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The aim of this paper is to initiate the study of coincidence best proximity point problem in the setup of generalized metric spaces.
Some results dealing with existence and uniqueness of a coincidence best proximity point ofmappings satisfying certain contractive
conditions in such spaces are obtained. An example is provided to support the result proved herein. Our results generalize, extend,
and unify various results in the existing literature.

1. Introduction and Preliminaries

Let 𝑌 be any nonempty subset of a metric space 𝑋 and 𝑇 :
𝑌 → 𝑋. A fixed point problem Fix(𝑋, 𝑌, 𝑇) defined by 𝑋,𝑌
and 𝑇 is to find a point 𝑥∗ in 𝑌 such that 𝑑(𝑥∗, 𝑇𝑥∗) = 0. A
point 𝑥∗ in 𝑌, where inf{𝑑(𝑦, 𝑇𝑥∗) : 𝑦 ∈ 𝑌}, is attained; that
is, 𝑑(𝑥∗, 𝑇𝑥∗) = inf{𝑑(𝑦, 𝑇𝑥∗) : 𝑦 ∈ 𝑌} holds and is called an
approximate fixed point of𝑇. In case it is not possible to solve
Fix(𝑋, 𝑌, 𝑇), it could be interesting to study the conditions
that assure existence and uniqueness of approximate fixed
point of a mapping 𝑇.

Let 𝐴 and 𝐵 be two nonempty subsets of 𝑋 and 𝑇 : 𝐴 →
𝐵. Suppose thatΔ

𝐴𝐵
= 𝑑(𝐴, 𝐵) = inf({𝑑(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵})

is themeasure of a distance between two sets𝐴 and𝐵. A point
𝑥
∗ is called the best proximity point of𝑇 if 𝑑(𝑥∗, 𝑇𝑥∗) = Δ

𝐴𝐵
.

Thus the best proximity point problem defined by a mapping
𝑇 and a pair of sets (𝐴, 𝐵) is to find a point 𝑥∗ in 𝐴 such that
𝑑(𝑥
∗

, 𝑇𝑥
∗

) = Δ
𝐴𝐵
. If 𝐴 ∩ 𝐵 = 𝜙, the fixed point problem

defined by 𝐴, 𝐵 and 𝑇 has no solution. If 𝐴 = 𝐵, the best
proximity point problem reduces to a fixed point problem. In
this way, the best proximity point problem can be viewed as a
natural generalization of a fixed point problem. Furthermore,
results dealing with existence and uniqueness of the best
proximity point of certain mappings are more general than
the ones dealing with fixed point problem of those mappings.
A coincidence best proximity point problem is defined as

follows: find a point 𝑥∗ in 𝐴 such that 𝑑(𝑔𝑥∗, 𝑇𝑥∗) = Δ
𝐴𝐵
,

where𝑔 is a self-mapping on𝐴.This is an extension of the best
proximity point problem. There are several results dealing
with proximity point problem in the setup of metric spaces
(see, e.g., [1–11] and references mentioned therein).

Mustafa and Sims [12] introduced the concept of a 𝐺-
metric space as a substantial generalization of metric space.
They [13] obtained some fixed point theorems for mappings
satisfying different contractive conditions in such spaces.
Based on the notion of generalized metric spaces, Mustafa
et al. [14–16] obtained several fixed point theorems for
mappings satisfying different contractive conditions.Mustafa
et al. [17–19] obtained some fixed point theorems for map-
pings satisfying different contractive conditions. Chugh et al.
[20] obtained some fixed point results for maps satisfying
property𝑃 in𝐺-metric spaces. Saadati et al. [21] studied fixed
point of contractive mappings in partially ordered 𝐺-metric
spaces. Shatanawi [22] obtained fixed points ofΦ-maps in𝐺-
metric spaces. For more details, we refer to, for example, [22–
39] and references therein.

A study of the best proximity point problem in the
setup of 𝐺-metric space is a recent development by Hussain
et al. [40]. This motivates us to extend the scope of this
investigation and extend this study to coincidence proximity
point problem of certain mappings in the framework of
generalized metric spaces.
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2 Abstract and Applied Analysis

Consistent withMustafa and Sims [12], the following def-
initions and results will be needed in the sequel.

Definition 1. Let 𝑋 be a nonempty set. Suppose that a map-
ping 𝐺 : 𝑋 × 𝑋 × 𝑋 → 𝑅+ satisfies

(G1) 0 ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝐺(𝑥, 𝑦, 𝑧) = 0 if
and only if 𝑥 = 𝑦 = 𝑧,

(G2) 0 < 𝐺(𝑥, 𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ̸= 𝑦,
(G3) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, with 𝑦 ̸= 𝑧,
(G4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (symmetric

in all three variables),
(G5) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) +𝐺(𝑎, 𝑦, 𝑧) for all𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋

(rectangle inequality).

Then 𝐺 is called a generalized metric on𝑋 or 𝐺-metric on𝑋
and (𝑋, 𝐺) is called a 𝐺-metric space.

Definition 2. Let (𝑋, 𝐺) be a 𝐺-metric space, {𝑥
𝑛
} a sequence

in𝑋, and 𝑥 ∈ 𝑋. One says that {𝑥
𝑛
} is

(i) a 𝐺-Cauchy sequence if, for any 𝜀 > 0, there exists
a natural number 𝑁 such that, for all 𝑛,𝑚, 𝑙 ≥ 𝑁,
𝐺(𝑥
𝑛
, 𝑥
𝑚
, 𝑥
𝑙
) < 𝜀;

(ii) a 𝐺-convergent sequence if, for any 𝜀 > 0, there
exists a natural number 𝑁 such that, for all 𝑛,𝑚 ≥
𝑁, 𝐺(𝑥

𝑛
, 𝑥
𝑚
, 𝑥) < 𝜀 for some 𝑥 in𝑋.

A 𝐺-metric space𝑋 is said to be complete if every 𝐺-Cauchy
sequence in 𝑋 is convergent in 𝑋. It is known that {𝑥

𝑛
}

converges to 𝑥 ∈ (𝑋, 𝐺) if and only if 𝐺(𝑥
𝑚
, 𝑥
𝑛
, 𝑥) → 0 as

𝑛,𝑚 → ∞.

Proposition 3. Let (𝑋, 𝐺) be a 𝐺-metric space; then the
following are equivalent.

(1) {𝑥
𝑛
} converges to 𝑥 ∈ 𝑋.

(2) 𝐺(𝑥
𝑛,
𝑥
𝑚
, 𝑥) → 0, as𝑚, 𝑛 → ∞.

(3) 𝐺(𝑥
𝑛
, 𝑥
𝑛
, 𝑥) → 0, as 𝑛 → ∞.

(4) 𝐺(𝑥
𝑛
, 𝑥, 𝑥) → 0, as 𝑛 → ∞.

Definition 4. A 𝐺-metric on 𝑋 is said to be symmetric if
𝐺(𝑥, 𝑦, 𝑦) = 𝐺(𝑦, 𝑥, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.

Proposition 5. Every 𝐺-metric on 𝑋 will define a metric 𝑑
𝐺

on 𝑋 by

𝑑
𝐺
(𝑥, 𝑦) = 𝐺 (𝑥, 𝑦, 𝑦) + 𝐺 (𝑦, 𝑥, 𝑥) , ∀𝑥, 𝑦 ∈ 𝑋. (1)

Remark 6. Let {𝑥
𝑛
} be a sequence in 𝐺-metric space 𝑋. If

{𝐺(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)} → 0 and {𝑥

𝑛
} is not a Cauchy sequence,

then there exist 𝜖
0
> 0 and two subsequences {𝑥

𝑚(𝑘)
} and

{𝑥
𝑛(𝑘)
} such that, for all 𝑘 ∈ N, 𝑘 ≤ 𝑚(𝑘) < 𝑛(𝑘),

𝐺(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
) ≥ 𝜖

0
, and 𝐺(𝑥

𝑚(𝑘)
, 𝑥
𝑙
, 𝑥
𝑙
) < 𝜖

0
for

all 𝑙 ∈ {𝑚(𝑘) + 1,𝑚(𝑘) + 2, . . . , 𝑛(𝑘) − 2, 𝑛(𝑘) − 1}. If
lim
𝑘→∞

𝐺(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
) = 𝜖
0
, then

lim
𝑘→∞

𝐺 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
) = 𝜖
0
,

lim
𝑘→∞

𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙
, 𝑥
𝑛(𝑘)+𝑙
) = 𝜖
0
,

(2)

for all 𝑙 ≥ 0. Indeed, if {𝐺(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)} → 0, then, for all

𝑘 ∈ N, we have

𝐺 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
)

≤ 𝐺 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
) + 𝐺 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
)

≤ 𝐺 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
) + 𝐺 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)

+ 𝐺 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
) ,

𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)

≤ 𝐺 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
) + 𝐺 (𝑥

𝑚(𝑘)−1
, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
)

+ 𝐺 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
) .

(3)

From (3) we have

𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
) − 𝐺 (𝑥

𝑚(𝑘)−1
, 𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
)

− 𝐺 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
)

≤ 𝐺 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
)

≤ 𝐺 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)
) + 𝐺 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)

+ 𝐺 (𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
) .

(4)

Taking limit as 𝑘 → ∞, we obtain that lim
𝑘→∞

𝐺(𝑥
𝑚(𝑘)−1

,

𝑥
𝑛(𝑘)−1
, 𝑥
𝑛(𝑘)−1
) = 𝜖
0
. To prove

lim
𝑘→∞

𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙+1

, 𝑥
𝑛(𝑘)+𝑙+1

) = 𝜖
0 (5)

for all 𝑙 ≥ 0, we use induction on 𝑙. Equation (5) for 𝑙 = 0 holds
obviously. Suppose that (5) holds for some 𝑙 > 0. Consider

𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙+1

, 𝑥
𝑛(𝑘)+𝑙+1

) ≤ 𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙
, 𝑥
𝑛(𝑘)+𝑙
)

+ 𝐺 (𝑥
𝑛(𝑘)+l, 𝑥𝑛(𝑘)+𝑙+1, 𝑥𝑛(𝑘)+𝑙+1) .

(6)

Also,

𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙
, 𝑥
𝑛(𝑘)+𝑙
) ≤ 𝐺 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙+1

, 𝑥
𝑛(𝑘)+𝑙+1

)

+ 𝐺 (𝑥
𝑛(𝑘)+𝑙+1

, 𝑥
𝑛(𝑘)+1
, 𝑥
𝑛(𝑘)+1
) .

(7)

From (6) and (7), we obtain that

𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙
, 𝑥
𝑛(𝑘)+𝑙
) − 𝐺 (𝑥

𝑛(𝑘)+𝑙+1
, 𝑥
𝑛(𝑘)+1
, 𝑥
𝑛(𝑘)+1
)

≤ 𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙+1

, 𝑥
𝑛(𝑘)+𝑙+1

)

≤ 𝐺 (𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙
, 𝑥
𝑛(𝑘)+𝑙
) + 𝐺 (𝑥

𝑛(𝑘)+𝑙+1
, 𝑥
𝑛(𝑘)+1
, 𝑥
𝑛(𝑘)+1
) .

(8)



Abstract and Applied Analysis 3

Taking limit as 𝑘 → ∞, we have lim
𝑘→∞

𝐺(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)+𝑙+1

,

𝑥
𝑛(𝑘)+𝑙+1

) = 𝜖
0
.

Definition 7. Let 𝑋 be a 𝐺-metric space and 𝐴 and 𝐵 two
nonempty subsets of𝑋. Define

Δ
𝐺

𝐴𝐵
= 𝐺 (𝐴, 𝐵, 𝐵) = inf {𝐺 (𝑎, 𝑏, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ,

𝐴
0
={𝑎 ∈ 𝐴 : there exists some 𝑏 ∈ 𝐵 such that 𝐺 (𝑎, 𝑏, 𝑏) ,

= Δ
𝐺

𝐴𝐵
} ,

𝐵
0
={𝑏 ∈ 𝐵 : there exists some 𝑎 ∈ 𝐴 such that 𝐺 (𝑎, 𝑏, 𝑏)

= Δ
𝐺

𝐴𝐵
} .

(9)

Now we define the concept of 𝑔-best proximity point of a
mapping in the setup of 𝐺-metric spaces.

Definition 8. Let 𝑋 be a 𝐺-metric space and 𝐴 and 𝐵 two
nonempty subsets of 𝑋. Suppose that 𝑇 : 𝐴 → 𝐵, and
𝑔 : 𝐴 → 𝐴. A point 𝑥 ∈ 𝐴 is called 𝑔-best proximity point
of 𝑇 if 𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥) = Δ𝐺

𝐴𝐵
.

Note that if 𝑔 is an identitymapping on𝐴, then 𝑥 in above
definition becomes the best proximity point of 𝑇.

Consistent with [41], we consider the following classes of
mappings.
Ψ = {𝜑 : [0,∞) → [0,∞) such that, for all 𝑡 > 0,

the series∑
𝑛≥1
𝜑
𝑛

(𝑡) converges}. Elements inΨ are called (c)-
comparison functions.
Φ = {𝜙 : [0,∞) → [0,∞) such that 𝜙(𝑡) < 𝑡 and

lim
𝑟→ 𝑡
+ 𝜙(𝑟) < 𝑡 for all 𝑡 > 0}.

Θ = {𝜃 : [0,∞)
4

→ [0,∞) such that 𝜃(𝑎, 𝑏, 𝑐, 𝑑) =
0 if one or more arguments take the value zero and 𝜃 is
continuous}.
Ω
1
= {𝜃 : [0,∞)

4

→ [0,∞) such that 𝜃(𝑎, 𝑏, 𝑐, 𝑑) = 0 if
one or more arguments take the value zero}.
Ω
1
= {𝜃 : [0,∞)

4

→ [0,∞) such that 𝜃(0, 𝑏, 𝑐, 𝑑) = 0}.
Ω
2
= {𝜃 : [0,∞)

4

→ [0,∞) such that
lim
𝑛→∞

𝜃(𝑡
1

𝑛
, 𝑡
2

𝑛
, 𝑡
3

𝑛
, 𝑡
4

𝑛
) = 0, whenever the sequences {𝑡1

𝑛
},

{𝑡
1

𝑛
}, {𝑡1
𝑛
}, {𝑡1
𝑛
} ⊂ [0,∞) are such that at least one of them is

convergent to zero}.

Definition 9. Let 𝑋 be a 𝐺-metric space and 𝐴 and 𝐵 two
nonempty subsets of 𝑋, 𝑔 : 𝐴 → 𝐴, and 𝛼 : 𝑋 × 𝑋 →
[0,∞). A mapping 𝑇 : 𝐴 → 𝐵 is said to be (𝜑, 𝜃, 𝛼, 𝑔)-
contraction if, for all 𝑥, 𝑦 ∈ 𝐴

0
with 𝐺(𝑔𝑦, 𝑇𝑥, 𝑇𝑥) = Δ𝐺

𝐴𝐵

and 𝛼(𝑔𝑥, 𝑔𝑦) ≥ 1, one has

𝛼 (𝑔𝑥, 𝑔𝑦)𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)

≤ 𝜑 (𝑀
𝑔

(𝑥, 𝑦, 𝑦))

+ 𝜃 (𝐺 (𝑔𝑦, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥, 𝑇𝑦, 𝑇𝑦) − Δ

𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑦, 𝑇𝑦, 𝑇𝑦) − Δ

𝐺

𝐴𝐵
) ,

(10)

where

𝑀
𝑔

(𝑥, 𝑦, 𝑦)=max(𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) , 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ
𝐴𝐵
,

𝐺 (𝑔𝑦, 𝑇𝑦, 𝑇𝑦)−Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥, 𝑇𝑦, 𝑇𝑦)+𝐺 (𝑔𝑦, 𝑇𝑦, 𝑇𝑦)

2
−Δ
𝐺

𝐴𝐵
),

(11)

𝜓 ∈ Ψ and 𝜃 ∈ Θ.

Definition 10. Let 𝑋 be a 𝐺-metric space and 𝐴 and 𝐵 two
nonempty subsets of 𝑋, 𝑔 : 𝐴 → 𝐴, and 𝛼 : 𝑋 ×
𝑋 → [0,∞). A mapping 𝑇 : 𝐴 → 𝐵 is said to be (𝛼, 𝑔)-
proximinal and admissible if 𝑎

1
, 𝑎
2
, 𝑏
1
, 𝑏
2
∈ 𝐴
0
, 𝛼(𝑔𝑏

1
, 𝑔𝑏
2
) ≥

1, 𝐺(𝑔𝑎
1
, 𝑇𝑏
1
, 𝑇𝑏
1
) = Δ
𝐺

𝐴𝐵
, 𝐺(𝑔𝑎

2
, 𝑇𝑏
2
, 𝑇𝑏
2
) = Δ
𝐺

𝐴𝐵
, and

⇒ 𝛼 (𝑔𝑎
1
, 𝑔𝑎
2
) ≥ 1. (12)

Definition 11. Let 𝑋 be a 𝐺-metric space and 𝐴 and 𝐵 two
subsets of 𝑋 such that 𝐴

0
is nonempty, 𝑇 : 𝐴 → 𝐵, and

𝑔 : 𝐴 → 𝐴. For 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
∈ 𝐴
0
, the quadruple (𝐴, 𝐵, 𝑇, 𝑔)

has

(1) weak 𝑃-property of the first kind if

𝐺 (𝑔𝑎
1
, 𝑇𝑎
3
, 𝑇𝑎
3
) = Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑎

2
, 𝑇𝑎
4
, 𝑇𝑎
4
) = Δ
𝐺

𝐴𝐵

implies that 𝐺 (𝑔𝑎
1
, 𝑔𝑎
2
, 𝑔𝑎
2
) ≤ 𝐺 (𝑇𝑎

3
, 𝑇𝑎
4
, 𝑇𝑎
4
) ;

(13)

(2) weak 𝑃-property of the second kind if

𝐺 (𝑔𝑎
1
, 𝑇𝑎
3
, 𝑇𝑎
3
) = Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑎

2
, 𝑇𝑎
4
, 𝑇𝑎
4
) = Δ
𝐺

𝐴𝐵

implies that 𝐺 (𝑔𝑎
1
, 𝑔𝑎
2
, 𝑔𝑎
2
) = 𝐺 (𝑇𝑎

3
, 𝑇𝑎
4
, 𝑇𝑎
4
) ;

(14)

(3) weak 𝑃-property of the third kind if

𝐺 (𝑔𝑎
1
, 𝑇𝑎
3
, 𝑇𝑎
3
) = Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑎

2
, 𝑇𝑎
4
, 𝑇𝑎
4
) = Δ
𝐺

𝐴𝐵

implies that 𝐺 (𝑔𝑎
1
, 𝑔𝑎
2
, 𝑔𝑎
2
) ≤ 𝐺 (𝑇𝑏

1
, 𝑇𝑏
2
, 𝑇𝑏
2
) .

(15)

Definition 12 (see [41]). Let 𝑔 : 𝐴 → 𝐴 and 𝛼 : 𝑋 × 𝑋 →
[0, 1) be two mappings and let 𝑁 ∈ N, 𝑁 ≥ 2. One will
say that 𝛼 is (𝑁, 𝑔)-transitive on 𝐴

0
if 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁+1
∈ 𝐴
0
,

𝛼(𝑔𝑥
𝑖
, 𝑔𝑥
𝑖+1
) ≥ 1 ∀𝑖 ∈ {1, 2, . . . , 𝑁} ⇒ 𝛼(𝑔𝑥

1
, 𝑔𝑥
𝑁+1
) ≥ 1.

Indeed, we will only use the notion of (2, 𝑔)-transitive
mapping on 𝐴

0
; that is, 𝑥

1
, 𝑥
2
, 𝑥
3
∈ 𝐴
0
, 𝛼(𝑔𝑥

1
, 𝑔𝑥
2
) ≥ 1,

𝛼(𝑔𝑥
2
, 𝑔𝑥
3
) ≥ 1, and

⇒ 𝛼 (𝑔𝑥
1
, 𝑔𝑥
3
) ≥ 1. (16)
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2. Coincidence Best Proximity Point Results

In this section, we obtain several coincidence best proximity
results in the setup of generalized metric spaces.

Theorem 13. Let 𝑋 be a complete 𝐺-metric space, 𝐴 and 𝐵
two closed subsets of 𝑋, and 𝑔 a continuous self-mapping on
𝐴 such that 𝜙 ̸= 𝐴

0
⊆ 𝑔𝐴

0
. Suppose that 𝑇 : 𝐴 → 𝐵

is continuous (𝛼, 𝑔)-proximal and admissible and (𝜑, 𝜃, 𝛼, 𝑔)-
contraction, where 𝜑 ∈ Ψ, 𝜃 ∈ Ω

1
, and 𝑇(𝐴

0
) ⊆ 𝐵

0
. If the

following conditions hold:

(a) quadruple (𝐴, 𝐵, 𝑇, 𝑔) satisfies weak 𝑃-property of the
first kind;

(b) if a sequence {𝑧
𝑛
} in𝐴

0
such that {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is Cauchy,

then {𝑧
𝑛
} is also a Cauchy;

(c) there exists (𝑥
0
, 𝑥
1
) ∈ 𝐴

0
× 𝐴
0
such that 𝐺(𝑔𝑥

1
,

𝑇𝑥
0
, 𝑇𝑥
0
) = Δ
𝐺

𝐴𝐵
and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1.

Then there exists a convergent sequence {𝑥
𝑛
} ⊆ 𝐴

0
which

satisfies

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ
𝐺

𝐴𝐵
∀𝑛 ≥ 0, (17)

and the limit of {𝑥
𝑛
} is a 𝑔-best proximity point of 𝑇.

Proof. Let 𝑥
1
∈ 𝐴
0
. Then 𝑇𝑥

1
∈ 𝑇(𝐴

0
) ⊆ 𝐵
0
. Hence there is

𝑧
2
∈ 𝐴 such that 𝐺(𝑧

2
, 𝑇𝑥
1
, 𝑇𝑥
1
) = Δ

𝐺

𝐴𝐵
which implies that

𝑧
2
∈ 𝐴
0
. As 𝐴

0
⊆ 𝑔𝐴
0
, there is 𝑥

2
∈ 𝐴
0
such that 𝑔(𝑥

2
) = 𝑧
2
,

so 𝐺(𝑔𝑥
2
, 𝑇𝑥
1
, 𝑇𝑥
1
) = 𝐺(𝑧

2
, 𝑇𝑥
1
, 𝑇𝑥
1
) = Δ

𝐺

𝐴𝐵
. In a similar

way, there is 𝑥
3
∈ 𝐴
0
such that 𝐺(𝑔𝑥

3
, 𝑇𝑥
2
, 𝑇𝑥
2
) = Δ

𝐺

𝐴𝐵
.

Inductively we construct a sequence {𝑥
𝑛
} ⊆ 𝐴

0
such that

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ
𝐺

𝐴𝐵
∀𝑛 ≥ 0. (18)

If there exists some 𝑛
0
∈ 𝑁, such that 𝑔𝑥

𝑛
0

= 𝑔𝑥
𝑛
0
+1
, then

𝐺(𝑔𝑥
𝑛
0

, 𝑇𝑥
𝑛
0

, 𝑇𝑥
𝑛
0

) = 𝐺(𝑔𝑥
𝑛
0
+1
, 𝑇𝑥
𝑛
0

, 𝑇𝑥
𝑛
0

) = Δ
𝐺

𝐴𝐵
implies

that 𝑥
𝑛
0

is a 𝑔-best proximity point of𝑇. If we define 𝑥
𝑚
= 𝑥
𝑛
0

for all𝑚 ≥ 𝑛
0
, then {𝑥

𝑛
} converges to a𝑔-best proximity point

of 𝑇. The proof is complete. Assume that

𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) > 0 ∀𝑛 ≥ 0. (19)

Note that 𝑥
𝑛
, 𝑔𝑥
𝑛+1
∈ 𝐴
0
and𝑇𝑥

𝑛
∈ 𝐵
0
for all 𝑛 ≥ 0.We claim

that

𝛼 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
) ≥ 1 ∀𝑛 ≥ 0. (20)

If 𝑛 = 0, then 𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
) ≥ 1 holds by given hypothesis.

Suppose that 𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
) ≥ 1 for some 𝑛 > 0. As

𝑇 is (𝛼, 𝑔)-proximal and admissible, for 𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+2

∈

𝐴
0
, 𝛼(𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1
) ≥ 1, 𝐺(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ

𝐺

𝐴𝐵
, and

𝐺(𝑔𝑥
𝑛+2
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) = Δ
𝐺

𝐴𝐵
, we have 𝛼(𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+2
) ≥ 1.

Thus (20) holds.
Use weak 𝑃-property of the first kind, for all 𝑛 > 0,

𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+2
∈ 𝐴
0
, 𝐺(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ

𝐺

𝐴𝐵
, 𝐺(𝑔𝑥

𝑛+2
,

𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) = Δ
𝐺

𝐴𝐵
imply the following inequality:

⇒ 𝐺(𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
) ≤ 𝐺 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) . (21)

Now by (20), (21), and (𝜑, 𝜃, 𝛼, 𝑔)-contractive property of 𝑇,
we have

𝐺 (𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)

≤ 𝐺 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
)

≤ 𝛼 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
) 𝐺 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
)

≤ 𝜑 (𝑀
𝑔

(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
))

+ 𝜃 (𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)

− Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥

𝑛
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
)

− Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥

𝑛
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) − Δ
𝐺

𝐴𝐵
)

= 𝜑 (𝑀
𝑔

(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
))

(22)

for all 𝑛 > 0, where

𝜑 (𝑀
𝑔

(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
))

=max(𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑔𝑥

𝑛
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) + 𝐺 (𝑥

𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)

2

− Δ
𝐺

𝐴𝐵
)

≤ max (𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)

+ 𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)

+ 𝐺 (𝑔𝑥
𝑛+2
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) − Δ
𝐺

𝐴𝐵
,

1

2
[𝐺 (𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
)

+ 𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
)

+ 𝐺 (𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)

+ 𝐺 (𝑔𝑥
𝑛+2
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
)] − Δ

𝐺

𝐴𝐵
)

= max (𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
)

+ Δ
𝐺

𝐴𝐵
− Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
) + Δ
𝐺

𝐴𝐵
− Δ
𝐺

𝐴𝐵
,

((𝐺 (𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) + 𝐺 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)

+ 2Δ
𝐺

𝐴𝐵
) × (2)

−1

) −Δ
𝐺

𝐴𝐵
)
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= max(𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑥

𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
) ,

𝐺 (𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
) ,

𝐺 (𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) + 𝐺 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)

2
)

= max (𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)) .

(23)

That is,

𝜑 (𝑀
𝑔

(𝑥
𝑛
, 𝑥
𝑛+1
, 𝑥
𝑛+1
))

≤ max (𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)) .

(24)

From (22) and (24), we have

𝐺 (𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)

≤ 𝜑 (max (𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
)))

(25)

for all 𝑛 > 0.
If there exists some 𝑛

0
∈ 𝑁 such that

max (𝐺 (𝑔𝑥
𝑛
0

, 𝑔𝑥
𝑛
0
+1
, 𝑔𝑥
𝑛
0
+1
) , 𝐺 (𝑔𝑥

𝑛
0
+1
, 𝑔𝑥
𝑛
0
+2
, 𝑔𝑥
𝑛
0
+2
))

= 𝐺 (𝑔𝑥
𝑛
0
+1
, 𝑔𝑥
𝑛
0
+2
, 𝑔𝑥
𝑛
0
+2
) ,

(26)

then, using (19) and the fact that 𝜑(𝑡) < 𝑡 for all 𝑡 > 0, we have

𝐺(𝑔𝑥
𝑛
0
+1
, 𝑔𝑥
𝑛
0
+2
, 𝑔𝑥
𝑛
0
+2
) ≤ 𝜑 (𝐺 (𝑔𝑥

𝑛
0
+1
, 𝑔𝑥
𝑛
0
+2
, 𝑔𝑥
𝑛
0
+2
))

< 𝐺 (𝑔𝑥
𝑛
0
+1
, 𝑔𝑥
𝑛
0
+2
, 𝑔𝑥
𝑛
0
+2
) ,

(27)

which is a contradiction. Hence

max (𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) , 𝐺 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
))

= 𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
)

(28)

for all 𝑛 > 0. Now (25) implies that

𝐺 (𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
) ≤ 𝜑 (𝐺 (𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
)) (29)

for all 𝑛 > 0.
In particular, for all 𝑛 ≥ 1, we have

𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
)

≤ 𝜑 (𝐺 (𝑔𝑥
𝑛−1
, 𝑔𝑥
𝑛
, 𝑔𝑥
𝑛
))

≤ 𝜑
2

(𝐺 (𝑔𝑥
𝑛−2
, 𝑔𝑥
𝑛−1
, 𝑔𝑥
𝑛−1
))

≤ ⋅ ⋅ ⋅ ≤ 𝜑
𝑛

(𝐺 (𝑔𝑥
0
, 𝑔𝑥
1
, 𝑔𝑥
1
)) .

(30)

Fix 𝜖 > 0 and 𝑡
0
= 𝐺(𝑔𝑥

0
, 𝑔𝑥
1
, 𝑔𝑥
1
) > 0. Since 𝜑 ∈

Ψ, ∑
𝑛≥1
𝜑
𝑛

(𝑡
0
) converges. In particular, there exists some

𝑚
0
∈ 𝑁 such that ∑∞

𝑘=𝑚
0

𝜑
𝑛

(𝑡
0
) < 𝜖. Hence, for 𝑚 > 𝑛 ≥ 𝑚

0
,

we have

𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑚
, 𝑔𝑥
𝑚
) ≤

𝑚−1

∑

𝑘=𝑛

𝐺 (𝑔𝑥
𝑘
, 𝑔𝑥
𝑘+1
, 𝑔𝑥
𝑘+1
)

≤

𝑚−1

∑

𝑘=𝑛

𝜑
𝑘

𝐺 (𝑔𝑥
0
, 𝑔𝑥
1
, 𝑔𝑥
1
)

≤

∞

∑

𝑘=𝑚
0

𝜑
𝑛

(𝑡
0
) < 𝜖.

(31)

This implies that {𝑔𝑥
𝑛
} is a Cauchy sequence. By given

hypothesis, {𝑥
𝑛
} is a Cauchy sequence. By completeness of𝑋,

there exists 𝑧 ∈ 𝑋 such that {𝑥
𝑛
} → 𝑧. As 𝑥

𝑛
∈ 𝐴
0
⊆ 𝐴

for all 𝑛, so 𝑧 ∈ 𝐴. Since 𝑇 and 𝑔 are continuous mappings,
{𝑇𝑥
𝑛
} → 𝑇𝑧 and {𝑔𝑥

𝑛
} → 𝑔𝑧. Taking limit in (18) as 𝑛 →

∞, we conclude that 𝑧 is a 𝑔-best proximity point of 𝑇.

Remark 14. If 𝑔 is an identity map in Theorem 13, then we
obtain the best proximity point of mapping 𝑇.

Corollary 15. Let 𝑋 be a complete 𝐺-metric space, 𝐴 and 𝐵
two closed subsets of 𝑋, and 𝑔 a continuous self-mapping on
𝐴 such that 𝜙 ̸= 𝐴

0
⊆ 𝑔𝐴

0
. Suppose that 𝑇 : 𝐴 → 𝐵

is continuous (𝛼, 𝑔)-proximal and admissible and (𝜑, 𝜃, 𝛼, 𝑔)-
contraction, where 𝜑 ∈ Ψ, 𝜃 ∈ Ω

1
, and 𝑇(𝐴

0
) ⊆ 𝐵

0
. If

following conditions hold:

(a) quadruple (𝐴, 𝐵, 𝑇, 𝑔) satisfies weak 𝑃-property of the
first kind,

(b) for 𝑥, 𝑦, 𝑧 ∈ 𝐴
0
with 𝐺(𝑔𝑦, 𝑇𝑥, 𝑇𝑥) = Δ𝐺

𝐴𝐵
and 𝛼(𝑔𝑥,

𝑔𝑦) ≥ 1, the following holds:

𝛼 (𝑔𝑥, 𝑔𝑦)𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)

≤ 𝑘𝑀
𝑔

(𝑥, 𝑦, 𝑧)

+ 𝜃 (𝐺 (𝑔𝑦, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥, 𝑇𝑦, 𝑇𝑦) − Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
,

𝐺 (𝑔𝑦, 𝑇𝑦, 𝑇𝑦) − Δ
𝐺

𝐴𝐵
) ,

(32)

(c) if a sequence {𝑧
𝑛
} in 𝐴

0
with {𝑔𝑧

𝑛
} ⊆ 𝐴

0
is Cauchy,

then {𝑧
𝑛
} is Cauchy,

(d) there is (𝑥
0
, 𝑥
1
) ∈ 𝐴

0
× 𝐴
0
such that 𝐺(𝑔𝑥

1
, 𝑇𝑥
0
,

𝑇𝑥
0
) = Δ
𝐺

𝐴𝐵
and 𝛼(𝑔𝑥

0
, 𝑔𝑥
1
) ≥ 1.

Then there exists a convergent sequence {𝑥
𝑛
} ⊆ 𝐴

0
which

satisfies

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ
𝐺

𝐴𝐵
∀𝑛 ≥ 0, (33)

and {𝑥
𝑛
} converges to 𝑔-best proximity point of 𝑇.
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Example 16. Let𝑋 = {0, 1, 2, 3, . . .} and𝐺 : 𝑋×𝑋×𝑋 → R+

defined by

𝐺 (𝑥, 𝑦, 𝑧) =

{{{{{{{{{

{{{{{{{{{

{

𝑥 + 𝑦 + 𝑧 if 𝑥 ̸= 𝑦 ̸= 𝑧 ̸= 0,
𝑥 + 𝑦 if 𝑥 = 𝑦 ̸= 𝑧, 𝑥, 𝑦, 𝑧 ̸= 0,
𝑦 + 𝑧 + 1 if 𝑥 = 0, 𝑦 ̸= 𝑧, 𝑦, 𝑧 ̸= 0,
𝑦 + 2 if 𝑥 = 0, 𝑦 = 𝑧 ̸= 0,
𝑧 + 1 if 𝑥 = 𝑦 = 0, 𝑧 ̸= 0,
0 if 𝑥 = 𝑦 = 𝑧.

(34)

It is known that 𝑋 is a complete 𝐺-metric space. Let 𝐴 =
{0, 2, 4} and 𝐵 = {1, 3, 5, . . .}. Obviously 𝐴 and 𝐵 are closed
subsets of 𝑋 and Δ𝐺

𝐴𝐵
= 𝐺(𝐴, 𝐵, 𝐵) = 𝐺(0, 1, 1) = 3. Take

𝐴
0
= {0, 2}. Define the mapping 𝑔 : 𝐴 → 𝐴 by

𝑔 (𝑥) =

{

{

{

𝑥 if 𝑥 = 0, 2
𝑥

2
if 𝑥 = 4. (35)

Obviously 𝑔 is continuous and 𝐴
0
⊆ 𝑔(𝐴

0
). A mapping 𝑇 :

𝐴 → 𝐵 defined by 𝑇(𝑥) = 1 is continuous. Define 𝛼 : 𝑋 ×
𝑋 → [0,∞) by 𝛼(𝑥, 𝑦) = 𝑥 + 𝑦. Clearly

𝛼 (𝑔 (0) , 𝑔 (2)) = 𝛼 (0, 2) = 2 > 1,

𝐺 (𝑔 (0) , 𝑇 (2) , 𝑇 (2)) = 𝐺 (0, 1, 1) = 3,

𝐺 (𝑔 (2) , 𝑇 (0) , 𝑇 (0)) = 𝐺 (2, 1, 1) = 3.

(36)

As 𝛼(0, 2) = 2 > 1, so 𝑇 is (𝛼, 𝑔)-proximal and admissible.
Since

𝛼 (𝑔 (0) , 𝑔 (2)) 𝐺 (𝑇 (0) , 𝑇 (2) , 𝑇 (2)) = 2𝐺 (1, 1, 1) = 0

(37)

and 𝑀𝑔(0, 2, 2) = 4, therefore 𝑇 is (𝜑, 𝜃, 𝛼, 𝑔)-contraction.
Now

𝐺 (𝑔 (0) , 𝑇 (2) , 𝑇 (2)) = 𝐺 (0, 1, 1) = 3 = Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔 (2) , 𝑇 (0) , 𝑇 (0)) = 𝐺 (2, 1, 1) = 3 = Δ
𝐺

𝐴𝐵

(38)

imply that 𝐺(𝑔(0), 𝑔(0), 𝑔(0)) = 𝐺(0, 0, 0) = 0 = 𝐺(𝑇(2),
𝑇(0), 𝑇(0)) = 𝐺(1, 1, 1). Hence quadruple (𝐴, 𝐵, 𝑇, 𝑔) has
weak 𝑃-property of the first kind. Note that (0, 2) ∈ 𝐴

0
× 𝐴
0

with 𝐺(𝑔(2), 𝑇(0), 𝑇(0)) = 3 = Δ𝐺
𝐴𝐵

and 𝛼(𝑔(0), 𝑔(2)) > 1.
Thus 𝑇 has 𝑔-best proximity point (0 and 2 are 𝑔-best
proximity point of 𝑇).

Lemma 17. Let 𝜙 ∈ Φ be a mapping and let {𝑎
𝑚
} ⊂ R+ be a

sequence. If 𝑎
𝑚+1
≤ 𝜙(𝑎

𝑚
) and 𝑎

𝑚
̸= 0 for all 𝑚, then {𝑎

𝑚
} →

0.

Theorem 18. If condition (ℎ) in Theorem 13 is replaced by the
following:

(ℎ) 𝜑 ∈ Φ, 𝜃 ∈ Ω
2
and 𝛼 is (2, 𝑔)-transitive, then there

exists a sequence {𝑥
𝑛
} ⊆ 𝐴

0
which satisfies

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ
𝐺

𝐴𝐵
∀𝑛 ≥ 0 (39)

and converges to a 𝑔-best proximity point of 𝑇.

Proof. Following arguments similar to those in the proof of
Theorem 13, we have

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) > 0,

𝛼 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
) ≥ 1,

𝑥
𝑛
∈ 𝐴
0
,

𝐺 (𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
, 𝑔𝑥
𝑛+2
) ≤ 𝜑 (𝐺 (𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+2
))

∀𝑛 ≥ 0.

(40)

By Lemma 17, we have

{𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
)} → 0. (41)

Next, we show that {𝑔𝑥
𝑛
} is a Cauchy sequence. Assume on

the contrary that {𝑔𝑥
𝑛
} is not a Cauchy sequence. Then, by

Remark 6, there exist 𝜖
0
> 0 and two subsequences {𝑥

𝑚(𝑘)
}

and {𝑥
𝑛(𝑘)
} such that the following hold:

𝑘 ≤ 𝑚 (𝑘) < 𝑛 (𝑘) , 𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)
) > 𝜖
0
,

∀𝑘 ∈ N,

𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑔𝑥
𝑝
, 𝑔𝑥
𝑝
) ≤ 𝜖
0

∀𝑝 ∈ {𝑚 (𝑘) + 1,𝑚 (𝑘) + 2, . . . , 𝑛 (𝑘) − 2, 𝑛 (𝑘) − 1} ,

(42)

lim
𝑘→∞

𝐺 (𝑔𝑥
𝑚(𝑘)−1

, 𝑔𝑥
𝑛(𝑘)−1
, 𝑔𝑥
𝑛(𝑘)−1
) = 𝜖
0
,

lim
𝑘→∞

𝐺(𝑔𝑥
𝑚(𝑘)−1

, 𝑔𝑥
𝑛(𝑘)+𝑝

, 𝑔𝑥
𝑛(𝑘)+𝑝

) = 𝜖
0
,

(43)

∀𝑝 ≥ 0. Note that

0 ≤ 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵

≤ 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

+ 𝐺 (𝑔𝑥
𝑛(𝑘)+1
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵

= 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
) .

(44)

Therefore

lim
𝑘→∞

[𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵
] = 0. (45)

Similarly,

lim
𝑘→∞

[𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
) − Δ
𝐺

𝐴𝐵
] = 0. (46)

Furthermore,

𝜖
0
<𝐺 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)≤𝑀
𝑔

(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
) ∀𝑘 ≥ 0,

(47)
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where

𝑀
𝑔

(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)

=max(𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)
) , 𝐺 (𝑔𝑥

𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
)

− Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)+𝐺 (𝑔𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)
)

2

− Δ
𝐺

𝐴𝐵
) . (48)

𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) + 𝐺 (𝑔𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)
)

2

− Δ
𝐺

𝐴𝐵

≤
1

2
[𝐺 (𝑔𝑥

𝑚(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

+ 𝐺 (𝑔𝑥
𝑛(𝑘)+1
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)

+ 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑚(𝑘)+1

)

+ 𝐺 (𝑔𝑥
𝑚(𝑘)+1

, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)
)]

− Δ
𝐺

𝐴𝐵

= (𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
) + Δ

𝐴𝐵

+ 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑚(𝑘)+1

) + Δ
𝐴𝐵
) × (2)

−1

− Δ
𝐴𝐵

= (𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

+ 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑚(𝑘)+1

)) × (2)
−1

.

(49)

Taking limit as 𝑘 → ∞ in (49) and using (45), we obtain that

lim
𝑘→∞

(
𝐺 (𝑔𝑥

𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) + 𝐺 (𝑔𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)
)

2

− Δ
𝐺

𝐴𝐵
) ≤
𝜖 + 𝜖

2
= 𝜖
0
.

(50)

Taking limit as 𝑘 → ∞ in (48) and using (43), (45), (46), and
(50), we have

lim
𝑘→∞

𝑀
𝑔

(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
) = max (𝜖

0
, 0, 0, 𝜖

0
) = 𝜖
0
. (51)

Thus a sequence {𝑀𝑔(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)} converges to 𝜖

0
and

terms of this sequence are strictly greater than 𝜖
0
. ln particu-

lar, since 𝜑 ∈ Φ,

lim
𝑘→∞

𝜑 ({𝑀
𝑔

(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)}) = lim

𝑡→ 𝜖
+

0

𝜑 (𝑡) < 𝜖
0
. (52)

From the fact that 𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
) ≥ 1 for all 𝑛 ≥ 0 and 𝛼 is

(2, 𝑔)-transitive, we deduce that

𝛼 (𝑔𝑥
𝑚(𝑘)
, 𝑔𝑥
𝑛(𝑘)
) ≥ 1 ∀𝑘 ≥ 0. (53)

As (𝐴, 𝐵, 𝑇, 𝑔) has the weak 𝑃-property of the first kind, so,
for all 𝑘 ≥ 0,

𝑥
𝑚(𝑘)
, 𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)+1

∈ 𝐴
0
,

𝐺 (𝑔𝑥
𝑚(𝑘)+1

, 𝑇𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
) = Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛(𝑘)+1
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) = Δ
𝐺

𝐴𝐵
.

(54)

This implies that

𝐺 (𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
) ≤ 𝐺 (𝑇𝑥

𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) .

(55)

As 𝑇 is (𝜑, 𝜃, 𝛼, 𝑔)-contraction, so we have

𝐺 (𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

≤ 𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)

≤ 𝛼 (𝑇𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) 𝐺 (𝑔𝑥

𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)

≤ 𝜑 (𝑀
𝑔

(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)

+ 𝜃 (𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
)

− Δ
𝐴𝐵
, 𝐺 (𝑔𝑥

𝑚(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐴𝐵
,

𝐺 (𝑔𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
, 𝑇𝑥
𝑚(𝑘)
) − Δ
𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐴𝐵
)) .

(56)

Using (45), the third and the fourth arguments of 𝜃 converge
to zero as 𝑘 → ∞. Since 𝜃 ∈ Ω

2
, all the terms tend to zero

as 𝑘 → ∞. Taking limit as 𝑘 → ∞ in (56), using (45) and
(52), we have

𝜖
0
= lim
𝑘→∞

𝐺 (𝑔𝑥
𝑚(𝑘)+1

, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

≤ lim
𝑘→∞

𝜑 (𝑀
𝑔

(𝑥
𝑚(𝑘)
, 𝑥
𝑛(𝑘)
, 𝑥
𝑛(𝑘)
)) < 𝜖

0
,

(57)

which is an absurd statement. Hence {𝑔𝑥
𝑛
} is a Cauchy

sequence. The rest follows fromTheorem 13.

Theorem 19. Theorem 13 also holds if contractive condition
(10) is valid for all 𝑥 ∈ 𝐴

0
and 𝑦 ∈ 𝐴; conditions (𝑏) and

(𝑔) are replaced by the following:

(𝑏) quadruple (𝐴, 𝐵, 𝑇, 𝑔) has the weak 𝑃-property of the
second kind;

(𝑔) for a sequence {𝑥
𝑛
} ⊆ 𝐴

0
converging to 𝑥 ∈ 𝐴 and

𝛼(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1
) ≥ 1 for all 𝑛 ≥ 0, there exists a subse-

quence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that 𝛼(𝑔𝑥

𝑛(𝑘)
, 𝑔𝑥) ≥ 1 for

all 𝑘 ≥ 0.

Proof. Following similar arguments to those given in proof
of Theorem 13, we deduce that {𝑔𝑥

𝑛
} and {𝑥

𝑛
} are Cauchy

sequences in closed subset 𝐴 of 𝑋. So we obtain an 𝑥 in 𝐴
such that {𝑥

𝑛
} → 𝑥 and {𝑔𝑥

𝑛
} → 𝑔𝑥. We show that 𝑥 is a

𝑔-best proximity point of 𝑇.
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Given that (𝐴, 𝐵, 𝑇, 𝑔) has the weak𝑃-property of the sec-
ond kind, for all 𝑛,𝑚 ∈ N,

𝑥
𝑚
, 𝑥
𝑚+1
, 𝑥
𝑛
, 𝑥
𝑛+1
∈ 𝐴
0
,

𝐺 (𝑔𝑥
𝑚+1
, 𝑇𝑥
𝑚
, 𝑇𝑥
𝑚
) = Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ
𝐺

𝐴𝐵

(58)

imply that

𝐺 (𝑔𝑥
𝑚+1
, 𝑔𝑥
𝑛+1
, 𝑔𝑥
𝑛+1
) ≤ 𝐺 (𝑇𝑥

𝑚
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) . (59)

It follows that {𝑇𝑥
𝑛
} is also a Cauchy sequence in 𝐵. Hence,

there is 𝑧 ∈ 𝐵 such that {𝑇𝑥
𝑛
} → 𝑧. Thus

𝐺 (𝑔𝑥
𝑛
, 𝑔𝑥, 𝑔𝑥) → 0, 𝐺 (𝑇𝑥

𝑛
, 𝑧, 𝑧) → 0. (60)

Since 𝐺(𝑔𝑥
𝑛+1
, 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛
) = Δ
𝐺

𝐴𝐵
for all 𝑛 ≥ 0, we deduce that

𝐺 (𝑔𝑥, 𝑧, 𝑧) = Δ
𝐺

𝐴𝐵
; (61)

that is, 𝑔𝑥 ∈ 𝐴
0
and 𝑧 ∈ 𝐵

0
. Using condition (𝑔), we con-

clude that there exists a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} such that

𝛼 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥) ≥ 1 ∀𝑘 ≥ 0. (62)

Note that

0 ≤ 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵

≤ 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

+ 𝐺 (𝑔𝑥
𝑛(𝑘)+1
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵

= 𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥
𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
) .

(63)

Therefore

lim
𝑘→∞

[𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵
] = 0. (64)

The first and the second arguments of

𝑀
𝑔

(𝑥
𝑛(𝑘)
, 𝑥, 𝑥)

= max(𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥, 𝑔𝑥) , 𝐺 (𝑔𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)

− Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑔𝑥, 𝑇𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)

2
−Δ
𝐺

𝐴𝐵
)

(65)

tend to zero, while the last argument gives

lim
𝑘→∞

𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑔𝑥, 𝑇𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)

2
− Δ
𝐺

𝐴𝐵

≤ lim
𝑘→∞

(𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑔𝑥, 𝑔𝑥

𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

+ 𝐺 (𝑔𝑥
𝑛(𝑘)+1
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)) × (2)

−1

− Δ
𝐺

𝐴𝐵

= lim
𝑘→∞

(𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥) + 𝐺 (𝑔𝑥, 𝑔𝑥

𝑛(𝑘)+1
, 𝑔𝑥
𝑛(𝑘)+1
)

+ Δ
𝐴𝐵
) × (2)

−1

− Δ
𝐺

𝐴𝐵

=
𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) + 0 + Δ

𝐴𝐵

2
− Δ
𝐺

𝐴𝐵

=
𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) + 0 − Δ

𝐺

𝐴𝐵

2
.

(66)

Therefore,

lim
𝑘→∞

𝑀
𝑔

(𝑥
𝑛(𝑘)
, 𝑥, 𝑥) = 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
. (67)

Suppose that 𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥) ̸= Δ𝐺
𝐴𝐵
; that is,

𝑡
0
= 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
> 0. (68)

Since the first and the second terms in (65) tend to zero, and
the fourth term tends to 𝑡

0
/2, there exists 𝑘

0
∈ N such that

𝑀
𝑔

(𝑥
𝑛(𝑘)
, 𝑥, 𝑥) = 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
= 𝑡
0
> 0 ∀𝑘 ≥ 𝑘

0
.

(69)

Using the contractivity condition, we have

𝐺 (𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥)

≤ 𝛼 (𝑔𝑥
𝑛(𝑘)
, 𝑔𝑥, 𝑔𝑥)𝐺 (𝑇𝑥

𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥)

≤ 𝜑 (𝑀
𝑔

(𝑥
𝑛(𝑘)
, 𝑥, 𝑥))

+ 𝜃 (𝐺 (𝑔𝑥, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) −Δ
𝐺

𝐴𝐵
) ,
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𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵

= 𝜑 (𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
)

+ 𝜃 (𝐺 (𝑔𝑥, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥 − Δ

𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥

𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥
𝑛(𝑘)
)

− Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
)) .

(70)

Since the third argument of 𝜃 in (70) tends to zero and 𝜃 ∈ Ω
2
,

its limit as 𝑘 → ∞ is zero. Therefore, we have

𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥) = lim
𝑘→∞

𝐺 (𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥, 𝑇𝑥)

≤ 𝜑 (𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
) .

(71)

As 𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ𝐺
𝐴𝐵
> 0, then 𝜑(𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐴𝐵
) <

𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
. Thus,

𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥)

≤ 𝜑 (𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
) < 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐴𝐵

≤ 𝐺 (𝑔𝑥, 𝑧, 𝑧) + 𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵

≤ Δ
𝐴𝐵
+ 𝐺 (𝑔𝑥, 𝑧, 𝑧) − Δ

𝐺

𝐴𝐵

= 𝐺 (𝑧, 𝑇𝑥, 𝑇𝑥) ,

(72)

which is a contradiction.Hence𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥) = Δ
𝐴𝐵

and the
result follows.

2.1. Uniqueness of 𝑔-Best Proximity Points. In this section, we
study sufficient conditions in order to prove the uniqueness
of 𝑔-best proximity point.

Definition 20. Let 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, and 𝛼 : 𝑋×𝑋 →
[0,∞) be three mappings. A mapping 𝑇 is called (𝛼, 𝑔)-
regular if, for all 𝑥, 𝑦 ∈ 𝐴

0
, such that 𝛼(𝑔𝑥, 𝑔𝑦) < 1, there

exists 𝑧 ∈ 𝐴
0
such that 𝛼(𝑔𝑥, 𝑔𝑧) ≥ 1 and 𝛼(𝑔𝑦, 𝑔𝑧) ≥ 1.

Theorem 21. Under the hypothesis ofTheorem 13, assume that
𝜃 ∈ Θ and 𝑇 is (𝛼, 𝑔)-regular. Then for all 𝑔-best proximity
points 𝑥 and 𝑦 of 𝑇 in 𝐴

0
we have that 𝑔𝑥 = 𝑔𝑦. In particular,

if 𝑔 is injective on the set of all 𝑔-best proximity points of 𝑇 in
𝐴
0
, then 𝑇 has a unique 𝑔-best proximity point.

Proof. Let 𝑥, 𝑦 ∈ 𝐴
0
be two 𝑔-best proximity points of 𝑇 in

𝐴
0
. Since 𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥) = 𝐺(𝑔𝑦, 𝑇𝑦, 𝑇𝑦) = Δ𝐺

𝐴𝐵
and 𝑇 is a

(𝛼, 𝑔)-proximal and admissible, we deduce that

𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) ≤ 𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) . (73)

We always have 𝛼(𝑔𝑥, 𝑔𝑦) ≥ 1 or 𝛼(𝑔𝑥, 𝑔𝑦) < 1. If 𝛼(𝑔𝑥,
𝑔𝑦) ≥ 1, then we obtain that

𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦)

≤ 𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≤ 𝛼 (𝑔𝑥, 𝑔𝑦)𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)

≤ 𝜑 (𝑀
𝑔

(𝑥, 𝑦, 𝑦))

+ 𝜃 (𝐺 (𝑔𝑦, 𝑇𝑥, 𝑇𝑥) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥, 𝑇𝑦, 𝑇𝑦) − Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
,

𝐺 (𝑔𝑦, 𝑇𝑦, 𝑇𝑦) )

= 𝜑 (𝑀
𝑔

(𝑥, 𝑦, 𝑦)) .

(74)

The last equality holds since 𝜃 ∈ Θ and the last two arguments
of 𝜃 are zero. Note that

𝐺 (𝑔𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑔𝑦, 𝑇𝑥, 𝑇𝑥)

2
− Δ
𝐺

𝐴𝐵

≤ ((𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺 (𝑔𝑦, 𝑇𝑦, 𝑇𝑦)

+ 𝐺 (𝑔𝑦, 𝑔𝑥, 𝑔𝑥) + 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥)) × (2)
−1

) − Δ
𝐺

𝐴𝐵

=
𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) + Δ

𝐺

𝐴𝐵
+ 𝐺 (𝑔𝑦, 𝑔𝑥, 𝑔𝑥) + Δ

𝐺

𝐴𝐵

2
− Δ
𝐺

𝐴𝐵

=
𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) + 𝐺 (𝑔𝑦, 𝑔𝑥, 𝑔𝑥)

2

= 𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) .

(75)

Hence

𝑀
𝑔

(𝑥, 𝑦, 𝑦)

= max(𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) , 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ𝐺
𝐴𝐵
,

𝐺 (𝑔𝑦, 𝑇𝑦, 𝑇𝑦) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥, 𝑇𝑦, 𝑇𝑦) + 𝐺 (𝑔𝑦, 𝑇𝑥, 𝑇𝑥)

2
−Δ
𝐺

𝐴𝐵
) .

(76)

Therefore

𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦) ≤ 𝜑 (𝑀
𝑔

(𝑥, 𝑦, 𝑦)) = 𝜑 (𝐺 (𝑔𝑥, 𝑔𝑦, 𝑔𝑦))

(77)

gives the fact that 𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦) = 0; that is, 𝑔𝑥 = 𝑔𝑦.
Now, if 𝛼(𝑔𝑥, 𝑔𝑦) < 1, then, by the (𝛼, 𝑔)-regularity

of 𝑇, there exists 𝑧
0
∈ 𝐴
0
such that 𝛼(𝑔𝑥, 𝑔𝑧

0
) ≥ 1 and

𝛼(𝑔𝑦, 𝑔𝑧
0
) ≥ 1. Based on 𝑧

0
, we define a sequence {𝑧

𝑛
} such

that {𝑔𝑧
𝑛
} converges to 𝑔𝑥 and 𝑔𝑦 which proves the unique-

ness. First, we will prove that {𝑔𝑧
𝑛
} converges to 𝑔𝑥.

Indeed, 𝑇𝑧
0
∈ 𝑇𝐴

0
⊆ 𝐵
0
implies that 𝑠

0
∈ 𝐴
0
such that

𝐺(𝑠
0
, 𝑇𝑧
0
, 𝑇𝑧
0
) = Δ

𝐺

𝐴𝐵
, and, for 𝑠

0
∈ 𝐴
0
⊆ 𝑔𝐴

0
, there is



10 Abstract and Applied Analysis

𝑧
1
∈ 𝐴
0
verifying 𝑔𝑧

1
= 𝑠
0
. Therefore, 𝐺(𝑔𝑧

1
, 𝑇𝑧
0
, 𝑇𝑧
0
) =

Δ
𝐺

𝐴𝐵
. Following the similar arguments, there exists a sequence

{𝑧
𝑛
} ⊆ 𝐴

0
such that 𝐺(𝑔𝑧

𝑛+1
, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
) = Δ

𝐺

𝐴𝐵
for all 𝑛 ≥ 0.

In particular, 𝑔𝑧
𝑛+1
∈ 𝐴
0
and 𝑇𝑧

𝑛
∈ 𝐵
0
. We claim that

𝛼 (𝑔𝑥, 𝑔𝑧
𝑛
) ≥ 1 ∀𝑛 ≥ 0. (78)

If 𝑛 = 0, 𝛼(𝑔𝑥, 𝑔𝑧
0
) ≥ 1 by the choice of 𝑧

0
. Suppose that

𝛼(𝑔𝑥, 𝑔𝑧
𝑛
) ≥ 1 for some 𝑛 ≥ 0. As 𝑇 is (𝛼; 𝑔)-proximal and

admissible, so we have

𝛼 (𝑔𝑥, 𝑔𝑧
𝑛
) ≥ 1,

𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) = Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑧
𝑛+1
, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
) = Δ
𝐺

𝐴𝐵

𝑥, 𝑧
𝑛
, 𝑧
𝑛+1
∈ 𝐴
0
,

(79)

which imply that 𝛼(𝑔𝑥, 𝑔𝑧
𝑛+1
) ≥ 1. Hence (78) holds. For all

𝑛 ≥ 0, we have

𝐺 (𝑔𝑥, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
) + 𝐺 (𝑔𝑧

𝑛
, 𝑇𝑥, 𝑇𝑥)

2
− Δ
𝐺

𝐴𝐵

≤ ((𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
) + 𝐺 (𝑔𝑧

𝑛+1
, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
)

+ 𝐺 (𝑔𝑧
𝑛
, 𝑔𝑥, 𝑔𝑥) + 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥)) × (2)

−1

) − Δ
𝐺

𝐴𝐵

=
𝐺 (𝑔𝑥, 𝑔𝑧

𝑛+1
, 𝑔𝑧
𝑛+1
) + Δ
𝐴𝐵
+ 𝐺 (𝑔𝑧

𝑛
, 𝑔𝑥, 𝑔𝑥) + Δ

𝐴𝐵

2

− Δ
𝐺

𝐴𝐵

=
𝐺 (𝑔𝑥, 𝑔𝑧

𝑛+1
, 𝑔𝑧
𝑛+1
) + 𝐺 (𝑔𝑧

𝑛
, 𝑔𝑥, 𝑔𝑥)

2

≤ max (𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
) , 𝐺 (𝑔𝑥, 𝑔𝑧

𝑛+1
, 𝑔𝑧
𝑛+1
)) ,

(80)

which implies that

𝑀
𝑔

(𝑥, 𝑧
𝑛
, 𝑧
𝑛
)

= max(𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
) , 𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
,

𝐺 (𝑔𝑧
𝑛
, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
) − Δ
𝐺

𝐴𝐵
,

𝐺 (𝑔𝑥, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
) + 𝐺 (𝑔𝑧

𝑛
, 𝑇𝑥, 𝑇𝑥)

2
−Δ
𝐺

𝐴𝐵
)

≤ max (𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
) , 𝐺 (𝑔𝑥, 𝑔𝑧

𝑛+1
, 𝑔𝑧
𝑛+1
)) .

(81)

By weak 𝑃-property of the first kind,

𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) = Δ
𝐴𝐵
,

𝐺 (𝑔𝑧
𝑛+1
, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
) = Δ
𝐺

𝐴𝐵

𝑥, 𝑧
𝑛
, 𝑧
𝑛+1
∈ 𝐴
0
,

imply that 𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
) ≤ 𝐺 (𝑇𝑥, 𝑇𝑧

𝑛
, 𝑇𝑧
𝑛
) .

(82)

For all 𝑛 ≥ 0, we have

𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
)

≤ 𝐺 (𝑇𝑥, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
)

≤ 𝜑 (𝑀
𝑔

(𝑥, 𝑧
𝑛
, 𝑧
𝑛
))

+ 𝜃 (𝐺 (𝑔𝑧
𝑛
, 𝑇𝑥, 𝑇𝑥) − Δ

𝐺

𝐴𝐵
, 𝐺 (𝑔𝑥, 𝑇𝑧

𝑛
, 𝑇𝑧
𝑛
) − Δ
𝐴𝐵
,

𝐺 (𝑔𝑥, 𝑇𝑥, 𝑇𝑥) −Δ
𝐺

𝐴𝐵
, 𝐺 (𝑔𝑧

𝑛
, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
))

≤ 𝜑 (𝑀
𝑔

(𝑥, 𝑧
𝑛
, 𝑧
𝑛
))

≤ 𝜑 (max (𝐺 (𝑔𝑥, 𝑇𝑧
𝑛
, 𝑇𝑧
𝑛
) , 𝐺 (𝑔𝑥, 𝑔𝑧

𝑛+1
, 𝑔𝑧
𝑛+1
))) .

(83)

Suppose that there is 𝑛
0
∈ N such that 𝑔𝑧

𝑛
0

= 𝑔𝑥. In this case,
we have

𝐺(𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛
0
+1
)

≤ 𝜑 (max (𝐺 (𝑔𝑥, 𝑇𝑧
𝑛
0

, 𝑇𝑧
𝑛
0

) , 𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
0
+1
, 𝑔𝑧
𝑛
0
+1
))) ,

(84)

but this is possible only when 𝐺(𝑔𝑥, 𝑔𝑧
𝑛
0
+1
, 𝑔𝑧
𝑛
0
+1
); that is,

𝑔𝑧
𝑛
0
+1
= 𝑔𝑥. Following the similar arguments, we have 𝑔𝑧

𝑛
=

𝑔𝑥 for all 𝑛 ≥ 𝑛
0
. Hence {𝑔𝑧

𝑛
} converges to 𝑔𝑥.

Suppose that 𝑔𝑧
𝑛

̸= 𝑔𝑥 for all 𝑛 ≥ 0; that is,
𝐺(𝑔𝑥, 𝑔𝑧

𝑛
, 𝑔𝑧
𝑛
) > 0 for all 𝑛 ≥ 0. Suppose that

max (𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
) , 𝐺 (𝑔𝑥, 𝑔𝑧

𝑛+1
, 𝑔𝑧
𝑛+1
))

= 𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
)

(85)

for some 𝑛. Then (83) would yield

𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
)

≤ 𝜑 (max (𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
) , 𝐺 (𝑔𝑥, 𝑔𝑧

𝑛+1
, 𝑔𝑧
𝑛+1
)))

= 𝜑 (𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
))

< 𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
) ,

(86)

which is a contradiction. Therefore, max(𝐺(𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
),

𝐺(𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
)) = 𝐺(𝑔𝑥, 𝑔𝑧

𝑛
, 𝑔𝑧
𝑛
); that is, for all 𝑛 ≥ 0,

𝐺 (𝑔𝑥, 𝑔𝑧
𝑛+1
, 𝑔𝑧
𝑛+1
) ≤ 𝜑 (𝑀

𝑔

(𝑥, 𝑧
𝑛
, 𝑧
𝑛
))

= 𝜑 (𝐺 (𝑔𝑥, 𝑔𝑧
𝑛,𝑔𝑧
𝑛

)) .

(87)

Recursively, for all 𝑛 ≥ 0,

𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
)

≤ 𝜑 (𝐺 (𝑔𝑥, 𝑔𝑧
𝑛−1
, 𝑔𝑧
𝑛−1
))

≤ 𝜑
2

(𝐺 (𝑔𝑥, 𝑔𝑧
𝑛−2
, 𝑔𝑧
𝑛−2
)) ≤ ⋅ ⋅ ⋅ ≤ 𝜑

𝑛

(𝐺 (𝑔𝑥, 𝑔𝑧
0
, 𝑔𝑧
0
)) .

(88)
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Fix 𝜖 > 0 arbitrary and consider 𝑡
0
= 𝐺(𝑔𝑥, 𝑔𝑧

0
, 𝑔𝑧
0
) > 0.

Since 𝜑 ∈ Ψ, the series ∑
𝑛≥1
𝜑
𝑛

(𝑡
0
) converges. In particular,

there exists 𝑚
0
∈ N such that ∑

𝑘=𝑚
∞

0

𝜑
𝑛

(𝑡
0
) < 𝜖. More pre-

cisely, 𝜑𝑛(𝑡
0
) < 𝜖 for all 𝑛 ≥ 𝑚

0
. Therefore, if 𝑛 ≥ 𝑚

0
, we have

that

𝐺 (𝑔𝑥, 𝑔𝑧
𝑛
, 𝑔𝑧
𝑛
) ≤ 𝜑
𝑛

(𝐺 (𝑔𝑥, 𝑔𝑧
0
, 𝑔𝑧
0
)) = 𝜑

𝑛

(𝑡
0
) < 𝜖.

(89)

This means that {𝑔𝑥
𝑛
} converges to 𝑔𝑥. Similarly, it can be

shown that {𝑔𝑥
𝑛
} converges to 𝑔𝑦 and this completes the

proof.
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