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We introduce a generalized proximal weak contraction of rational type for the non-self-map and proved results to ensure the
existence and uniqueness of best proximity point for such mappings in the setting of partially ordered metric spaces. Further, our
results provides an extension of a result due to Luong and Thuan (2011) and also it provides an extension of Harjani (2010) to the
case of self-mappings.

1. Introduction and Preliminaries

The fixed point theory of partially ordered metric space was
introduced by Ran and Reurings [1], where they extended the
Banach contraction principle in partially ordered sets with
some applications to linear and nonlinear matrix equations.
Subsequently, Nieto and Rodŕıguez-López [2] extended the
result of Ran and Reurings and apply their results to obtain a
unique solution for a first order ordinary differential equation
with periodic boundary conditions. The following notion of
an altering distance function was introduced by Khan et al. in
[3].

Definition 1. A function𝜓 : [0,∞) → [0,∞) is said to be an
altering distance function if it satisfies the following condi-
tions.

(i) 𝜓 is continuous and nondecreasing.

(ii) 𝜓(𝑡) = 0 if and only if 𝑡 = 0.

In [3], Khan et al. proved the fixed point theorems by
using altering distance function together with contractive
type condition.

Motivated by the interesting paper of Jaggi [4], in [5]
Harjani et al. proved the following fixed point theorem in
partially ordered metric spaces.

Theorem 2 (see [5]). Let (𝑋, ≤) be an ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space.

Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing mapping such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼
𝑑 (𝑥, 𝑇𝑥) 𝑑 (𝑦, 𝑇𝑦)

𝑑 (𝑥, 𝑦)
+ 𝛽𝑑 (𝑥, 𝑦)

𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≥ 𝑦, 𝑥 ̸= 𝑦.

(1)

Also, assume either 𝑇 is continuous or𝑋 has the property that

{𝑥
𝑛
} 𝑖𝑠 𝑎 𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑋

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥
𝑛
→ 𝑥, 𝑡ℎ𝑒𝑛 𝑥 = sup {𝑥

𝑛
} .

(2)

If there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
≤ 𝑇𝑥
0
, then 𝑇 has a fixed

point.

In [6] Luong andThuan proved the following theorem.

Theorem 3 (see [6]). Let (𝑋, ≤) be an ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
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metric space. Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing mapping
such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑚 (𝑥, 𝑦) − 𝜙 (𝑚 (𝑥, 𝑦))

𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≥ 𝑦, 𝑥 ̸= 𝑦,
(3)

where 𝜙 : [0,∞) → [0,∞) is a lower semicontinuous func-
tion with 𝜙(𝑡) = 0 if and only if 𝑡 = 0, and𝑚(𝑥, 𝑦) = max{𝑑(𝑥,
𝑇𝑥)𝑑(𝑦, 𝑇𝑦)/𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑦)}.

Also, assume either 𝑇 is continuous or 𝑋 has the property
(2).

If there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
≤ 𝑇𝑥
0
, then 𝑇 has a

fixed point.

In this article, we attempt to give a generalization of
Theorem 3 by considering a non-self-map 𝑇. Before getting
into the details of our main theorem, let us give a brief
discussion of best proximity point results.

1.1. Best Proximity Point. Let 𝐴 ̸= 0 be a subset of a metric
space (𝑋, 𝑑). A mapping 𝑇 : 𝐴 → 𝑋 has a fixed point in 𝐴

if the fixed point equation 𝑇𝑥 = 𝑥 has at least one solution.
That is, 𝑥 ∈ 𝐴 is a fixed point of 𝑇 if 𝑑(𝑥, 𝑇𝑥) = 0. If the
fixed point equation 𝑇𝑥 = 𝑥 does not possess a solution,
then 𝑑(𝑥, 𝑇𝑥) > 0 for all 𝑥 ∈ 𝐴. In such a situation, it
is our aim to find an element 𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇𝑥) is
minimum in some sense.The best approximation theory and
best proximity pair theorems are studied in this direction.
Here we state the following well-known best approximation
theorem due to Fan [7].

Theorem 4 (see [7]). Let 𝐴 be a nonempty compact convex
subset of a normed linear space 𝑋 and 𝑇 : 𝐴 → 𝑋 be
a continuous function. Then there exists 𝑥 ∈ 𝐴 such that
‖𝑥 − 𝑇𝑥‖ = 𝑑(𝑇𝑥, 𝐴) := inf{‖𝑇𝑥 − 𝑎‖ : 𝑎 ∈ 𝐴}.

Such an element 𝑥 ∈ 𝐴 in Theorem 4 is called a best ap-
proximant of𝑇 in𝐴. Note that if 𝑥 ∈ 𝐴 is a best approximant,
then ‖𝑥−𝑇𝑥‖ need not be the optimum. Best proximity point
theorems have been explored to find sufficient conditions so
that the minimization problem min

𝑥∈𝐴
‖𝑥 − 𝑇𝑥‖ has at least

one solution. To have a concrete lower bound, let us consider
twononempty subsets𝐴, 𝐵of ametric space𝑋 and amapping
𝑇 : 𝐴 → 𝐵. The natural question is whether one can find
an element 𝑥

0
∈ 𝐴 such that 𝑑(𝑥

0
, 𝑇𝑥
0
) = min{𝑑(𝑥, 𝑇𝑥) :

𝑥 ∈ 𝐴}. Since 𝑑(𝑥, 𝑇𝑥) ≥ 𝑑(𝐴, 𝐵), the optimal solution to
the problem of minimizing the real valued function 𝑥 →

𝑑(𝑥, 𝑇𝑥) over the domain 𝐴 of the mapping 𝑇 will be the one
for which the value 𝑑(𝐴, 𝐵) is attained. 𝐴 point 𝑥

0
∈ 𝐴 is

called a best proximity point of 𝑇 if 𝑑(𝑥
0
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵).

Note that if 𝑑(𝐴, 𝐵) = 0, then the best proximity point is
nothing but a fixed point of 𝑇.

The existence and convergence of best proximity points
is an interesting topic of optimization theory which recently
attracted the attention of many authors [8–16]. Also one can
find the existence of best proximity point in the setting of
partially ordered metric space in [17–24].

The purpose of this article is to present best proximity
point theorems for non-self-mappings in the setting of
partially ordered metric spaces, thereby producing optimal
approximate solutions for 𝑇𝑥 = 𝑥, where 𝑇 is a non-self-
mapping.When themap𝑇 is considered to be a self-map and
𝜓 is defined as identity function, then our result reduces to the
fixed point theorem of Luong andThuan [6].

Given nonempty subsets𝐴 and 𝐵 of a metric space𝑋, the
following notions are used subsequently:

𝑑 (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ,

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(4)

In [14], the authors discussed sufficient conditions which
guarantee the nonemptiness of 𝐴

0
and 𝐵

0
. Moreover, in [12],

the authors proved that𝐴
0
is contained in the boundary of𝐴

in the setting of normed linear spaces.

Definition 5 (see [17]). A mapping 𝑇 : 𝐴 → 𝐵 is said to be
proximally increasing if it satisfies the condition that

𝑦
1
≤ 𝑦
2

𝑑 (𝑥
1
, 𝑇𝑦
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝑇𝑦
2
) = 𝑑 (𝐴, 𝐵)

}

}

}

⇒ 𝑥
1
≤ 𝑥
2
, (5)

where 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ 𝐴.

One can see that, for a self-mapping, the notion of prox-
imally increasingmapping reduces to that of increasingmap-
ping.

Definition 6. Amapping 𝑇 : 𝐴 → 𝐵 is said to be generalized
proximal weak contraction of rational type if it satisfies the
condition that

𝑥 ≤ 𝑦, 𝑥 ̸= 𝑦

𝑑 (𝑢
1
, 𝑇𝑥) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑢
2
, 𝑇𝑦) = 𝑑 (𝐴, 𝐵)

}

}

}

⇒ 𝜓(𝑑 (𝑢
1
, 𝑢
2
))

≤ 𝜓 (𝑚 (𝑥, 𝑦)) − 𝜙 (𝑚 (𝑥, 𝑦)) ,

(6)

where 𝑢
1
, 𝑢
2
, 𝑥, 𝑦 ∈ 𝐴, 𝜓 is an altering distance function,

𝜙 : [0,∞) → [0,∞) is a nondecreasing function with
𝜙(𝑡) = 0 if and only if 𝑡 = 0, and 𝑚(𝑥, 𝑦) = max{𝑑(𝑥, 𝑢

1
)

𝑑(𝑦, 𝑢
2
)/𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑦)}.

One can see that, for a self-mapping, the notion of gener-
alized proximal weak contraction of rational type reduces to
generalized weak contraction of rational type.

2. Main Results

Now, let us state our main result.

Theorem 7. Let 𝑋 be a nonempty set such that (𝑋, ≤) is a
partially ordered set and (𝑋, 𝑑) is a complete metric space. Let
𝐴 and 𝐵 be nonempty closed subsets of the metric space (𝑋, 𝑑)
such that 𝐴

0
̸= 0. Let 𝑇 : 𝐴 → 𝐵 satisfy the following

conditions.
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(i) 𝑇 is continuous, proximally increasing, and generalized
proximal weak contraction of rational type such that
𝑇(𝐴
0
) ⊆ 𝐵
0
.

(ii) There exist 𝑥
0
and 𝑥

1
in 𝐴
0
such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝑥

0
≤ 𝑥
1
. (7)

Then, there exists an element 𝑥 in 𝐴 such that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (8)

Further, the sequence {𝑥
𝑛
}, defined by

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) 𝑓𝑜𝑟 𝑛 ≥ 1, (9)

converges to the element 𝑥.

Proof. By hypothesis there exist elements 𝑥
0
and 𝑥

1
in 𝐴
0

such that

𝑑 (𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) , 𝑥

0
≤ 𝑥
1
. (10)

Because of the fact that 𝑇(𝐴
0
) ⊆ 𝐵

0
, there exists an element

𝑥
2
in 𝐴
0
such that

𝑑 (𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (11)

Since 𝑇 is proximally increasing, we get 𝑥
1
≤ 𝑥
2
.

Continuing this process, we can construct a sequence (𝑥
𝑛
)

in 𝐴
0
such that

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) ∀𝑛 ∈ N

with 𝑥
0
≤ 𝑥
1
≤ 𝑥
2
≤ ⋅ ⋅ ⋅ 𝑥

𝑛
≤ 𝑥
𝑛+1

⋅ ⋅ ⋅ .
(12)

If there exist 𝑛
0
such that 𝑥

𝑛0
= 𝑥
𝑛0+1

, then 𝑑(𝑥
𝑛0+1

, 𝑇𝑥
𝑛0
) =

𝑑(𝑥
𝑛0
, 𝑇𝑥
𝑛0
) = 𝑑(𝐴, 𝐵).Thismeans that𝑥

𝑛0
is a best proximity

point of𝑇 and the proof is finished.Thus, we can suppose that
𝑥
𝑛

̸= 𝑥
𝑛+1

for all 𝑛.
Since 𝑥

𝑛−1
< 𝑥
𝑛
, we get

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

≤ 𝜓(max{
𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)

, 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)})

− 𝜙(max{
𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)

, 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)})

= 𝜓 (max {𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)})

− 𝜙 (max {𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)}) .

(13)

Suppose that there exists 𝑚
0
such that 𝑑(𝑥

𝑚0
, 𝑥
𝑚0+1

) >

𝑑(𝑥
𝑚0−1

, 𝑥
𝑚0
), and from (13), we have

𝜓 (𝑑 (𝑥
𝑚0
, 𝑥
𝑚0+1

))

≤ 𝜓 (𝑑 (𝑥
𝑚0
, 𝑥
𝑚0+1

)) − 𝜙 (𝑑 (𝑥
𝑚0
, 𝑥
𝑚0+1

))

< 𝜓 (𝑑 (𝑥
𝑚0
, 𝑥
𝑚0+1

)) .

(14)

Hence, the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is monotone, nonin-
creasing and bounded. Thus, there exists 𝑟 ≥ 0 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑟 ≥ 0. (15)

Since {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is a nonincreasing sequence, from (13), we
get

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜙 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) ,

∀𝑥
𝑛−1

< 𝑥
𝑛
, 𝑛 ≥ 1.

(16)

Suppose that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑟 > 0. Then the
inequality (16)

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜙 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
))

≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
))

(17)

implies that

lim
𝑛→∞

𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) = 0. (18)

But, as 0 < 𝑟 ≤ 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) and 𝜙 is nondecreasing function,

0 < 𝜙 (𝑟) ≤ 𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)) , (19)

and this gives us lim
𝑛→∞

𝜙(𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)) ≥ 𝜙(𝑟) > 0 which
contradicts (18). Hence,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (20)

Now to prove that {𝑥
𝑛
} is a Cauchy sequence, suppose {𝑥

𝑛
}

is not a Cauchy sequence. Then there exist 𝜖 > 0 for which
we can find subsequences {𝑥

𝑚(𝑘)
} and {𝑥

𝑛(𝑘)
} of {𝑥

𝑛
} such that

𝑛(𝑘) is smallest index for which

𝑛 (𝑘) > 𝑚 (𝑘) > 𝑘, 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜖. (21)

This means that

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) < 𝜖,

𝜖 ≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)

≤ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)−1

) + 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

)

< 𝜖 + 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

) .

(22)

Letting 𝑘 → ∞ and using (20) we can conclude that

lim
𝑘→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = 𝜖. (23)

By triangle inequality

𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) ≤ 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)−1

)

+ 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)+𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

),

𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

) ≤ 𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑛(𝑘)

)

+ 𝑑 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

)+𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)−1

) .

(24)
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Letting 𝑘 → ∞ in the above two inequalities, using (20) and
(23), we get

lim
𝑘→∞

𝑑 (𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

) = 𝜖. (25)

Since𝑚(𝑘) < 𝑛(𝑘), 𝑥
𝑚(𝑘)−1

≤ 𝑥
𝑛(𝑘)−1

, from (16), we have

0 < 𝜓 (𝜖) ≤ 𝜓 (𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

))

≤ 𝜓 (𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)) − 𝜙 (𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

))

≤ 𝜓 (𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)) .

(26)

Using (25) and continuity of 𝜓 in the above inequality we can
obtain

lim
𝑘→∞

𝜙 (𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1

)) = 0. (27)

But, from lim
𝑘→∞

𝑑(𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

) = 𝜖 we can find 𝑘
0
∈ N

such that for any 𝑘 ≥ 𝑘
0

𝜖

2
≤ 𝑑 (𝑥

𝑛(𝑘)−1
, 𝑥
𝑚(𝑘)−1

) (28)

and consequently,

0 < 𝜙 (
𝜖

2
) ≤ 𝜙 (𝑑 (𝑥

𝑛(𝑘)−1
, 𝑥
𝑚(𝑘)−1

)) for 𝑘 ≥ 𝑘
0
. (29)

Therefore, 0 < 𝜙(𝜖/2) ≤ 𝜙(𝑑(𝑥
𝑛(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)) and this con-
tradicts (27). Thus, {𝑥

𝑛
} is a Cauchy sequence in 𝐴 and hence

converges to some element 𝑥 in 𝐴. Since 𝑇 is continuous, we
have 𝑇𝑥

𝑛
→ 𝑇𝑥.

Hence the continuity of themetric function𝑑 implies that
𝑑(𝑥
𝑛+1

, 𝑇𝑥
𝑛
) → 𝑑(𝑥, 𝑇𝑥). But (12) shows that the sequence

𝑑(𝑥
𝑛+1

, 𝑇𝑥
𝑛
) is a constant sequence with the value 𝑑(𝐴, 𝐵).

Therefore, 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). This completes the proof.

Corollary 8. Let 𝑋 be a nonempty set such that (𝑋, ≤) is a
partially ordered set and (𝑋, 𝑑) is a complete metric space. Let
𝐴 be a nonempty closed subset of the metric space (𝑋, 𝑑). Let
𝑇 : 𝐴 → 𝐴 satisfy the following conditions.

(i) 𝑇 is continuous, proximally increasing, and generalized
proximal weak contraction of rational type.

(ii) There exist elements 𝑥
0

and 𝑥
1

in 𝐴 such that
𝑑(𝑥
1
, 𝑇𝑥
0
) = 0 with 𝑥

0
≤ 𝑥
1
.

Then, there exist an element 𝑥 in 𝐴 such that 𝑑(𝑥, 𝑇𝑥) = 0.

In what follows we prove thatTheorem 7 is still valid for𝑇
which is not necessarily continuous, assuming the following
hypothesis in 𝐴. 𝐴 has the property that

{𝑥
𝑛
} is a nondecreasing sequence in 𝐴

such that 𝑥
𝑛
→ 𝑥, then 𝑥 = sup {𝑥

𝑛
} .

(30)

Theorem 9. Assume the conditions (30) and𝐴
0
is closed in𝑋

instead of continuity of 𝑇 in Theorem 7; then the conclution of
Theorem 7 holds.

Proof. Following the proof of Theorem 7, there exists a
sequence {𝑥

𝑛
} in 𝐴 satisfying the following condition:

𝑑 (𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) ∀𝑛 ∈ N

with 𝑥
0
≤ 𝑥
1
≤ 𝑥
2
≤ ⋅ ⋅ ⋅ 𝑥

𝑛
≤ 𝑥
𝑛+1

⋅ ⋅ ⋅ .
(31)

and 𝑥
𝑛
converges to 𝑥 in𝐴. Note that the sequence {𝑥

𝑛
} in𝐴

0

and 𝐴
0
is closed. Therefore, 𝑥 ∈ 𝐴

0
. Since 𝑇(𝐴

0
) ⊆ 𝐵

0
, we

get 𝑇𝑥 ∈ 𝐵
0
.

Since 𝑇𝑥 ∈ 𝐵
0
, there exist 𝑦

1
∈ 𝐴 such that

𝑑 (𝑦
1
, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (32)

Since {𝑥
𝑛
} is a nondecreasing sequence and𝑥

𝑛
→ 𝑥, then𝑥 =

sup{𝑥
𝑛
}. Particularly, 𝑥

𝑛
≤ 𝑥 for all 𝑛. Since 𝑇 is proximally

increasing and from (31) and (32), we obtain 𝑥
𝑛+1

≤ 𝑦
1
. But

𝑥 = sup{𝑥
𝑛
} which implies 𝑥 ≤ 𝑦

1
. Therefore, we get that

there exist elements 𝑥 and 𝑦
1
in 𝐴
0
such that

𝑑 (𝑦
1
, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) , 𝑥 ≤ 𝑦

1
. (33)

Consider the sequence {𝑦
𝑛
} that is constructed as follows:

𝑑 (𝑦
𝑛+1

, 𝑇𝑦
𝑛
) = 𝑑 (𝐴, 𝐵) ∀𝑛 ∈ N.

with 𝑥 = 𝑦
0
≤ 𝑦
1
≤ 𝑦
2
≤ ⋅ ⋅ ⋅ 𝑦

𝑛
≤ 𝑦
𝑛+1

⋅ ⋅ ⋅ .
(34)

Arguing like above Theorem 7, we obtain that {𝑦
𝑛
} is a non-

decreasing sequence and 𝑦
𝑛
→ 𝑦 for certain 𝑦 ∈ 𝐴. From

(30), we have 𝑦 = sup{𝑦
𝑛
}. Since 𝑥

𝑛
< 𝑥 = 𝑦

0
≤ 𝑦
1
≤ 𝑦
𝑛
≤ 𝑦

for all 𝑛, suppose that 𝑥 ̸= 𝑦, 𝑇 is generalized proximal weak
contraction of rational type; from (31) and (34) we have

𝜓 (𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

))

≤ 𝜓(max{
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

𝑑 (𝑥
𝑛
, 𝑦
𝑛
)

, 𝑑 (𝑥
𝑛
, 𝑦
𝑛
)})

− 𝜙(max{
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

𝑑 (𝑥
𝑛
, 𝑦
𝑛
)

, 𝑑 (𝑥
𝑛
, 𝑦
𝑛
)}) .

(35)

Taking limit as 𝑛 → ∞ in the above inequality, we have

𝜓 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (max {0, 𝑑 (𝑥, 𝑦)})

− 𝜙 (max {0, 𝑑 (𝑥, 𝑦)})

< 𝜓 (𝑑 (𝑥, 𝑦))

(36)

which is a contradiction. Hence, 𝑥 = 𝑦. We have 𝑥 = 𝑦
0
≤

𝑦
1
≤ 𝑦
𝑛
= 𝑥, and therefore 𝑦

𝑛
= 𝑥, for all 𝑛. From (34), we

obtain 𝑥 is a best proximity point for𝑇.The proof is complete.

Corollary 10. Assume the condition (30) instead of continuity
of𝑇 in the Corollary 8; then the conclusion of Corollary 8 holds.

Now, we present an example where it can be appreciated
that hypotheses in Theorems 7 and 9 do not guarantee
uniqueness of the best proximity point.
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Example 11. Let 𝑋 = {(0, 1), (1, 0), (−1, 0), (0, −1)} ⊂ R2 and
consider the usual order (𝑥, 𝑦) ⪯ (𝑧, 𝑡) ⇔ 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑡.

Thus, (𝑋, ⪯) is a partially ordered set. Besides, (𝑋, 𝑑
2
) is

a complete metric space considering 𝑑
2
the euclidean metric.

Let 𝐴 = {(0, 1), (1, 0)} and 𝐵 = {(0, −1), (−1, 0)} be a closed
subset of 𝑋. Then, 𝑑(𝐴, 𝐵) = √2, 𝐴 = 𝐴

0
and 𝐵 = 𝐵

0
. Let

𝑇 : 𝐴 → 𝐵 be defined as 𝑇(𝑥, 𝑦) = (−𝑦, −𝑥). Then, it can
be seen that𝑇 is continuous, proximally increasingmappings
such that 𝑇(𝐴

0
) ⊆ 𝐵
0
. The only comparable pairs of elements

in 𝐴 are 𝑥 ⪯ 𝑥 for 𝑥 ∈ 𝐴 and there are no elements such that
𝑥 ≺ 𝑦 for 𝑥, 𝑦 ∈ 𝐴. Hence, 𝑇 is generalized proximal weak
contraction of rational type. It can be shown that the other
hypotheses of the Theorems 7 and 9 are also satisfied.

However,𝑇 has two best proximity points (0, 1) and (1, 0).

Theorem 12. In addition to the hypotheses ofTheorem 7 (resp.,
Theorem 9), suppose that

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 ∈ 𝐴
0
, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑧 ∈ 𝐴

0

𝑡ℎ𝑎𝑡 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑥 𝑎𝑛𝑑 𝑦
(37)

and then 𝑇 has a unique best proximity point.

Proof. From Theorem 7 (resp., Theorem 9), the set of best
proximity points of 𝑇 is nonempty. Suppose that there exist
elements𝑥, 𝑦 in𝐴which are best proximity points.We distin-
guish two cases:

Case 1. If 𝑥 and 𝑦 are comparable.
Since 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) and 𝑑(𝑦, 𝑇𝑦) = 𝑑(𝐴, 𝐵).
Since 𝑇 is a generalized proximal weak contraction of

rational type, we get

𝜓 (𝑑 (𝑥, 𝑦))

≤ 𝜓(max{
𝑑 (𝑥, 𝑥) 𝑑 (𝑦, 𝑦)

𝑑 (𝑥, 𝑦)
, 𝑑 (𝑥, 𝑦)})

− 𝜙(max{
𝑑 (𝑥, 𝑥) 𝑑 (𝑦, 𝑦)

𝑑 (𝑥, 𝑦)
, 𝑑 (𝑥, 𝑦)})

= 𝜓 (𝑑 (𝑥, 𝑦)) − 𝜙 (𝑑 (𝑥, 𝑦))

(38)

which implies 𝜙(𝑑(𝑥, 𝑦)) = 0, and by our assumption about
𝜙, we get 𝑑(𝑥, 𝑦) = 0 or 𝑥 = 𝑦.

Case 2. If 𝑥 is not comparable to 𝑦.
By the condition (37) there exist 𝑧

0
∈ 𝐴
0
comparable to

𝑥 and 𝑦. We define a sequence {𝑧
𝑛
} as 𝑑(𝑧

𝑛+1
, 𝑇𝑧
𝑛
) = 𝑑(𝐴, 𝐵).

Since 𝑧
0
is comparable with 𝑥, we may assume that 𝑧

0
≤ 𝑥.

Now using 𝑇 is proximally increasing, it is easy to show that
𝑧
𝑛
≤ 𝑥 for all 𝑛.
Suppose that there exist 𝑛

0
> 1 such that 𝑥 = 𝑧

𝑛0
, and

again by using 𝑇 which is proximally increasing, we get 𝑥 ≤

𝑧
𝑛0+1

. But, 𝑧
𝑛
≤ 𝑥 for all 𝑛. Therefore, 𝑥 = 𝑧

𝑛0+1
. Arguing like

above, we obtain 𝑥 = 𝑧
𝑛
for all 𝑛 ≥ 𝑛

0
. Hence, 𝑧

𝑛
→ 𝑥 as

𝑛 → ∞.

On the other hand, if 𝑧
𝑛−1

̸= 𝑥 for all 𝑛, now using 𝑇 is
a generalized proximal weak contraction of rational type, we
have

𝜓 (𝑑 (𝑧
𝑛
, 𝑥))

≤ 𝜓(max{
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) 𝑑 (𝑥, 𝑥)

𝑑 (𝑧
𝑛−1

, 𝑥)
, 𝑑 (𝑧
𝑛−1

, 𝑥)})

− 𝜙(max{
𝑑 (𝑧
𝑛−1

, 𝑧
𝑛
) 𝑑 (𝑥, 𝑥)

𝑑 (𝑧
𝑛−1

, 𝑥)
, 𝑑 (𝑧
𝑛−1

, 𝑥)})

= 𝜓 (𝑑 (𝑧
𝑛−1

, 𝑥)) − 𝜙 (𝑑 (𝑧
𝑛−1

, 𝑥)) < 𝜓 (𝑑 (𝑧
𝑛−1

, 𝑥)) .

(39)
Since 𝜓 is nondecreasing, we get 𝑑(𝑧

𝑛
, 𝑥) ≤ 𝑑(𝑧

𝑛−1
, 𝑥)

Hence, the sequence {𝑑(𝑧
𝑛
, 𝑥)} is monotone, nonincreasing

and bounded. Thus, there exist 𝑟 ≥ 0 such that
lim
𝑛→∞

𝑑 (𝑧
𝑛
, 𝑥) = 𝑟 ≥ 0. (40)

Suppose that lim
𝑛→∞

𝑑(𝑧
𝑛
, 𝑥) = 𝑟 > 0. Then the inequality

𝜓 (𝑑 (𝑧
𝑛
, 𝑥)) ≤ 𝜓 (𝑑 (𝑧

𝑛−1
, 𝑥)) − 𝜙 (𝑑 (𝑧

𝑛−1
, 𝑥))

≤ 𝜓 (𝑑 (𝑧
𝑛−1

, 𝑥))

(41)

implies that
lim
𝑛→∞

𝜙 (𝑑 (𝑧
𝑛−1

, 𝑥)) = 0. (42)

But, as 0 < 𝑟 ≤ 𝑑(𝑧
𝑛−1

, 𝑥) and 𝜙 is nondecreasing func-
tion, 0 < 𝜙(𝑟) ≤ 𝜙(𝑑(𝑧

𝑛−1
, 𝑥)), and this gives lim

𝑛→∞
𝜙

(𝑑(𝑧
𝑛−1

, 𝑥)) ≥ 𝜙(𝑟) > 0 which contradicts (42). Hence,
lim
𝑛→∞

𝑑(𝑧
𝑛
, 𝑥) = 0. Analogously, it can be proved that

lim
𝑛→∞

𝑑(𝑧
𝑛
, 𝑦) = 0. Finally, the uniqueness of the limit gives

us 𝑥 = 𝑦.

Let us illustrate the above theorem with the following
example.

Example 13. Let 𝑋 = R2 and consider the order (𝑥, 𝑦) ⪯

(𝑧, 𝑡) ⇔ 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑡, where ≤ is usual order in R.
Thus, (𝑋, ⪯) is a partially ordered set. Besides, (𝑋, 𝑑

1
)

is a complete metric space where the metric is defined as
𝑑
1
((𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
)) = |𝑥

1
− 𝑥
2
| + |𝑦
1
− 𝑦
2
|. Let 𝐴 = {(0, 𝑥) :

𝑥 ∈ [0,∞)} and 𝐵 = {(1, 𝑥) : 𝑥 ∈ [0,∞)} be a closed subset
of 𝑋. Then, 𝑑(𝐴, 𝐵) = 1, 𝐴 = 𝐴

0
and 𝐵 = 𝐵

0
. Let 𝑇 : 𝐴 → 𝐵

be defined as 𝑇(0, 𝑥) = (1, 𝑥/2). Then, it can be seen that 𝑇 is
continuous, proximally increasing mappings and proximally
weak increasing such that𝑇(𝐴

0
) ⊆ 𝐵
0
. Now, we have to prove

𝑇 is a generalized proximal weak contraction of rational type.
That is to prove

𝑥 ≤ 𝑦, 𝑥 ̸= 𝑦

𝑑 ((0,
𝑥

2
) , 𝑇 (0, 𝑥)) = 1

𝑑 ((0,
𝑦

2
) , 𝑇 (0, 𝑦)) = 1

}}}}}

}}}}}

}

⇒ 𝜓(𝑑((0,
𝑥

2
) , (0,

𝑦

2
)))

≤ 𝜓 (𝑚 ((0, 𝑥) , (0, 𝑦)))

− 𝜙 (𝑚 ((0, 𝑥) , (0, 𝑦))) ,

(43)
where𝑚((0, 𝑥), (0, 𝑦)) = max{𝑥𝑦/4(𝑦 − 𝑥), 𝑦 − 𝑥}.
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Note that 𝑑((0, 𝑥/2), (0, 𝑦/2)) = (1/2)(𝑦 − 𝑥) and

𝑚((0, 𝑥) , (0, 𝑦)) =
{

{

{

𝑥𝑦

4 (𝑦 − 𝑥)
if 9𝑥𝑦 ≥ 𝑥

2

+ 𝑦
2

,

𝑦 − 𝑥 if 9𝑥𝑦 ≤ 𝑥
2

+ 𝑦
2

.

(44)

For 𝜓(𝑡) = 2𝑡 and 𝜙(𝑡) = 𝑡, we have 𝜓(𝑑((0, 𝑥/2), (0, 𝑦/2))) =
𝑦 − 𝑥 and

𝜓 (𝑚 ((0, 𝑥) , (0, 𝑦))) − 𝜙 (𝑚 ((0, 𝑥) , (0, 𝑦)))

=
{

{

{

3𝑥𝑦

8 (𝑦 − 𝑥)
if 9𝑥𝑦 ≥ 𝑥

2

+ 𝑦
2

,

𝑦 − 𝑥 if 9𝑥𝑦 ≤ 𝑥
2

+ 𝑦
2

.

(45)

Now, we easily conclude that the mapping 𝑇 is a generalized
proximal weak contraction of rational type. Hence all the
hypotheses of the Theorem 12 are satisfied. Also, it can be
observed that (0, 0) is the unique best proximity point of the
mapping 𝑇.

The following result, due to Luong and Thuan [6], is a
corollary from the aboveTheorem 12, by taking 𝐴 = 𝐵.

Corollary 14. In addition to the hypothesis of Corollary 8
(resp., Corollary 10), suppose that

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 ∈ 𝐴, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑧 ∈ 𝐴

𝑡ℎ𝑎𝑡 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝑥 𝑎𝑛𝑑 𝑦
(46)

and then 𝑇 has a unique fixed point.
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