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This work is based on the application of Fourier and quasi-solution methods for solving the continuation inverse problem for 3D
steady-state diffusion model inside a cylindrical layered medium. The diffusion coefficient is supposed to be a piecewise constant
function, Cauchy data are given on the outer boundary of the cylinder, andwe seek to recover the temperature at the inner boundary
of the cylinder. Numerical experiments are investigated and show the capacity of proposed method only for smooth boundary
condition. Under the suitable choice of regularization parameters we recover the distribution of temperature on the inner boundary
with satisfactory quality for noisy data.

1. Introduction

TheCauchy problem for Laplace’s equation arises frommany
branches of science and engineering such as medicine [1, 2],
geophysics [3], and nondestructive testing [4]. It is so impor-
tant to reconstruct data on the boundary because the object
of interest of the boundary is not available for measurement
in practice. As an additional information all possible mea-
surements are used on the available part of the boundary.
Numerical computations become very difficult if there is no a
priory information on the solution. A small error in the data
deduces large error in the solution. Usually the regularization
technique is required to find a stable approximate solution.
In order to obtain a stable numerical solution for these
kinds of ill-posed problems many regularization methods
have been proposed [5–21]. Application of spectral methods
to the Cauchy problem for Laplace’s equation was used for
the first time by Lavrent’ev in [5]. A lot of regularization
methods are implemented for a Cauchy problem of Laplace’s
equation by many authors in [6–9]. A new regularization
method based on a finite dimensional subspace generated
from fundamental solution for solving a Cauchy problem of
Laplace’s equation in a simply connected bounded domain
is proposed in [6]. A spectral regularization method for

a Cauchy problem to Laplace’s equation in a rectangle is
implemented by authors of [7]. A spectral method together
with choice of regularization parameter is presented and error
estimate is obtained in [8]. A semidiscrete difference scheme
together with a choice of regularization parameter is pre-
sented and error estimate is obtained for the Cauchy problem
of Laplace’s equation in [9].

The application of the method of fundamental solution
with invariant condition to determine an unknownportion of
the boundary in the domain from the Cauchy data connected
with the Laplace equation is studied in [10].

A Cauchy problem of Laplace’s equation in a multicon-
nected domain, that is, determining the temperature or heat
flux on the inner inaccessible boundary from Cauchy data on
the outer accessible boundary, is considered by authors in [11].
Themethod of fundamental solutions is applied to solve con-
sidered problem. They study the application of the method
of fundamental solutions to solve the Cauchy problem of
Laplace’s equation based on Tikhonov regularizationmethod
with 𝐿-curve choice strategy for choosing the regularization
parameter.

To obtain stable numerical solution for a Cauchy problem
to the Laplace equation the authors of paper [12] proposed a
mollification method.The idea of this method is very simple:
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if the data are given inexactly, then they try to find a sequence
of mollification operators which map the improper data into
well-posed classes of the problem.

A variational method to Cauchy problem for elliptic
equations is widely considered in [13, 14]. A variational-type
regularized method of fundamental solution for solving
Cauchy problem of Laplace’s equation in annular domain
with noisy Cauchy data is studied in [14]. Under the suitable
choice of regularization parameter, a convergence result for
the regularized solution is obtained.

In [15] the authors applied a wavelet method for solving
a Cauchy problem of elliptic equations with variable coeffi-
cients. They proved the error estimates for wavelet method.

Conjugate gradient method is implemented for the
Cauchy problem for Laplace equation by Háo and Lesnic in
[16].

Application of quasi-reversibilitymethod to solve Cauchy
problem for Laplace’s equation is investigated in [17–20].
In [17] the authors described a mixed formulation of the
method and its relationship with a classical formulation.
In [18] the quasi-reversibility method to solve the Cauchy
problem for Laplace’s equation in a smooth bounded domain
is considered. They obtained two results concerning the
convergence rate of the method of quasi-reversibility in the
presence of noisy data.

In [19] the authors introduce a new version of themethod
of quasi-reversibility to solve the ill-posed Cauchy problems
for the Laplace’s equation in the presence of noisy data. It
enables one to regularize the noisy Cauchy data and to select a
relevant value of the regularization parameter in order to use
the standard method of quasi-reversibility. Their method is
based on duality in optimization and is inspired byMorozov’s
discrepancy principle.

The work [20] concerns the use of the method of quasi-
reversibility for solving Cauchy problems for Laplace’s equa-
tion. The paper begins with a derivation of an error esti-
mate for this method using Carleman’s estimates. Next, a
discretization of the method using finite differences is con-
sidered. Carleman-type estimates for the discrete scheme are
derived and used to establish convergence of the numerical
method.

In [21] the Cauchy problem for the Laplace equation in
a multiply connected region was solved. Iterative algorithm
for solving inverse heat conduction problemswas considered.
This problem was solved in a multiply connected region and
solving this problem was replaced by solving the Poisson
equation in a simply connected region with an unknown
source function different from zero in the adjoined region. A
useful feature of this approach is that the optimal step length
of the line minimum search along the vector representing the
gradient of the error functional can be computed exactly in
the case of linear equations.

In [22] the alternating iterative algorithms are used for
solving Cauchy problem for elliptic equations.The algorithm
works by iteratively changing boundary conditions until a
satisfactory result is obtained. These methods have been
applied by Kozlov et al. [23] to solve the Cauchy problem for
the Laplace equation and the Lame system. The authors also

proved the convergence of the algorithms and established the
regularizing properties.

New method of reconstruction of unknown boundary
data in theCauchy problem for Laplace’s equation is proposed
byMukanova in [24].Theproblem is reduced to a systemcon-
sisting of mutually dependent direct and adjoint problems.
The explicit formula for the quasi-solution has been obtained
using the Fourier method.

In this paper the continuation inverse problem for a
3D steady-state diffusion model inside a cylindrical layered
medium is considered. Methods presented in [5, 24] for the
first time are used for the numerical solution of continuation
problem for 3D elliptic equation with piecewise constant
coefficient. They are compared on numerical examples in
three dimensional cases. This model is used to describe
the process of heat conduction and diffusion in protective
coatings of gas and oil pipelines, the shell of reactors in
the chemical industry, and other industrial processes. In
such cases, only the outer side of coverings is available for
measurements, when it is necessary to recover the conditions
inside the coverings in order to control the equipment state.

The diffusion coefficient is supposed to be a piecewise
constant function, depending on radius, Cauchy data are
given on the outer boundary of the cylinder, and we seek to
recover the temperature at the inner boundary of the cylinder.
The problem is ill-posed in the sense that small errors in
the Cauchy data may lead to large errors in the recovered
solution. Thus the problem is solved on the base of quasi-
solution and residual functional regularization method. The
system consisting of necessary minimality conditions of the
residual functional and analytical formula for the minimizer
is derived. The formula is numerically implemented, and
series of numerical experiments are performed.

The paper is organized as follows: In Section 2 the
statement of the problem is described. The solution of the
problem is displayed in Section 3. In Section 4 numerical
algorithm and examples are provided to show the effect of
method.

2. The Statement of the Problem

Let 𝑅
1
, 𝑅
2
be inner and outer radii of the cylinder with height

𝐻, the cylinder material is nonuniform, and the thermal
conductivity is piecewise constant function of the radius.
Finding the unknown temperature on the inner surface of
the cylinder 𝑟 = 𝑅

1
is required, if the measurements of

the heat flux and the temperature at the outer boundary are
given.Note that all of our subsequent arguments are also valid
if there are data at the inner boundary and need to find a
solution on the outer boundary.

Stationary temperature distribution in cylindrical coordi-
nates is described by an elliptic equation in the form

𝐿𝑢 ≡
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑎 (𝑟)

𝜕𝑢

𝜕𝑟
) +

𝑎 (𝑟)

𝑟2

𝜕
2
𝑢

𝜕𝜑2
+ 𝑎 (𝑟)

𝜕
2
𝑢

𝜕𝑧2
= 0,

(𝑟, 𝜑, 𝑧) ∈ 𝑄

(1)
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in domain

𝑄

= {(𝑟, 𝜑, 𝑧) | 𝑟 ∈ (𝑅
1
, 𝑅
2
) , 𝜑 ∈ [0, 2𝜋] , 𝑧 ∈ (0, 𝐻)} .

(2)

Here the function 𝑎(𝑟) describes the thermal diffusivity of the
medium and is assumed to be known. We consider that the
case of 𝑎(𝑟) is the piecewise constant function with a finite
number of discontinuities at 𝑟 = 𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛−1
. For con-

sistency, we assume that 𝑟
0

= 𝑅
1
, 𝑟
𝑛

= 𝑅
2
, then, taking the

thermal conductivity 𝑎(𝑟) presenting as 𝑎(𝑟) = 𝑎
𝑖+1

, 𝑟
𝑖

≤ 𝑟 ≤

𝑟
𝑖+1

, 𝑖 = 0, . . . , 𝑛−1, (1) reduces to the Laplace equationwithin
each layer, and at the junction of layers it is required to satisfy
the condition of continuity of the temperature field and heat
flux:

𝐿𝑢 ≡
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +

1

𝑟2

𝜕
2
𝑢

𝜕𝜑2
+

𝜕
2
𝑢

𝜕𝑧2
= 0,

(𝑟, 𝜑, 𝑧) ∈ 𝑄, 𝑟 ̸= 𝑟
𝑖
, 𝑖 = 1, 𝑛 − 1,

(3)

𝑎
𝑖
𝑢

󵄨󵄨󵄨󵄨𝑟=𝑟𝑖−0
= 𝑎
𝑖+1

𝑢
󵄨󵄨󵄨󵄨𝑟=𝑟𝑖+0

,

𝑎
𝑖

𝜕𝑢

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖−0

= 𝑎
𝑖+1

𝜕𝑢

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖+0

,

𝑖 = 1, 𝑛 − 1

(4)

with initial and boundary conditions:

𝑢 (𝑟, 0) = 0,

𝑢 (𝑟, 𝐻) = 0,

(5)

𝑢 (𝑟
𝑛
, 𝜑, 𝑧) = 0, (6)

𝜕𝑢

𝜕𝑟
(𝑟
𝑛
, 𝜑, 𝑧) = 𝑝 (𝜑, 𝑧) (7)

and periodicity conditions on the corner:

𝑢 (𝑟, 0, 𝑧) = 𝑢 (𝑟, 2𝜋, 𝑧) ,

𝑢
𝜑

(𝑟, 0, 𝑧) = 𝑢
𝜑

(𝑟, 2𝜋, 𝑧) ;

(8)

wherein this function on the boundary 𝑟 = 𝑟
0
is to be deter-

mined:

𝑢 (𝑟
0
, 𝜑, 𝑧) = 𝑞 (𝜑, 𝑧) −?. (9)

So, we now formulate the continuation problem statement:
It is required to find the boundary values 𝑞(𝜑, 𝑧) =

𝑢(𝑟
0
, 𝜑, 𝑧) of 𝑢(𝑟, 𝜑, 𝑧) satisfying (3), the boundary conditions

(4), (5), and (8), and the Cauchy data (6)-(7).

3. The Solution of the Problem

3.1.The Solution of the Direct Problem. Denote by 𝑢(𝑟, 𝜑, 𝑧; 𝑞)

the direct problem solution, if the function 𝑞(𝜑, 𝑧) on the
inner boundary is defined, that is, the solution of (3) with the
conditions (4)–(6) and (8)-(9).

Let us seek a solution of the direct problem in the form of
double series:

𝑢 (𝑟, 𝜑, 𝑧) =

∞

∑

𝑘=0

∞

∑

𝑙=1

(𝑢
𝑘𝑙

(𝑟) cos (𝑘𝜑) + 𝑡
𝑘𝑙

(𝑟) sin (𝑘𝜑))

⋅ sin(
𝜋𝑙𝑧

𝐻
) .

(10)

The coefficients 𝑢
𝑘𝑙

(𝑟) and 𝑡
𝑘𝑙

(𝑟) must be solutions of
the following ordinary differential equations in order for the
functions (10) to satisfy (3),

1

𝑟
(𝑟𝑢
󸀠

𝑘𝑙
)
󸀠

− (
𝑘
2

𝑟2
+

𝜋
2
𝑙
2

𝐻2
) 𝑢
𝑘𝑙

= 0,

𝑘 = 0, 1, . . . ; 𝑙 = 1, 2, . . . ,

(11)

where 𝜆
𝑙
= 𝜋𝑙/𝐻, 𝑙 = 1, 2, . . ..

With conjugation conditions at the internal boundaries:

𝑎
𝑖
𝑢
󸀠

𝑘𝑙

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖−0
= 𝑎
𝑖+1

𝑢
󸀠

𝑘𝑙

󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖+0
, 𝑖 = 0, 𝑛 − 1. (12)

The problem for 𝑡
𝑘𝑙

(𝑟) is written similarly. Equation (11)
leads to a modified Bessel equation by the variable transform
𝑥 = 𝜆

𝑙
𝑟:

𝜕
2
𝑅
𝑘

𝜕𝑥2
+

1

𝑥

𝜕𝑅
𝑘

𝜕𝑥
− (

𝑘
2

𝑥2
+ 1) 𝑅

𝑘
= 0, 𝑘 = 0, 1, 2 . . . . (13)

Equation (13) coincideswith themodifiedBessel equation
[25]. A general solution of that equation is represented as a
linear combination of the modified Bessel functions of 𝑘th
order of first and second kind. Then the functions 𝑅

𝑘
(𝑥) can

be written in the following form:

𝑅
𝑘𝑙

(𝑥) = 𝐶
(𝑖)

𝐼
𝑘

(𝑥) + 𝐷
(𝑖)

𝐾
𝑘

(𝑥) ,

𝑥 ∈ (𝜆
𝑙
𝑟
𝑖
, 𝜆
𝑙
𝑟
𝑖+1

) , 𝑖 = 0, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑘 = 0, 1, . . .

(14)

here an additional index “𝑙” is introduced into the notation of
the function 𝑅

𝑘𝑙
(𝑥) because it depends on the corresponding

interval for variable 𝑥. Below these indexes are omitted just
for brevity.

We now construct an auxiliary solution of (13) satisfying
the identity boundary condition at the inner boundary and
the homogeneous conditions on the outside:

𝑅 (𝜆
𝑙
𝑟
0
) = 𝐶
(𝑛)

𝐼
𝑘

(𝜆
𝑙
𝑟
0
) + 𝐷
(𝑛)

𝐾
𝑘

(𝜆
𝑙
𝑟
0
) = 1,

𝑅 (𝜆
𝑙
𝑟
𝑛
) = 𝐶
(𝑛)

𝐼
󸀠

𝑘
(𝜆𝑟
𝑛
) + 𝐷
(𝑛)

𝐾
󸀠

𝑘
(𝜆𝑟
𝑛
) = 0

(15)

and with the conjugation conditions on the internal bound-
aries 𝑟 = 𝑟

𝑖
(𝑖 = 1, 2, . . . , 𝑛 − 1):

𝐶
(𝑖)

𝐼
𝑘

(𝜆
𝑙
𝑟
𝑖
) + 𝐷
(𝑖)

𝐾
𝑘

(𝜆
𝑙
𝑟
𝑖
)

= 𝐶
(𝑖−1)

𝐼
𝑘

(𝜆
𝑙
𝑟
𝑖
) + 𝐷
(𝑖−1)

𝐾
𝑘

(𝜆
𝑙
𝑟
𝑖
) ,

𝐶
(𝑖)

𝐼
󸀠

𝑘
(𝜆𝑟
𝑖
) + 𝐷
(𝑖)

𝐾
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑖
)

=
𝑎
𝑖

𝑎
𝑖+1

(𝐶
(𝑖−1)

𝐼
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑖
) + 𝐷
(𝑖−1)

𝐾
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑖
)) .

(16)
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Conditions (15)-(16) define the 2𝑛 arbitrary constants 𝐶
(𝑖),

𝐷
(𝑖) for each pair of indices of harmonic numbers (𝑘, 𝑙)

in formulas of (14). Then coefficients of the series (14) for
each pair (𝑘, 𝑙) are presented as a product of undetermined
coefficients and auxiliary solutions:

𝑢
𝑘𝑙

(𝑟) = 𝐴𝑅
𝑘𝑙

(𝜆
𝑙
𝑟) ,

𝑡
𝑘𝑙

(𝑟) = 𝐵𝑅
𝑘𝑙

(𝜆
𝑙
𝑟) .

(17)

By construction, the partial sums of series (14) with
coefficients in the form (17) satisfy (11) and coupling con-
ditions (12). Now, obtain expressions for the undetermined
coefficients 𝐴, 𝐵 in (17). Boundary data (9) on the inner
boundary are expanded in a Fourier series by calculating the
coefficients 𝑞

𝑘𝑙
and 𝑡
𝑘𝑙
as follows:

𝑞 (𝜑, 𝑧) = 𝑢 (𝑟
0
, 𝜑, 𝑧)

=

∞

∑

𝑘=0

∞

∑

𝑙=1

(𝑞
𝑘𝑙
cos (𝑘𝜑) + 𝑡

𝑘𝑙
sin (𝑘𝜑)) sin(

𝜋𝑙𝑧

𝐻
) .

(18)

We put in formula (17) undetermined coefficients that are
equal to the values:

𝐴 = 𝑞
𝑘𝑙

,

𝐵 = 𝑡
𝑘𝑙

.

(19)

Then the solution of the direct problem is represented as
follows:

𝑢 (𝑟, 𝜑, 𝑧) =

∞

∑

𝑘=0

∞

∑

𝑙=1

𝑅
𝑘𝑙

(𝜆
𝑙
𝑟)

⋅ (𝑞
𝑘𝑙
cos (𝑘𝜑) + 𝑡

𝑘𝑙
sin (𝑘𝜑)) sin (𝜆

𝑙
𝑧) .

(20)

It can be shown that the functions 𝑅
𝑘𝑙

(𝜆
𝑙
𝑟) are uniformly

bounded on the interval (𝑟
0
, 𝑟
𝑛
), so series (20) converges, as

soon as series (18) converge.

3.2. The Solution of the Inverse Problem. Obviously, because
of (15) and (19), the partial sums of (20) satisfy all the
conditions of the direct problem. We suppose also the
function 𝑞(𝜑, 𝑧) such that series (20) convergeswell with their
second derivatives, so that its term-by-term differentiation
of (20) is permissible to calculate the normal derivative of the
function at the outer boundary at 𝑟 = 𝑟

𝑛
:

𝜕𝑢

𝜕𝑟
(𝑟, 𝜑, 𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑛

=
𝜕

𝜕𝑟
(

𝐾

∑

𝑘=0

𝐿

∑

𝑙=1

(𝑢
𝑘𝑙

(𝑟) cos (𝑘𝜑) + 𝑡
𝑘𝑙

(𝑟) sin (𝑘𝜑))

⋅ sin (𝜆
𝑙
𝑧))

𝑟=𝑟𝑛

=

∞

∑

𝑘=0

∞

∑

𝑙=1

𝜆
𝑙
𝑅
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑛
) (𝑞
𝑘𝑙
cos (𝑘𝜑)

+ 𝑡
𝑘𝑙
sin (𝑘𝜑)) sin (𝜆

𝑙
𝑧) .

(21)

Expand the measured data (7) in a Fourier series:

𝑝 (𝜑, 𝑧)

=

∞

∑

𝑘=0

∞

∑

𝑙=1

(𝑝
𝑘𝑙
cos (𝑘𝜑) + 𝑠

𝑘𝑙
sin (𝑘𝜑)) sin (𝜆

𝑙
𝑧) .

(22)

Equating (21) and (22), because of the orthogonality of the
basic functions, we see that the Fourier coefficients of the
measured data and boundary values at the inner boundary
are related linearly via the following formulas:

𝑝
𝑘𝑙

= 𝛾
𝑘𝑙

𝑞
𝑘𝑙

,

𝑠
𝑘𝑙

= 𝛾
𝑘𝑙

𝑡
𝑘𝑙

,

𝑞
𝑘𝑙

= 𝜂
𝑘𝑙

𝑝
𝑘𝑙

,

𝑡
𝑘𝑙

= 𝜂
𝑘𝑙

𝑠
𝑘𝑙

,

(23)

where

𝛾
𝑘𝑙

= 𝜆
𝑙
𝑅
󸀠

𝑘𝑙
(𝜆
𝑙
𝑟
𝑛
) ,

𝜂
𝑘𝑙

= 𝛾
−1

𝑘𝑙
.

(24)

Formulas (23) represent the discrete analogue of operator of
inverse problem:

Λ𝑞 (𝜑, 𝑧) = 𝑝 (𝜑, 𝑧) . (25)

This operator is a diagonal and self-adjoint in discrete form;
that is, the Fourier coefficient of the unknown function is
multiplied by a diagonal matrix with elements 𝛾

𝑘𝑙
. Then the

inverse operator is also recorded in a diagonal form for the
discrete case:

𝑞
𝑘𝑙

= 𝛾
−1

𝑘𝑙
𝑝
𝑘𝑙

,

𝑡
𝑘𝑙

= 𝛾
−1

𝑘𝑙
𝑠
𝑘𝑙

.

(26)

The coefficients 𝛾
𝑘𝑙

= 𝜆
𝑙
𝑅
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑛
) do not depend on the

measured data and can be calculated independently for each
problem with different parameters. In addition, depending
on the data of the problem, we can estimate what harmonic
coefficients of the function 𝑞(𝜑, 𝑧) can be recovered.

Let us estimate the values of 𝛾
𝑘𝑙
. Due to the asymptotic

properties of Bessel functions the coefficients 𝛾
𝑘𝑙
have the

asymptotics by 𝑘, 𝑙 → ∞ as follows:

𝐾
𝑘

(𝜆
𝑙
𝑟
𝑛
) ∼

exp (−𝜆
𝑙
𝑟
𝑛
)

√𝜆
𝑙
𝑟
𝑛

,

𝐼
𝑘

(𝜆
𝑙
𝑟
𝑛
) ∼

exp (𝜆
𝑙
𝑟
𝑛
)

√𝜆
𝑙
𝑟
𝑛

(27)
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and also their first derivatives:

𝐾
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑛
) = −𝐾

𝑘−1
(𝜆
𝑙
𝑟
𝑛
) −

𝑘𝐾
𝑘

𝜆
𝑙
𝑟
𝑛

∼ max(
exp (−𝜆

𝑙
𝑟
𝑛
)

√𝑙

,
𝑘 exp (−𝜆

𝑙
𝑟
𝑛
)

𝑙√𝑙

) ,

𝐼
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑛
) = 𝐼
𝑘−1

(𝜆
𝑙
𝑟
𝑛
) −

𝑘𝐼
𝑙

𝜆
𝑙
𝑟
𝑛

∼ max(
exp (𝜆

𝑙
𝑟
𝑛
)

√𝑙

,
𝑘 exp (𝜆

𝑙
𝑟
𝑛
)

𝑙√𝑙

) .

(28)

By virtue of (14) and (20) the calculation error of Fourier
coefficients of measured data in the recovered function
𝑞(𝜑, 𝑧) is multiplied by 𝜂

𝑘𝑙
, which is inverse to 𝛾

𝑘𝑙
. Consider

𝜂
𝑘𝑙

∼ max(
exp (𝜆

𝑙
𝑟
𝑛
)

√𝑙

,
𝑘 exp (𝜆

𝑙
𝑟
𝑛
)

𝑙√𝑙

) . (29)

The total recovery error in 𝐿
2
norm is equal to the sum of

the squared errors of the Fourier coefficients:

𝜀 = √

𝐾,𝐿

∑

𝑘,𝑙

𝜂
2

𝑘𝑙
(𝛿𝑝
2

𝑘𝑙
+ 𝛿𝑡
2

𝑘𝑙
). (30)

As the coefficients 𝜂
𝑘𝑙
grow exponentially, errors of high-

order harmonics give the greatest contribution to the recov-
ery error. This implies a limit on the number of harmonics
that can be recovered with the desired accuracy. Let the
relative accuracy of restoring of the harmonics with the
number (𝑘, 𝑙) be less than the preset number |𝛿𝑞

𝑘𝑙
|/|𝑞
𝑘𝑙

| ≤

𝜀. Then it follows from (26) that the inequality |𝛿𝑞
𝑘𝑙

| =

𝜂
𝑘𝑙

|𝛿𝑝
𝑘𝑙

||𝑞
𝑘𝑙

| ≤ 𝜀 should be satisfied.
Hence
󵄨󵄨󵄨󵄨𝛿𝑝
𝑘𝑙

󵄨󵄨󵄨󵄨 ≤ 𝜀𝛾
𝑘𝑙

= 𝐶𝜀max(
exp (−𝜆

𝑙
𝑟
𝑛
)

√𝑙

,
𝑘 exp (−𝜆

𝑙
𝑟
𝑛
)

𝑙√𝑙

) .

(31)

Execution of (31) is possible, if we restrict ourselves to
some finite number of harmonics, that is, as the set of
admissible 𝑞(𝜑, 𝑧) is taken as functions which are linear
combination of this number of harmonics. This is justified, if
the measured data are very smooth, so that the contribution
of higher harmonics is negligible.

Restriction (31) gives us the conditions for choosing of the
regularization parameter like the maximum possible number
of harmonics 𝐾, 𝐿.

It follows that one can neglect the harmonics, which will
be submitted in the form of measured data with an amplitude
which satisfies the following estimate:

exp (𝜆
𝑙
𝑟
𝑛
)

√𝑙

𝑝
𝑘𝑙

< 𝜀. (32)

After calculating functions 𝑢(𝑟, 𝜑, 𝑧) by (20) and (26) the
partial sum of series (14) for 𝑟 = 𝑟

0
can be calculated and the

unknown function 𝑞(𝜑, 𝑧) is found approximately as

𝑞 (𝜑, 𝑧) = 𝑢 (𝑟
0
, 𝜑, 𝑧)

=

𝐾

∑

𝑘=0

𝐿

∑

𝑙=1

(𝑞
𝑘𝑙
cos (𝑘𝜑) + 𝑡

𝑘𝑙
sin (𝑘𝜑)) sin(

𝜋𝑙𝑧

𝐻
) .

(33)

To get the Cauchy data for this problem, we need to
generate synthetic data—the solution of the direct problem
with a given function 𝑞(𝜑, 𝑧). First of all we have to solve
the direct problem with a known 𝑞(𝜑, 𝑧), then to obtain the
values 𝑝(𝜑, 𝑧). After that the inverse problem is solved, as if
we had unknown function 𝑞(𝜑, 𝑧), and the function 𝑝(𝜑, 𝑧)

had been measured. The direct problem is easily solved by
Fourier method as it is described in Section 3.1. The only
feature is that at the inner boundary 𝑟 = 𝑟

𝑖
the conditions

of conjugation should be satisfied.
In the case of a discontinuous coefficient of thermal

conductivity, we use the representation of the solution in each
layer similar to (22):

𝑢
𝑘𝑙

(𝜆𝑟) = 𝐶
(𝑖)

𝐼
𝑘

(𝜆𝑟) + 𝐷
(𝑖)

𝐾
𝑘

(𝜆𝑟) ,

𝑟 ∈ (𝑟
𝑖
, 𝑟
𝑖+1

) , 𝑖 = 0, 𝑛,

𝜆 =
𝜋𝑙

𝐻
, 𝑙 = 1, . . . , 𝐿, 𝑘 = 0, . . . 𝐾.

(34)

The conjugation conditions on the inner layers with 𝑟 = 𝑟
𝑖
are

𝐶
(𝑖)

𝐼
𝑘

(𝜆
𝑙
𝑟
𝑖
) + 𝐷
(𝑖)

𝐾
𝑘

(𝜆
𝑙
𝑟
𝑖
)

= 𝐶
(𝑖−1)

𝐼
𝑘

(𝜆
𝑙
𝑟
𝑖
) + 𝐷
(𝑖−1)

𝐾
𝑘

(𝜆
𝑙
𝑟
𝑖
) ,

𝑎
𝑖+1

[𝐶
(𝑖)

𝐼
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑖
) + 𝐷
(𝑖)

𝐾
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑖
)]

= 𝑎
𝑖
[𝐶
(𝑖−1)

𝐼
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑖
) + 𝐷
(𝑖−1)

𝐾
󸀠

𝑘
(𝜆
𝑙
𝑟
𝑖
)] ,

(35)

and the boundary conditions at 𝑟 = 𝑟
0
and 𝑟 = 𝑟

𝑛
are the

following:

𝐶
(0)

𝐼
𝑘

(𝜆
𝑙
𝑟
0
) + 𝐷
(0)

𝐾
𝑘

(𝜆
𝑙
𝑟
0
) = 𝑞
𝑘𝑙

,

𝐶
(𝑛)

𝐼
𝑘

(𝜆
𝑙
𝑟
𝑛+1

) + 𝐷
(𝑛)

𝐾
𝑘

(𝜆
𝑙
𝑟
𝑛+1

) = 0.

(36)

System (35)-(36) defines constants for each layer and
allows one to build the coefficients of series (14) in form
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(34) for each layer. Obtaining the solution of the direct prob-
lem, we also obtain measured data and synthetic function
𝑝syn(𝜑, 𝑧) in the form

𝑝syn (𝜑, 𝑧)

=
𝜕

𝜕𝑟
(

𝐾

∑

𝑘=0

𝐿

∑

𝑙=1

(𝑢
𝑘𝑙

(𝑟) cos (𝑘𝜑) + 𝑡
𝑘𝑙

(𝑟) sin (𝑘𝜑))

⋅ sin(
𝜋𝑙𝑧

𝐻
))

𝑟=𝑟0

=

𝐾

∑

𝑘=0

𝐿

∑

𝑙=1

(𝑝
𝑘𝑙
cos (𝑘𝜑) + 𝑠

𝑘𝑙

⋅ sin (𝑘𝜑)) sin(
𝜋𝑙𝑧

𝐻
) .

(37)

The relative difference of synthetic data in norm
𝐿
2
([0, 2𝜋] × [0, 𝐻]) for different harmonics number has

been calculated for given 𝑞(𝜑, 𝑧). It turns out that for cases
𝐾 = 𝐿 = 32 and 𝐾 = 𝐿 = 50 it was found to be above 0.18%.
Further increase of the cut-off parameters 𝐾 and 𝐿 almost
does not affect that value. Then to generate synthetic data we
eliminate these values by 𝐾 = 𝐿 = 50.

3.3. Construction of the Quasi-Solution to the Inverse Problem.
Another way to obtain an explicit formula for the quasi-
solution of problem (3)–(9) is to derive it from minimality
conditions of the residual functional:

𝐽 (𝑞) =
1

2
∫

2𝜋

0

∫

𝐻

0

(𝑢
𝑟
(𝑅
2
, 𝑧; 𝑞) − 𝑝 (𝜑, 𝑧))

2

𝑑𝑧 𝑑𝜑

+
1

2
𝛽 ∫

2𝜋

0

∫

𝐻

0

𝑞
2

(𝜑, 𝑧) 𝑑𝑧 𝑑𝜑 󳨀→ min
𝑞(⋅,⋅)

.

(38)

The idea of that method is described in detail in [24],
so we describe here only key points of that method. Let us
introduce formally a functional (Lagrangian):

𝐿 (𝑞, V) = 𝐽 (𝑞) − ∭
𝑄

V (𝑟, 𝜑, 𝑧) 𝐿𝑢 (𝑟, 𝜑, 𝑧) 𝑑𝑄, (39)

where 𝑢(𝑟, 𝜑, 𝑧) is a solution of the direct problem for
given 𝑞(𝜑, 𝑧). Let the function V(𝑟, 𝜑, 𝑧) be a solution of the
following adjoint problem:

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕V
𝜕𝑟

) +
1

𝑟2

𝜕
2V

𝜕𝜑2
+

𝜕
2V

𝜕𝑧2
= 0,

(𝑟, 𝜑, 𝑧) ∈ 𝑄, 𝑟 ̸= 𝑟
𝑖
, 𝑖 = 1, 𝑛 − 1

(40)

subject to boundary and periodicity conditions:

V|𝑟=𝑟𝑖−0 = V|𝑟=𝑟𝑖+0 ,

𝑎
𝑖

𝜕V
𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖−0

= 𝑎
𝑖+1

𝜕V
𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖+0

,

𝑖 = 1, 𝑛 − 1,

(41)

V (𝑟, 𝜑, 0) = 0,

V (𝑟, 𝜑, 𝐻) = 0,

V (𝑟
0
, 𝜑, 𝑧) = 0,

𝑟
𝑛
𝑎
𝑛
V (𝑟
𝑛
, 𝜑, 𝑧) = 𝑢

𝑟
(𝑟
𝑛
, 𝑧) − 𝑝 (𝑧) ,

V (𝑟, 0, 𝑧) = V (𝑟, 2𝜋, 𝑧) ,

V
𝜑

(𝑟, 0, 𝑧) = V
𝜑

(𝑟, 2𝜋, 𝑧) .

(42)

Now calculate the first variation of the residual using the
variation of the Lagrangian:

𝛿𝐽 (𝑞) = 𝛿𝐿 (𝑞, V)

= 𝛿𝐽 (𝑞) − ∭
𝑄

V (𝑟, 𝜑, 𝑧) 𝐿𝛿𝑢 (𝑟, 𝜑, 𝑧) 𝑑𝑄

= ∬
Ω

((𝑢
𝑟
(𝑅
2
, 𝑧; 𝑞) − 𝑝 (𝜑, 𝑧)) 𝛿𝑢

𝑟
+ 𝛽𝑞𝛿𝑞) 𝑑Ω

− ∬
Ω

∫

𝑟𝑛

𝑟0

V
𝜕

𝜕𝑟
𝑎 (𝑟) 𝑟𝛿𝑢

𝑟
𝑑𝑟 𝑑Ω

− ∭
𝑄

V𝐿
𝜑,𝑧

𝛿𝑢
𝑟
𝑑𝑄,

(43)

where 𝐿
𝜑,𝑧

is a part of operator (1) acting with respect to
variables 𝜑 and 𝑧. Let us consider second term of expression
(43). Integrating by part and taking into account conditions
at discontinuity points 𝑟 = 𝑟

𝑖
of coefficient 𝑎(𝑟), we obtain

∫

𝑟𝑛

𝑟0

V
𝜕

𝜕𝑟
(𝑎 (𝑟) 𝑟𝛿𝑢

𝑟
) 𝑑𝑟

= (𝑟V𝑎 (𝑟) 𝛿𝑢
𝑟
)
󵄨󵄨󵄨󵄨𝑟=𝑟𝑛

− (𝑟V𝑎 (𝑟) 𝛿𝑢
𝑟
)
󵄨󵄨󵄨󵄨𝑟=𝑟0

+

𝑛−1

∑

𝑖=1

𝑟
𝑖
V (𝑟
𝑖
, 𝜑, 𝑧) [𝑎

𝑖
𝛿𝑢
𝑟
]
𝑟=𝑟𝑖+0

𝑟=𝑟𝑖−0

− ∫

𝑟𝑛

𝑟0

𝑟V
𝑟
𝑎 (𝑟) 𝛿𝑢

𝑟
𝑑𝑟.

(44)
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Here [𝑎(𝑟)𝛿𝑢
𝑟
]
𝑟𝑖+0

𝑟𝑖−0
= 𝑎
𝑖+1

𝛿𝑢
𝑟
|
𝑟=𝑟𝑖+0

−𝑎
𝑖
𝛿𝑢
𝑟
|
𝑟=𝑟𝑖−0

is the jump of
the function at 𝑟 = 𝑟

𝑖
. By conditions (4) these values vanish.

Then

∫

𝑟𝑛

𝑟0

V
𝜕

𝜕𝑟
(𝑎 (𝑟) 𝑟𝛿𝑢

𝑟
) 𝑑𝑟

= 𝑎
𝑛

𝑟
𝑛

(V𝛿𝑢
𝑟
)
󵄨󵄨󵄨󵄨𝑟=𝑟𝑛

− 𝑎
0
𝑟
0

(V𝛿𝑢
𝑟
)
󵄨󵄨󵄨󵄨𝑟=𝑟0

− 𝑎
𝑛
𝑟
𝑛

(V
𝑟
𝛿𝑢)

󵄨󵄨󵄨󵄨𝑟=𝑟𝑛
+ 𝑎
0
𝑟
0

(V
𝑟
𝛿𝑢)

󵄨󵄨󵄨󵄨𝑟=𝑟0

−

𝑛−1

∑

𝑖=1

𝑟
𝑖
𝑢 (𝑟
𝑖
, 𝜑, 𝑧) [𝑎

𝑖
𝛿V
𝑟
]
𝑟=𝑟𝑖+0

𝑟=𝑟𝑖−0

+ ∫

𝑟𝑛

𝑟0

𝛿𝑢
𝜕

𝜕𝑟
(𝑎 (𝑟) 𝑟V

𝑟
) 𝑑𝑟.

(45)

Using boundary conditions (6) and (42) we have

∫

𝑟𝑛

𝑟0

V
𝜕

𝜕𝑟
(𝑎 (𝑟) 𝑟𝛿𝑢

𝑟
) 𝑑𝑟

= 𝑎
𝑛

𝑟
𝑛

(V𝛿𝑢
𝑟
)
󵄨󵄨󵄨󵄨𝑟=𝑟𝑛

+ 𝑎
0
𝑟
0
V
𝑟
(𝑟
0
, 𝜑, 𝑧) 𝛿𝑞

+ ∫

𝑟𝑛

𝑟0

𝛿𝑢
𝜕

𝜕𝑟
(𝑎 (𝑟) 𝑟V

𝑟
) 𝑑𝑟.

(46)

Finally, substituting (46) into expression (43), integrating
by part over Ω, and applying conditions for the function
V(𝑟, 𝜑, 𝑧) we get

𝛿𝐽 (𝑞) = ∬
Ω

((𝑢
𝑟
(𝑟
𝑛
, 𝜑, 𝑧; 𝑞) − 𝑝 (𝜑, 𝑧)) 𝛿𝑢

𝑟
+ 𝛽𝑞𝛿𝑞

− 𝑟
𝑛
𝑎
𝑛
V (𝑟
𝑛
, 𝜑, 𝑧) 𝛿𝑢

𝑟
− 𝑎
0
𝑟
0
V
𝑟
(𝑟
0
, 𝜑, 𝑧) 𝛿𝑞) 𝑑Ω

− ∭
𝑄

𝛿𝑢𝐿V 𝑑𝑄 = ∬
Ω

(𝛽𝑞 − 𝑎
1
𝑟
0
V
𝑟
(𝑟
0
, 𝜑, 𝑧))

⋅ 𝛿𝑞 𝑑Ω.

(47)

Note that functional (38) is represented in the form of a
sum of two squared norms in the space 𝐿

2
([0, 2𝜋] × [0, 𝐻]):

𝐽 (𝑞) =
1

2

󵄩󵄩󵄩󵄩Λ𝑞 − 𝑝
󵄩󵄩󵄩󵄩

2

+
1

2
𝛽

󵄩󵄩󵄩󵄩𝑞 (𝑧)
󵄩󵄩󵄩󵄩

2

. (48)

First item of (48) is a squared norm of a linear self-adjoint
operator; second one is a strongly convex square functional.
Then, by [26] functional (38) is strongly convex and has a
uniqueminimizer in 𝐿

2
([0, 2𝜋]×[0, 𝐻]).This minimizer can

be found via necessary minimality condition that requires
that the first variation at the minimum point should vanish.
Then, by equalizing to zero the first variation (47), we get

𝑞 (𝜑, 𝑧) = 𝛽
−1

𝑎
1
𝑟
0
V (𝑟
0
, 𝜑, 𝑧) ≡ 𝛽

−1

1
V (𝑟
0
, 𝜑, 𝑧) ,

𝛽
1

=
𝛽

𝑎
1
𝑟
0

.

(49)

Therefore, if we substitute expression (49) into the direct
problem and take into account the adjoint problem, we

get necessary minimality conditions of residual (38). These
conditions are expressed as the following coupled system
consisting of direct and adjoint problems subject to corre-
sponding boundary conditions:

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) +

1

𝑟2

𝜕
2
𝑢

𝜕𝜑2
+

𝜕
2
𝑢

𝜕𝑧2
= 0,

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕V
𝜕𝑟

) +
1

𝑟2

𝜕
2V

𝜕𝜑2
+

𝜕
2V

𝜕𝑧2
= 0,

(𝑟, 𝜑, 𝑧) ∈ 𝑄, 𝑟 ̸= 𝑟
𝑖
, 𝑖 = 1, 𝑛 − 1,

𝑢|𝑟=𝑟𝑖−0
= 𝑢|𝑟=𝑟𝑖+0

,

𝑎
𝑖

𝜕𝑢

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖−0

= 𝑎
𝑖+1

𝜕𝑢

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖+0

,

𝑖 = 1, 𝑛 − 1,

V|𝑟=𝑟𝑖−0 = V|𝑟=𝑟𝑖+0 ,

𝑎
𝑖

𝜕V
𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖−0

= 𝑎
𝑖+1

𝜕V
𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑟𝑖+0

,

𝑖 = 1, 𝑛 − 1,

𝑢 (𝑟, 0, 𝑧) = 𝑢 (𝑟, 2𝜋, 𝑧) ,

𝑢
𝜑

(𝑟, 0, 𝑧) = 𝑢
𝜑

(𝑟, 2𝜋, 𝑧) ,

𝑢 (𝑟
0
, 𝜑, 𝑧) =

1

𝛽
1

V
𝑟
(𝑟
0
, 𝜑, 𝑧) ,

𝑢 (𝑟
𝑛
, 𝜑, 𝑧) = 0,

V (𝑟, 0, 𝑧) = V (𝑟, 2𝜋, 𝑧) ,

V
𝜑

(𝑟, 0, 𝑧) = V
𝜑

(𝑟, 2𝜋, 𝑧) ,

𝑎
𝑛
𝑟
𝑛
V (𝑟
𝑛
, 𝜑, 𝑧) = 𝑢

𝑟
(𝑟
𝑛
, 𝑧) − 𝑝 (𝑧) .

(50)

Let us apply the Fourier method to solve system (50).
Represent the functions 𝑢(𝑟, 𝜑, 𝑧), V(𝑟, 𝜑, 𝑧) in the form of
series similar to (10):

𝑢 (𝑟, 𝜑, 𝑧) =

∞

∑

𝑘=0

∞

∑

𝑙=1

(𝑢
𝑘𝑙

(𝑟) cos (𝑘𝜑) + 𝑡
𝑘𝑙

(𝑟) sin (𝑘𝜑))

⋅ sin(
𝜋𝑙𝑧

𝐻
) ≡

∞

∑

𝑗=0

𝑢
𝑗
(𝑟) Φ
𝑗
(𝜑, 𝑧) ,

(51)

V (𝑟, 𝜑, 𝑧) =

∞

∑

𝑗=0

V
𝑗
(𝑟) Φ
𝑗
(𝜑, 𝑧) . (52)

Here for simplicity the set of basic functions is enumer-
ated anew sequentially:

{cos (𝑘𝜑) sin (𝜆
𝑙
𝑧) , cos (𝑘𝜑) sin (𝜆

𝑙
𝑧) , 𝑘

= 0, 1, . . . , 𝑙 = 1, 2, . . .} ≡ {Φ
𝑗
(𝜑, 𝑧) , 𝑗 = 0, 1, . . .} ,

(53)
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so that each pair of (𝑘, 𝑙) corresponds to the unique index 𝑗

and vice versa.
Let us firstly find functions 𝑢

𝑗
(𝑟) and V

𝑗
(𝑟) formally and

then prove the convergence of the series (51) and (52). Sub-
stituting series (51) and (52) into boundary conditions in (50)
we get the following equalities for coefficients:

𝑢
𝑗
(𝑟
0
) = 𝛽
−1

1
V󸀠
𝑗
(𝑟
0
) ,

𝑎
𝑛
V
𝑗
(𝑟
𝑛
) = 𝑢
󸀠

𝑗
(𝑟
𝑛
) − 𝑝
𝑗
.

(54)

As it is shown in Section 3.1 functions𝑢
𝑗
(𝑟) satisfy (11) and

relations (23); that is, 𝑢󸀠
𝑗
(𝑟
𝑛
, 𝑧) = 𝜂

𝑗
𝑢
𝑗
(𝑟
0
). Then we obtain

𝑎
𝑛
𝑟
𝑛
V
𝑗
(𝑟
𝑛
) = 𝜂
𝑗
𝑢
𝑗
(𝑟
0
) − 𝑝
𝑗
. (55)

Consider now the functions V
𝑗
(𝑟). They satisfy the same

equation as (11), which can be transformed in the form of
Bessel equation (13). Now we consider its auxiliary solutions
𝑅
𝑗
(𝑥) subject to the following boundary conditions:

𝑅
𝑗
(𝜆
𝑙
𝑟
0
) = 0,

𝑅
𝑗
(𝜆
𝑙
𝑟
𝑛
) = 1

(56)

and the conjugation conditions (16) on the internal bound-
aries 𝑟 = 𝑟

𝑖
(𝑖 = 1, 2, . . . , 𝑛−1).Then coefficients V

𝑗
(𝑟) of series

(52) for each index 𝑗 are presented as a product of undeter-
mined coefficients and auxiliary solutions:

V
𝑗
(𝑟) = 𝑉

𝑗
𝑅
𝑗
(𝜆
𝑙
𝑟) . (57)

Then first derivative at inner boundary is calculated as

V󸀠
𝑗
(𝑟
0
) = 𝜆
𝑙
𝑅
󸀠

𝑘𝑙
(𝜆
𝑙
𝑟
0
) 𝑉
𝑗

≡ 𝜇
𝑗
𝑉
𝑗

= 𝜇
𝑗
V
𝑗
(𝑟
𝑛
) . (58)

Let us compare values 𝜇
𝑗

= 𝜆
𝑙
𝑅
󸀠

𝑘𝑙
(𝜆
𝑙
𝑟
0
) and 𝜂

𝑗
= 𝜆
𝑙
𝑅
󸀠

𝑘𝑙
(𝜆
𝑙
𝑟
𝑛
).

By direct computations one can see that the variable trans-
forms

𝑥
1

= 𝑥 − 0.5𝜆
𝑙
(𝑟
𝑛

+ 𝑟
0
) ,

𝑥
2

= 0.5𝜆
𝑙
(𝑟
𝑛

+ 𝑟
0
) − 𝑥

(59)

applied to the functions 𝑅
𝑗
and 𝑅

𝑗
, respectively, lead to the

same equation and the same boundary conditions for the
transformed functions 𝑦

1,𝑗
(𝑥
1
) = 𝑅
𝑗
(𝑥
1

+ 0.5𝜆
𝑙
(𝑟
𝑛

+ 𝑟
0
)) and

𝑦
2,𝑗

(𝑥
2
) = 𝑅
𝑗
(0.5𝜆
𝑙
(𝑟
𝑛

+ 𝑟
0
) − 𝑥
2
). Then by unicity 𝑦

1,𝑗
(𝑥
1
) ≡

𝑦
2,𝑗

(𝑥
2
).

Then

𝜇
𝑘𝑙

= 𝜆
𝑙

𝑑

𝑑𝑟
𝑅
𝑘𝑙

(𝜆
𝑙
𝑟
0
) = −𝜆

𝑙

𝑑𝑦
2,𝑗

𝑑𝑥
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥2=0.5𝜆𝑙(𝑟𝑛−𝑟0)

,

𝜂
𝑘𝑙

= 𝜆
𝑙

𝑑

𝑑𝑟
𝑅
𝑘𝑙

(𝜆
𝑙
𝑟
𝑛
) = 𝜆
𝑙

𝑑𝑦
1,𝑗

𝑑𝑥
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥1=0.5𝜆𝑙(𝑟𝑛−𝑟0)

.

(60)

Because 𝑦
1,𝑗

(𝑥
1
) ≡ 𝑦
2,𝑗

(𝑥
2
), this yields to equality 𝜂

𝑘𝑙
= −𝜇
𝑘𝑙
.

Therefore

𝑢
𝑗
(𝑟
0
) = 𝛽
−1

1
V󸀠
𝑗
(𝑟
0
) = 𝛽
−1

1
𝜇
𝑗
V
𝑗
(𝑟
𝑛
)

= 𝛽
−1

1
𝜇
𝑗
(𝜂
𝑗
𝑢
𝑗
(𝑟
0
) − 𝑝
𝑗
)

= −𝛽
1

−1
𝜂
𝑗
(𝜂
𝑗
𝑢
𝑗
(𝑟
0
) − 𝑝
𝑗
) .

(61)

This yields

𝑢
𝑗
(𝑟
0
) =

𝜂
𝑗
𝑝
𝑗

𝛽 + 𝜂
2

𝑗

. (62)

Finally, the approximate regularized solution of the consid-
ered inverse problem is obtained in explicit form:

𝑞
𝛽

(𝜑, 𝑧) =

∞

∑

𝑗=0

𝜂
𝑗
𝑝
𝑗

𝛽 + 𝜂
2

𝑗

Φ
𝑗
(𝜑, 𝑧)

=

∞

∑

𝑘=0

∞

∑

𝑙=1

(
𝜂
𝑘𝑙

𝑝
𝑘𝑙

𝛽 + 𝜂
2

𝑘𝑙

cos (𝑘𝜑) +
𝜂
𝑘𝑙

𝑠
𝑘𝑙

𝛽 + 𝜂
2

𝑘𝑙

sin (𝑘𝜑))

⋅ sin(
𝜋𝑙𝑧

𝐻
) ,

(63)

where 𝜂
𝑘𝑙

are defined by expression (24). Via standard
analysis of the function𝑥/(𝛽

1
+𝑥
2
)weget an estimate |𝜂

𝑗
/(𝛽
1
+

𝜂
2

𝑗
)| ≤ 𝛽

−1/2

1
.Then the convergence of series (63) follows from

the estimate

󵄩󵄩󵄩󵄩󵄩
𝑞
𝛽

(𝜑, 𝑧)
󵄩󵄩󵄩󵄩󵄩

2

=

∞

∑

𝑗=0

𝜂
2

𝑗
𝑝
2

𝑗

(𝛽 + 𝜂
2

𝑗
)
2

󵄩󵄩󵄩󵄩󵄩
Φ
𝑗

󵄩󵄩󵄩󵄩󵄩

2

≤
1

𝛽
1

∞

∑

𝑗=0

𝑝
2

𝑗

󵄩󵄩󵄩󵄩󵄩
Φ
𝑗

󵄩󵄩󵄩󵄩󵄩

2

=
1

𝛽
1

󵄩󵄩󵄩󵄩𝑝 (𝜑, 𝑧)
󵄩󵄩󵄩󵄩

2

< ∞.

(64)

It follows from (64) that the regularized problem is well-
posed, because minimizer 𝑞

𝛽
(𝜑, 𝑧) of functional (38) exists,

is unique, and depends continuously on input data ‖𝑝(𝜑, 𝑧)‖.
Since the direct problem with function 𝑞

𝛽
(𝜑, 𝑧) at inner

boundary is well-posed that verifies presentation (51) of the
solution in the form of Fourier series, as well as solution (52)
of adjoint problem.

As one can see, here three regularization parameters
appear, namely, harmonic numbers 𝐾, 𝐿 and a parameter
𝛽. The solutions for both methods, which are described in
Sections 3.2 and 3.3, are calculated numerically and results
are compared in Table 2.

4. Numerical Algorithm and Examples

4.1. Generation of Stochastic Noise. In practice, the data can
never be measured precisely, due to their discreteness and
measurement errors.Therefore, a simulation of noise in order
to test our numerical method should be included into data
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(37). A noise is added as the sum of harmonics with random
amplitudes. Then the noisy data for noise 𝛾 look like

𝑝
𝛾

(𝜑, 𝑧) =

𝐾

∑

𝑘=0

𝐿

∑

𝑙=1

((𝑝
𝑘𝑙

+ 𝑑
𝑘𝑙

) cos (𝑘𝜑)

+ (𝑠
𝑘𝑙

+ 𝑒
𝑘𝑙

) sin (𝑘𝜑)) sin 𝜋𝑙𝑧

𝐻
,

(65)

where 𝑑
𝑘𝑙
, 𝑒
𝑘𝑙
are random variables uniformly distributed on

the interval [−𝛿, 𝛿]. As ameasure of the relative noise level we
will take the value:

𝛾 =

󵄩󵄩󵄩󵄩󵄩
𝑝
𝛾

− 𝑝syn
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑝syn

󵄩󵄩󵄩󵄩󵄩

≈ √
2𝜋 ∑
𝐿

𝑙=1
(𝑑
0𝑙

)
2

+ ∑
𝐾,𝐿

𝑘,𝑙=1
(𝑑
𝑘𝑙

)
2

+ (𝑒
𝑘𝑙

)
2

2𝜋 ∑
𝐿

𝑙=1
(𝑝
0𝑙

)
2

+ ∑
𝐾,𝐿

𝑘,𝑙=1
(𝑝
𝑘𝑙

)
2

+ (𝑠
𝑘𝑙

)
2
.

(66)

4.2. Algorithm of Solving the Inverse Problem. The algorithm
consists of the following steps:

(i) Step 1. It is necessary to set the number of harmonics
𝐾, 𝐿 over the angles 𝜑 and 𝑧 and regularization
parameter 𝛽. Generate synthetic and noisy data.
Expand the boundary measurement with noise (38)
to Fourier series by calculating the coefficients 𝑝

𝑘𝑙
, 𝑠
𝑘𝑙

of series (37), 𝑘 = 0, . . . , 𝐾; 𝑙 = 1, . . . , 𝐿.

(ii) Step 2. Put in (36) value 1.0 instead of 𝑞
𝑘𝑙
. Solve the

linear system (35)-(36) and define the coefficients𝐶
(𝑖),

𝐷
(𝑖) for each pair of indexes (𝑘, 𝑙) and 𝑖 = 0, . . . , 𝑛 − 1.

(iii) Step 3. Calculate first derivatives of functions
𝑅
𝑘𝑙

(𝜆
𝑙
𝑟) = 𝐶

(0)
𝐼
𝑘
(𝜆
𝑙
𝑟) + 𝐷

(0)
𝐾
𝑘
(𝜆
𝑙
𝑟) at 𝑟 = 𝑟

0
and

find values 𝜂
𝑘𝑙
defined by (24): 𝜂

𝑘𝑙
= (𝜆
𝑙
𝑅
󸀠

𝑘𝑙
(𝜆
𝑙
𝑟
𝑛
))
−1.

(iv) Step 4. Calculate the values 𝑞
𝑘𝑙

= 𝜂
𝑘𝑙

𝑝
𝑘𝑙
, 𝑡
𝑘𝑙

= 𝜂
𝑘𝑙

𝑠
𝑘𝑙
.

(v) Step 5. Calculate the partial sum of series (33), which
is the required approximate solution of the problem.

Note that if parameter 𝛽 in formula (63) vanishes, then
by (24) the solution is reduced to the solution obtained in
Section 3.2. Therefore one can use the above algorithm for
both cases with 𝛽 = 0 and 𝛽 > 0.

4.3. Examples of Numerical Calculation. We present here
a numerical example to illustrate the performance of our
algorithm. The thermal diffusivity coefficient is given by
formula

𝑎 (𝑟) =

{{{{

{{{{

{

𝑎
1
, 1 ≤ 𝑟 < 𝑟

1
,

𝑎
2
, 𝑟
1

≤ 𝑟 < 𝑟
2
,

𝑎
3
, 𝑟
2

≤ 𝑟 ≤ 𝑟
3
.

(67)

Table 1: Comparison of relative errors for different noise levels 𝛾noise
and admissible regularization parameter 𝛽.

𝛽/𝛾noise 0% 2% 5% 8%
10
−15 0.19 0.196 0.196 0.208

10
−16 0.171 0.177 0.189 0.205

10
−17 0.159 0.16 0.175 0.166

10
−18 0.136 0.14 0.196 0.161

10
−19 0.132 0.139 0.137 0.214

10
−20 0.13 0.131 0.148 0.184

10
−21 0.128 0.133 0.142 0.183

Example 1. We reconstruct the smooth boundary condition
as

𝑓𝑛 (𝑧) exp (−𝑧
2
) ,

𝑞 exact (𝜑, 𝑧) = (𝑓𝑛 (
𝑧 − 0.25

0.1
) + 3𝑓𝑛 (

𝑧 − 0.75

0.1
))

⋅ sin(
𝜋𝑧

𝐻
) (𝑓𝑛 (𝜑 −

𝜋

2
) + 𝑓𝑛 (𝜑 −

3𝜋

2
))

⋅ sin(
𝜑

2
) + 𝑓𝑛 (

√(𝑧 − 0.25)
2

+ (𝜑 − 𝜋)
2

0.15
)

+ 3𝑓𝑛 (

√(𝑧 − 0.75)
2

+ (𝜑 − 𝜋)
2

0.15
) ,

(68)

with the following parameters: 𝐾 = 16, 𝐿 = 16, 𝐻 = 1, 𝑎
1

=

20, 𝑎
2

= 1, 𝑎
3

= 20, 𝑟
1

= 1.25, 𝑟
2

= 1.7, 𝑟
3

= 2. The numer-
ical reconstructions are obtained in this case for various
percentages of noise 𝛾noise ∈ {0, 2, 5, 8}% are shown in Figures
1(b), 1(c), 1(d), and 1(e), respectively. 𝐿

2
relative errors were

computed to measure the quality of reconstructed boundary
condition as follows:

𝜀
𝑞

=

󵄩󵄩󵄩󵄩𝑞 exact (𝜑, 𝑧) − 𝑞 recovered (𝜑, 𝑧)
󵄩󵄩󵄩󵄩𝐿2([0,2𝜋]×[0,𝐻])

󵄩󵄩󵄩󵄩𝑞 exact (𝜑, 𝑧)
󵄩󵄩󵄩󵄩𝐿2([0,2𝜋]×[0,𝐻])

.

(69)

The comparison of relative errors 𝜀
𝑞
for different noise

levels 𝛾noise and admissible regularization parameter 𝛽 for
Example 1 is presented in Table 1.

The numbers that are highlighted in bold show preferable
values of regularization parameter 𝛽 for a given noise level
𝛾noise. In particular it follows from table that a large value of
the noise level requires a larger value for the parameter of
regularization.

Example 2. In this example we presented the impact of
harmonic numbers on reconstruction with noise 5% for
parameters: 𝐻 = 1, 𝑎

1
= 20, 𝑎

2
= 1, 𝑎

3
= 20, 𝑟

1
= 1.25,

𝑟
2

= 1.7, 𝑟
3

= 2.
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(b) 𝛾noise = 0%, 𝛽 = 1 ⋅ 10−19, 𝜀𝑞 = 0.132
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(c) 𝛾noise = 2%, 𝛽 = 1 ⋅ 10−19, 𝜀𝑞 = 0.139
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(d) 𝛾noise = 5%, 𝛽 = 1 ⋅ 10−19, 𝜀𝑞 = 0.137
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(e) 𝛾noise = 8%, 𝛽 = 1 ⋅ 10−19, 𝜀𝑞 = 0.214

Figure 1: Reconstruction of smooth boundary condition with various noise levels 𝛾noise ∈ {0, 2, 5, 8}%.
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(a) 𝐾 = 𝐿 = 32
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(b) 𝐾 = 𝐿 = 16
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(c) 𝐾 = 𝐿 = 12

Figure 2: Continued.
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(d) 𝐾 = 𝐿 = 8
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(e) 𝐾 = 𝐿 = 5

Figure 2: The influence of harmonic number on reconstruction.

We attempt to reconstruct smooth boundary condition of
the form:

𝑓𝑛 (𝑧) = exp (−𝑧
2
) ,

𝑞 exact (𝜑, 𝑧) = (𝑓𝑛 (
𝑧 − 0.25

0.11
) + 3𝑓𝑛 (

𝑧 − 0.75

0.11
))

⋅ sin(
𝜋𝑧

𝐻
) 𝑓𝑛 (𝜑 −

𝜋

2
) sin(

𝜑

2
) .

(70)

The results for this example are illustrated in Figure 2.
From Figures 1 and 2 we can see that when 5 ≤ 𝐾, 𝐿 ≤ 32,

we need to take 𝛽 close to machine precision. According to
Table 2 the results for 𝛽 = 0 and 𝛽 = 1 × 10

−25 are similar
with the same harmonics numbers 𝐾 = 32, 𝐿 = 32. However,
the numerical experiments show that use of small value of the
regularization parameter 𝛽 ≈ 1 × 10

−25 is preferable to 𝛽 = 0.

Table 2: The values of relative errors 𝜀
𝑞
depending on different

values of parameters𝐾 and 𝐿, with corresponding admissible values
of 𝛽 > 0 and 𝛽 = 0 with noise 5%.

𝐾/𝐿 32 16 12 8 5
𝛽 1 × 10

−25
1 × 10

−25
1 × 10

−24
1 × 10

−25
1 × 10

−25

𝜀
𝑞

0.05 0.08 0.07 0.12 0.22
𝛽 0 0 0 0 0
𝜀
𝑞

0.05 0.069 0.08 0.13 0.23

5. Conclusion

In this study we come to conclusion that the application of
the proposed approach gives an efficient way to solve the
Cauchy problem for the 3D Laplace equation in a cylindrical
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layeredmedium.Numerical experiments are investigated and
show the capacity of proposed method for smooth boundary
condition only. Under the suitable choice of regularization
parameter we recover the distribution of temperature on
the inner boundary with satisfactory quality for noisy data.
We have determined more admissible values of the main
parameters such as a regularization parameter and harmonic
numbers for different noise level.
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