Research Article

Applications of Multivalued Contractions on Graphs to Graph-Directed Iterated Function Systems

T. Dinevari and M. Frigon
Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3 J7
Correspondence should be addressed to M. Frigon; frigon@dms.umontreal.ca

Received 12 August 2014; Accepted 18 December 2014
Academic Editor: Naseer Shahzad
Copyright © 2015 T. Dinevari and M. Frigon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We apply a fixed point result for multivalued contractions on complete metric spaces endowed with a graph to graph-directed iterated function systems. More precisely, we construct a suitable metric space endowed with a graph G and a suitable G-contraction such that its fixed points permit us to obtain more information on the attractor of a graph-directed iterated function system.

1. Introduction

Based on the work of Hutchinson [1] and being popularized by Barnsley [2], the method of iterated function systems (IFS) permits us to generate fractals by iterating a collection of transformations $\left\{T_{i}: i=1, \ldots, p\right\}$. If each T_{i} is a contraction on a complete metric space M, it was shown in [1] that there exists a unique nonempty compact set $K \subset M$ which is invariant with respect to $\left\{T_{i}: i=1, \ldots, p\right\}$; that is,

$$
\begin{equation*}
K=\bigcup_{i=1}^{p} T_{i}(K) \tag{1}
\end{equation*}
$$

This attractor K is such that, for every compact $A \subset M$,

$$
\begin{equation*}
g^{n}(A) \longrightarrow K \quad \text { with respect to the Hausdorff metric, } \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
g(A)=\bigcup_{i=1}^{p} T_{i}(A) \tag{3}
\end{equation*}
$$

The existence of K can be deduced from the Banach fixed point theorem.

A fixed point result which is, in some sense, a combination of the Banach contraction principle and the

Knaster-Tarski fixed point theorem in a partially ordered set was obtained by Ran and Reurings [3] in 2004. They considered a monotone, order preserving single-valued map f defined on a complete metric space endowed with a partial ordering. They assumed that f satisfies a contraction condition not necessarily for all x and y, but for those such that $x \leq y$. Subsequently, their result was generalized by many authors, in particular by Nieto, Rodríguez-López, Pouso, Petruşel, and Rus [4-7]. In 2008, Jachymski [8] presented a nice unification of most of the previous results by considering complete metric spaces endowed with a graph G. He introduced the notion of single-valued G-contraction for which he obtained fixed point results.

Using those fixed point results, Gwóźdź-Łukawska and Jachymski [9] developed the Hutchinson-Barnsley theory on complete metric space endowed with a graph G for iterated function systems of single-valued G-contractions.

Different extensions of the concept of single-valued G contractions on complete metric spaces endowed with a graph to multivalued maps were presented by Dinevari and Frigon [10] and by Nicolae et al. [11]. Those extensions led to generalizations of Jachymski's fixed point results and of the Nadler fixed point theorem for multivalued contractions.

In 1988, Mauldin and Williams [12] introduced the notion of geometric graph-directed construction.

Definition 1. A geometric graph-directed construction in \mathbb{R}^{m} consists of
(i) a collection of p nonoverlapping, compact, nonempty subsets of $\mathbb{R}^{m}, J_{1}, \ldots, J_{p}$ with nonempty interior;
(ii) a directed-graph $H=(V(H), E(H))$ such that $V(H)=\{1, \ldots, p\}$ is the set of its vertices, and, for each $i \in V(H)$, there exists some edge $(i, j) \in E(H)$;
(iii) for each $(i, j) \in E(H)$, there is a similarity map $T_{i, j}$: $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ with similarity ratios $r_{i, j}$ such that

$$
\begin{equation*}
\bigcup_{(i, j) \in E(H)} T_{i, j}\left(J_{j}\right) \subset J_{i} ; \tag{4}
\end{equation*}
$$

(iv) for each $i,\left\{T_{i, j}\left(J_{j}\right):(i, j) \in E(H)\right\}$ is a nonoverlapping family of sets;
(v) if $\left[i_{1}, \ldots, i_{q-1}, i_{q}=i_{1}\right]$ is a cycle in H, then

$$
\begin{equation*}
\prod_{k=1}^{q} r_{i_{k-1}, i_{k}}<1 \tag{5}
\end{equation*}
$$

They showed that a geometric graph-directed construction has an attractor.

Theorem 2 (Mauldin and Williams [12]). For a geometric graph-directed construction as above, there exists K_{1}, \ldots, K_{p} a unique collection of nonempty compact sets such that

$$
\begin{equation*}
\forall i \in\{1, \ldots, p\}, \quad K_{i} \subset J_{i}, \quad K_{i}=\bigcup_{(i, j) \in E(H)} T_{i, j}\left(K_{j}\right) \tag{6}
\end{equation*}
$$

The set

$$
\begin{equation*}
K=\bigcup_{i=1}^{p} K_{i} \tag{7}
\end{equation*}
$$

is called the attractor of this geometric graph-directed construction.

Geometric graph-directed constructions have been studied and generalized by many authors; see [13-16]. In particular, it was shown in [13] that with an appropriate rescaling, condition (v) can be replaced by
$(\mathrm{v})^{\prime}$ for each $(i, j) \in H, r_{i, j}<1$.
Also, in some of those generalizations, similarities on \mathbb{R}^{m} were replaced by contractions on complete metric spaces and the terminology of graph-directed iterated function system was used. Again, the existence of an attractor K was established.

In this paper, we take into account the graph H to obtain more information on the attractor K of a graph-directed iterated function system. To do so, we apply a fixed point result obtained by the authors [10] for multivalued contractions on complete metric spaces endowed with a graph.

The paper is organized as follows. In Section 2, we present some notations and we recall some results. In Section 3, we
consider a space X such that $K \in X$ and on which we define a suitable graph G and a suitable metric. In Section 4, we define an appropriate multivalued G-contraction F. In the last three sections, taking into account the maximal connected component of the graph H, we obtain more information on the attractor K from some fixed points of F.

2. H-Iterated Function System

First of all, we introduce the notion of MW-directed graph and we consider iterated function systems which takes into account the structure of an MW-directed graph.

Definition 3. A directed-graph $H=(V(H), E(H))$ is called an $M W$-directed graph if $V(H)=\{1, \ldots, p\}, H$ has no parallel edges, and for every $i \in V(H)$, there exists $j \in V(H)$ such that $(i, j) \in E(H)$.

Definition 4. Let $H=(V(H), E(H))$ be an MW-directed graph. A graph-directed iterated function system over the graph H (H-IFS) is a collection of p nonempty, bounded, complete metric spaces, $\left(X_{1}, d_{1}\right), \ldots,\left(X_{p}, d_{p}\right)$, and, for each $(i, j) \in$ $E(H)$, a contraction $T_{i, j}: X_{j} \rightarrow X_{i}$ with constant of contraction $\lambda_{i, j}$. An H-IFS is denoted $\left\{T_{i, j}\right\}_{H}$.

Definition 5. Let $\left\{T_{i, j}\right\}_{H}$ be an H-IFS. An attractor K of the H-IFS is a collection of nonempty compact sets $K=\left\{K_{i}\right\}_{H}$ such that $K_{i} \subset X_{i}$ and

$$
\begin{equation*}
K_{i}=\bigcup_{(i, j) \in E(H)} T_{i, j}\left(K_{j}\right) \quad \forall i \in\{1, \ldots, p\} \tag{8}
\end{equation*}
$$

The Banach contraction principle insures the existence of an attractor of an H-IFS. We present the proof for sake of completeness. For more information on graph-directed iterated function systems, the reader is referred to [12, 15].

Theorem 6. An H-IFS, $\left\{T_{i, j}\right\}_{H}$, has a unique attractor K.

Proof. Consider

$$
\begin{equation*}
Y=\left\{\left(S_{1}, \ldots, S_{p}\right) \subset \prod_{i=1}^{p} X_{i}: S_{i}\right. \text { is a compact } \tag{9}
\end{equation*}
$$

nonempty subset of $\left.X_{i}\right\}$
endowed with the metric

$$
\begin{equation*}
\rho(S, \widehat{S})=\max \left\{D_{i}\left(S_{i}, \widehat{S}_{i}\right): i=1, \ldots, p\right\} \tag{10}
\end{equation*}
$$

where D_{i} is the Hausdorff metric on X_{i}; that is,

$$
\begin{equation*}
D_{i}\left(S_{i}, \widehat{S}_{i}\right)=\inf \left\{\varepsilon>0: S_{i} \subset B\left(\widehat{S}_{i}, \varepsilon\right), \widehat{S}_{i} \subset B\left(S_{i}, \varepsilon\right)\right\} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
B\left(S_{i}, \varepsilon\right)=\left\{y \in X_{i}: \exists x \in S_{i} \text { such that } d_{i}(x, y)<\varepsilon\right\} . \tag{12}
\end{equation*}
$$

Let us define $f: Y \rightarrow Y$ by

$$
\begin{equation*}
f_{i}(S)=\bigcup_{(i, j) \in E(H)} T_{i, j}\left(S_{j}\right) \tag{13}
\end{equation*}
$$

Using the fact that every $T_{i, j}$ is a contraction, one verifies that f is a contraction with constant of contraction

$$
\begin{equation*}
\theta=\max \left\{\lambda_{i, j}:(i, j) \in E(H)\right\} \tag{14}
\end{equation*}
$$

The Banach contraction principle insures the existence of $K \in$ Y a unique fixed point of f. Thus, K is the unique attractor of $\left\{T_{i, j}\right\}_{H}$.

More information on K will be obtained by applying a fixed point result for multivalued contractions on complete metric spaces endowed with a graph. We recall the notion of G-contraction introduced in [10].

For (X, d) a complete metric space, we consider $G=$ $(V(G), E(G))$ a directed graph such that $X=V(G)$, the diagonal in $X \times X$ is contained in $E(G)$, and G has no parallel edges.

Definition 7. Let $F: X \rightarrow X$ be a multivalued map with nonempty values. We say that F is a G-contraction if there exists $\alpha \in] 0,1[$ such that
$\left(\mathrm{C}_{G}\right)$ for all $(x, y) \in E(G)$ and all $u \in F(x)$, there exists $v \in$ $F(y)$ such that $(u, v) \in E(G)$ and $d(u, v) \leq \alpha d(x, y)$.

We consider suitable trajectories in X.
Definition 8. Let $F: X \rightarrow X$ be a multivalued mapping and $x_{0} \in X$. We say that a sequence $\left\{x_{n}\right\}$ is a G_{1}-Picard trajectory from x_{0} if $x_{n} \in F\left(x_{n-1}\right)$ and $\left(x_{n-1}, x_{n}\right) \in E(G)$ for all $n \in \mathbb{N}$. The set of all such G_{1}-Picard trajectories from x_{0} is denoted by $T_{1}\left(F, G, x_{0}\right)$.

The reader is referred to [10] for the proof of the following fixed point result for multivalued G-contractions.

Theorem 9. Let $F: X \rightarrow X$ be a multivalued G-contraction such that there exists $\left(x_{0}, x_{1}\right) \in E(G)$ such that $x_{1} \in F\left(x_{0}\right)$. In addition, assume that one of the following conditions holds.
(i) F is G_{1}-Picard continuous from x_{0}; that is, the limit of any convergent sequence $\left\{x_{n}\right\} \in T_{1}\left(F, G, x_{0}\right)$ is a fixed point of F.
(ii) F has closed values and, for every $\left\{x_{n}\right\}$ in $T_{1}\left(F, G, x_{0}\right)$ converging to some $x \in X$, there exists a subsequence $\left\{n_{k}\right\}$ such that $\left(x_{n_{k}}, x\right) \in E(G)$ for all $k \in \mathbb{N}$.
Then, there exists a G_{1}-Picard trajectory from $x_{0},\left\{x_{n}\right\}$, converging to x a fixed point of F. Moreover, every converging $G_{1}-$ Picard trajectory from x_{0} converges to a fixed point of F.

In what follows, we consider H an MW-directed graph. We will use the following definitions and notations.

A path from i to j in H is denoted by $\left[i_{k}\right]_{0}^{N}=\left[i_{0}, \ldots, i_{N}\right]$, where $i=i_{0}, j=i_{N}$, and $\left(i_{k-1}, i_{k}\right) \in E(H)$ for every $k=$ $1, \ldots, N$.

We say that a subgraph $C=(V(C), E(C))$ of H is connected if for every $i, j \in V(C)$ there exists a path from i to j in C. A connected component of H is a maximal connected subgraph of H. We denote
$C(H)=\{C: C$ is a connected component of $H\}$.

It follows from the definition of MW-directed graph that $\emptyset \neq C(H)=\left\{C_{\alpha}: \alpha \in \Lambda\right\}, \quad$ where Λ has finite cardinality.

We can define a partial order on $C(H)$ as follows:

$$
\begin{align*}
& C_{\alpha} \preceq C_{\beta} \Longleftrightarrow \exists\left[i_{k}\right]_{0}^{N} \text { a path in } H \text { such that } \tag{17}\\
& i_{0} \in \mathrm{C}_{\alpha}, i_{N} \in \mathrm{C}_{\beta} .
\end{align*}
$$

We write $C_{\alpha} \prec C_{\beta}$ to mean $C_{\alpha} \leq C_{\beta}$ and $C_{\alpha} \neq C_{\beta}$. We say that C_{α} and C_{β} are incomparable if $C_{\alpha} \npreceq C_{\beta}$ and $C_{\beta} \nsubseteq C_{\alpha}$.

We denote the set of vertices from which there is a path in H reaching $i \in H$ by

$$
\begin{equation*}
[i]_{\leftarrow}=\{j \in V(H): \text { there is a path from } j \text { to } i \text { in } H\} . \tag{18}
\end{equation*}
$$

Similarly, for $C \in C(H)$, we denote the set of vertices from which there is a path in H reaching $V(C)$ by

$$
\begin{equation*}
[C]_{\leftarrow}=\bigcup_{i \in V(C)}[i]_{\leftarrow} . \tag{19}
\end{equation*}
$$

3. A Suitable Metric Space Endowed with a Directed Graph

Let H be an MW-directed graph with $V(H)=\{1, \ldots, p\}$. For $i \in V(H)$, let $\left(X_{i}, d_{i}\right)$ be a bounded complete metric space.

In this section, using H and the spaces X_{i}, we define a complete metric space endowed with a suitable directed graph. Let us recall that
$C(H)=\{C: C$ is a connected component of $H\}$.
We consider the space X of p-tuples $A=\left(A_{1}, \ldots, A_{p}\right)$ satisfying the following properties:
(Xi) $A_{i} \subset X_{i}$ is compact for every $i=1, \ldots, p$;
(Xii) if $A_{i} \neq \emptyset$ for some $i \in V(C)$ and $C \in C(H)$, then $A_{j} \neq \emptyset$ for all $j \in V(C)$;
(Xiii) there exists $C \in C(H)$ and $i \in V(C)$ such that $A_{i} \neq \emptyset$.

It is important to point out that, for $A=\left(A_{1}, \ldots, A_{p}\right) \in X$, some A_{i} can be empty.

We endow X with the metric

$$
\begin{equation*}
d(A, B)=\max _{i \in\{1, \ldots, p\}} \bar{D}_{i}\left(A_{i}, B_{i}\right), \tag{21}
\end{equation*}
$$

where

$$
\bar{D}_{i}\left(A_{i}, B_{i}\right)= \begin{cases}D_{i}\left(A_{i}, B_{i}\right), & \text { if } A_{i} \neq \emptyset, B_{i} \neq \emptyset \tag{22}\\ 0, & \text { if } A_{i}=\emptyset=B_{i} \\ R_{i}, & \text { otherwise }\end{cases}
$$

where D_{i} is the Hausdorff metric in X_{i} and $R_{i}>R$ is a constant which will be fixed later, with

$$
\begin{equation*}
R=\max \left\{\operatorname{diam}\left(X_{i}\right): i=1, \ldots, p\right\} . \tag{23}
\end{equation*}
$$

It is clear that (X, d) is a complete metric space.
Taking into account the graph H, we want to endow X with a directed graph. To do so, we distinguish vertices of H which are in a connected component from the others. We set

$$
\begin{align*}
& V^{c}=\bigcup_{C \in C(H)} V(C), \tag{24}\\
& V^{e}=V(H) \backslash V^{c} . \tag{25}
\end{align*}
$$

We define the graph G as follows: $V(G)=X$, and for $A, B \in X,(A, B) \in E(G)$ if and only if
(G) for every $i \in\{1, \ldots, p\}$, one of the following properties holds:
(i) $A_{i}=B_{i}=\emptyset$, or $A_{i} \neq \emptyset$ and $B_{i} \neq \emptyset$;
(ii) $A_{i}=\emptyset, B_{i} \neq \emptyset$, and one of the following statements is true:
(a) $i \in V^{e}$ and there exists $j \in V(H)$ such that $(i, j) \in E(H)$ and $A_{j} \neq \emptyset$;
(b) $i \in V(C)$ for some $C \in C(H)$ and there exist $k \in V(C)$ and $j \in V(H)$ such that $(k, j) \in$ $E(H)$ and $A_{j} \neq \emptyset$;
(iii) $A_{i} \neq \emptyset, B_{i}=\emptyset, i \in V^{e}$, and one of the following properties is satisfied:
(a) there is no $j \in V(H)$ such that $(j, i) \in$ $E(H)$;
(b) for every $j \in V(H)$ such that $(j, i) \in E(H)$, one has $B_{j} \neq \emptyset$.

Example 10. Let H be the MW-graph of Figure 1. We consider X the associated metric space satisfying (Xi)-(Xiii) endowed with the graph G satisfying the condition (G). Let A_{i}^{k} be nonempty compact subsets of X_{i} for all $i \in\{1, \ldots, 9\}$ and $k \in\{1, \ldots, 7\}$. We consider the following elements of X :

$$
\begin{align*}
& A^{1}=\left(\emptyset, \emptyset, A_{3}^{1}, A_{4}^{1}, A_{5}^{1}, \emptyset, \emptyset, \emptyset, \emptyset\right), \\
& A^{2}=\left(\emptyset, \emptyset, A_{3}^{2}, A_{4}^{2}, A_{5}^{2}, A_{6}^{2}, \emptyset, \emptyset, \emptyset\right), \\
& A^{3}=\left(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, A_{7}^{3}, A_{8}^{3}, A_{9}^{3}\right), \\
& A^{4}=\left(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, A_{6}^{4}, A_{7}^{4}, A_{8}^{4}, A_{9}^{4}\right), \tag{26}\\
& A^{5}=\left(\emptyset, \emptyset, A_{3}^{5}, A_{4}^{5}, A_{5}^{5}, \emptyset, A_{7}^{5}, A_{8}^{5}, A_{9}^{5}\right), \\
& A^{6}=\left(A_{1}^{6}, \emptyset, A_{3}^{6}, A_{4}^{6}, A_{5}^{6}, \emptyset, \emptyset, \emptyset, \emptyset\right), \\
& A^{7}=\left(\emptyset, A_{2}^{7}, A_{3}^{7}, A_{4}^{7}, A_{5}^{7}, \emptyset, \emptyset, \emptyset, \emptyset\right) .
\end{align*}
$$

Here is the list of all edges of G between them:

$$
\begin{align*}
& \left\{\left(A^{1}, A^{7}\right),\left(A^{2}, A^{1}\right),\left(A^{2}, A^{7}\right),\left(A^{3}, A^{4}\right),\left(A^{3}, A^{4}\right)\right. \tag{27}\\
& \left.\quad\left(A^{4}, A^{5}\right),\left(A^{6}, A^{1}\right),\left(A^{6}, A^{7}\right),\left(A^{7}, A^{6}\right)\right\} \subset E(G)
\end{align*}
$$

Figure 1: An MW-graph H.

Now, we want to fix R_{i} in (22) in such a way that we will be able to define a suitable multivalued G-contraction on X in the next section. To this aim, we decompose $V(H)$ in appropriate subsets V_{μ} with $\mu \in I$ a totally ordered set.

Lemma 11. Let H be an $M W$-directed graph. Then there exist I a totally ordered set and $\left\{V_{\mu}: \mu \in I\right\}$ a family of nonempty disjoint subsets, and, for every $i \in\{1, \ldots, p\}$, there exists $R_{i}>R$ such that
(1) $V(H)=\cup_{\mu \in I} V_{\mu}$;
(2) if $V(C) \cap V_{\mu} \neq \emptyset$ for some $\mu \in I$ and some $C \in C(H)$, then $V(C) \subset V_{\mu}$;
(3) if $\mu<\nu$ in I, for all $i \in V_{\mu}$, and $j \in V_{\nu}$, then $j \notin[i]_{\leftarrow}$;
(4) for every $\mu \in I$, one has $R_{i}=R_{j}$ for every $i, j \in V_{\mu}$;
(5) for every $\mu<\nu \in I$, one has $R_{i}<R_{j}$ for every $i \in V_{\mu}$, $j \in V_{v}$.

Proof. We want to separate vertices of H in suitable subsets. Let us recall that some vertices are in a connected component, and some others are not:

$$
\begin{equation*}
V(H)=V^{c} \cup V^{e} \tag{28}
\end{equation*}
$$

where V^{c} and V^{e} are defined in (24) and (25), respectively.
First of all, we examine vertices in V^{c}. Let

$$
\begin{gather*}
L=\max \{n \in \mathbb{N}: \text { there exists a chain } \\
\left.C_{\alpha_{1}} \prec \cdots \prec C_{\alpha_{n}} \text { in } C(H)\right\} . \tag{29}
\end{gather*}
$$

We denote
$C(H)_{1}=\{C \in C(H): \nexists \widehat{C} \in C(H)$ such that $\widehat{C}<C\}$,
$C(H)_{2}=\left\{C \in C(H) \backslash C(H)_{1}: \nexists \widehat{C} \in C(H) \backslash C(H)_{1}\right.$ such that $\widehat{C} \prec C\}$,

$$
\begin{align*}
C(H)_{L}= & \left\{C \in C(H) \backslash \bigcup_{k=1}^{L-1} C(H)_{k}: \nexists \widehat{C} \in C(H) \backslash \bigcup_{k=1}^{L-1} C(H)_{k}\right. \\
& \text { such that } \widehat{C} \prec C\} . \tag{30}
\end{align*}
$$

We define

$$
\begin{equation*}
V_{k, 0}=\bigcup_{C \in C(H)_{k}} V(C) \quad \text { for } k=1, \ldots, L \tag{31}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
V^{c}=\bigcup_{k=1}^{L} V_{k, 0}, \quad V_{k, 0} \cap V_{j, 0}=\emptyset \quad \text { if } k \neq j \tag{32}
\end{equation*}
$$

Now, we separate vertices in V^{e} in suitable subsets. We first separate them in two sets: those which can be reached by a path starting from a vertex in a connected component, and those which cannot. This last set is denoted:

$$
\begin{equation*}
V^{0}=\left\{j \in V^{e}: V^{c} \cap[j]_{\leftarrow}=\emptyset\right\} . \tag{33}
\end{equation*}
$$

If $V^{0} \neq \emptyset$, let
$N_{0}=\max \left\{n:\right.$ there is a path $\left[i_{k}\right]_{1}^{n}$ such that $i_{k} \in V^{0}$

$$
\begin{equation*}
\text { for every } \left.k=1, \ldots, N_{0}\right\} \tag{34}
\end{equation*}
$$

We define
$V_{0,1}=\left\{i \in V^{0}: \nexists j \in V^{0}\right.$ such that $\left.(j, i) \in E(H)\right\}$,
$V_{0,2}=\left\{i \in V^{0} \backslash V_{0,1}: \nexists j \in V^{0} \backslash V_{0,1}\right.$ such that $\left.(j, i) \in E(H)\right\}$,

$$
V_{0, N_{0}}=\left\{i \in V^{0} \backslash \bigcup_{k=1}^{N_{0}-1} V_{0, k}: \nexists j \in V^{0} \backslash \bigcup_{k=1}^{N_{0}-1} V_{0, k}\right.
$$

$$
\begin{equation*}
\text { such that }(j, i) \in E(H)\} \tag{35}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
V^{0}=\bigcup_{k=1}^{N_{0}} V_{0, k}, \quad V_{0, k} \cap V_{0, j}=\emptyset \quad \text { if } k \neq j \tag{36}
\end{equation*}
$$

If $V^{e} \backslash V^{0} \neq \emptyset$, it follows from Definition 3 that, for every $j \in V^{e} \backslash V^{0}$, there exist $C_{\alpha}, C_{\beta} \in C(H)$ such that

$$
\begin{equation*}
C_{\alpha} \prec C_{\beta}, \quad V\left(C_{\alpha}\right) \subset[j]_{\leftarrow}, \quad j \in\left[C_{\beta}\right]_{\leftarrow} . \tag{37}
\end{equation*}
$$

In other words, j is on a path from C_{α} to C_{β}. Hence, $L>1$, where L is defined in (29).

If $L \geq 2$, we first examine vertices on a path from some $i \in V_{1,0}$ to some $j \in V_{2,0}$. Let

$$
\begin{gather*}
N_{1}=\max \left\{n: \text { there is a path }\left[i_{k}\right]_{0}^{1+n}\right. \text { such that } \\
 \tag{38}\\
i_{0} \in V_{1,0}, i_{1+n} \in V_{2,0} \text { and } \\
\\
\left.i_{k} \in V^{e} \forall k=1, \ldots, n\right\} .
\end{gather*}
$$

If $N_{1} \geq 1$, we define

$$
\begin{align*}
& V_{1,1}=\left\{i \in V^{e}: \exists\left[i_{k}\right]_{0}^{1+N_{1}} \text { with } i=i_{1}, i_{0} \in V_{1,0}\right. \tag{39}\\
&\left.i_{1+N_{1}} \in V_{2,0}, i_{k} \in V^{e} \text { for } k=1, \ldots, N_{1}\right\}
\end{align*}
$$

If $N_{1} \geq 2$, we define
$V_{1,2}=\left\{i \in V^{e} \backslash V_{1,1}: \exists\left[i_{k}\right]_{1}^{1+N_{1}}\right.$ with $i=i_{2}, i_{1} \in V_{1,0} \cup V_{1,1}$,

$$
\begin{equation*}
\left.i_{1+N_{1}} \in V_{2,0}, i_{k} \in V^{e} \backslash V_{1,1} \text { for } k=2, \ldots, N_{1}\right\} \tag{40}
\end{equation*}
$$

We define inductively $V_{1,1}, \ldots, V_{1, N_{1}}$.
We denote the set of vertices on a path from $V_{1,0}$ to $V_{2,0}$ by

$$
\begin{equation*}
V^{1}=V_{1,0} \cup V_{2,0} \cup \bigcup_{k=1}^{N_{1}} V_{1, k} \tag{41}
\end{equation*}
$$

If $L \geq 3$, we examine vertices on a path from some $i \in V^{1}$ to some $j \in V_{3,0}$. Let
$N_{2}=\max \left\{n:\right.$ there is a path $\left[i_{k}\right]_{0}^{1+n}$ such that

$$
\begin{align*}
& i_{0} \in V^{1}, i_{1+n} \in V_{3,0} \text { and } \tag{42}\\
& \left.i_{k} \in V^{e} \backslash V^{1} \forall k=1, \ldots, n\right\}
\end{align*}
$$

If $N_{2} \geq 1$, we define

$$
\begin{align*}
& V_{2,1}=\left\{i \in V^{e} \backslash V^{1}: \exists\left[i_{k}\right]_{0}^{1+N_{2}} \text { with } i=i_{1}, i_{0} \in V^{1}\right. \\
&\left.i_{1+N_{2}} \in V_{3,0}, i_{k} \in V^{e} \backslash V^{1} \text { for } k=1, \ldots, N_{2}\right\} . \tag{43}
\end{align*}
$$

If $N_{2} \geq 2$, we define

$$
\begin{align*}
V_{2,2}=\{ & i \in V^{e} \backslash\left(V^{1} \cup V_{2,1}\right): \exists\left[i_{k}\right]_{1}^{1+N_{2}} \text { with } i=i_{2}, \\
& i_{1} \in V^{1} \cup V_{2,1}, i_{1+N_{2}} \in V_{3,0}, \text { and } \tag{44}\\
& \left.i_{k} \in V^{e} \backslash\left(V^{1} \cup V_{2,1}\right) \text { for } k=2, \ldots, N_{2}\right\} .
\end{align*}
$$

Similarly, we define $V_{2, j}$ for $j \leq N_{2}$.
So, inductively, we define the following subsets of $V^{e} \backslash V^{0}$:

$$
\begin{equation*}
V_{1,1}, \ldots, V_{1, N_{1}}, V_{2,1}, \ldots, V_{2, N_{2}}, \ldots, V_{L-1,1}, \ldots, V_{L-1, N_{L-1}} . \tag{45}
\end{equation*}
$$

Each vertex in one of those sets is on a path from one connected component to another.

We have decomposed $V(H)$ in a collection of disjoint sets:

$$
\begin{equation*}
V_{0,1}, \ldots, V_{0, N_{0}}, V_{1,0}, V_{1,1}, \ldots, V_{1, N_{1}}, V_{2,0}, \ldots, V_{L-1, N_{L-1}}, V_{L, 0} \tag{46}
\end{equation*}
$$

We denote

$$
\begin{equation*}
I=\{(k, 0): 1 \leq k \leq L\} \cup\left\{(k, l): 0 \leq k \leq L-1,1 \leq l \leq N_{k}\right\} . \tag{47}
\end{equation*}
$$

We endow I with the order

$$
\begin{equation*}
\left(k_{1}, l_{1}\right) \leq\left(k_{2}, l_{2}\right) \Longleftrightarrow k_{1}<k_{2}, \text { or } k_{1}=k_{2}, l_{1} \leq l_{2} \tag{48}
\end{equation*}
$$

By construction,

$$
\begin{equation*}
V(H)=\bigcup_{\mu \in I} V_{\mu}, \quad V_{\mu} \cap V_{\nu}=\emptyset \quad \text { if } \mu \neq \nu \tag{49}
\end{equation*}
$$

Figure 2: An MW-graph H with $C(H)=\left\{C_{1}, \ldots, C_{6}\right\}$.

Also, for every $C \in C(H)$, there exists $\mu \in I$ such that $V(C) \subset$ V_{μ}. Moreover, for $\mu, \nu \in I$ such that $\mu<\nu$, one has $j \notin[i]_{\leftarrow}$ for every $i \in V_{\mu}$, and $j \in V_{\nu}$.

Finally, we choose $\sigma: I \rightarrow] 1, \infty[$ a strictly increasing map. We define

$$
\begin{equation*}
R_{i}=\sigma(\mu) R \quad \text { for } i \in\{1, \ldots, p\} \cap V_{\mu}, \mu \in I \tag{50}
\end{equation*}
$$

By construction, statements (4) and (5) are satisfied.
Remark 12. Let $(A, B) \in E(G)$. From the definition of the graph G and Lemma 11, we can make the following observations.
(1) If for some $i \in V(H)$, (G)(ii) holds with some $j \in$ $V(H)$ such that $A_{j} \neq \emptyset$; let $\mu_{i}, \mu_{j} \in I$ be such that $i \in V_{\mu_{i}}$ and $j \in V_{\mu_{j}}$. Then, $\mu_{i}<\mu_{j}$.
(2) If for some $i \in V(H)$, (G)(iii)(b) holds, let $\mu_{i} \in I$ be such that $i \in V_{\mu_{i}}$. Then, for all $j \in V(H)$ such that $(j, i) \in E(H)$, there is $\mu_{j} \in I$ such that $j \in V_{\mu_{j}}$ and one has $\mu_{j}<\mu_{i}$.

Example 13. We consider H the MW-graph of Figure 2 for which we describe the collection of subsets V_{μ} constructed as in the proof of Lemma 11. In this graph,

$$
\begin{gather*}
C(H)=\left\{C_{1}, \ldots, C_{6}\right\}, \\
V^{c}=\{2,3,4,5,6,7,10,11,12,13,14,15, \tag{51}\\
18,19,20,26,27,28\}, \\
V^{e}=\{1,8,9,16,17,21,22,23,24,25,29\} .
\end{gather*}
$$

Since $C_{2} \prec C_{4} \prec C_{6} \prec C_{5}$, one has $L=4$, and

$$
\begin{align*}
& V_{1,0}=\{2,3,4,5,6,7\}, \\
& V_{2,0}=\{10,11,12,13,14,15\}, \\
& V_{3,0}=\{18,19,20\} \tag{52}\\
& V_{4,0}=\{26,27,28\} .
\end{align*}
$$

By considering the paths from $V_{1,0}$ to $V_{2,0}$, one sees that $N_{1}=$ 2 , and

$$
\begin{equation*}
V_{1,1}=\{8\}, \quad V_{1,2}=\{9\} \tag{53}
\end{equation*}
$$

By considering the paths from $V_{1,0} \cup V_{1,1} \cup V_{1,2} \cup V_{2,0}$ to $V_{3,0}$, one sees that $N_{2}=2$, and

$$
\begin{equation*}
V_{2,1}=\{16\}, \quad V_{2,2}=\{17\} \tag{54}
\end{equation*}
$$

Similarly, one has $N_{3}=3$, and

$$
\begin{equation*}
V_{3,1}=\{23\}, \quad V_{3,2}=\{24\}, \quad V_{3,3}=\{25,29\} \tag{55}
\end{equation*}
$$

So, the vertices which are not in one of the previous sets are in $V^{0}=\{1,21,22\}$. Similarly, $N_{0}=2$, and

$$
\begin{equation*}
V_{0,1}=\{1,21\}, \quad V_{0,2}=\{22\} \tag{56}
\end{equation*}
$$

So, I is the totally ordered set:

$$
\begin{gather*}
(0,1)<(0,2)<(1,0)<(1,1)<(1,2)<(2,0)<(2,1) \\
<(2,2)<(3,0)<(3,1)<(3,2)<(3,3)<(4,0), \\
V(H)=\{1, \ldots, 29\}=\bigcup_{\mu \in I} V_{\mu} . \tag{57}
\end{gather*}
$$

4. A G-Contraction

In this section, we consider a graph-directed iterated function system over the graph $H,\left\{T_{i, j}\right\}_{H}$. We will define an appropriate multivalued G-contraction on X, where G and X are, respectively, the graph and the metric space endowed with this graph and defined in the previous section. This G-contraction will be used to get more information on the attractor of this H-IFS.

Let $A \in X$. For each j such that $A_{j} \neq \emptyset, T_{i, j}\left(A_{j}\right) \neq$ \emptyset for all i such that $(i, j) \in E(H)$. So, it is important to distinguish all those edges. To this aim, we introduce the following notations.

Let V^{e} be the subset of vertices in $V(H)$ which are not in connected components of H and defined in (25). So, for $i \in V^{e}$, we denote

$$
\begin{equation*}
E_{i}(A)=\left\{(i, j) \in E(H): A_{j} \neq \emptyset\right\} \tag{58}
\end{equation*}
$$

For $\emptyset \neq P \subset E_{i}(A)$, we define

$$
\begin{equation*}
U_{i}^{e}(A, P)=\bigcup_{(i, j) \in P} T_{i, j}\left(A_{j}\right) \tag{59}
\end{equation*}
$$

Let V^{c} be the subset of vertices in $V(H)$ which are in connected components of H and defined in (24). So, for $i \in$ V^{c}, there exists $C \in C(H)$ such that $i \in V(C)$. We consider the set of edges from a vertex of C to a vertex outside of C for which the component of A is nonempty:

$$
\begin{equation*}
E_{C}(A)=\left\{(k, j) \in E(H): k \in V(C), j \notin V(C), A_{j} \neq \emptyset\right\} \tag{60}
\end{equation*}
$$

For $k \in V(C)$, we denote

$$
\begin{equation*}
\{i \xrightarrow{C} k\}=\left\{\left[i_{k}\right]_{0}^{N} \text { which is a path in } C \text { from } i=i_{0}\right. \tag{61}
\end{equation*}
$$

$$
\text { to } \left.k=i_{N} \text { and containing no cycle }\right\}
$$

and we define $T_{i \rightarrow k}: X_{k} \rightarrow X_{i}$ by

$$
\begin{equation*}
T_{i \rightarrow k}(x)=\bigcup_{\substack{\left[i_{k}\right]_{0}^{N} \in\{i \xrightarrow{c} k\}}} T_{i_{0}, i_{1}} \circ \cdots \circ T_{i_{N-1}, i_{N}}(x) . \tag{62}
\end{equation*}
$$

We define

$$
U_{i}^{c}(A, P)= \begin{cases}\emptyset, & \text { if } P=\emptyset \tag{63}\\ \bigcup_{(k, j) \in P} T_{i \rightarrow k} \circ T_{k, j}\left(A_{j}\right), & \text { if } \emptyset \neq P \subset E_{C}(A) .\end{cases}
$$

We also define

$$
W_{i}(A)= \begin{cases}\emptyset, & \text { if } A_{i}=\emptyset \tag{64}\\ \bigcup_{(i, j) \in E(C)} T_{i, j}\left(A_{j}\right), & \text { if } A_{i} \neq \emptyset\end{cases}
$$

where $E(C)=\{(k, j) \in E(H): k, j \in V(C)\}$.
We have all the ingredients to define the multivalued map $F: X \rightarrow X$. For $A \in X$,

$$
\begin{equation*}
U=\left(U_{1}, \ldots, U_{p}\right) \in F(A) \Longleftrightarrow U_{i} \in F_{i}(A) \tag{65}
\end{equation*}
$$

where $F_{i}(A)$ is defined as follows.
For $i \in V^{e}$,

$$
F_{i}(A)= \begin{cases}\emptyset, & \text { if } E_{i}(A)=\emptyset \tag{66}\\ \left\{U_{i}^{e}(A, P): \emptyset \neq P \subset E_{i}(A)\right\}, & \text { if } E_{i}(A) \neq \emptyset\end{cases}
$$

For $i \in V(C)$ for some $C \in C(H)$,

$$
F_{i}(A)= \begin{cases}\emptyset, & \text { if } A_{i}=\emptyset \tag{67}\\ \left\{U_{i}^{c}(A, P): \emptyset \neq P \subset E_{C}(A)\right\}, & \text { if } A_{i}=\emptyset \\ \left\{W_{i}(A) \cup U_{i}^{c}(A, P): P \subset E_{C}(A)\right\}, & \text { if } A_{i} \neq \emptyset\end{cases}
$$

Observe that F is well defined. Indeed, if $U \in F(A)$ is such that $U_{i} \neq \emptyset$ for i in some $V(C)$, then $U_{j} \neq \emptyset$ for all $j \in V(C)$. Also, there exists $C \in C(H)$ such that $U_{i} \neq \emptyset$ for all $i \in V(C)$. Moreover, the values of F are finite and hence closed.

We show that F is a multivalued G-contraction.
Proposition 14. Let $F: X \rightarrow X$ be the multivalued map defined above. Then F is a G-contraction.

Proof. We want to show that F is a G-contraction with constant of contraction:

$$
\begin{aligned}
\lambda=\max \{ & \max \left\{\lambda_{i, j}:(i, j) \in E(H)\right\}, \\
\max & \left\{\frac{R}{R_{i}}: i \in\{1, \ldots, p\}\right\}, \\
\max & \left\{\frac{R_{i}}{R_{j}}: i \in V_{\mu_{i}}, j \in V_{\mu_{j}} \text { for } \mu_{i}, \mu_{j} \in I\right. \\
& \text { such that } \left.\left.\mu_{i}<\mu_{j}\right\}\right\},
\end{aligned}
$$

where R_{i}, I, and V_{μ} for $\mu \in I$ are given in Lemma 11. For $i, k \in$ $V(C)$ for some $C \in C(H)$, we denote

$$
\begin{equation*}
\lambda_{i \rightarrow k}=\max \left\{\lambda_{i_{0}, i_{1}} \cdots \lambda_{i_{N-1}, i_{N}}:\left[i_{k}\right]_{0}^{N} \in\{i \xrightarrow{C} k\}\right\} \tag{69}
\end{equation*}
$$

where $\{i \xrightarrow{C} k\}$ is given in (61). Observe that $\lambda_{i \rightarrow k} \leq \lambda$.
Let $A, B \in X$ be such that $(A, B) \in E(G)$ and $U \in F(A)$. We look for $\widehat{U} \in F(B)$ such that $(U, \widehat{U}) \in E(G)$ and $d(U, \widehat{U}) \leq$ $\lambda d(A, B)$.

Step $1\left(i \in V^{e}\right)$. Let $\mu \in I$ be such that $i \in V_{\mu}$.
Case $1\left(U_{i}=\emptyset\right.$ and $\widetilde{U}_{i} \neq \emptyset$ for every $\left.\widetilde{U} \in F(B)\right)$. In this case, $E_{i}(A)=\emptyset$ and $E_{i}(B) \neq \emptyset$ by (66). Choose some $(i, j) \in E_{i}(B)$. Therefore, $A_{j}=\emptyset, B_{j} \neq \emptyset$, and for $v \in I$ such that $j \in V_{v}$, one has $\mu<\nu$.

By condition (G)(ii)(a), if $j \in V^{e}$, there exists $l \in V(H)$ such that $(j, l) \in E(H)$ and $A_{l} \neq \emptyset$. So, $(j, l) \in E_{j}(A)$.

On the other hand, if $j \in V(C)$ for some $C \in C(H)$, by condition (G)(ii)(b), there exist $k \in V(C)$ and $l \in V(H)$ such that $(k, l) \in E(H)$ and $A_{l} \neq \emptyset$. So, $(k, l) \in E_{C}(A)$ and $j, k \in$ $V(C)$.

So, for the case $j \in V^{e}$ and the case $j \in V^{c}$, we obtain by (66) and (67),

$$
\begin{equation*}
U_{i}=\emptyset, \quad \widetilde{U}_{i} \neq \emptyset, \quad U_{j} \neq \emptyset \quad \text { for some }(i, j) \in V(H) \tag{70}
\end{equation*}
$$

Moreover, by (21), (22), and (68),

$$
\begin{align*}
& \bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \\
& \quad=R_{i}=\frac{R_{i}}{R_{j}} \bar{D}_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) \quad \forall \widetilde{U} \in F(B) . \tag{71}
\end{align*}
$$

Case $2\left(U_{i} \neq \emptyset\right.$ and $\widetilde{U}_{i}=\emptyset$ for every $\left.\widetilde{U} \in F(B)\right)$. In this case, $E_{i}(A) \neq \emptyset$ and $E_{i}(B)=\emptyset$ by (66). Choose some $(i, j) \in E_{i}(A)$. Therefore, $A_{j} \neq \emptyset, B_{j}=\emptyset$, and for $\nu \in I$ such that $j \in V_{\nu}$, one has $\mu<\nu$. By conditions (G)(i) and (G)(iii), one has $j \in V^{e}$ and $B_{i} \neq \emptyset$. By (66), (67) and since $B_{i} \neq \emptyset$, one has
$U_{i} \neq \emptyset, \quad \widetilde{U}_{i}=\emptyset$ and one of the following situations hold:
(i) there is no $k \in V(H)$ such that $(k, i) \in E(H)$;
(ii) $\forall k \in V(H)$ such that $(k, i) \in E(H)$,

$$
\begin{equation*}
\widetilde{U}_{k} \neq \emptyset \quad \forall \widetilde{U} \in F(B) \tag{72}
\end{equation*}
$$

Also, by (21), (22), and (68),

$$
\begin{align*}
& \bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \\
& \quad=R_{i}=\frac{R_{i}}{R_{j}} \bar{D}_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) \quad \forall \widetilde{U} \in F(B) . \tag{73}
\end{align*}
$$

Case $3\left(U_{i} \neq \emptyset\right.$ and $\widetilde{U}_{i} \neq \emptyset$ for every $\left.\widetilde{U} \in F(B)\right)$. In this case, $U_{i}=U_{i}^{e}(A, P)$ for some $\emptyset \neq P \subset E_{i}(A)$, and $E_{i}(B) \neq \emptyset$ by (66).

If $P \subset E_{i}(B)$, one has by (21), (59), and (68),

$$
\begin{align*}
D_{i} & \left(U_{i}^{e}(A, P), U_{i}^{e}(B, P)\right) \\
& =D_{i}\left(\bigcup_{(i, j) \in P} T_{i, j}\left(A_{j}\right), \bigcup_{(i, j) \in P} T_{i, j}\left(B_{j}\right)\right) \tag{74}\\
& \leq \max _{(i, j) \in P} D_{i}\left(T_{i, j}\left(A_{j}\right), T_{i, j}\left(\mathrm{~B}_{j}\right)\right) \\
& \leq \max _{(i, j) \in P} \lambda_{i, j} D_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) .
\end{align*}
$$

If $P \not \subset E_{i}(B)$, choose some $(i, j) \in P \backslash E_{i}(B)$. So, $A_{j} \neq \emptyset$, $B_{j}=\emptyset$, and, for $\nu \in I$ such that $j \in V_{\nu}$, one has $\mu<\nu$. Thus, by (21), (22), and (68),
$\bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \leq R=\frac{R}{R_{j}} \bar{D}_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) \quad \forall \widetilde{U} \in F(B)$.

Combining (74) and (75), for $U_{i}=U_{i}^{e}(A, P)$ for some $P \subset$ $E_{i}(A)$, we choose $\widetilde{U}_{i} \in F_{i}(B)$ such that

$$
\widetilde{U}_{i}= \begin{cases}U_{i}^{e}(B, P), & \text { if } P \subset E_{C}(A) \cap E_{C}(B), \tag{76}\\ \widetilde{U}_{i}, & \text { otherwise, with some } \widetilde{U}_{i} \in F_{i}(B)\end{cases}
$$

and we get

$$
\begin{equation*}
\bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \leq \lambda d(A, B) \tag{77}
\end{equation*}
$$

Step $2(i \in V(C)$ for some $C \in C(H))$. Let $\mu \in I$ be such that $i \in V_{\mu}$.

Case $4\left(U_{i}=\emptyset\right.$ and $\widetilde{U}_{i} \neq \emptyset$ for every $\left.\widetilde{U} \in F(B)\right)$. In this case, $A_{i}=E_{C}(A)=\emptyset$ and $B_{i} \cup E_{C}(B) \neq \emptyset$ by (67).

If $B_{i} \neq \emptyset$, by condition (G)(ii)(b), there exist $k \in V(C)$ and $j \in V(H)$ such that $(k, j) \in E(H)$ and $A_{j} \neq \emptyset$. So, $(k, j) \in$ $E_{C}(A)$. This contradicts the fact that $E_{C}(A)=\emptyset$.

If $E_{C}(B) \neq \emptyset$, by (60), there exist $k \in V(C)$ and $j \in V(H) \backslash$ $V(C)$ such that $(k, j) \in E(H)$ and $B_{j} \neq \emptyset$ and, for $v \in I$ such that $j \in V_{\nu}$, one has $\mu<\nu$. Since $E_{C}(A)=\emptyset, A_{j}=\emptyset$. If $j \in V^{e}$, by condition (G)(ii)(a), there exists $l \in V(H)$ such that $(j, l) \in E(H)$ and $A_{l} \neq \emptyset$. So, $E_{j}(A) \neq \emptyset$, and $U_{j} \neq \emptyset$ by (66). On the other hand, if $j \in V(\widehat{C})$ for some $\widehat{C} \in C(H)$, by condition $(\mathrm{G})(\mathrm{ii})(\mathrm{b})$, there exist $m \in V(\widehat{C}), l \in V(H)$ such that $(m, l) \in E(H)$ and $A_{l} \neq \emptyset$. So, $E_{\widehat{C}}(A) \neq \emptyset$ and $U_{j} \neq \emptyset$ by (67). Thus, for the case $j \in V^{e}$ and the case $j \in V^{c}$, we obtain

$$
\begin{equation*}
U_{i}=\emptyset, \quad \widetilde{U}_{i} \neq \emptyset, \quad U_{j} \neq \emptyset \quad \text { for some }(k, j) \in E_{C}(B) \tag{78}
\end{equation*}
$$

Moreover, by (21), (22), and (68),

$$
\begin{align*}
& \bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \\
& \quad=R_{i}=\frac{R_{i}}{R_{j}} \bar{D}_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) \quad \forall \widetilde{U} \in F(B) . \tag{79}
\end{align*}
$$

Case $5\left(U_{i} \neq \emptyset\right.$ and $\widetilde{U}_{i}=\emptyset$ for every $\left.\widetilde{U} \in F(B)\right)$. In this case, $A_{i} \cup E_{C}(A) \neq \emptyset$ and $B_{i} \cup E_{C}(B)=\emptyset$ by (67). From condition (G)(iii), we deduce that $A_{i}=B_{i}=\emptyset$. Let $(k, j) \in E_{C}(A)$. One has $A_{j} \neq \emptyset$ and $B_{j}=\emptyset$ since $(k, j) \notin E_{C}(B)$. By condition (G)(iii), $j \in V^{e}$ and $B_{k} \neq \emptyset$ since $(k, j) \in E(H)$. This implies that $B_{i} \neq \emptyset$ by condition (Xii) since $i, k \in V(C)$. This is a contradiction. Thus,

$$
\begin{equation*}
U_{i} \neq \emptyset, \quad \widetilde{U}_{i}=\emptyset \quad \forall \widetilde{U} \in F(B) \text { is impossible. } \tag{80}
\end{equation*}
$$

Case $6\left(U_{i} \neq \emptyset\right.$ and $\widetilde{U}_{i} \neq \emptyset$ for every $\left.\widetilde{U} \in F(B)\right)$. In this case, $A_{i} \cup E_{C}(A) \neq \emptyset$ and $B_{i} \cup E_{C}(B) \neq \emptyset$ by (67).

If $A_{i} \neq \emptyset$, by condition (G)(iii), $B_{i} \neq \emptyset$. So $W_{i}(A) \neq \emptyset$, $W_{i}(B) \neq \emptyset$, and, by (21), (64), and (68),

$$
\begin{align*}
D_{i} & \left(W_{i}(A), W_{i}(B)\right) \\
& =D_{i}\left(\bigcup_{(i, j) \in E(C)} T_{i, j}\left(A_{j}\right), \bigcup_{(i, j) \in E(C)} T_{i, j}\left(B_{j}\right)\right) \\
& \leq \max _{(i, j) \in E(C)} D_{i}\left(T_{i, j}\left(A_{j}\right), T_{i, j}\left(B_{j}\right)\right) \tag{81}\\
& \leq \max _{(i, j) \in E(C)} \lambda_{i, j} D_{j}\left(A_{j}, B_{j}\right) \\
& \leq \lambda \max _{(i, j) \in E(C)} D_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) .
\end{align*}
$$

If $E_{C}(A) \neq \emptyset$, for $\emptyset \neq P \subset E_{C}(A)$ such that $P \subset E_{C}(B)$, one has by (21), (62), (63), (68), and (69),

$$
\begin{align*}
D_{i} & \left(U_{i}^{c}(A, P), U_{i}^{c}(B, P)\right) \\
& =D_{i}\left(\bigcup_{(k, j) \in P} T_{i \rightarrow k} \circ T_{k, j}\left(A_{j}\right), \bigcup_{(k, j) \in P} T_{i \rightarrow k} \circ T_{k, j}\left(B_{j}\right)\right) \\
& \leq \max _{(k, j) \in P} \lambda_{i \rightarrow k} D_{k}\left(T_{k, j}\left(A_{j}\right), T_{k, j}\left(B_{j}\right)\right) \\
& \leq \max _{(k, j) \in P} \lambda_{i \rightarrow k} \lambda_{k, j} D_{j}\left(A_{j}, B_{j}\right) \\
& \leq \lambda \max _{(k, j) \in P} D_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) . \tag{82}
\end{align*}
$$

If $P \subset E_{C}(A)$ and $P \not \subset E_{C}(B)$, there exists $(k, j) \in P$ such that $A_{j} \neq \emptyset, B_{j}=\emptyset$ and, for $\nu \in I$ such that $j \in V_{\nu}$, one has $\mu<\nu$. Hence, by (21), (22), and (68),

$$
\begin{equation*}
\bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \leq R=\frac{R}{R_{j}} \bar{D}_{j}\left(A_{j}, B_{j}\right) \leq \lambda d(A, B) \quad \forall \widetilde{U} \in F(B) . \tag{83}
\end{equation*}
$$

Combining (67), (81), (82), and (83), we choose $\widetilde{U}_{i} \in F_{i}(B)$ such that

$$
\widetilde{U}_{i}= \begin{cases}W_{i}(B), & \text { if } U_{i}=W_{i}(A), \tag{84}\\ U_{i}^{c}(B, P), & \text { if } U_{i}=U_{i}^{c}(A, P) \\ & \text { for } \emptyset \neq P \subset E_{C}(A) \cap E_{C}(B), \\ W_{i}(B) \cup U_{i}^{c}(B, P), & \text { if } U_{i}=W_{i}(A) \cup U_{i}^{c}(A, P) \\ \widetilde{U}_{i}, & \text { for } \emptyset \neq P \subset E_{C}(A) \cap E_{C}(B), \\ & \text { otherwise, } \\ & \text { with some } \widetilde{U}_{i} \in F_{i}(B) ;\end{cases}
$$

and we get

$$
\begin{equation*}
\bar{D}_{i}\left(U_{i}, \widetilde{U}_{i}\right) \leq \lambda d(A, B) \tag{85}
\end{equation*}
$$

Step 3 (choice of an appropriate $\widetilde{U} \in F(B)$). Finally, we choose $\widetilde{U} \in F(B)$ as follows:

$$
\widetilde{U}_{i}= \begin{cases}\emptyset, & \text { if } i \in V^{e}, E_{i}(B)=\emptyset \tag{86}\\ \text { some } \widetilde{U}_{i} \in F_{i}(B), & \text { if } i \in V^{e}, U_{i}=\emptyset \\ & E_{i}(B) \neq \emptyset \\ \widetilde{U}_{i} \text { given by }(76), & \text { if } i \in V^{e}, U_{i} \neq \emptyset \\ & E_{i}(B) \neq \emptyset \\ \emptyset, & \text { if } i \in V(C), \\ & B_{i} \cup E_{C}(B)=\emptyset \\ \text { some } \widetilde{U}_{i} \in F_{i}(B), & \text { if } i \in V(C), U_{i}=\emptyset \\ \widetilde{U}_{i} \text { given by }(84), & \text { if } i \in V(C), U_{i} \neq \emptyset \\ & B_{i} \cup E_{C}(B) \neq \emptyset\end{cases}
$$

It follows from (70), (72), (78), and (80) that

$$
\begin{equation*}
(U, \widetilde{U}) \in E(G) \tag{87}
\end{equation*}
$$

Finally, from (71), (73), (77), (79), and (85), we deduce that

$$
\begin{equation*}
d(U, \widetilde{U}) \leq \lambda d(A, B) \tag{88}
\end{equation*}
$$

Therefore, F is a G-contraction.
Here is another property satisfied by the multivalued map F.

Lemma 15. Let $F: X \rightarrow X$ be the multivalued map defined above. Then, for every $A^{0} \in X$ and every $\left\{A^{n}\right\} G_{1}$-Picard trajectory from A^{0} converging to some $A \in X$, there exists $N \in \mathbb{N}$ such that $\left(A^{n}, A\right) \in E(G)$ for all $n>N$.

Proof. Let $A^{0} \in X$ and $\left\{A^{n}\right\}$ a G_{1}-Picard trajectory from A^{0} such that $A^{n} \rightarrow A$. Thus, there exists $N \in \mathbb{N}$ such that $d\left(A^{n}, A\right)<R$ for all $n>N$. So, by (21) and (22), $A^{n}=\left(A_{1}^{n}, \ldots, A_{p}^{n}\right)$ and $A=\left(A_{1}, \ldots, A_{p}\right)$ are such that, for all $n>N$ and all $i \in V(H), A_{i}^{n}=\emptyset$ if and only if $A_{i}=\emptyset$. Thus, (G)(i) is satisfied and $\left(A^{n}, A\right) \in E(G)$ for all $n>N$.

5. Attractor of an H-IFS and Elements of $C(H)$

For $H=(V(H), E(H))$ an MW-directed graph, and $\left\{T_{i, j}\right\}_{H}$ a graph-directed iterated function system over the graph H, we consider K the attractor of this H-IFS insured by Theorem 6. We want to get more information on K by taking into account the connected components of H.

Theorem 16. Let $H=(V(H), E(H))$ be an $M W$-directed graph. Let $\left\{T_{i, j}\right\}_{H}$ be an H-IFS and K its attractor. Then the following statements hold.
(1) For every $C \in C(H)$, there exists $K^{+}(C) \subset K$ such that
(a) $K_{i}^{+}(C) \neq \emptyset$ for every $i \in V(C)$;
(b) $K_{i}^{+}(C) \neq \emptyset$ for every $i \in[C]_{\leftarrow}$, where $[C]_{\leftarrow}$ is defined in (19).
(c) $K_{i}^{+}(C)=\emptyset$ for every $i \notin[C]_{\leftarrow}$.
(2) If $C_{1}, C_{2} \in C(H)$ are such that $C_{1} \preceq C_{2}$, then $K^{+}\left(C_{1}\right) \subset$ $K^{+}\left(C_{2}\right)$.
(3) If $C_{1}, C_{2} \in C(H)$ are incomparable, then

$$
\begin{equation*}
K_{i}^{+}\left(C_{1}\right) \cap K_{i}^{+}\left(C_{2}\right)=\emptyset \quad \forall i \notin\left(\left[C_{1}\right]_{\leftarrow}\right) \cap\left(\left[C_{2}\right]_{\leftarrow}\right) . \tag{89}
\end{equation*}
$$

(4) There exists $K^{-} \in X$ such that $K^{-} \subset K$ and
(a) for every $C \in C(H), K_{i}^{-}=K_{i}^{+}(C)$ for every $i \in$ $V(C)$ and $K_{i}^{-} \subset K_{i}^{+}(C)$ for every $i \in[C]_{\leftarrow}$;
(b) if $C_{1}, C_{2} \in C(H)$ are such that $C_{1} \leq C_{2}$, then

$$
\begin{equation*}
K_{i}^{-} \subset K_{i}^{+}\left(C_{1}\right) \subset K_{i}^{+}\left(C_{2}\right) \quad \forall i \in\left[C_{1}\right]_{\leftarrow} \tag{90}
\end{equation*}
$$

(c) if $C_{1}, C_{2} \in C(H)$ are incomparable, then,

$$
\begin{equation*}
K_{i}^{-} \subset K_{i}^{+}\left(C_{1}\right) \cap K_{i}^{+}\left(C_{2}\right) \quad \forall i \in\left(\left[C_{1}\right]_{\leftarrow}\right) \cap\left(\left[C_{2}\right]_{\leftarrow}\right) . \tag{91}
\end{equation*}
$$

Proof. (1) Let $F: X \rightarrow X$ be the multivalued map defined in (65), (66), and (67). We know that F is a G-contraction by Proposition 14. Also, it follows from Lemma 15 that F satisfies condition (ii) of Theorem 9.

Theorem 6 and the definition of F imply that fixed points of F are included in K.

Let $C \in C(H)$. We want to show that there exists $K^{+}(C)$ a fixed point of F satisfying the required properties. Fix

$$
\begin{equation*}
A^{0}=\left(A_{1}^{0}, \ldots, A_{p}^{0}\right) \in X \quad \text { such that } A_{i}^{0} \neq \emptyset \Longleftrightarrow i \in V(C) \tag{92}
\end{equation*}
$$

For $n \in \mathbb{N} \cup\{0\}$, we choose inductively

$$
\begin{equation*}
A^{n+1} \in F\left(A^{n}\right) \text { the biggest element of } F\left(A^{n}\right) \tag{93}
\end{equation*}
$$

That is, by (66) and (67), $A^{n+1}=\left(A_{1}^{n+1}, \ldots, A_{p}^{n+1}\right) \in F\left(A^{n}\right)$ is chosen as follows.

For $i \in V^{e}$,

$$
A_{i}^{n+1}= \begin{cases}\emptyset, & \text { if } E_{i}\left(A^{n}\right)=\emptyset \tag{94}\\ U_{i}^{e}\left(A^{n}, E_{i}\left(A^{n}\right)\right), & \text { if } E_{i}\left(A^{n}\right) \neq \emptyset\end{cases}
$$

where E_{i}^{e} and U_{i}^{e} are defined in (58) and (59), respectively.
For $i \in V(\widehat{C})$ for some $\widehat{C} \in C(H)$,

$$
\begin{align*}
& A_{i}^{n+1} \\
& = \begin{cases}\emptyset, & \text { if } A_{i}^{n}=E_{\widehat{C}}\left(A^{n}\right)=\emptyset ; \\
U_{i}^{c}\left(A^{n}, E_{\widehat{C}}\left(A^{n}\right)\right), & \text { if } A_{i}^{n}=\emptyset, E_{\widehat{C}}\left(A^{n}\right) \neq \emptyset ; \\
W_{i}\left(A^{n}\right) \cup U_{i}^{c}\left(A^{n}, E_{\widehat{C}}\left(A^{n}\right)\right), & \text { if } A_{i}^{n} \neq \emptyset,\end{cases} \tag{95}
\end{align*}
$$

where $E_{\widehat{C}}, U_{i}^{c}$, and W_{i} are defined in (60), (63), and (64), respectively.

Arguing as in the proof of Proposition 14, one has that $\left(A^{n-1}, A^{n}\right) \in E(G)$ and

$$
\begin{equation*}
d\left(A^{n}, A^{n+1}\right) \leq \lambda d\left(A^{n-1}, A^{n}\right) \quad \forall n \in \mathbb{N} . \tag{96}
\end{equation*}
$$

By Theorem 9, $\left\{A^{n}\right\}$ is a G_{1}-Picard trajectory converging to some $K^{+}(C) \in X$ a fixed point of F.

Observe that, for every $n \in \mathbb{N}$ and every $i \in V(C), A_{i}^{n} \neq \emptyset$. Therefore,

$$
\begin{equation*}
K_{i}^{+}(C) \neq \emptyset \quad \forall i \in V(C) . \tag{97}
\end{equation*}
$$

Similarly, observe that, by construction, $A_{i}^{n}=\emptyset$ for every $i \notin$ $[C]_{\leftarrow}$. Indeed, for such $i, E_{i}\left(A^{n-1}\right)=\emptyset$ if $i \in V^{e}$, and $A_{i}^{n-1}=$ $E_{\widehat{C}}\left(A^{n-1}\right)=\emptyset$ if $i \in V(\widehat{C})$ for some $\widehat{C} \in V(C)$. Thus,

$$
\begin{equation*}
K_{i}^{+}(C)=\emptyset \quad \forall i \notin[C]_{\leftarrow} . \tag{98}
\end{equation*}
$$

On the other hand, let

$$
\begin{align*}
& N_{C}=\max _{i \in[C]_{\leftarrow}}\left\{\operatorname { m i n } \left\{N: i=i_{0}, i_{N} \in V(C),\right.\right. \\
& \tag{99}\\
& \left.\left.\qquad\left[i_{k}\right]_{0}^{N} \text { is a path in } H \text { from } i \text { to } i_{N}\right\}\right\} .
\end{align*}
$$

Again by construction, $A_{i}^{n} \neq \emptyset$ for all $n>N_{C}$, for all $i \in[C]_{\leftarrow}$. So,

$$
\begin{equation*}
K_{i}^{+}(C) \neq \emptyset \quad \forall i \in[C]_{\leftarrow} . \tag{100}
\end{equation*}
$$

Finally, observe that $K^{+}(C)$ is independent of $A^{0} \subset X$ chosen as in (92). Indeed, for

$$
\begin{equation*}
\widetilde{A}^{0}=\left(\widetilde{A}_{1}^{0}, \ldots, \widetilde{A}_{p}^{0}\right) \in X \quad \text { such that } \widetilde{A}_{i}^{0} \neq \emptyset \Longleftrightarrow i \in V(C), \tag{101}
\end{equation*}
$$

we define inductively $\widetilde{A}^{n+1} \in F\left(\widetilde{A}^{n}\right)$ as in (93). Observe that $\left(A^{n}, \widetilde{A^{n}}\right) \in E(G)$ for all $n \in \mathbb{N} \cup\{0\}$. Arguing as in Proposition 14, one has

$$
\begin{equation*}
d\left(A^{n+1}, \widetilde{A}^{n+1}\right) \leq \lambda d\left(A^{n}, \widetilde{A}^{n}\right) \quad \forall n \in \mathbb{N} \tag{102}
\end{equation*}
$$

This inequality combined with the fact that $A^{n} \rightarrow K^{+}(C)$ implies that $\widetilde{A}^{n} \rightarrow K^{+}(C)$.
(2) Let $C_{1}, C_{2} \in C(H)$ be such that $C_{1} \leq C_{2}$. One has

$$
\begin{equation*}
\left\{i \in\left[C_{1}\right]_{\leftarrow}\right\} \subset\left\{i \in\left[C_{2}\right]_{\leftarrow}\right\} \tag{103}
\end{equation*}
$$

Let $B^{0}=\left(B_{1}^{0}, \ldots, B_{p}^{0}\right) \in X$ be such that

$$
B_{j}^{0}= \begin{cases}K_{j}^{+}\left(C_{2}\right), & \text { if } j \in\left[C_{1}\right]_{\leftarrow} \tag{104}\\ \emptyset, & \text { if } j \notin\left[C_{1}\right]_{\leftarrow}\end{cases}
$$

By (1) and $(\mathrm{G})(\mathrm{i})$, one has $\left(K^{+}\left(C_{1}\right), B^{0}\right) \in E(G)$ and $K^{+}\left(C_{1}\right) \in$ $F\left(K^{+}\left(C_{1}\right)\right)$. Let B^{1} be the biggest element in $F\left(B^{0}\right)$; that is, B^{1} is chosen similarly to (94) and (95). Observe that $B^{1} C$ $K^{+}\left(C_{2}\right)$, since $B^{0} \subset K^{+}\left(C_{2}\right), K^{+}\left(C_{2}\right) \in F\left(K^{+}\left(C_{2}\right)\right)$, and by the definitions of F and $K^{+}\left(C_{2}\right)$. Arguing as in the proof of Proposition 14, one has $\left(K^{+}\left(C_{1}\right), B^{1}\right) \in E(G)$ and

$$
\begin{equation*}
d\left(K^{+}\left(C_{1}\right), B^{1}\right) \leq \lambda d\left(K^{+}\left(C_{1}\right), B^{0}\right) \tag{105}
\end{equation*}
$$

Repeating this argument, we obtain $\left\{B^{n}\right\}$ a G_{1}-Picard trajectory from B^{0} such that

$$
\begin{array}{r}
B^{n} \subset K^{+}\left(C_{2}\right), \quad d\left(K^{+}\left(C_{1}\right), B^{n}\right) \leq \lambda^{n} d\left(K^{+}\left(C_{1}\right), B^{0}\right) \\
\forall n \in \mathbb{N} . \tag{106}
\end{array}
$$

Therefore, $B^{n} \rightarrow K^{+}\left(C_{1}\right)$ and

$$
\begin{equation*}
K^{+}\left(C_{1}\right) \subset K^{+}\left(C_{2}\right) \tag{107}
\end{equation*}
$$

(3) If $C_{1}, C_{2} \in C(H)$ are incomparable, it follows directly from (1)(c) that

$$
\begin{equation*}
K_{i}^{+}\left(C_{1}\right) \cap K_{i}^{+}\left(C_{2}\right)=\emptyset \quad \forall i \notin\left(\left[C_{1}\right]_{\leftarrow}\right) \cap\left(\left[C_{2}\right]_{\leftarrow}\right) \tag{108}
\end{equation*}
$$

(4) For every $C \in C(H), C=(V(C), E(C))$ is an MWdirected graph and

$$
\begin{equation*}
\left\{T_{i, j}:(i, j) \in E(C)\right\} \tag{109}
\end{equation*}
$$

is a graph-directed iterated function system over the graph C. Let

$$
\begin{equation*}
K^{-}(C)=\left(K_{i}^{-}\right)_{i \in V(C)} \tag{110}
\end{equation*}
$$

be the attractor of this graph-directed iterated system insured by Theorem 6.

We define $K^{-} \in X$ by
$K^{-}=\left(K_{1}^{-}, \ldots, K_{p}^{-}\right)$, where
$K_{i}^{-}= \begin{cases}K_{i}^{-}(C), & \text { if } i \in V(C) \text { for some } C \in C(H), \\ \emptyset, & \text { if } i \in V^{e} .\end{cases}$

Figure 3: An MW-graph H with $C(H)=\left\{C_{1}, C_{2}\right\}$.

Let $C \in C(H)$ and $\left\{A^{n}\right\}$ the G_{1}-Picard trajectory from A^{0} defined in (92) and (93). By (95), for all $n \in \mathbb{N}, E_{C}\left(A^{n-1}\right)=\emptyset$ and $A_{i}^{n}=W_{i}\left(A^{n-1}\right)$ for all $i \in V(C)$. So, using (64) and (67) and the fact that $A_{i}^{n} \rightarrow K_{i}^{+}(C) \in F_{i}\left(K^{+}(C)\right)$ for every $i \in$ $V(C)$, we deduce that

$$
\begin{equation*}
K_{i}^{+}(C)=\bigcup_{(i, j) \in E(C)} T_{i, j}\left(K_{j}^{+}(C)\right) \quad \forall i \in V(C) \tag{112}
\end{equation*}
$$

By definition of K^{-},

$$
\begin{equation*}
K_{i}^{-}=\bigcup_{(i, j) \in E(C)} T_{i, j}\left(K_{j}^{-}\right) \quad \forall i \in V(C) \tag{113}
\end{equation*}
$$

The uniqueness of the fixed point of this operator implies that

$$
\begin{equation*}
K_{i}^{+}(C)=K_{i}^{-} \quad \forall i \in V(C) . \tag{114}
\end{equation*}
$$

On the other hand, if $i \in V^{e} \cap[C]_{\leftarrow}$, one has $\emptyset=K_{i}^{-} \subset$ $K_{i}^{+}(C)$. If $i \in V(\widehat{C}) \cap[C]_{\leftarrow}$ for some $C \neq \widehat{C} \in C(H)$, then $\widehat{C} \preceq$ C. It follows from (114) and (2) that $K_{i}^{-}=K_{i}^{+}(\widehat{C}) \subset K_{i}^{+}(C)$.

The properties (4)(b) and (4)(c) follow directly from (2) and (4)(a).

Example 17. Let H be the MW-graph of Figure 3.
We consider the H-IFS, $\left\{T_{i, j}\right\}_{H}$, with the metric spaces:

$$
\begin{array}{ll}
X_{1}=[1,2] \times[0,1], & X_{2}=[2,3] \times[0,1] \\
X_{3}=[1,2] \times[1,2], & X_{4}=[2,3] \times[1,2], \\
X_{5}=[0,1] \times[0,1], & X_{6}=[-1,0] \times[0,1] \tag{115}\\
X_{7}=[0,1] \times[1,2], & X_{8}=[-1,0] \times[1,2],
\end{array}
$$

Figure 4: The set $K^{+}\left(C_{2}\right)$.
and the contractions:

$$
\begin{align*}
T_{1,2}(x)=M_{1} x+\left(\frac{-2}{5}, \frac{1}{5}\right), & T_{1,3}(x)=M_{1} x+\left(\frac{1}{5}, \frac{-4}{5}\right), \\
T_{1,4}(x)=M_{3} x+\left(\frac{-1}{3}, \frac{-1}{3}\right), & T_{2,1}(x)=M_{2} x+\left(\frac{14}{8}, \frac{3}{8}\right), \\
T_{3,1}(x)=M_{2} x+\left(\frac{3}{8}, 1\right), & T_{4,1}(x)=M_{4} x+\left(\frac{5}{4}, \frac{5}{4}\right), \\
T_{5,1}(x)=M_{4} x+\left(\frac{-2}{4}, \frac{1}{4}\right), & T_{5,2}(x)=M_{3} x+(-1,0), \\
T_{5,6}(x)=M_{1} x+(1,0), & T_{5,7}(x)=M_{1} x+\left(0, \frac{-3}{5}\right), \\
T_{5,8}(x)=M_{3} x+\left(\frac{2}{3}, \frac{-2}{3}\right), & T_{6,5}(x)=M_{2} x+\left(\frac{-5}{8}, 0\right), \\
T_{7,5}(x)=M_{2} x+\left(0, \frac{11}{8}\right), & T_{8,5}(x)=M_{4} x+(-1,1), \tag{116}
\end{align*}
$$

where

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{cc}
\frac{4}{5} & 0 \\
0 & \frac{4}{5}
\end{array}\right), & M_{2}=\left(\begin{array}{cc}
\frac{5}{8} & 0 \\
0 & \frac{5}{8}
\end{array}\right), \\
M_{3}=\left(\begin{array}{cc}
\frac{2}{3} & 0 \\
0 & \frac{2}{3}
\end{array}\right), & M_{4}=\left(\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{3}{4}
\end{array}\right) . \tag{117}
\end{array}
$$

Figures 4 and 5 present $K^{+}\left(C_{2}\right)$ and K^{-}, respectively.

6. Attractor of an H-IFS and Subsets of $C(H)$

We obtain other pieces of information on the attractor of the graph-directed iterated function system by considering subsets of $C(H)$.

Theorem 18. Let $H=(V(H), E(H))$ be an MW-directed graph. Let $\left\{T_{i, j}\right\}_{H}$ be an H-IFS and K its attractor. Then the following statements hold:
(1) for every $\mathcal{S} \subset C(H)$, there exists $K^{+}(\mathcal{S}) \subset K$ such that
(a) $K^{+}(C) \subset K^{+}(\mathcal{S})$ for every $C \in \mathcal{S}$;
(b) $K_{i}^{+}(C)=K_{i}^{+}(\mathcal{S})$ for every $i \in V(C)$ and every maximal element $C \in \mathcal{S}$;
(c) $K_{i}^{+}(\mathcal{S}) \neq \emptyset$ if and only if $i \in \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}$
(2) if $\mathcal{S}_{1}, \mathcal{S}_{2} \subset C(H)$ are such that, for every $C_{1} \in \mathcal{S}_{1}$, there exists $C_{2} \in \mathcal{S}_{2}$ such that $C_{1} \leq C_{2}$, then $K^{+}\left(\mathcal{S}_{1}\right) \subset$ $K^{+}\left(\mathcal{S}_{2}\right)$,
(3) for $\mathcal{S}_{1}, \mathcal{S}_{2} \subset C(H)$, one has

$$
\begin{align*}
& K^{+}\left(\mathcal{S}_{1}\right) \cap K^{+}\left(\mathcal{S}_{2}\right)=\emptyset \\
& \quad \text { if }\left(\bigcup_{C \in \mathcal{S}_{1}}[C]_{\leftarrow}\right) \cap\left(\bigcup_{C \in \mathcal{S}_{2}}[C]_{\leftarrow}\right)=\emptyset \tag{118}
\end{align*}
$$

(4) the attractor K is such that $K=K^{+}(C(H))$.

Proof. (1) By Proposition 14 and Lemma 15, the map F : $X \rightarrow X$ defined in (65), (66), and (67) is a G-contraction satisfying condition (ii) of Theorem 9. Also, from the proof of Theorem 16, we know that fixed points of F are included in K.

Let $\mathcal{S} \subset C(H)$. We want to show that there exists $K^{+}(\mathcal{S})$ a fixed point of F satisfying the required properties. Fix
$\widehat{A}^{0}=\left(\widehat{A}_{1}^{0}, \ldots, \widehat{A}_{p}^{0}\right) \in X$ such that $\widehat{A}_{i}^{0} \neq \emptyset \Longleftrightarrow i \in \bigcup_{C \in \mathcal{S}} V(C)$, $\widehat{A}_{i}^{0}=A_{i}^{0}$ if $i \in V(C)$ for $C \in \mathcal{S}$, where
A^{0} is defined in (92).

For $n \in \mathbb{N} \cup\{0\}$, we choose inductively

$$
\begin{equation*}
\widehat{A}^{n+1} \in F\left(\widehat{A}^{n}\right) \quad \text { the biggest element of } F\left(\widehat{A}^{n}\right) \tag{120}
\end{equation*}
$$

Arguing as in the proof of Theorem 16, one deduces that $\left\{\widehat{A}^{n}\right\}$ is a G_{1}-Picard trajectory converging to some $K^{+}(\mathcal{S}) \in X$ a fixed point of F. Also, $K^{+}(\mathcal{S})$ is independent of \widehat{A}^{0} chosen as in (119).

For $C \in \mathcal{S}$, observe that $A^{n} \subset \widehat{A}^{n}$ for all $n \in \mathbb{N} \cup\{0\}$, where A^{n} is defined in (92) and (93). Since $\widehat{A}^{n} \rightarrow K^{+}(\mathcal{S})$ and $A^{n} \rightarrow K^{+}(C)$, we deduce that

$$
\begin{equation*}
K^{+}(C) \subset K^{+}(\mathcal{S}) \tag{121}
\end{equation*}
$$

It follows from this inclusion and Theorem 16(1)(b) that

$$
\begin{equation*}
K_{i}^{+}(\mathcal{S}) \neq \emptyset \quad \forall i \in \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow} . \tag{122}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\widehat{A}_{i}^{n}=\emptyset \quad \forall i \notin \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}, \forall n \in \mathbb{N} . \tag{123}
\end{equation*}
$$

Thus, (1)(c) holds.
In the particular case where $C \in \mathcal{S}$ is maximal, one has

$$
\begin{equation*}
A_{i}^{n}=\widehat{A}_{i}^{n} \quad \forall i \in V(C), \forall n \in \mathbb{N} \cup\{0\} \tag{124}
\end{equation*}
$$

where A^{n} is defined in (93). Since

$$
\begin{equation*}
A_{i}^{n} \longrightarrow K_{i}^{+}(C), \quad \widehat{A}_{i}^{n} \longrightarrow K_{i}^{+}(\mathcal{S}) \tag{125}
\end{equation*}
$$

one has

$$
\begin{equation*}
K_{i}^{+}(C)=K_{i}^{+}(\mathcal{S}) \quad \forall i \in V(C) \tag{126}
\end{equation*}
$$

((2) and (3)) The proofs are, respectively, analogous to those of (2) and (3) in Theorem 16.
(4) Let $\mathcal{S}=C(H)$. Since $K^{+}(C(H))$ is independent of the choice of \widehat{A}^{0} in (119), we can fix

$$
\begin{align*}
& \widehat{A}^{0}=\left(\widehat{A}_{1}^{0}, \ldots, \widehat{A}_{p}^{0}\right) \in X \text { such that } \\
& \widehat{A}_{i}^{0}= \begin{cases}K_{i}, & \text { if } i \in V^{c}, \\
\emptyset, & \text { if } i \in V^{e},\end{cases} \tag{127}
\end{align*}
$$

where V^{c} and V^{e} are defined in (24) and (25), respectively. Let \widehat{A}^{n} be defined as in (120). We know that $\widehat{A}^{n} \rightarrow K^{+}(C(H))$. On the other hand, since K is the unique attractor of this H-IFS obtained in Theorem 6, we deduce that $K=K^{+}(C(H))$.

In the following result, we see that the maximal elements of $C(H)$ play a key role.

Corollary 19. Let $H=(V(H), E(H)$) be an MW-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IFS. Then, for every $\mathcal{S}_{1}, \mathcal{S}_{2} \subset C(H)$ such that

$$
\begin{align*}
\{C & \left.\in \mathcal{S}_{1}: C \text { is a maximal element of } \mathcal{S}_{1}\right\} \\
& =\left\{C \in \mathcal{S}_{2}: C \text { is a maximal element of } \mathcal{S}_{2}\right\} \tag{128}
\end{align*}
$$

one has

$$
\begin{equation*}
K^{+}\left(\mathcal{S}_{1}\right)=K^{+}\left(\mathcal{S}_{2}\right) \tag{129}
\end{equation*}
$$

Proof. Let $\mathcal{S} \subset C(H)$ and let

$$
\begin{equation*}
\mathcal{S}_{m}=\{C \in \mathcal{S}: C \text { is a maximal element of } \mathcal{S}\} . \tag{130}
\end{equation*}
$$

To conclude, it is sufficient to show that

$$
\begin{equation*}
K^{+}(\mathcal{S})=K^{+}\left(\mathcal{S}_{m}\right) . \tag{131}
\end{equation*}
$$

It follows from Theorem 18(2) that

$$
\begin{equation*}
K^{+}(\mathcal{S}) \subset K^{+}\left(\mathcal{S}_{m}\right), \quad K^{+}\left(\mathcal{S}_{m}\right) \subset K^{+}(\mathcal{S}) \tag{132}
\end{equation*}
$$

7. Other Fixed Points of Our G-Contraction

In the proofs of Theorems 16 and $18, K^{+}(C)$ and $K^{+}(\mathcal{S})$ were obtained as fixed points of the multivalued G-contraction F. In fact, much more fixed points of F can be obtained in order to get more information on the attractor K.

Let $\mathcal{S} \subset C(H)$. For a vertex $i \in V^{e}$, we consider the set of edges from i on a path to some vertex in \mathcal{S} :

$$
\begin{array}{ll}
\mathscr{E}_{i}(\mathcal{S}) \\
= \begin{cases}\emptyset, & \text { if } i \notin \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}, \\
\left\{(i, j) \in E(H): i, j \in \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}\right\}, & \text { otherwise. }\end{cases} \tag{133}
\end{array}
$$

Similarly, for $\widehat{C} \in C(H)$, we consider

$$
\begin{align*}
& \mathscr{E}_{\widehat{C}}(\mathcal{S}) \\
& = \begin{cases}\emptyset, & \text { if } V(\widehat{C}) \not \subset \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}, \\
\{(i, j) \in E(H): i \in V(\widehat{C}), & \\
\left.j \notin V(\widehat{C}), j \in \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}\right\}, & \text { otherwise. }\end{cases} \tag{134}
\end{align*}
$$

Finally, we consider suitable subsets of edges on paths in H reaching \mathcal{S}, that is, subsets of $\mathscr{E}_{i}(\mathcal{S})$ and $\mathscr{E}_{\hat{C}}(\mathcal{S})$,

$$
\begin{align*}
\mathscr{Q}(\mathcal{S})= & \left\{Q=\left(Q_{i}\right)_{i \in V^{e}} \times\left(Q_{\widehat{C}}\right)_{\widehat{C} \in C(H)}: Q_{\widehat{C}} \subset \mathscr{E}_{\widehat{C}}(\mathcal{S})\right. \\
& \forall \widehat{C} \in C(H), \forall i \in V^{e}, \tag{135}\\
& \left.Q_{i} \subset \mathscr{E}_{i}(\mathcal{S}), Q_{i} \neq \emptyset \text { if } \mathscr{E}_{i}(\mathcal{S}) \neq \emptyset\right\}
\end{align*}
$$

Using $\mathbb{Q}(\mathcal{S})$, we can obtain more information on $K^{+}(\mathcal{S})$.
Theorem 20. Let $H=(V(H), E(H))$ be an $M W$-directed graph and $\left\{T_{i, j}\right\}_{H}$ an H-IFS. Then, the following statements hold.
(1) For every $\mathcal{S} \subset C(H)$ and every $Q \in \mathbb{Q}(\mathcal{S})$, there exists $K(\mathcal{S}, Q) \in X$ such that
(a) $K(\mathcal{S}, Q) \subset K^{+}(\mathcal{S})$;
(b) $K_{i}(\mathcal{S}, \mathrm{Q}) \neq \emptyset$ if and only if $i \in \bigcup_{\mathrm{C} \in \mathcal{S}}[C]_{\leftarrow}$;
(c) $K_{i}(\mathcal{S}, Q)=K_{i}^{+}(\mathcal{S})$ for every $i \in V(C)$ and every $C \in \mathcal{S}$ maximal element in \mathcal{S}.
(2) For every $\mathcal{S} \subset C(H)$, if $Q, \widehat{Q} \in \mathbb{Q}(\mathcal{S})$ are such that $\mathrm{Q} \subset \widehat{\mathrm{Q}}$, then $K(\mathcal{S}, \mathrm{Q}) \subset K(\mathcal{S}, \widehat{\mathrm{Q}})$.
(3) Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subset C(H)$ be such that $\mathcal{S}_{1} \subset \mathcal{S}_{2}$. If $Q \in$ $\mathbb{Q}\left(\mathcal{S}_{1}\right) \cap \mathbb{Q}\left(\mathcal{S}_{2}\right)$, then $K\left(\mathcal{S}_{1}, Q\right) \subset K\left(\mathcal{S}_{2}, Q\right)$.
(4) Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subset C(H)$ be such that, for every $C_{1} \in \mathcal{S}_{1}$, there exists $C_{2} \in \mathcal{S}_{2}$ such that $C_{1} \leq C_{2}$. If $Q^{1} \in$ $\mathbb{Q}\left(\mathcal{S}_{1}\right)$ and $Q^{2} \in \mathbb{Q}\left(\mathcal{S}_{2}\right)$ are such that $Q^{1} \subset Q^{2}$, then $K\left(\mathcal{S}_{1}, Q^{1}\right) \subset K\left(\mathcal{S}_{2}, Q^{2}\right)$.
(5) For every $\mathcal{S} \subset C(H)$ and every $Q \in \mathbb{Q}(\mathcal{S}), K_{i}^{-} \subset$ $K_{i}(\mathcal{S}, Q)$ for every $i \in V(\widehat{C})$ and every $\widehat{C} \in C(H)$ such that $V(\widehat{C}) \subset \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}$.

Proof. (1) Let $Q \in \mathbb{Q}(\mathcal{S})$. From Proposition 14 and Lemma 15, $F: X \rightarrow X$ the multivalued map defined in (65), (66), and (67) is a G-contraction satisfying condition (ii) of Theorem 9. We want to show that there exists $K(\mathcal{S}, Q)$ a fixed point of F satisfying the required properties.

Fix

$$
\begin{equation*}
A^{n}(\mathcal{S}, Q)=\widehat{A}^{n} \in X \quad \forall n=0, \ldots, p \tag{136}
\end{equation*}
$$

where \widehat{A}^{n} is defined in (119) and (120). From the definition of F, we can observe that

$$
\begin{equation*}
A^{p}(\mathcal{S}, Q)=\left(A_{1}^{p}(\mathcal{S}, Q), \ldots, A_{p}^{p}(\mathcal{S}, Q)\right) \in X \tag{137}
\end{equation*}
$$

is such that

$$
\begin{equation*}
A_{i}^{p}(\mathcal{S}, Q) \neq \emptyset \Longleftrightarrow i \in \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow} \tag{138}
\end{equation*}
$$

Moreover, for every $i \in V^{e}$,

$$
\begin{gather*}
Q_{i} \subset E_{i}\left(A^{p}(\mathcal{S}, Q)\right) \quad \forall i \in \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}, \tag{139}\\
Q_{i}=E_{i}\left(A^{p}(\mathcal{S}, Q)\right)=\emptyset \quad \forall i \notin \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow},
\end{gather*}
$$

where $E_{i}\left(A^{p}(\mathcal{S}, Q)\right)$ is defined in (58). Similarly, for every $\widehat{C} \in$ C(H),

$$
\begin{gather*}
Q_{\widehat{C}} \subset E_{\widehat{C}}\left(A^{p}(\mathcal{S}, Q)\right) \quad \text { if } V(\widehat{C}) \subset \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}, \tag{140}\\
Q_{\widehat{C}}=E_{\widehat{C}}\left(A^{p}(\mathcal{S}, Q)\right)=\emptyset \quad \text { if } V(\widehat{C}) \not \subset \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow},
\end{gather*}
$$

where $E_{\widehat{C}}\left(A^{p}(\mathcal{S}, Q)\right)$ is defined in (60).
For $n>p$, we choose inductively

$$
\begin{equation*}
A^{n}(\mathcal{S}, Q)=\left(A_{1}^{n}(\mathcal{S}, Q), \ldots, A_{p}^{n}(\mathcal{S}, Q)\right) \in F\left(A^{n-1}(\mathcal{S}, Q)\right) \tag{141}
\end{equation*}
$$

with

$$
\begin{align*}
& A_{i}^{n}(\mathcal{S}, Q) \\
& = \begin{cases}\emptyset, & \text { if } i \notin \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}, \\
U_{i}^{e}\left(A^{n-1}(\mathcal{S}, Q), Q_{i}\right), & \text { if } i \in V^{e} \cap \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}, \\
W_{i}\left(A^{n-1}(\mathcal{S}, Q)\right) & \\
\cup U_{i}^{c}\left(A^{n-1}(\mathcal{S}, Q), Q_{\widehat{C}}\right), & \text { if } \widehat{C} \in C(H), \\
& i \in V(\widehat{C}) \cap \bigcup_{C \in \mathcal{S}}[C]_{\leftarrow},\end{cases} \tag{142}
\end{align*}
$$

where U_{i}^{e}, U_{i}^{c}, and W_{i} are defined in (59), (63), and (64), respectively.

Arguing as in the proof of Theorem 16, one deduces that $\left\{A^{n}(\mathcal{S}, Q)\right\}$ is a G_{1}-Picard trajectory converging to some $K(\mathcal{S}, Q) \in X$ a fixed point of F. So, $K(\mathcal{S}, Q)$ satisfies (1)(b). Again, it can be shown that $K(\mathcal{S}, Q)$ is independent of $A^{0}(\mathcal{S}, Q)$ chosen as in (136).

Observe that

$$
A^{n}(\mathcal{S}, Q)
$$

$$
\begin{equation*}
=\left(A_{1}^{n}(\mathcal{S}, Q), \ldots, A_{p}^{n}(\mathcal{S}, Q)\right) \subset \widehat{A}^{n}=\left(\widehat{A}_{1}^{n}, \ldots, \widehat{A}_{p}^{n}\right) \quad \forall n \tag{143}
\end{equation*}
$$

where \widehat{A}^{n} is defined in (120) and $\widehat{A}^{n} \rightarrow K^{+}(\mathcal{S})$. Moreover, for every C maximal element in $\mathcal{S}, \mathscr{E}_{C}(\mathcal{S})=\emptyset$ and

$$
\begin{equation*}
A_{i}^{n}(\mathcal{S}, Q)=\widehat{A}_{i}^{n} \quad \forall i \in V(C) \tag{144}
\end{equation*}
$$

Therefore, $K(\mathcal{S}, Q)$ satisfies (1)(a),(c).
(2) Let $Q, \widehat{Q} \in \mathbb{Q}(\mathcal{S})$ be such that $Q \subset \widehat{Q}$. From (141) and (142), one sees that

$$
\begin{equation*}
A^{n}(\mathcal{S}, Q) \subset A^{n}(\mathcal{S}, \widehat{Q}) \quad \forall n \in \mathbb{N} \tag{145}
\end{equation*}
$$

Since $A^{n}(\mathcal{S}, Q) \rightarrow K(\mathcal{S}, Q)$ and $A^{n}(\mathcal{S}, \widehat{Q}) \rightarrow K(\mathcal{S}, \widehat{Q})$, one has that

$$
\begin{equation*}
K(\mathcal{S}, Q) \subset K(\mathcal{S}, \widehat{Q}) \tag{146}
\end{equation*}
$$

(3) Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subset C(H)$ be such that $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ and let $Q \in$ $\mathscr{Q}\left(\mathcal{S}_{1}\right) \cap \mathbb{Q}\left(\mathcal{S}_{2}\right)$. From (141) and (142), one sees that

$$
\begin{equation*}
A^{n}\left(\mathcal{S}_{1}, Q\right) \subset A^{n}\left(\mathcal{S}_{2}, Q\right) \quad \forall n \in \mathbb{N} \tag{147}
\end{equation*}
$$

Since $A^{n}\left(\mathcal{S}_{1}, Q\right) \rightarrow K\left(\mathcal{S}_{1}, Q\right)$ and $A^{n}\left(\mathcal{S}_{2}, Q\right) \rightarrow K\left(\mathcal{S}_{2}, Q\right)$, one has that

$$
\begin{equation*}
K\left(\mathcal{S}_{1}, Q\right) \subset K\left(\mathcal{S}_{2}, Q\right) \tag{148}
\end{equation*}
$$

(4) Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subset C(H)$ be such that, for every $C_{1} \in \mathcal{S}_{1}$, there exists $C_{2} \in \mathcal{S}_{2}$ such that $C_{1} \leq C_{2}$. One has

$$
\begin{equation*}
\left\{i \in \bigcup_{C_{1} \in \mathcal{S}_{1}}\left[C_{1}\right]_{\leftarrow}\right\} \subset\left\{i \in \bigcup_{C_{2} \in \mathcal{S}_{2}}\left[C_{2}\right]_{\leftarrow}\right\} \tag{149}
\end{equation*}
$$

Let $Q^{1} \in \mathbb{Q}\left(\mathcal{S}_{1}\right)$ and $Q^{2} \in \mathbb{Q}\left(\mathcal{S}_{2}\right)$ be such that $Q^{1} \subset Q^{2}$. Fix

$$
\begin{equation*}
B^{p}\left(\mathcal{S}_{1}, Q^{1}\right)=\left(B_{1}^{p}\left(\mathcal{S}_{1}, Q^{1}\right), \ldots, B_{p}^{p}\left(\mathcal{S}_{1}, Q^{1}\right)\right) \in X \tag{150}
\end{equation*}
$$

to be such that

$$
B_{j}^{p}\left(\mathcal{S}_{1}, Q^{1}\right)= \begin{cases}K_{j}\left(\mathcal{S}_{2}, Q^{2}\right), & \text { if } j \in \bigcup_{C_{1} \in \mathcal{S}_{1}}\left[C_{1}\right]_{\leftarrow} \tag{151}\\ \emptyset, & \text { if } j \notin \bigcup_{C_{1} \in \mathcal{S}_{1}}\left[C_{1}\right]_{\leftarrow}\end{cases}
$$

One has $\left(K\left(\mathcal{S}_{1}, Q^{1}\right), B^{p}\left(\mathcal{S}_{1}, Q^{1}\right)\right) \in E(G)$ and $K\left(\mathcal{S}_{1}, Q^{1}\right) \in$ $F\left(K\left(\mathcal{S}_{1}, Q^{1}\right)\right)$. For $n=p+1$, we define

$$
\begin{align*}
& B^{n}\left(\mathcal{S}_{1}, Q^{1}\right) \\
& \quad=\left(B_{1}^{n}\left(\mathcal{S}_{1}, Q^{1}\right), \ldots, B_{p}^{n}\left(\mathcal{S}_{1}, Q^{1}\right)\right) \in F\left(B^{p}\left(\mathcal{S}_{1}, Q^{1}\right)\right) \tag{152}
\end{align*}
$$

by

$$
\begin{align*}
& B_{i}^{n}\left(\mathcal{S}_{1}, Q^{1}\right) \\
& \quad= \begin{cases}\emptyset, & \text { if } i \notin \bigcup_{C \in \mathcal{S}_{1}}[C]_{\leftarrow}, \\
U_{i}^{e}\left(B^{p}\left(\mathcal{S}_{1}, Q^{1}\right), Q_{i}^{1}\right), & \text { if } i \in V^{e} \cap \bigcup_{C \in \mathcal{S}_{1}}[C]_{\leftarrow}, \\
W_{i}\left(B^{p}\left(\mathcal{S}_{1}, Q^{1}\right)\right) & \\
\cup U_{i}^{c}\left(B^{p}\left(\mathcal{S}_{1}, Q^{1}\right), Q_{\widehat{C}}^{1}\right), & \text { if } \widehat{C} \in C(H), \\
& i \in V(\widehat{C}) \cap \bigcup_{C \in \mathcal{S}_{1}}[C]_{\leftarrow} .\end{cases} \tag{153}
\end{align*}
$$

Since $B^{p}\left(\mathcal{S}_{1}, Q^{1}\right) \subset K\left(\mathcal{S}_{2}, Q^{2}\right), K\left(\mathcal{S}_{2}, Q^{2}\right) \in F\left(K\left(\mathcal{S}_{2}, Q^{2}\right)\right)$, $Q^{1} \subset Q^{2}$ and using the definitions of F and $K\left(\mathcal{S}_{2}, Q^{2}\right)$, we deduce that $B^{p+1}\left(\mathcal{S}_{1}, Q^{1}\right) \subset K\left(\mathcal{S}_{2}, Q^{2}\right)$. Also, $\left(K\left(\mathcal{S}_{1}, Q^{1}\right)\right.$, $\left.B^{p+1}\left(\mathcal{S}_{1}, Q^{1}\right)\right) \in E(G)$. Arguing as in the proof of Proposition 14, one has

$$
\begin{align*}
& d\left(K\left(\mathcal{S}_{1}, Q^{1}\right), B^{p+1}\left(\mathcal{S}_{1}, Q^{1}\right)\right) \\
& \quad \leq \lambda d\left(K\left(\mathcal{S}_{1}, Q^{1}\right), B^{p}\left(\mathcal{S}_{1}, Q^{1}\right)\right) \tag{154}
\end{align*}
$$

Repeating this argument, we obtain for every $n \geq p$, $B^{n}\left(\mathcal{S}_{1}, Q^{1}\right) \in K\left(\mathcal{S}_{2}, Q^{2}\right)$ such that $B^{n}\left(\mathcal{S}_{1}, Q^{1}\right) \rightarrow K\left(\mathcal{S}_{1}, Q^{1}\right)$. Therefore,

$$
\begin{equation*}
K\left(\mathcal{S}_{1}, Q^{1}\right) \subset K\left(\mathcal{S}_{2}, Q^{2}\right) \tag{155}
\end{equation*}
$$

(5) Let $\mathcal{S} \subset C(H)$ and $\widehat{C} \in C(H)$ be such that $V(\widehat{C}) \subset$ $\bigcup_{C \in \mathcal{S}}[C]_{\leftarrow}$. Let

$$
\begin{equation*}
Q=\left(Q_{i}\right)_{i \in V^{e}} \times\left(Q_{C}\right)_{C \in C(H)} \in \mathbb{Q}(\mathcal{S}) \tag{156}
\end{equation*}
$$

We define

$$
\begin{equation*}
\widehat{Q}=\left(\widehat{Q}_{i}\right)_{i \in V^{e}} \times\left(\widehat{Q}_{C}\right)_{C \in C(H)} \tag{157}
\end{equation*}
$$

Figure 6: The set $K\left(C_{2}, Q^{1}\right)$.

Figure 7: The set $K\left(C_{2}, Q^{2}\right)$.
by

$$
\begin{gather*}
\widehat{\mathrm{Q}}_{i}= \begin{cases}Q_{i}, & \text { if } i \in V^{e}, \mathscr{E}_{i}(\widehat{C}) \neq \emptyset, \\
\emptyset, & \text { if } i \in V^{e}, \mathscr{C}_{i}(\widehat{C})=\emptyset ;\end{cases} \tag{158}\\
\widehat{\mathrm{Q}}_{C}=\emptyset, \\
\text { for } C \in C(H) .
\end{gather*}
$$

Clearly, $\widehat{Q} \in \mathbb{Q}(\widehat{C})$ and $\widehat{Q} \subset Q$. It follows from (2), (4), and Theorem 16(4) that

$$
\begin{gather*}
K(\widehat{C}, \widehat{Q}) \subset K(\mathcal{S}, Q), \\
K_{i}(\widehat{C}, \widehat{Q})=K_{i}^{+}(\widehat{C})=K_{i}^{-} \quad \forall i \in V(\widehat{C}) . \tag{159}
\end{gather*}
$$

Example 21. Let $\left\{T_{i, j}\right\}_{H}$ be the H-IFS considered in Example 17. One has $C(H)=\left\{C_{1}, C_{2}\right\}, V^{e}=\emptyset, \mathscr{E}_{C_{2}}\left(C_{2}\right)=\emptyset$, and $\mathscr{E}_{C_{1}}\left(C_{2}\right)=\{(5,1),(5,2)\}$. For $k=1,2$ let $Q^{k}=Q_{C_{1}}^{k} \times Q_{C_{2}}^{k} \epsilon$ $Q\left(C_{2}\right)$ be given by

$$
\begin{equation*}
Q_{C_{1}}^{1}=\{(5,1)\}, \quad Q_{C_{1}}^{2}=\{(5,2)\}, \quad Q_{C_{2}}^{1}=Q_{C_{2}}^{2}=\emptyset . \tag{160}
\end{equation*}
$$

Figures 6 and 7 present $K\left(C_{2}, Q^{1}\right)$ and $K\left(C_{2}, Q^{2}\right)$, respectively. Observe that

$$
\begin{gather*}
K\left(C_{2}, Q^{1}\right) \neq K\left(C_{2}, Q^{2}\right), \quad K\left(C_{2}, Q^{1}\right) \subsetneq K^{+}\left(C_{2}\right), \\
K\left(C_{2}, Q^{2}\right) \subsetneq K^{+}\left(C_{2}\right), \tag{161}
\end{gather*}
$$

where $K^{+}\left(C_{2}\right)$ is presented in Figure 4.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work was partially supported by CRSNG Canada.

References

[1] J. E. Hutchinson, "Fractals and self-similarity", Indiana University Mathematics Journal, vol. 30, no. 5, pp. 713-747, 1981.
[2] M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, Mass, USA, 1988.
[3] A. C. Ran and M. C. Reurings, "A fixed point theorem in partially ordered sets and some applications to matrix equations," Proceedings of the American Mathematical Society, vol. 132, no. 5, pp. 1435-1443, 2004.
[4] J. J. Nieto, R. L. Pouso, and R. Rodríguez-López, "Fixed point theorems in ordered abstract spaces," Proceedings of the American Mathematical Society, vol. 135, pp. 2505-2517, 2007.
[5] J. J. Nieto and R. Rodríguez-López, "Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations," Order, vol. 22, pp. 223-239, 2005.
[6] J. J. Nieto and R. Rodríguez-López, "Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations," Acta Mathematica Sinica, English Series, vol. 23, no. 12, pp. 2205-2212, 2007.
[7] A. Petruşel and I. A. Rus, "Fixed point theorems in ordered L spaces," Proceedings of the American Mathematical Society, vol. 134, no. 2, pp. 411-418, 2006.
[8] J. Jachymski, "The contraction principle for mappings on a metric space with a graph," Proceedings of the American Mathematical Society, vol. 136, no. 4, pp. 1359-1373, 2008.
[9] G. Gwóźdź-Łukawska and J. Jachymski, "IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem," Journal of Mathematical Analysis and Applications, vol. 356, no. 2, pp. 453-463, 2009.
[10] T. Dinevari and M. Frigon, "Fixed point results for multivalued contractions on a metric space with a graph," Journal of Mathematical Analysis and Applications, vol. 405, no. 2, pp. 507517, 2013.
[11] A. Nicolae, D. O’Regan, and A. Petruşel, "Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph," Georgian Mathematical Journal, vol. 18, no. 2, pp. 307-327, 2011.
[12] R. D. Mauldin and S. C. Williams, "Hausdorff dimension in graph directed constructions," Transactions of the American Mathematical Society, vol. 309, no. 2, pp. 811-829, 1988.
[13] M. Das, "Contraction ratios for graph-directed iterated constructions," Proceedings of the American Mathematical Society, vol. 134, no. 2, pp. 435-442, 2006.
[14] M. Das and S.-M. Ngai, "Graph-directed iterated function systems with overlaps," Indiana University Mathematics Journal, vol. 53, no. 1, pp. 109-134, 2004.
[15] G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, NY, USA, 1990.
[16] G. A. Edgar and J. Golds, "A fractal dimension estimate for a graph-directed iterated function system of non-similarities," Indiana University Mathematics Journal, vol. 48, no. 2, pp. 429447, 1999.

