(𝑙) 𝐴

𝑇
(1) 𝐴 (1)

+

𝑟

∑

𝑚=1

𝜋

1𝑚
𝑝

𝑦
(𝑚)]𝑄 (1) = {(

−2.0813 −1.5773

−1.6365 −1.7331

) ;

(

−1.1604 −1.0036

−1.0568 −1.3170

) ; (

−0.9541 −0.8469

−0.8942 −1.1443

)} .

(45)

And their eigenvalues are {(−3.5232, −0.2912); (−0.2058,
−2.2716); (−0.1737, −1.9246)}, respectively.

For 𝑙 = 2, one has

𝑄

𝑇
(2) [𝛼𝛾

𝑦
𝑝

𝑦
(2) 𝐴 (2) + 𝛽

2
𝐿

2
𝑝

𝑦
(2) 𝐴

𝑇
(2) 𝐴 (2)

+

𝑟

∑

𝑚=1

𝜋

2𝑚
𝑝

𝑦
(𝑚)]𝑄 (2) = {(

−2.0873 −1.5808

−1.6400 −1.7351

) ;

(

−1.8273 −1.3929

−1.4461 −1.5441

) ; (

−1.5674 −1.2049

−1.2522 −1.3532

)} .

(46)

And their eigenvalues are {(−3.5309, −0.2915); (−3.1120,
−0.2595); (−2.6933, −0.2273)}, respectively.

For 𝑙 = 3, one has

𝑄

𝑇
(3) [𝛼𝛾

𝑦
𝑝

𝑦
(3) 𝐴 (3) + 𝛽

2
𝐿

2
𝑝

𝑦
(3) 𝐴

𝑇
(3) 𝐴 (3)

+

𝑟

∑

𝑚=1

𝜋

3𝑚
𝑝

𝑦
(𝑚)]𝑄 (3) = {(

−0.9942 −0.5929

−0.4779 −0.6093

) ;

(

−0.8990 −0.5350

−0.4315 −0.5488

) ; (

−0.8038 −0.4771

−0.3851 −0.4884

)} .

(47)

And their eigenvalues are {(−1.3678, −0.2358); (−1.2353,
−0.2126); (−1.1028, −0.1894)}, respectively. From Corollary
12, we know that system (30) (system (33) with𝑓(𝑥

𝑖
(𝑡), 𝑡) = 0)

is exponential robust consensus with the given control law.
In the following simulation, the initial values are chosen

randomly, too. Trajectory of system (30) is shown in Figure 4.
In view of Figure 4, one can find that, for state 𝑗, agent-
1𝑗, agent-2𝑗, and agent-3𝑗 three agents’ trajectories merge
into a trajectory along time 𝑡, where 𝑗 = 1, 2, 3. Consider
the error of system (30) as ∑3

𝑖=2
∑

3

𝑗=1
|𝑥

𝑗

𝑖
− 𝑥

𝑗

1
|. Next, in

view of Figure 5, it is easy to see that the error of system
(30) converges fast nearby 0. And then, the error graph
demonstrates almost surely exponential robust consensus of
system (30), effectively. From Figures 4 and 5, the simulation
results demonstrate the validity of achieved theoretical result
obviously.

5. Conclusions

In this paper, exponential robust consensus of stochas-
tic multiagent systems is studied. Coupling structures of
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Figure 2: Dynamics of each agent of multiagent system (33) with 𝑓(𝑥, 𝑡) being given by (40).
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Figure 3: Dynamics of consensus error among agents in multiagent
system (33).

multiagent systems are Markov jump switching; that is,
multiagent systems contain Markov jump parameters. Suf-
ficient conditions of almost surely exponential robust con-
sensus are derived by utilizing the stochastic method and the
approach of thematrix inequality. Finally, two simulations are
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Figure 4: Dynamics of multiagent system (30) with 𝑓(𝑥
𝑖
(𝑡), 𝑡) = 0.

shown to demonstrate the validity of the achieved theoretical
results.
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