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We consider the following state dependent boundary-value problem Dj, y(t) — pDéi gt y(a(t) + f(t,y(x() =0,0 <t < L5
(0) = 0,7y(c(1)) = y(1), where D is the standard Riemann-Liouville fractional derivative of order 1 <« < 2,0<# <1, p <0,
0<pB<1,B+1-«a=>0thefunction g is defined as g(t,u) : [0, 1] x [0,00) — [0, 00), and g(0,0) = 0 the function f is defined as
f(t,u) : [0,1]x[0,00) — [0,00)0(t), (t) are continuous on t and 0 < o(t), 7(t) < t. Using Banach contraction mapping principle
and Leray-Schauder continuation principle, we obtain some sufficient conditions for the existence and uniqueness of the positive
solutions for the above fractional order differential equations, which extend some references.

1. Introduction

Fractional order differential equations has useful applications
in many fields, such as physics, mechanics, chemistry, engi-
neering, biology, and so on. There has been a significant
development in fractional differential equations (e.g., [1-9]).
In the previous papers, some authors investigated fractional
order partial differential equations [10-15]. For example,
Wu [15] used the wavelet operational method for solving
fractional partial differential equations numerically. Since it is
one of the important fields to be concerned with the boundary
value problems for fractional order differential equations,
some authors considered the existence of positive solutions
for fractional differential equations or systems with boundary
value conditions [16-25] and the stability [26].

As early as 1994, Delbosco [27] investigated the nonlinear
Dirichlet-type problem

DY) () = fF(y(x), O<x<l, 1<a<2

y(0) =y (1)=0,

@

where D* is « order Riemann-Liouville derivative. The author
had proved that if f is a Lipschitz function, then the problem

has at least one solution y(x) in a certain subspace of C[0, 1]
in which the fractional derivative has a Holder property.

Later, using some fixed point theorems, Bai and Lii [20]
obtained the existence of positive solutions of the following
equation with boundary value conditions

Dy,y®)+ f(ty)=0 0<t<l, 1<a<2,
y(0)=y(1)=0, ()

or y(0)+y (0)=y(1)+y (1)=0.

More recently, Bai [9] also considered the following
boundary value problem

Dy,y®+ f(ty®)=0, 0<t<l, 1<a<2,
y(0) =0, (3)
By (n) =y ().
By constructing a Green’s function, and using contraction

map principle, the author obtained some existence conditions
of positive solutions for (3).


http://dx.doi.org/10.1155/2015/263748

Motivated by the above references, we consider a state
dependent boundary value problem with fractional order
differential operators

DE y(t)— pDE g (t, y (0 (1)) + f (£ y (x (1)) = 0,

0<t<l, @
4
y(0) =0,

ny (o (1)) = y(1),

where D is the standard Riemann-Liouville fractional
derivative of order 1 < « < 2,0< < 1,0<7n<1,p <0,
B+1—-a=>0,1-rn0""(1) > 0; the function g is defined
as g(t,u) : [0,1] x [0,00) — [0,00), and g(0,0) = 0; the
function f is defined as f(¢,u) : [0,1] x [0,00) — [0, 00)
and o(t), 7(t) are continuous on t and 0 < o(t), 7(t) < t.

By using Banach contraction mapping principle and
Leray-Schauder continuation principle, we obtain some suffi-
cient conditions for the existence and uniqueness of the pos-
itive solutions for boundary value problem (4). Furthermore,
we give an example to illustrate our results.

2. Preliminary

In this section, we introduce some definitions and prelimi-
nary facts which are used in this paper.

Definition 1 (see [8, 16]). The fractional integral of order «
with the lower limit ¢, for a function f is defined as

a 1t f(s)
r(f®) = T () LO (t—s)l*"‘ds’

t>t, a>0, (5

provided the right-side is point-wise defined on [¢,, c0],
where I' is the Gamma function.

Definition 2 (see [8, 16]). Riemann-Liouville derivative of
order « with the lower limit t, for a function f: [0,00) — %
can be written as

>

t (t— S)oc+1—n (6)

t>t, n—-1<a<n

1 ar Jt 1)

IO g ar

Definition 3 (see [8, 16]). Caputo’s derivative of order o with
the lower limit ¢, for a function f : [0,00) — % can be
written as

o R S AR O)
DU g ), G )
:I"_“f(")(t), t>ty, n—-1<a<n

It is well known thatifn — 1 < « < n, then D*t** = 0,
k = 1,2,...,n. Furthermore, if y(t) € L'[0,T] and & > 0,
then for ¢ € [0, T], we have

DI*y(t) = y(t), (8)
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which is with the semigroup property
ISIa _ 16+oc _ I(x16, (9)

for6+a>0andt € [0,T].
We also need to introduce some Lemmas as follows,
which will be used in the proof of our main theorems.

Lemma 4 (see [19, 20]). Let « > 0; then the fractional
equation

D*(h(t)) =0, (10)

has solutions

h(t) =t + ot 2 4o+ %"

! (11)

GER, i=12,...,n, n=[a]+1l

Lemma 5 (see [19, 20]). Let o > 0; then
I*D*h(t) =h(t) + t*  + ot 2 + -+t (12)

orsomec, € R,i=1,2,...,myn=[a] + 1.
1

Lemma 6 (see [28], the Banach contraction mapping the-
orem). Let T : M — M be a contraction mapping of a
complete metric space M. Then T has one and only one fixed
point.

Lemma 7 (see [28-30], the Leray-Schauder continuation
principle). Let X be a Banach space with C c X being closed
and convex. Assume that U is a relatively open subset of C with
0€UandT:U — C is completely continuous. Then either

(a) T has a fixed point in U, or
(b) there existsu € oU and A € (0,1) withu = ATu.

Throughout this paper, we assume that f,g € C([0, 1] x
[0, 00), [0, 00, )) and we satisfy the following

(H): () f(t,u), g(t, u) is Lebesgue measurable with respect
toton [0,1];

(ii) f(t,u), g(t,u) is continuous with respect to u on
[0, 00).

3. Main Results

For convenience, we rewrite (4) as follows:

DEy(t) = pDE. g (t,y (0 (1)) - f (6, y (x (1)),

0<t<l,

(13)

y(0)=0,
ny (o (1)) =y(1).

(14)
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Integrating both sides of (13) of & order with respect to t,
it follows that

y ()

r((xl ﬁ)J- (t- s)“iﬁ*lg(s,y(a(s)))ds

a-1 a=2 (15)
+ Cot + Clt - m
. Jt t-9)"f(s,y(x(s))ds, 0<t<l.

0
From (14) and (15), we have
¢ =0, (16)
y (1)

=p ! Jl(1—5)“_ﬁ_1g(s,y(a(s)))ds

T(a=p)Jo

1 (! a-
+%"WL 1=9""f (s, (1 (s)))ds,

0<t<l,

y(a (1))

1 a(1) wpo
_Pr(a__ﬁ)L [0 (1) =s1"" g (s, (0 (s)) ds

ocl -
& ()

a(1)
. L [0 (1) =1 f (s, y (t(s))) ds,
0<t<l.
(17)
Combining (14) with (17), we obtain

1
I (o) [1 = 5o (1)]

Coz

1
: JO (1=95)"f (s, y(x(5))ds

_ n
T (a)[1-7r0o*1(1)]

(1)
. JO [0 (1) = s f (s, y (z(5))) ds

B P
I(a=B)[1=no*t (1]

1
. Jo (1- s)“iﬁ*lg (s, y (o (s))ds

P
"Tla-p -0 (]

a(1)
: L [0 (1) = 1P g (s, y (0 (5))) ds,

0<t<l.

According to (15) and (18), it follows that

y(t)

— p ! _ 06—[3—1
T (a-PB) Jo (t-s) g(s,y(0(s))ds

1
_ ,,lo-tx—l (1)]

+
()1

) Jl (1=t f (s, y(1(s))ds
0

B n
T(x)[1-no*t(1)]

o(l)
: J [0 (1) =s]* "t f (s, y (1 (s))) ds

0

p
[ (a=B)[1-no*t (1)]

. Jl (1-5)* P g (s, y (0 (5))) ds
0

P
[(a=p)[1-no*t (1]

+

a(1)
J 1 [0(1)—s]“iﬁ*lto‘*lg(s,y(a(s)))ds
0

——L (t = (s, y (x(5))) ds

“T(a-p) L (t=9)"F"g (s, y (0 (s))ds

~ P
T(a-p)[1-7

t a(l)
(J +J 1+J1 )(l—s)"‘ﬁlt“g(s,y(a(smds
0 t a(1)

gy o

O-a—l (1)]

1
T @[T (1]

t a(1)
(J +J 1+J1 )(1—s)"‘“t"‘“f(s,y(r(S)))ds
0 0 a(1)




P
I (a=p)[1-novt (1)]

+

t (1)
' (L + J > [0 (1) = s1" P % g (s, y (0 (5))) s

B n
(o) [1-1o* ! (1)]

t o(1) 1,a-1
'(L+L )[o(l)—s]“ 7 f (s y (T () ds

_ Jt 1
") T(a-B) [1-no* 1 (1]

Al =ne* ] -9
_ (1 _ S)tx—,B—ltoc—l
+ylo (1) - s]* P!

g(s,y( (s)))} ds

+pjta(1) ( (_(1 e
+7lo (1) - s]*F )
(Ta-p)[1-m* " m])")
-9 (s, y(0(s)))ds

~ 1 (1 _ S)a—ﬁ—lta—l
P Ja(l) [ (a=p)[1-no*t(1)]

g (s y(0(s))ds

_ J(: ( (1=no*" () t-9"

— (1= o (1) - 5]

. (I‘ (@) [1 - r;a“_l (1)])_1)
f (s y((s))ds

[ 9" 4 lo (1) - e
: I'(@) [1-no®t (1)]

(s y(x(s)ds

a—lt(x—l

! (1-5)
" L(l) T(a) [1 - 5o (1)]

f (s y(x(s))ds,

0<t<l.

(19)
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Let
G(t,s)

r((l _ S)a—/}—lttx—l _ (1 _ rlo,ocfl (1))
. (t _ S)tx—ﬁ—l _ 1’][0’ (1) _ S]oc—[;—ltoc—l)
(T(a-p)[1-n""@])
0<s<t<l, s<o(l);
((1 _ S)a—ﬁ—lta—l
—(1-n0* () (t-9*F)
(T (a=p) [1=1o*" (1)])'1,
0<o(l)ss<t<l;
((1 _ S)oc—ﬁ—lta—l _ ;1[0,(1) _ S]oc—ﬁ—lta—l)

. (F (a=Pp) [1 - 110“"1 (1)])_1,
0<t<s<o(l)<1;

((1 _S)Oc—ﬁ—lta—l) B
. (F (a=Pp) [1 L (1)]) ,

0<t<s<l, o(l)<s,

(20)

G(t,s)

’((1 _ S)ocfltoc—l _ (1 _ 170a_1 (1)) (t - S)ocfl
_11[0,(1) _S](X—lt{x—l)
(T@[1-no ])
0<s<t<l,
((1 _S)Oc—lt(x—l
~(1-no* () (t-9°7")
(T [1-70"M]) (21)
0<o(l)ss<t<l;
((1 _ S)oc—ltoc—l _ ’1[0_(1) _ S]tx—lttx—l)
(T@[1-n0*t )]) ",
0<t<s<o(l)<1;
((1 _S)oc—ltoc—l)
(T (@ [1-r0"" (1)])

0<t<s<l, o(l)<s.

s<o(l);

-1
>

According to (19)-(21), it follows that

1
y(@t)=-p L G(t,s)g(s,y(o(s))ds
(22)

1
+ Jo G(t,s) f (s, y(1(s)))ds,

which means that if y(t) satisfies (13)-(14), then it satisfies
(22). It is easy to show that if y(t) satisfies (22), then it also
satisfies (13)-(14). Thus, the boundary value problem (13)-(14)
is actually equivalent to integral equation (22). Therefore, we
have the following.

Lemma 8. Problem (13)-(14) is equivalent to (22).

Lemma 9. For any (t,s) € (0,1) x (0,1), G(¢, s),G(t, s) are
continuous and G(t, s) > 0, G(t,s) > 0.
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Proof. It is obvious that G(t,s), G(t,s) are continuous on
[0,1] x [0, 1]. We first prove that G(¢,s) > 0 on [0, 1] x [0, 1].
Let

91 (t,5)
= (1= P (1o ()] (- 9
—qlo (1) = s]* P,
0<s<t<l, s<o(l);
9, (t$)
=(1-9* P - [1- e (] k- 9* T, (23)
0<o(l)ss<t<l;
g5 (£,9)
= (1= —plo (1) - s P,
O<t<s<o(l)<1;

g (6s)= (1= P! 0<t<s<1, o(l)<s.

We first show that g,(t,s) > 0,0 < s <t < 1,s < o(1). We
rewrite g, (¢, s) as follows:

g, (,s)

= ! ((1 N (1=t (1)]

: (1 - f)aiﬁflt‘ﬁ —ylo (1) - s]“‘ﬁ‘1> .

(24)

Let
hy (t,s) = (1—s)* P!

~[1-n0"" ()] <1 - ;)a_ﬁ_lt’ﬁ (25)

—nlo (1) -s]* P
Since 0 < #o*"'(1) < 1, then
h(s,5)= (1= P —ylo)-s*P >0 (26)

Differentiating both sides of (25) with respect to t, it follows
that

oh, (t,s)
ot

_ [1 _ r]o_zx—l (1)] (1 B ;)a—ﬁ—Zt_ﬁ—z

~[(ﬁ—(x+1)s+(l—§>tﬁ]

= [1-70"" (1] (1 - ;)a_ﬁ_zt_ﬁ_z (s—as+tf) =0,

O0<s<t<l;
(27)

which means that h,(t,s) is nondecreasing with respect to
t on [s,1]. Thus, for any t € [s, 1], hy(t,s) = hy(s,s) > 0,
therefore, g,(t,s) = t* 'h,(t,s) > 0.

Using the similar method, we can prove that g,(t,s) > 0,
and it is obvious that g;(t,s) > 0, g,(¢t,s) > 0. Hence,
combining (20) and (23), we obtain that G(¢, s) > 0.

Now, we prove that G(t,s) > 0. Denote

91 (t,9)
=(1=9" " = [1-no™ ()] (¢ - 9"
—nlo (1) - s]* 17,
0<s<t<l, s<o(l);
9 (t,s)
== = [1-pe* W] -9, (28)
0<o(l)ss<t<l;
95 (£,9)
= (1= —plo (1) - 5] e,
O0<t<s<o(l)<1;
G (ts) =1 -9,

Let

hy(t,s) = (1-9)"" = [1-1no"" (1] (1 - f)a_l (29)

0<t<s<l1,o0()<s

t
—nlo(1)-s)*".
Since 0 < 70* (1) < 1, then

By (L,s) 2 (1-9%" = [1-no" " ()] (1 - 9™

~nlo(1)-s]*"
= o™ () (1= —nlo()-s]*"  (30)
=nlo (1) =so (" =nlo (1) -s]*"
2nlo (1) =" —nlo () -s]"" =0,
Differentiating both sides of (29) with respect to ¢, it follows

that

R, (t5) a1 ) e
1a_t__(a_1)[1—110 (1)]<1‘Z> @

<0, O0<s<t<l

which means that 71, (£, s) is nonincreasing with respect to t on
[s,1]. Thus, for any ¢ € [s, 1], &, (¢, ) > h,(1,s) > 0, therefore,
G,(t,s) =t Ry (t,s) > 0.

Using the similar method, we can prove that g,(t,s) >
0, and the case that g;(t,s) > 0, g,(t,s) > 0 is obvious.
Combining (21) and (28) and using the above argument, we
obtain that G(t,s) > 0. The proof is complete. O



Lemma 10. For any (t,s) € (0,1) x (0,1), G(t,s), G(t,s) are
nondecreasing functions with respect to t € (0, 1); that is, for
anyt € (0,1), G(t,s) > G(s, s),G(t,s) > G(s, s).

Proof. According to the proof of Lemma 9, we notice that

g, (t;s) _ a-2 a-10hy (t,5)
3 =(a-1)t""h (t,s)+t 5 > 0,
O0<s<t<l,
0g, (t,s)
a0 (32
0g; (t,s)
0)
ot g
9g, (t,s)
——= > 0.
o
At the same time, for s < t < 1, we have
0g, (t,s)
ot

= (-1 (1 -9 = [1-10"" ()]
X (t _ S)oﬁZ _ }7[0, (1) _ S]a—lta—Z

> (- Dt [(1-9)"" —plo (1) - 5] ] 20, 33)

9g, (£, 3)
2227 5,
ot

0g; (t,s)
2327 5,
of

0g, (t,s)
—— > 0.
o

The proof is complete. O

Now, we present our main results.

Theorem 11. Assume that (H) holds. Suppose that there are
two functions A(t), u(t) € C([0, 1], [0, 00)) such that

|f (tw) = f &V <A@ [u-v,

for t € [0,1], u,v € [0,00),
(34)

lg(tuw)—g &) <pu @ lu-v,

for t € [0,1], u,v € [0,00).
I
1 1
—pJ G(l,s)y(s)ds+J G(L,s)A(s) <1, (35
0 0
then the problem (13)-(14) has a unique positive solution.

Proof. Set

Q={y()eC[0,1] | y(t) 20, fort € [0,1]},  (36)
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with the maximum norm

Iyl = max|y ®)]. 37)

0<t<1

It is easy to show that Q is a complete metric space. We denote
a operator T as follows:

1
Ty(t)=-p L G(ts)g(s, y(o(s))ds
(38)

1
¢ [ 609 f ey

From Lemma 9 and the conditions p < 0, f > 0,g > 0, it
follows that T maps Q into itself and we only need to prove the
contraction. In fact, according (H) and (34), for any u, v € Q,
we have

I Tu - Tv||

= max
0<t<1

-p J: G(t,s)g(s,u(o(s))ds

1
+ pj G(t,s)g(s,v(a(s))ds

0

+f5mofuuw®D%
0

1
_ L G(t,s) f (s,v(z(s)ds

1
<-p JO G(ts)u(s)|u(o(s) —v(o(s)lds
1~
+ L G(t,s)A(s)lu(z(s)) —v(r(s))lds
1 1
< [—pJ G(t,s)y(s)d5+J G(t,s))t(s)] [lze — ||
0 0

1 1~
< [—pj G(l,s)y(s)duj G(l,s)/\(s)] = v
0 0

< lu—vll,
(39)

which means that
| Tu—Tv| < ||lu—v|. (40)

By the Banach contraction mapping principle (Lemma 6), we
obtain that T has a unique fixed point 7(¢) which is a positive
solution of (13)-(14). The proof is complete. O

Remark 12. If p = 0, f(t, y(z(t))) = f(y(t)), then problem
(13)-(14) is problem (3).
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Theorem 13. Assume that (H) holds. Suppose that there exists
four nonnegative real-valued functions m,n,l,q € L'[0,1]
such that

ftu)<n®)+mt)u,
(41)
for almost every t € [0,1] and all u € [0,00),

gLw <1 +qOu,

for almost every t € [0,1] and all u € [0,00).

(42)

I

Jl (G s)m(s) - pG(1,9)q(s)]ds < 1, (43)

0

then the problem (13)-(14) has at least one positive solution.

Proof. We also consider the operator T defined in (38). We
divide the proof into four steps.

Step 1. T : QO — () is continuous.

Let y,(t) be a sequence in Q such that y,(t) — y(f) as
n — oo. Noticing that f(t, y), g(t, y) are continuous with
respect to y, then for each ¢ € [0, 1], we have

Jim £ (6,3, (r () = £ (6,7 (2 (1)),

(44)
1im (£, 3, (0 (1) = g (6, y (0 ()3
thus,
Jim_ sup |f (ty, @) - f(ty @ @) =0,
’ (45)

n— 0o

lim ﬁng(nxxaa»)—ga»waanﬂ=O,

which implies that

Ty, (t) - Ty (t)]

1
) ’—p L G(t,5) g (s, 7, (0 (s))ds
1
+p L G(t,s)g(s,y(a(s))ds
1 —_—
i Jo G(t:9) f (53, (0 (s)))ds

1
_Lémﬂf@yW@n“

1

<-p L G(t,9) |9 (s ¥, (0 (5) = g (s, y (0 (s)))|ds
1

+ [ G (0@ -1 sy o)) ds

1
<-p L G(1,s)ds sup] |9 (s, 3, (0 (5))) = g (s, 5 (0 (5))|

te[0,1

1
+ L G(1,s)ds sup] |f (5,9, (@ () = f (5,7 (0 (s)))]

te[0,1

— 0, asn— oo.
(46)

Step 2. T maps bounded sets into bounded sets in Q.
Indeed, it suffices to show that for any y > 0, there exists
a positive constant #” > 0 such that for y € B, = {y € Q :

||y|| <y}, we have ||Ty|| < n”. From (38)-(43), we have

17y

= max
0<t<1

1
-p L G(t,5)g(sy (0 () ds

1
+ L G(t,s) f (s, y(1(s))ds

1
<-p L G(t,s)[l(s)+q(s)y(a(s)]ds

L (47)
+ L G(t,s)[n(s) +m(s) y(r(s)]ds

< Jl [-pG (1,5)1(s) + G (1,5)n(s)] ds

0

1
+ J [—pG(l,s)q(s) + G(l,s)m(s)] ds ||y||

0

< Jl [—PG(LS)Z(S)+G(1,s)n(s)]d5+y =",
0

which means
|y <7 (48)

Step 3. T maps bounded sets into equicontinuous sets in Q.
Foranyt,,t, € [0,1],f, < t,, and for each y(t) € B, we
have

[Ty (t,) - Ty (t,)|

= ‘—p JOI [G(t,s) =G (tys)] g(s, y(o(s)ds

+ Ll [G(tl,s) - é(tz,s)] f(sy(s))ds



1
<-p L IG (t1,5) = G (t,5)| [1(s) + g (s) y (0 (5))] ds
1
+ [ 16009 -G lens)| In @+ m (0 y (o)) ds

1
< —pj |G (t1,5) = G ()| [1(s) + g (s) y] ds

0

1
+ [ 669G 9| In) +m @y ds
(49)

Because G(t, s), G(t, s) are continuous on [0, 1] x [0, 1], it is
uniformly continuous on [0, 1] x [0, 1], which means that for
any € > 0, there exists § > 0, when [t, — t;| < §,s € [0, 1],

|G (t,,s) = G(ty5)| < £ ,
1 2 2(-p) J, [1(5) +q(s)y] ds
_ _ . (50)
G (t;,s) =G (t,), )| < )
|G (£1,5) = G (t2,5)| 2f01[n(s)+m(s)y]ds
Thus
Ty (t) - Ty (t,)| <, (51)

which means that {Ty : y € B, } is equicontinuous.

Step 4. A priori bounds.
Let

U={yeQ:|y|<r},
[N [Go)n(s) - pGLe)l(s)]ds  (52)

where r = - .
1= [, [Gs)m(s) - pG(1,5)q(s)] ds

Assume that there exists y € Uand 0 < A < 1 such that
y = ATy and we claim that || y| #r. In fact,

y () = A(Ty)(t)

1
=A [—P L G(t,5) g (s, y(0o(s))ds (53)

1
+L G(t,s) f (s y(1(s))ds|,
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which implies that

ly )
1
= l—p L G(t,s)g(s,y(o(s)ds
1 —_—
+ L Gts) f(sy((s))ds
1
<p[ GEIO a0y o) ds
1 —_—
+ j G(t,s)[n(s)+m(s) y(r(s))] ds (54)
0
< Ll [-pG (1,5)1(s) + G (1,5) n(s)] ds
1
+ L [—pG(l,s)q(s) + G(l,s)m(s)] ds|y|

< Jl [-pG(1,5)1(s) + G (1,5)n(s)] ds
0

1
+ rj [-pG (1,5)q(s) + G (1,5)m(s)] ds =,
0
which means that

Iy < (55)

That is, there is no y € 0U, such that y = ATy for0 < A < 1.
From Step 1 to Step 3, it follows that T is completely

continuous. Along with Step 4 and Lemma 7, it follows that

T has at least a fixed point in U. The proof is complete. ~ [J

4. Examples

Example 1. Consider

D*x (t) + 1D3/4 ( 2x (t/2) )

2 10 [1 + x (£/2)]

3 e'x(t/2)

T 9+e)[1+x(t/2)] teloal, (56)
x(0) =0,

w=s(3).
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where

(57)

rm=om=;

_ Px(@/2)
T10[1 +x(¢/2)]

e'x(t/2)
9+e)[1+x(t/2)]

f=

It is easy to show that

A(t) =

9+ et
(58)

ut)=—
Let

h(x)=——

, x>0 59
1+x (59)

then

|x - y|

x v
1+x)(1+y) (60

I+x 1+y

|h(x) - h(y)| =

<|lx-y|, forx,y>0;

thus,

If (tw) = FEV] <A@ [u-vl,
(61)

lgt.w)— gt v)| < pu@)lu-vl,

which satisfies (28), (29). Because

(-9 - (1-1/V2)
(A=) =/2-57)
.(r(3/4)(1—1/\/'))_1

G(1,5) = 1 0<s<;
((1—5)—1/4 ( 1/{)(1 DE 1/4)
(rem(-1v2)
%Sssl

(19"~ (1-1/V2)
(1-9"-(1/2-9")
(rem(1-1V2)

1

—~ 0<s<—;
G(1,s) = 3 2

(1-9" - (1-1/V2)(1-9'")
(TG (1-1yV2)

IN
©

IN
—

l\.)l»—l

thus

1 1
—pj G(l,s)y(s)ds+'[ G(1,s) A(s)
0 0

sy VA (1)2—s) VA &

L['?1/v2(1 -
-

s)—1/4

1 1/v2(1 - s
—d
"2 L/z I (3/4)(1-1/+2) 10 )

r3/4)(1-1/v2) 107

JI/Z 1/V2(1 = )2 = (1/2-9)* &
I(3/2)(1-1/2)

J /21 -9 e ds
12T(3/2) (1-1/V2) 9 +¢€

S)—1/4 52

1
EJ r(3/4) 10

1 (! (1-s)V4 &
= sy
! .[1/2 PG4 (vV2-1)10°

1/2 (1 5)1/2 efs
d
+J0 r(3/2)(\/’ )9+e5 s

1 (1 _S)I/Z e
d
’ L/z F(3/2)(\/§— 1) 9re”

9+ef

(62)
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1 1
S ot (3/4)(V2-1) ! 9 (3/2) (V2 -1)

~ 0.4014 < I;
(63)

which satisfies Theorem 11. Thus (56) has a unique positive
solution on [0, 1].
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