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We investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Maxwell model through two coaxial vertical
tubes. This analysis has been carried under low Reynolds number and long wavelength approximations. Analytical solution of
the problem is obtained by using a fractional calculus approach. The effects of Grashof number, heat parameter, relaxation time,
fractional time derivative parameter, amplitude ratio, and the radius ratio on the pressure gradient, pressure rise, and the friction
forces on the inner and outer tubes are graphically presented and discussed.

1. Introduction

Peristaltic transport is a mechanism of pumping fluids in
tubeswhen progressivewave of area contraction or expansion
propagates along the length on the boundary of a distensible
tube containing fluid. In the physiological process, peristalsis
or the blood flow is the major applications of this transport
phenomenon. The contractions and relaxations of the walls
propel the fluid.The first investigation to study the peristaltic
pumping was by Latham [1]. The peristaltic transport of a
Newtonian fluid at long wavelengths at low Reynolds number
has been studied with particles suspended by Kaimal [2] or
without particles by Shapiro et al. [3] and by Mishra and Rao
[4]. The non-Newtonian effects of fluids on the peristaltic
transport have been studied for a third-grade fluid byAli et al.
[5], for a Jeffrey fluid by Abd-Alla et al. [6], for a Maxwell
model by Rachid and Ouazzani [7], for a Herschel-Bulkley
fluid by Medhavi [8], or for a power-law fluid by Shukla and
Gupta [9]. The effect of an endoscope on peristaltic flow for
a Newtonian fluid through a nonuniform annulus has been
analyzed byMekheimer [10].This effect has been also studied
for a Johnson Segalman fluid byAkbar andNadeem [11] or for
aMaxwell fluid by Husseny et al. [12]. Recently, the peristaltic
transport of non-Newtonian fluids has gained considerable
interest because of its applications in industry and biology.

Mathematically, the non-Newtonian fluids have a nonlinear
relationship between the stress and the rate of strain. It is
difficult to propose a single model which can exhibit all the
properties of non-Newtonian fluids. To describe the viscoe-
lastic properties of such fluids recently, constitutive equations
with ordinary and fractional time derivatives have been intro-
duced. Fractional calculus has proved to be very successful in
the description of constitutive relations of viscoelastic fluids.
The starting point of the fractional derivative model of vis-
coelastic fluids is usually a classical differential equation
which is modified by replacing the time derivative of an inte-
gral order with fractional order and may be formulated both
in the Riemann-Liouville and in the Caputo sense [13]. This
generalization allows one to define precisely noninteger order
integrals or derivatives and this plays an important role in
studying the valuable tool of viscoelastic properties. In recent
years and considering the relevance of fractional models of
viscoelastic fluids, a number of articles have addressed
unsteady flows of viscoelastic fluids with the fractional Max-
well model [14, 15], fractional second-grade fluid [16, 17],
fractional Oldroyd-B model [18, 19], and fractional Burgers
model [20]. For example, Tripathi [21] studied amathematical
model based on viscoelastic fractional Oldroyd-B model for
the peristaltic flow of chyme in small intestine, which is
assumed to be in the form of an inclined cylindrical tube.
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The peristaltic transport for a fractional second-grade model
through a cylindrical tube has been investigated by Tripathi
[22]. Rathod and Channakote [23] analyzed the interaction
of heat transfer on peristaltic pumping of a fractional second-
grade fluid through a vertical cylindrical tube by using Cap-
uto’s definition. For the fractional Maxwell model, Tripathi
et al. [24] studied the peristaltic flow through a channel where
the homotopy perturbation method (HPM) and Adomian
decomposition method (ADM) are used. For the fractional
Burger’s model Tripathi et al. [25] studied the influence of
slip condition on peristaltic transport by using a homotopy
analysis method (HAM). This generalized model of fluid has
been investigated for an infinite oscillating plate by Khan
et al. [26], for an orthogonal rheometer by Siddiqui et al. [27]
or between concentric cylinders by Shah [28]. Heat transfer
analysis is one of the principle axes of research in chemical
engineering, but nowadays due to its wide applications in
biofluid mechanics it has great interaction with peristaltic
motion. The effect of heat transfer on peristaltic transport
of a Newtonian fluid through a porous medium in a vertical
tube under the effect of a magnetic field has been studied by
Vasudev et al. [29]. This effect on peristaltic flow with slip
condition and variable viscosity in an asymmetric channel
has been analyzed by Hayat and Abbasi [30]. Hayat et al. [31]
investigated the effects of heat and mass transfer and wall
properties on the peristalsis in a power-law fluid.

The aim of this paper is to analytically study the effect of
heat transfer on peristaltic flow of a viscoelastic fluid with
fractional Maxwell model in the gap between two coaxial
vertical tubes. The influence of different physical parameters
on the pressure gradient, pressure rise, and the fictional forces
has been graphically shown and discussed.

2. Formulation and Analysis

Consider the peristaltic flow of a viscoelastic fluid with frac-
tional Maxwell model through the gap between two coaxial
vertical tubes.The inner tube is rigid (endoscope)maintained
at a temperature 𝑇

1
, and the outer tube has a sinusoidal wave

traveling down its wall and it is exposed to temperature 𝑇
0
as

seen in Figure 1.
In a cylindrical coordinate system (𝑅, 𝑍), the equations

for the tube walls in their dimensional form are given by

𝑟
1
= 𝑎
1
,

𝑟
2
= 𝑎
2
+ 𝑏 sin(

2𝜋

𝜆
(𝑍 − 𝑐𝑡)) ,

(1)

where 𝑎
1
is the radius of the endoscope, 𝑎

2
is the average

radius, 𝑏 is the amplitude of the wave, 𝜆 is the wavelength,
and 𝑐 is the wave speed of the outer tube.

The equation of the fractional Maxwell fluid is given by

(1 + 𝜆
1

𝛼
1

𝐷
𝛼
1

𝑡
) 𝑆 = 𝜇 ̇𝛾 (2)

with 𝑡, 𝑆, ̇𝛾, and 𝜇 being the time, shear stress, rate of shear
strain, and the viscosity, respectively. 𝜆

1
is the relaxation time

and 𝛼
1
is the fractional time derivative parameter such that
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Figure 1: Geometry of the problem.

0 ≤ 𝛼
1
≤ 1. 𝐷𝛼1

𝑡
is the upper convected fractional derivative

defined by

𝐷
𝛼
1

𝑡
(𝑆) = 𝐷

𝛼
1

𝑡
(𝑆) + (𝑉 ⋅ ∇) (𝑆) − 𝐿 (𝑆) − (𝑆) 𝐿

𝑇 (3)

in which

̇𝛾 = (∇𝑉) + (∇𝑉)
𝑇 (4)

and 𝐷
𝛼
1

𝑡
= 𝜕
𝛼
1

𝑡
is the fractional differentiation operator of

order 𝛼
1
with respect to 𝑡 and may be defined as [32]

𝐷
𝛼
1

𝑡
𝑓 (𝑡) =

1

Γ (1 − 𝛼
1
)

𝑑

𝑑𝑡
∫

𝑡

0

𝑓 (𝜉)

(𝑡 − 𝜉)
𝛼
1

𝑑𝜉, 0 ≤ 𝛼
1
≤ 1. (5)

Here Γ(⋅) denotes the Gamma function.
We choose a cylindrical coordinate system (𝑟, 𝑧)where 𝑧-

axis is the longitudinal direction and the 𝑟-axis is transverse
to it.

The equations ofmotion of the flow for an incompressible
fluid are given by

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
] = −

𝜕𝑝

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
𝑟𝑟
) +

𝜕𝑆
𝑟𝑧

𝜕𝑧
,

𝜌 [
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
]

= −
𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
𝑟𝑧
) +

𝜕𝑆
𝑧𝑧

𝜕𝑧
+ 𝜌𝑔𝛼 (𝑇 − 𝑇

0
) ,

𝜌𝑐
𝑝
[𝑢

𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
] = 𝑘 [

𝜕
2
𝑇

𝜕𝑟
2

+
1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕
2
𝑇

𝜕𝑧
2
] + 𝑄

0
,

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0,

(6)

where 𝜌 is the fluid density, 𝑇 is the temperature, 𝛼 is the
coefficient of linear thermal expansion of the fluid, 𝑘 denotes
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thermal conductivity, 𝑐
𝑝
denotes specific heat at constant

pressure, 𝑄
0
is the constant heat addition/absorption, 𝑢 and

𝑤 are the velocity components in the wave frame, and 𝑝 is the
pressure.

We assume that the extra stress 𝑆 depends on 𝑟 and 𝑡 only.
After using the initial condition 𝑆(𝑡 = 0), (2)–(4) yield 𝑆

𝑟𝑟
=

𝑆
𝑧𝑧

= 𝑆
𝑟𝜃

= 𝑆
𝜃𝑧

= 0 and

(1 + 𝜆
1

𝛼
1 𝜕
𝛼
1

𝜕𝑡
𝛼
1

) 𝑆
𝑟𝑧

= 𝜇
𝜕𝑤

𝜕𝑟
, (7)

where 𝑆
𝑟𝑧
is the tangential stress.

For carrying out further analysis, we introduce the follow-
ing dimensionless parameters:

𝑧 =
𝑧

𝜆
;

𝑍 =
𝑍

𝜆
;

𝑟
1
=

𝑟
1

𝑎
2

;

𝑟
2
=

𝑟
2

𝑎
2

;

𝑅 =
𝑅

𝑎
2

;

𝑡 =
𝑐𝑡

𝜆
;

𝑢 =
𝜆𝑢

𝑎
2
𝑐
;

𝑈 =
𝜆𝑈

𝑎
2
𝑐
;

𝑤 =
𝑤

𝑐
;

𝑊 =
𝑊

𝑐
;

𝜆
1
=

𝑐𝜆
1

𝜆
;

𝜀 =
𝑎
1

𝑎
2

,

𝑝 =
𝑎
2

2
𝑝

𝜇𝜆𝑐
;

𝜃 =
𝑇 − 𝑇
0

𝑇
1
− 𝑇
0

;

𝑄 =
𝑄

𝜋𝑐𝑎
2

2

;

𝛿 =
𝑎
2

𝜆
;

Pr =

𝜇𝑐
𝑝

𝑘
;

Re =
𝜌𝑐𝑎
2

𝜇
0

;

𝛽 =
𝑎
2

2
𝑄
0

𝑘 (𝑇
1
− 𝑇
0
)
;

Gr =
𝜌𝑔𝛼𝑎
3

2
(𝑇
1
− 𝑇
0
)

𝜇
,

(8)
where 𝜀 is the radius ratio, 𝛿 is the wave number, Re is the
Reynolds number, Pr is the Prandtl number, Gr is theGrashof
number,𝛽 is the nondimensional heat source/sink parameter,
and 𝜙 is the amplitude ratio with 0 < 𝜙 < 1 − 𝜀.

Using the above nondimensional quantities andunder the
assumptions of long wavelength approximation (i.e., 𝛿 ≪ 1

or 𝜆 ≫ 𝑎
2
) and the low Reynolds number (i.e., Re → 0), (6)

yield
𝜕𝑝

𝜕𝑟
= 0, (9)

(1 + 𝜆
𝛼
1

1
𝐷
𝛼
1

𝑡
) (

𝜕𝑝

𝜕𝑧
− Gr𝜃) = (

𝜕
2
𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
) , (10)

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0, (11)

𝜕
2
𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝜃

𝜕𝑟
+ 𝛽 = 0. (12)

The boundary conditions are
𝑤 = −1;

𝜃 = 1

at 𝑟 = 𝑟
1
= 𝜀,

𝑤 = −1;

𝜃 = 0

at 𝑟 = 𝑟
2
,

(13)

where 𝑟
2

= 1 + 𝜙 sin(2𝜋𝑧) is the dimensionless equation of
the outer tube radius in the wave frame.

Integrating (12) with the boundary conditions (13), we
find the dimensionless temperature as follows:

𝜃 =
ln (𝑟/𝑟

2
)

ln (𝜀/𝑟
2
)
+

𝛽

4

(𝜀
2 ln (𝑟/𝑟

2
) − 𝑟
2

2
ln (𝑟/𝜀))

ln (𝜀/𝑟
2
)

−
𝛽

4
𝑟
2
. (14)

Use the transformations between the laboratory and the
wave frames, in the dimensionless form, given by

𝑧 = 𝑍 − 𝑡;

𝑟 = 𝑅;

𝑢 = 𝑈;

𝑤 = 𝑊 − 1,

(15)
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where 𝑈 and 𝑊 are the velocity components in the fixed
frame.

Substituting (14) in (10) and using the same boundary
conditions, we obtain the velocity profile of the fluid as

𝑊 =
1

4
𝑓 (𝑟
2
− 𝑎
21
ln (𝑟) + 𝑎

25
)
𝜕𝑝

𝜕𝑧
+

1

64
𝑓Gr [𝛽𝑟

4

+ 4(𝛽𝑎
24
ln(

𝑟

𝜀
) − 𝑎
41
ln(

𝑟

𝑟
2

) + 𝑎
42
) 𝑟
2
] +

1

64

⋅ 𝑓Gr𝑎
43
,

(16)

where 𝑓(𝑡) = 1 + 𝜆
𝛼
1

1
𝐷
𝛼
1

𝑡
= 𝑓.

Using the definition of the fractional differential operator
(5) we find the expression of 𝑓 as follows:

𝑓 = 1 + 𝜆
𝛼
1

1

𝑡
−𝛼
1

Γ (1 − 𝛼
1
)
. (17)

The volume rate of flow in the fixed coordinate system (𝑅,
𝑍) is given as

𝑄 (𝑍, 𝑡) = 2∫

𝑟
2

𝜀

𝑊𝑅𝑑𝑅 = 𝑓(𝑎
61

𝜕𝑝

𝜕𝑧
+ 𝑎
62
) . (18)

Using the transformation (15) we find

𝑄 (𝑍, 𝑡) = 𝑞 + 𝑟
2

2
− 𝜀
2
, (19)

where 𝑞 is the volume flow rate in the moving coordinate
system given by

𝑞 = 2∫

𝑟
2

𝜀

𝑤𝑟𝑑𝑟. (20)

The time-averaged flow rate is defined by

𝑄 = ∫

1

0

𝑄 (𝑍, 𝑡) 𝑑𝑡 = 𝑞 + 1 +
𝜙
2

2
− 𝜀
2
. (21)

Eliminating the flow rate 𝑞 between (19) and (21) we find

𝑄 (𝑍, 𝑡) = 𝑄 + 𝑟
2

2
− 1 −

𝜙
2

2
. (22)

From (18) and (22) we obtain the pressure gradient as
follows:

𝜕𝑝

𝜕𝑧
=

1

𝑎
61

[(
𝑄 + 𝑟
2

2
− 1 − 𝜙

2
/2

𝑓
) − 𝑎
62
] . (23)

3. The Pumping Characteristics

The pressure rise Δ𝑝 and the frictional force 𝐹
𝜆
at the walls of

the inner and outer tubes, in the nondimensional form, are
given by

Δ𝑝 = ∫

1

0

𝜕𝑝

𝜕𝑧
𝑑𝑧,

𝐹
(𝑖)

= ∫

1

0

𝜀
2
(−

𝜕𝑝

𝑑𝑧
)𝑑𝑧,

𝐹
(𝑜)

= ∫

1

0

𝑟
2

2
(−

𝜕𝑝

𝑑𝑧
)𝑑𝑧.

(24)
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Figure 2: Pressure gradient 𝜕𝑝/𝜕𝑧 versus axial distance 𝑧 for differ-
ent values of the relaxation time 𝜆

1
and radius ratio 𝜀 with 𝑄 = −2,

Gr = 3, 𝛼
1
= 0.4, 𝛽 = 10, 𝜙 = 0.4, and 𝑡 = 1.

4. Results and Discussions

We note that the fractional Maxwell model reduces to a
Newtonian fluid when 𝜆

1
= 0.

The analytical expressions for the pressure gradient 𝜕𝑝/

𝜕𝑧, the pressure riseΔ𝑝, and the frictional forces on the inner
and outer tubes, respectively, 𝐹(𝑖) and 𝐹

(𝑜), are derived in the
previous sections. In order to compute these physical quanti-
ties with respect to interest parameters of problemwe observe
that the integrals in (24) are not integrable in the closed form.
They are evaluated numerically using amathematics software.

Pressure gradient 𝜕𝑝/𝜕𝑧 against the axial distance 𝑧 on
one wavelength for different given values of the Grashof
number Gr, the heat parameter 𝛽, the relaxation time 𝜆

1
, the

fractional time derivative parameter𝛼
1
, the amplitude ratio𝜙,

and the radius ratio 𝜀 is plotted in Figures 2–4. These figures
show that, in the wider part of the tube (𝑧 ∈ [0, 0.5]), 𝜕𝑝/𝜕𝑧 is
relatively small, where the flow can easily pass without giving
any large pressure gradient. However, in the narrow part
(𝑧 ∈ [0.5, 1]) a much larger pressure gradient is required to
maintain the same flux to pass it, especially for the narrowest
position near 𝑧 = 0.75. Moreover the maximum of the
pressure gradient increases with increasing Gr, 𝜙, 𝜀, and 𝛼

1

while it decreases with the increase in 𝜆
1
and 𝛽.

The effects of various parameters on the pressure rise Δ𝑝

versus the time-averaged flow rate𝑄 are shown in Figures 5–
7. It is known that we have the following peristaltic regions,
pumping region (Δ𝑝 > 0), free-pumping region (Δ𝑝 = 0),
and copumping region (Δ𝑝 < 0). These figures show a linear
relationship between Δ𝑝 and 𝑄 in all the regions; that is,
the pressure rise decreases with increasing the time-averaged
flow rate. From Figure 5 we observe that the time-averaged
flow rate 𝑄 increases with increasing Gr while it decreases
with the increase in 𝛽 in all the regions. In addition, Δ𝑝 and
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Figure 3: Pressure gradient 𝜕𝑝/𝜕𝑧 versus axial distance 𝑧 for differ-
ent values of the parameter 𝛼

1
and amplitude ratio 𝜙 with 𝑄 = −2,

Gr = 3, 𝜀 = 0.35, 𝛽 = 10, 𝜆
1
= 1, and 𝑡 = 1.
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Figure 4: Pressure gradient 𝜕𝑝/𝜕𝑧 versus axial distance 𝑧 for differ-
ent values of the heat parameter 𝛽 and the Grashof number Gr with
𝑄 = −2, 𝜆

1
= 1, 𝛼

1
= 0.4, 𝜀 = 0.35, 𝜙 = 0.4, and 𝑡 = 1.

the flow rate 𝑄 and the pumping increase with increasing Gr
while they decrease with the increase in 𝛽. Figures 6-7 show
that for different values of 𝜀, 𝜆

1
, 𝜙, and 𝛼

1
the curves are

intersecting in the pumping region. In addition, for a given
value of the pressure rise Δ𝑝we observe that in both the free-
pumping and copumping regions the time-averaged flow rate
𝑄 increases with increasing 𝜆

1
while it decreases with the

increase in 𝛼
1
. The same figures show that 𝑄 decreases in
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𝛽 = 10

𝛽 = 20
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Δ
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Figure 5: Pressure rise Δ𝑝 versus the time-averaged flow rate 𝑄 for
different values of the heat parameter 𝛽 and the Grashof number Gr
with 𝜆

1
= 1, 𝛼

1
= 0.4, 𝜀 = 0.35, 𝜙 = 0.4, and 𝑡 = 1.
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Q
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Figure 6: Pressure rise Δ𝑝 versus the time-averaged flow rate 𝑄 for
different values of the relaxation time 𝜆

1
and radius ratio 𝜀withGr =

3, 𝛼
1
= 0.4, 𝛽 = 10, 𝜙 = 0.4, and 𝑡 = 1.

the free-pumping and copumping regions with increasing 𝜀

and 𝜙.
In Figures 8–13 we plotted the frictional forces 𝐹

(𝑖) and
𝐹
(𝑜) on the inner and outer tubes, respectively. These figures

show that𝐹(𝑖) and𝐹
(𝑜) have an opposite behavior compared to

the pressure rise Δ𝑝 versus the physical parameters. In addi-
tion the frictional force on the outer tube 𝐹

(𝑜) is greater than
the frictional force on the outer tube 𝐹

(𝑖).
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Figure 7: Pressure rise Δ𝑝 versus the time-averaged flow rate 𝑄 for
different values of the parameter 𝛼

1
and amplitude ratio 𝜙with Gr =

3, 𝜀 = 0.35, 𝛽 = 10, 𝜆
1
= 1, and 𝑡 = 1.
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Figure 8: Frictional force on the inner tube 𝐹
(𝑖) versus the time-

averaged flow rate𝑄 for different values of heat parameter 𝛽 and the
Grashof number Gr with 𝜆

1
= 1, 𝛼

1
= 0.4, 𝜀 = 0.35, 𝜙 = 0.4, and

𝑡 = 1.

5. Conclusions

We have analytically studied the effect of heat transfer on
peristaltic flow of fractional Maxwell model in the gap
between two vertical coaxial tubes. The problem is simplified
under the assumptions of long wavelength approximation
and low Reynolds number. Analytical solution of problem is
obtained by using a fractional calculus approach. The pres-
sure gradient, pressure rise, and frictional forces on the endo-
scope and on the outer tube are discussed with the physical
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Figure 9: Frictional force on the inner tube 𝐹
(𝑖) versus the time-

averaged flow rate 𝑄 for different values of the relaxation time 𝜆
1

and radius ratio 𝜀 with Gr = 3, 𝛼
1
= 0.4, 𝛽 = 10, 𝜙 = 0.4, and 𝑡 = 1.
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Figure 10: Frictional force on the inner tube 𝐹
(𝑖) versus the time-

averaged flow rate 𝑄 for different values of the parameter 𝛼
1
and

amplitude ratio 𝜙 with Gr = 3, 𝜀 = 0.35, 𝛽 = 10, 𝜆
1
= 1, and 𝑡 = 1.

parameters, Grashof number Gr, the heat parameter 𝛽, the
relaxation time 𝜆

1
, the fractional time derivative parameter

𝛼
1
, the amplitude ratio 𝜙, and the radius ratio 𝜀.The graphical

solutions have shown the following:

(1) The maximum of the pressure gradient 𝜕𝑝/𝜕𝑧 increa-
ses with increasing Gr, 𝜙, 𝜀, and 𝛼

1
while it decreases

with the increase in 𝜆
1
and 𝛽.

(2) The time-averaged flow rate𝑄 increases with increas-
ing Gr while it decreases with the increase in 𝛽 in
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Figure 11: Frictional force on the outer tube 𝐹
(𝑜) versus the time-

averaged flow rate𝑄 for different values of heat parameter 𝛽 and the
Grashof number Gr with 𝜆

1
= 1, 𝛼

1
= 0.4, 𝜀 = 0.35, 𝜙 = 0.4, and

𝑡 = 1.
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Figure 12: Frictional force on the outer tube 𝐹
(𝑜) versus the time-

averaged flow rate 𝑄 for different values of the relaxation time 𝜆
1

and radius ratio 𝜀 with Gr = 3, 𝛼
1
= 0.4, 𝛽 = 10, 𝜙 = 0.4, and 𝑡 = 1.

all the regions of pumping for a given value of the
pressure rise Δ𝑝.

(3) 𝑄 increases with the increase in 𝜆
1
in both the free-

pumping and co-pumping regions while we observe
an opposite behavior versus 𝛼

1
in these two regions.
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Figure 13: Frictional force on the outer tube 𝐹
(𝑜) versus the time-

averaged flow rate 𝑄 for different values of the parameter 𝛼
1
and

amplitude ratio 𝜙 with Gr = 3, 𝜀 = 0.35, 𝛽 = 10, 𝜆
1
= 1, and 𝑡 = 1.

(4) 𝑄 decreases with increasing 𝜙 and 𝜀 in the free-
pumping and copumping regions.

(5) The frictional forces𝐹(𝑖) and𝐹
(𝑜) have opposite behav-

ior compared to the pressure rise Δ𝑝 versus the phys-
ical parameters.

Appendix

Consider

𝑎
11

= ln(
𝜀

𝑟
2

) ;

𝑎
12

= 𝑟
2

2
− 𝜀
2
;

𝑎
13

= 𝑟
2

2
ln (𝜀) ;

𝑎
14

= 𝜀
2 ln (𝑟

2
) ;

𝑎
15

=
𝑟
2

2

𝑎
11

;

𝑎
16

=
𝜀
2

2

𝑎
11

;

𝑎
17

=
𝑟
4

2

𝑎
11

;

𝑎
18

=
𝜀
4

2

𝑎
11

;
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𝑎
21

=
𝑎
12

𝑎
11

;

𝑎
22

=
𝑎
13

𝑎
11

;

𝑎
23

=
𝑎
14

𝑎
11

;

𝑎
24

=
𝑎
15

𝑎
11

;

𝑎
25

=
𝑎
16

𝑎
11

;

𝑎
26

= 𝑎
22

− 𝑎
23
;

𝑎
27

= 𝑎
18

− 𝑎
17
;

𝑎
28

= 𝑎
2

15
− 𝑎
2

16
;

𝑎
29

= 𝑎
13
𝑎
15

− 𝑎
14
𝑎
16
;

𝑎
31

= 𝑎
16

+ 𝑎
24

+ 𝑎
26
;

𝑎
32

=
𝑎
26

𝑎
11

;

𝑎
33

= 𝑎
15
𝑎
26
;

𝑎
34

= 𝑎
16
𝑎
26
;

𝑎
35

= 𝑎
27

+ 𝑎
29
;

𝑎
36

= 𝑎
33

− 𝑎
34
;

𝑎
37

= 2𝑎
35

− 𝑎
28
;

𝑎
38

= 𝑎
23

+ 𝑎
32
;

𝑎
41

=
4 + 𝛽𝑎

25

𝑎
11

;

𝑎
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=
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𝑎
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;

𝑎
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− 16𝑎
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+ 3𝛽𝑎
29
;

𝑎
44
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(𝑟
2

2
ln (𝑟
2
) − 𝜀
2 ln (𝜀)) ;

𝑎
45

= 𝑎
12

(2𝑎
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+ 𝑎
25
) ;

𝑎
46

= 𝑟
4

2
− 𝜀
4
;

𝑎
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= 𝑎
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(𝜀
2
𝑎
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− 𝛽𝑟
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2
𝑎
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𝑎
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𝑎
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;

𝑎
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𝑎
61
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8
[2𝑎
44
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45
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46
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𝑎
62
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48
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