Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 984875, 12 pages
http://dx.doi.org/10.1155/2014/984875

Research Article

Positive Solutions for Singular p-Laplacian Fractional
Differential System with Integral Boundary Conditions

Liping Wang,' Zongfu Zhou,' and Hui Zhou®

T'School of Mathematical Science, Anhui University, Hefei, Anhui 230601, China
? Department of Mathematics and Statistics, Hefei Normal University, Hefei, Anhui 230601, China

Correspondence should be addressed to Zongfu Zhou; zhouzf12@126.com and Hui Zhou; zhouhui0309@126.com

Received 17 January 2014; Accepted 1 April 2014; Published 27 April 2014

Academic Editor: Ivanka Stamova

Copyright © 2014 Liping Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the existence of positive solutions for a class of singular p-Laplacian fractional differential equations with
integral boundary conditions. By using the Leggett-Williams fixed point theorem, the existence of at least three positive solutions

to the boundary value system is guaranteed.

1. Introduction

This paper investigates the singular p-Laplacian fractional
boundary value problem:

Dg: (8, (D5 (1))
= fi(bu@®),v(®),Dhu(t),Dyv(t), 0<t<l,

Dgi (8, (D5v (1))
= f,(bu®),v(®),Dhu(t),Dyv(t), 0<t<l,

u(©)=u (0)=u"(0) =0,
" !
W' (1) = (- 1) (@ -2) jo u(s)dé, (s),
1
Dhu©=0. ¢, (Dfu()= ¢, (Dhu()dn ),
v(0) =+ (0) =" (0) =0,

1
V(1) = (- 1) (@-2) L v(s)d&, (5),

1
DEv© =0, gy, (D)= gy, (Dhv () dy 9,
B

where 1 < f < 2,3 < o < 4and5 < a+ f < 6,
0 < pu < 1,1 < v < 2are real numbers. gbpi(x) = |x|P2x,

P> L¢, =¢,' 1/p+1/q; = Land &% : [0,1] — R
are nondecreasing functions of bounded variation i = 1,2.
D* and DP are the standard Riemann-Liouville fractional
derivatives of order «, f3, respectively, and the integrals in
(1) are Riemann-Stieltjes integrals. Here f;: [0,1] x Q —
R is Carathéodory function; that is, f; satisfies the local
Carathéodory condition on [0, 1] x Q, and f;(t, x;, x5, X3, x4)
may be singular at the value 0 of all its space variables
Xy, Xy, X3, X4, i = 1,2, in which Q = (0,00)* R* = [0, 00).

We say that f satisfies the local Carathéodory condition
on [0,1] x Q, (f € Car([0, 1] x Q)), if

(i) f(5xp, %y, x5, %4): [0,1] — R" is measurable for all
(%1, %5, X3, %) €

(i) f(t++): Q — R is continuous for a.e. t € [0,1];

(iii) for each compact set # c Q) there is a function ¢4 €
L'[0,1] such that | f(t, x5 %5, %5, %4)| < @o(2) for ae.
t € [0,1] and all (x;, x,, x5, x,) € H.

A vector (u,v) € (C*[0,1]) x (C*[0, 1]) is called positive
solution of system (1) if and only if (u,v) satisfies (1) and
u(t) > 0,v(t) = 0 or v(t) > 0,u(t) > 0 for any t € [0, 1].

Fractional differential equation can describe many phe-
nomena in various fields of science and engineering, such
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as control, porous media, electrochemistry, and electromag-
netic. For details, see [1-8] and the references therein. There
are also a large number of papers dealing with the solvability
of nonlinear fractional differential equations. Papers [9-13]
discuss fractional boundary value problems with nonlineari-
ties having singularities in space variables.

Paper [14] is concerned with the existence of positive
solutions to the following BVP for nonlinear fractional
differential equations with boundary conditions involving
Riemann-Stieltjes integrals:

Dy u@®)+ f (bu®,u ®,....u"? 1) =0,

0<t<l,

u(0) =t (0) == "2 (0) = 0, 2)

1
W) = J " (s)dA(s),
0

where n — 1 < « < mand n > 2 is positive integer,
the integrals JOI u"*(s)dA(s) are Riemann-Stieltjes integrals,
and f is a Carathéodory function on [0,1] x R"™' — R™.
Some existence and multiplicity results of positive solutions
are obtained by using the Krasnosel'skii fixed point theorem,
the Leray-Schauder nonlinear alternative, and the Leggett-
Williams fixed point theorem.

In the past few decades, in order to meet the demands
of research, the p-Laplacian equation is introduced in some
BVP, such as [15, 16].

Paper [15] investigates the existence of solutions for the
BVP of fractional p-Laplacian equation with the following
form:

DE. (¢, (D§x (1)) = f (t.x (1), D§x (1)),
telo,1], (3)

Dyx (0) = Dyex (1) = 0,

where 0 < o, f < l,and1 < ¢+ 3 < 2,and p > L ¢,(s) =
|s|?~%s is a p-Laplacian operator. D* is a Caputo fractional
derivative. A new result on the existence of solutions for the
above fractional boundary value problem is obtained, which
generalize and enrich some known results to some extent
from the literature, by using the coincidence degree theory.

Paper [16] studies the existence of positive solutions of the
following singular fourth-order coupled system with integral
boundary conditions:

(65, (1" ))" = 17a, () fi (tu (), v (1),

0<t<l,

(65, (v )" = uP2ay (1) o (L () v (1)),

0<t<l,
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1
1(0) = u(1) = L () dé, (s),
1
by, (4" ©) = 95, (" 1) = || 65, (4" ) i 9.
1
v (0) = v(1) = L v(s)d& (5),

1
8, (" @) = 95, (' 1) = [ 8, (" ©)dny 9,
@

where A and y are positive parameters, ¢, (x) = |x[P2x, p; >

L, = gb;il, 1/p;+1/q; = 1,and &, 7, : [0,1] — R" are
nondecreasing functions of bounded variation, i = 1,2, and
the integrals in (4) are Riemann-Stieltjes integrals, f;: [0, 1] x
Ry x R" — R"and f,: [0,1] x R x R; — R" are two
continuous functions, and f (¢, x, y) may be singularatx = 0,
while f,(t, x, y) may be singular at y = 0; a,,a,: (0,1) —» R*
are continuous and may be singular at t = 0 and/or t = 1,
in which R" = [0,00) and R; = (0, c0). By using the fixed
point theory in cones, explicit range for A and y is derived
such that for any A and y which lie in their respective interval,
the existence of at least one positive solution to the boundary
value system is guaranteed.

Inspired by above works, our work presented in this paper
has the following new features. Firstly, our study is on singular
nonlinear differential systems; that is, f;(t, x,, x,, X5, x,) may
be singular at the value 0 of all its space variables x;, x,, x5, X,
i = 1,2, which bring about many difficulties. Secondly, the
techniques used in this paper are approximation methods,
and a special cone has been developed to overcome the
difficulties due to the singularity and to apply the fixed-point
theorem. Finally, we discuss the BVP with integral boundary
conditions, that is, system (1) including multipoint and
nonlocal boundary value problems as special cases. To our
knowledge, very few authors studied the existence of positive
solutions for p-Laplacian fractional differential equation with
boundary conditions involving Riemann-Stieltjes integrals.
Hence we improve and generalize the results of previous
papers to some degree, and so it is interesting and important
to study the existence of positive solutions for system (1).

Throughout the paper, [ul|, = fol |u(t)|dt is the norm in
the Banach L'[0, 1] and lullo = max,e(ojlu(f)]is the normin
the Banach C[0, 1]. Let E = C[0, 1]; then E is a Banach space
endowed with the norm [lull, = max{||ullo, [/l 4" Il oo }-
Thus, (E x E,| - |) is a Banach with the norm defined by
|, V)| = max{llul,, Ivl,} for (u,v) € E x E.

This paper is organized as follows. In Section 2, we present
some results of fractional calculus theory and auxiliary
technical lemmas, which are used in the next two sections.
Section 3 deals with the approximate problem of (1). We
induce the solvability of this problem to the existence of a
fixed point of an operator T,,. By the Leggett-Williams fixed
point theorem, the existence of at least three fixed points
of T, is obtained. In Section 4, we prove the existence and



Abstract and Applied Analysis

multiplicity of positive solutions of problem (1) by applying
the results of Sections 2 and 3.

2. Preliminaries

For the convenience of the reader, we present here the
necessary definitions and lemmas from fractional calculus
theory. These definitions and lemmas can be found in the
recent literatures [14, 17-19].

For convenience, we list the following signs and assump-
tions for system (1).

We note that

Wa = [[d&s).b = [, dn(s) A, = [, *7dE(s),
B, = _[01 s dn(s), i = 1,2
(2) ey(s) = s(1 = )7, eg(s) = s(1 - 5) .
We assume that
(H)0<ag<1,0<bh<1l,andi=1,2.
Obviously, A; < a;, B; < b,i=1,2.

Definition I (see [17]). The fractional integral of order « > 0
of a function f: (0,00) — R is defined by

I f () = ﬁ L (t = (s)ds 5)

provided that the right-hand side exists.

Definition 2 (see [17]). The Riemann-Liouville fractional
order derivative of order « € (n — 1,n] of a function f:
(0,00) — R is defined by

o _ 1 d_n ‘ _ -l
Dy f (t) = Toia = dr J (t—1s) f(s)ds

0

(6)
provided that the right-hand side exists.

Lemma 3 (see [17]). Let « € (n — 1,n] and u € C(0,1) N
L'(0,1). Then

+C t*",

n

EDGu(t) =u() + Ct* " + Ct* > -
7)

whereC; € R, i=1,2,...,n.
Lemma 4 (see [18]). Suppose that u € (0,1], v € (1,2) and

u € C*0,1], u(0) = 4/ (0) = 0. Then Dg+u € C[0,1],Dy.u €
Cl0,1], and

V2 _ 1 ¢ Y S )

Dhu) = gy J, €9 9 ds, .
v _ ! _

Dyu®= 7= JO (t— )" () ds.

Lemma 5. If (H,) holds, then for any y € L'(0,1) and « €
(3, 4] the boundary value problem

~Dix(t)=¢, (y(1), 0<t<l,

x(0)=x (0)=x" (0)=0, 9)

1

X (1) = (@ 1) (o - 2)] x(s) d&, (5)

0

has a unique solution

1
x(t) = J H; (t,5) ¢, (y(s))ds, i=1,2, (10)
0
where

H;(t,s) =G, (t,s) +

tot—l 1
i), G, .

i=1,2,
G, (t,s)

_ L [ a-9 - -9 0ss<t<
T T(e) |7 -9, 0<t<s<l1

Proof. By Lemma 3, we can see that

x(8) = =I5 (¢, (¥ (1)) + Ct* " + Cpt* 2

-3 —4
+C1777 + Cut™

(13)

Considering that solutions satisfy x(0) = x'(0) = x”(0) = 0
and x"(1) = (a - D(x - 2) fol x(s)d&;(s), we can get C, =
C;=C,=0andC, = (_[01(1 - s)“_3¢>qi(y(s))ds - Iol I(:(s -
T)“_l(pqi (y(1))drd&;(s))/T(x)(1 — A;). As a result,

toc—l

*O= T -4y

1
“ (19", (y(s))ds
0

—Ll Ls(s -1, (v (1) drdg; (s)]

1 ! a—1
_ m L (t-95)"¢, (y(s))ds

1
= L G, (t,s) ¢, (v (s))ds

ta—l
+

1
1-A; “ Da(09) ¢y (y () d&; (v)ds

1

1
- L H; (t,5) ¢, (y(s))ds.

(14)

O
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Lemma 6 (see [14]). If (H,) holds, then for any z € L'(0,1)
and f3 € (1,2] the boundary value problem

Dix(t)=z(t), 0<t<l,
1 (15)

YO =0, x(1)= L y(&)dr; (s)

has a unique solution

1

Y ) = j K, (t,5)z (s)ds,

0

i=12, (16)

where

B-1 (1

t
K;(t,s) = Gg(t,s) + 1—_31 L Gp (7,9) dn; (1), )

i=1,2,
Gy (t.9)

1 {tﬁ‘lu—s)ﬁl—(t—s)ﬁl, 0<s<t<l

=W P11 -5, 0<t<s<l.
(18)

Lemma 7 (see [18]). Let G, and Gﬁ be as defined in (12) and
(18). Then

(1) G,(t,s) € C([0,1] x[0,1]) and G,(¢t,s) > 0 on (0,1) x
(0, 1),

(2) ex(1 = e, (s)/T(x) < G,(t,s) < 1/T(ex) for (t,s) €
[0,1] x [0, 1],

(3) (0/01)G,(t,s) € C([0,1] x [0, 1]) and (0/0t)G,(t, s) >
00n (0,1) x (0, 1),

(4) (0/0t)G,(t,s) < 1/T(a — 1) for (t,5) € [0,1] x [0, 1],

(5) (0*/0t1)G,(t,s) € C([0,1] x [0,1]) and (3*/0t%)
G,(t,s) >00n(0,1) x(0,1),

(6) (8%/0t*)G,(t,s) < 1/T(a - 2) for (t,s) € [0,1] x [0, 1],

(7) Gﬁ(t,s) € C([0,1]x[0,1]) andGﬁ(t, s)>0o0n(0,1)x
(0,1),

(8) eﬁ(l - t)eﬁ(s)/l“(ﬁ) < Gﬁ(t,s) < 1/T(P) for (t,s) €
[0,1] x [0,1].

Proof. For notational convenience, we denote by

G, (t,s)
1 Pl —) -, 0<s<t<],
S T(a) |1 -s)*Y 0<t<s<l.
(19)

From paper [19], (7) and (8) hold. Likewise, we have e, (1 —
ey (s)/T(x) < Gi(t,s), since (1 - )" < (1 - 5)*7; for
s € [0,1], we have G,(t,s) < G.(t,s), so we have e, (1 —
t)e,(s)/T(x) < G,(t,s), and from [18], (1)-(6) hold. O

Lemma 8. Let H, K; be as defined in (11) and (17), i = 1,2.
Then
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(1) H;(t,s) € C([0,1] x [0,1]) and Hy(t,s) > 0 on (0,1) x
(0) 1))

(2) e, (1 — t)e,(s)/T(a) < Hy(t,s) < 1/(T()(1 — a;)) for
(t,s) € [0,1] x [0,1],

(3) (8/0t)H,(t,s) € C([0, 1] x [0,1]) and (3/0t)H,(t,s) >
00n(0,1) % (0,1),

(4) (0/ot)H;(t,s) < 1/(I(a—1)(1—a;)) for (t,s) € [0,1] x
[0,1],

(5) (az/atz)Hi(t,s) e C([0,1] x [0,1]) and (9*/0t?)
H;(t,s) > 00n(0,1) x (0, 1),

(6) (0*/0t")H,(t,s) < 1/(T(a—2)(1-a,)) for (t,s) € [0, 1]x
[0,1],

(7) K;(t,s) € C([0, 1] x [0, 1]) and K;(t,s) > 0 on (0,1) x
(0, 1),

(8) eg(1 —t)eg(s)/T(B) < Ki(t,s) < 1/(T(B)1 - b)) for
(t,s) € [0,1] x [0, 1].

Proof. By (H;), (11), and Lemma7, we have G, (t,s) <

H(t,s) < (1/T(@))(1 + a;/(1 — A))) < 1/(T(x)(1 — a,)), so
(2) holds; likewise, (1) and (3)-(8) hold. O

3. Auxiliary Regular Problem

To overcome singularity, we consider the following approxi-
mate problem of (1):

Db, (¢, (D§-u (1))
= fin (tu(®),v(®),Dhu(t),Dyv(t), 0<t<l,
DY, (¢, (D§.v(®)))
= fou (Lu(®),v(t), Dhu(t),Dyv(t)), 0<t<l,

u@ =u' 0)=u"(0) =0,

1
W (1) =(a-1)(a-2) L u(s)dg, (s),

1
DEu(© =0, ¢, (Diu()= L 95, (D%u () dn, (5),

v(0) =+ (0) =" (0) =0,
1

V(1) = (- 1) (a- 2)] v (s)d&, (5),

0
1
DEVO)=0, ¢, (Dg‘+v(1)):J0 85, (DSv () dn, (5),
(20)
where # is a positive integer and
Fin (1, %3, 53, x4) = f; (£, max {xl, n_l} , max {xz, n_l} ,

max {x3, nil} , max {x4, nil}) .
(D)
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Clearly, f;, € Car([0,1] x R" x R* x R" x R",R"),i=1,2.
Define a cone P in E as

P={ueE:u(0)=u(0)=0u(t)20u (t) 20,

(22)
u'" (t) 2 0,t € [0,1]}.
By Lemma 4, we can obtain that
DiuecClo,1], Dyu e C[0,1],
(23)
Di.u(t) >0, Dgu(t) >0,
foru e Pandt € [0,1].
For each n € N*, let us define operators T}, : P — E,

T,,:P - EandT,:PxP — EXEby

T;, (u,v) (t)

=£@mg%
X (Ll K (s,7) fi,

(T u(r),v(1), D Lu(r), D0+V(T))d‘[)ds,

i=1,2,
(24)

and T, (u,v) = (T,,(u,v), T,, (1, v)). By Lemmas 5 and 6, we
know that fixed points of T, are positive solution of the system
(20).

Lemma 9. T, : Px P — P x P is a completely continuous
operator.

Proof. We divide the proof into three steps.

Step 1. We prove that T,, : P x P — P x P is well defined.
For all (u,v) € P x P, let p(t) =
fintu(t), v(t), ng(t), Dg.v(t)). Then by (21) and (23),
we have p; € L'[0,1],i = 1,2. It follows from Lemma 8 that
H;, (0/0t)H,, (0 /atz)Hi, K; are nonnegative and continuous
n [0,1] x [0, 1]. Therefore, we get T}, (u,v) € c?[o0,1],
T,,(u,v)(0) = Ti'n(u, v)(0) = 0 and T, (u,v)(t) = O,
Ti'n(u, v)(t) = 0, and Ti',;(u, v)(t) = 0 on [0,1]. As a result,
T;,(u,v) € P; then we can get T, (u,v) € P x P.

Step 2. We prove that T,;: P x P — P x P is continuous.
Let {(u,,, v,,)} C Px P be a convergent sequence. Suppose

that lim,, , (u,,,v,,) = (u,v). That is, lim,, , u,, = u
and lim,, , v,, = v. Then lim,,_, fy]l)(t) = u(t) and

5
limm_,OO v, (t) = v(t) uniformly on [0, 1], where j = 0, 1, 2.
Since, by Lemma 4, for y € (0,1] and v € (1,2),
| D5y, (1) = Dl (1)
1 _ 1-u n
—F ) J (t-s) 'u (s)—u (s)|ds
et~ "l
L(3-u) (25)
|Dgs v, (£) = Dyev (2))|
1 v "
mj. (t-s)" v, (s)—v' (s)|ds
- n%w’

we have lim,, _, ., 0+u (t) = u(t) and lim,,, _, ., Dy v,,(t)
= Dy, v(t) uniformly on [0, 1]. In addition, it follows from (8),
for u € (0,1] and v € (1,2), that

|05 4 .,
L [ Pl
U U (26)
105 Vonllco
[7les e
Sra—vy[a_) B rG-
Let
Pim (1) = fin (£14, (1), (8), D11, (8), Dyov,, (1)) . (27)
Since 11mmﬁooum = u, lim, v, = v and
lim m_mo Di,u,(t) = Diu(t) and lim,, , ,,Dg.v,(t) =
Dy, v(t) uniformly on [0, 1], we have lim,, _, . p;,,(t) = p,,,(£),

fort € [0, 1]. Since {u,,,} and {v,,,} are bounded in C?[0,1] and
fin € Car([0,1] x R" x R* x R* x R™, R™), inequalities (26)
imply that {Dg u,,} and {Dy.v,,} are bounded in C[0,1]. As
a result, there exists ¢; € L'[0,1] such that Pim(t) < (1),
fort € [0,1] and all m € N*; from (8) in Lemma 8, we
have K;(s,7)p;,,(t) < ¢;(0)/T(B)1 - b); for s,7 € [0,1]
and all m € N*. From the Lebesgue dominated convergence
theorem, we can obtain

1 1

mlem JO K; (5,7) piy () dT = L K; (s,7) p; (1) d1, (28)
fors € [0,1].

Since ¢, (x) = x!/?71 is continuous on [0, 0o), we have ¢, is

un1formly continuous on [0, [lg;ll, /(1 -5,)T(B)]; that is, for all

€ > 0,35 > 0, such that for all x;, x, € [0,00) and |x; — x,]| <
8, we have

|¢q,» (xl) - ¢%’ (xz). <e€. (29)



For (28) we can say that for above § > 0 and AN > 0, for each
m > N, we have

1

Jl K; (5, 7) pip (7) dT—J K;(s,7)p; (r)dr| < 6. (30)
0 0

Since Lemma 8 and p;,,,(t) < ¢;(t), fort € [0,1], all m € N¥,
we have

1 ”‘Pz"l
OSL K; (s, )sz(T)dT_(l— b)T(B)
) lo:| v
111
o<j Ki o) pon ()T < = STy

From (29), (30), and (31), we can get

%(Lﬁc@nn%xﬂdﬂ—¢%(£Kx&ﬂguyh>

<e
(32)
$0

|Tin (um’ Vm) (t) - Tin (u> V) (t)|

%, (Ll K;(s,7) p; (1) dr) ds

.
I'(@)(1-a) ’
(33)
and likewise,
! ! <
T G 0) O = T ) O] < oo,
(34)

" " €
75 Gt ) ) = T3 090 0] < -

Then

- T, (w,v)|, <

€
Up> Vi — .
ITin Caty F(a-2)(1-a) (35)
That is, lim,, _, T, (4> V)
(s V) = T, (11, v).
We prove that T,;: P x P — P X P is continuous.

T,,(u,v), so lim T

m—-00~"n

Step 3. We prove that T, : P x P — P x P is compact; that
is, for all @ € P x P, let & be a bounded set, and T, (D) is
relatively compact in E x E. For notational convenience, we
denote by L; = [lg;ll, /(1 = B)T(B)]/ PV i = 1,2.
(I) We prove T,,(9) is uniformly bounded in E x E.
Forall 2 € P x P, P is a bounded set; then 3R > 0, such
that for all (1, v) € 9, we have ||(u, v)|| < R; that s, |lul|, < R
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Ivl. < R, and from (26), for 4 € (0,1] and v € (1,2), we
have ||Dg+u||oo < R/T(3-p) and | Dg.v|| ., < R/T(3—v). Since
fin € Car([0,1] x R" x R" x R* >< R*,R"), for some ¢; €
L'[0, 1], such that fin(tu(t), v(t), D, u(t), D0+v(t)) < @i(1),
fort € [0,1] and all m € N¥, then

0<T;, (uv)(t)
1
- L H, (t,5) ¢,

X (Jl K; (s,7) fin (T,u(T),v(T),ng(T) ,
0

Dy.v (T)) dT) ds
Smj g”%(r(/s)( )J "’l(”d’) :
o [ I, ]”“’f‘“
TT()(1-a) [ (1-8)T(B)

L;
() (1-a)

0<T, (uv)(t)

1o
= JO EH" () ¢g,

1
« (JO K, (5,7) fin (716 (2), v (1), Dl (1),

Dy.v (T)) dr) ds

L;

: Ta-1)(1-g)
0< T, (uv)(t)

aZ
J atZH(ts %a
1
« (J K, (5,7) fin (116 (2), v (2), Dl (1),
0

Dy:v (‘r)) d‘r) ds

L

: T(a-2)(1-g)
(36)

and then |T;,,(u,v)|l, < L;/T(ax — 2)(1 — a;); that is T;,,(D)
is uniformly bounded in E x E, so T, (9) is also uniformly
boundedin Ex E.

(II) We prove Tf,])(.QZ) is equicontinuous on [0, 1], where
j=1,2.
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From Lemma 8, we can get H;(¢,s), (0/0t)H,(t,s), and
(az/atz)Hi(t, s) is uniformly continuous on [0, 1]; that is,
for all € > 0, 38 > 0 such that for all t;, t,,
s € [0,1] and [|t; — t,] < &, we have |H(t;,s) —
Hy(ty )| < e/Ll(Q/0H,(ty,s) - @/oDH, (1, 9)| < e/L,
and |(0*/0t*)H,(t,,s) — (0*/ot*)H,(t,, s)| < €/L;.

For all (u,v) € 9, we have

| (Ll V) (t Tin (u’ V) (t2)|

1
< L |H; (t,,5) = H; (t5,5)| g,
1
X (L K; (5, 7) fin (r,u(r),v(r),

D!,u (), Dy.v (T)) dT> ds

(37)

likewise

(t,) - Tiln (u,v) (t2)| <§¢,

v) () - Ti'ri (u,v) (tz)' <e

(38)

That is, Tl.(rf)(@) is equicontinuous on [0, 1], so Tflj)(QZ) is also
equicontinuous on [0, 1], j = 1,2.

Applying the Arzela-Ascoli theorem, T,,(9) is relatively
compact in E x E, so we prove that T,, : Px P — P x Pis
compact.

From Steps 1-3, we can get T,
completely continuous operator.

The proof of Lemma 9 is completed. O

: PxP —- PxPisa

Lemma 10 (see [20, 21]). Let W be a cone in a real Banach
space F, W, = {x € W : |x| < c}, let O be a nonnegative
continuous concave functional on W such that 0(x) < ||x|| for
all x € W, and W(,b,d) = {x € W: 0(x) > b,|x| < d}.
Suppose that A: W, — W, is completely continuous and there
exist positive constants 0 < a < b < d < ¢ such that

(Cy) {x € W(0,b,d) :
x € W(0,b,d),

(Cy) lAx|l < a for x € Wa,
(C3) 0(Ax) > b for x e W(0, b, c) with | Ax| > d.

0(x) > b} #0 and 0(Ax) > b for

Then A has at least three fixed points x,, x,, and x5 satisfying
x| < a, b<0(x,),
(39)
5] > a 0(x;) < b.
Remark 11. 1fd = c, then condition (C;) of Lemma 10 implies
condition (C;) of Lemma 10.

Wenote W = Px P,W, ={(u,v) € W: |[(u,v)|| <c},and
a nonnegative continuous concave functional 6 on the cone
W defined by

0 (u,v) = mgn lu (@) +v@)l, (40)

inwhichT'(3 - p)/2 < { < w < 1. Since 0 < p < 1, we get
0 <T(3-u)/2 < 1,and 0 is well defined.

For notational convenience, we introduce the following
constants:

h, = mine, (1 -
el (-1,

m; = Ll ey (s) ¢y, (J: eg (1) d‘l’) ds,

( hﬁ )1/(Pi1) (42)
n=—= ,
" \Tr(B)

Ji=T(a-2)(1-a) [T (B)(1-5)]""",

i=1,2.

hﬁ = tg[)(i’ralj]eﬁ 1-1), (41)

We work with the following conditions on f; in (1), i =
1,2.

da,b,cand 2 < a < b < ¢, such that f; satisfies the
following conditions:

(H,) fi(t, X1, %5, %3, x4) < (Jia)P ™', for (t, x;, x5, X3, X,) €
[0,1] % (0,a] x (0,a] x (0,a/T(3—u)] x(0,a/T(3-)],

(Hs) filt,x), %5, x5, ,) < (J;O)P L, for (£, x,, Xy, X3, X,) €
[0,1] % (0,¢] x (0, ¢] x (0,¢/T (3= )] x (0,¢/T(3=)],

(Hy) filt,x), %5, %3, %,) > (A)P, for (£, x,, Xy, X3, Xy) €
[(, w] x [b,c] x [b, c] x [({/T(3 = )b, (w/T(3 - p))c] x
[(C/T(3 = )b, (0/T(3 = »))c],

where J;, A are defined by (43).

Since fin(t, %15 X5, X3, X4) =
f;(t, max{x,, n'y, max{x,, nh, max{x,, nly, max{x,, ',
we can get f;, satisfies the following conditions:

(Hy)' finlt, X1, %5, X3,%,) < ()P, for (£, x1, X5, %3, X,) €
[0,1] % [0,a] x [0,a] x [0,a/T(3— )] x [0,a/T(3-)],

(Hy) finlt x1, %5, %3, %,) < (Jio)P, for (¢, x,, x5, X5, %) €
[0,1] % [0,¢] x [0, c] x [0,¢/T(3 — u)] x [0,¢/T(3-»)],

(Hy) fintsx1, %5, %3, %,) > (A)P, for (8, x,, X5, X3, %,) €
[(, w] x [b,c] x [b, c] x [({/T(3 = )b, (w/T(3 - p))c] x
[(C/T(3 = )b, (0/T(3 = »))c].

Theorem 12. Assume that (H,)-(H,) hold. Then, for n €
N*, BVP (20) have at least three positive solutions (u,,,, vy,,),

(Unys Vap)> and (Usp, vs,,) in W, satisfying
[(tys vi)|| < @ b < min |u,, (t) +v,, (#)],
te[{,w]

(44)

a < ||(us» vs,)| > min |u, () + vs, (t)| < b.
te[{,w]



Proof. We will show that all conditions of Lemma 10 are
satisfied.

Firstly, we prove T,: W, — W. is completely continuous.

For all (u,v) € W,, then ||(u,v)|| < c. So we have 0 <
u(t) < ¢, 0 <vP(t) < ¢ and t € [0,1], j = 0,1,2. By (26)
wehave0 < ng(t) < ¢/T(3—p)and 0 < Dy, v(t) < ¢/T(3-v).
By condition (H,), we can get (H;)' hold, so it follows from
condition (H;) that

fin (1 (2),v (1), Dhu (1), Dyov (7)) < ()P,
€[0,1].

(45)

Thus, for any (1, v) € WC, by (45), we have

| T (1w, v) (8)]

1 1
L H; (t,5) ¢, <L K; (5,7) fin(Tu (1), v (1), Dhou(7),

Dy.v (T)) d‘[) ds

]iC
< —_—
Ji

=6

v) ()|
1o
L S H (699,

x (JlKi (57 fin (o (@), v(1), Dl (1),
0

Dy v (T)) dT> ds
PR S
TT(a-1)(1-a)

S (], | ayegp ) 0o

1/(pi-1)
"

1 1
CTa-1)(1-a) [ (1 -b)T(P)
],'C
=6
]
|75 (4, ) (8)]

1 2
J SZH(t ),

X (Jl K; (s,7) fin (T,u(T),v(T),ng(T) ,
0
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Df,w(r)) dT) ds
PR S
T T(a-2)(1-a)
1 1
Px
<Jota([ [ maye) 0o tae s
1 |: 1 ]1/(P1 1)
= Jic
(@-2)(1-a)| (1-b)T(B)
Jic
<= =g
(46)
which means that || T;,(u, v)||, < ¢, so we have [T, (1, V)| < ¢

and (u,v) € W,. Therefore, T,; W. — W.. By Lemma 9, we
know that T,: W, — W, is completely continuous.

Next, similar to (46), it follows from condition (H,) that
if (u,v) € W,, then |T(u,v)| < a. So the condition (C,) of
Lemma 10 holds.

Now, we take u,(t) = (b+c)/4 and v,(t) = (b+c)/4, where
t € [0,1]; then

b+c
2

0 (ug, vp) = ét{l{ig} |uo (1) + v (1)] = > b,

(47)

”(”o’ Vo)" =

which means that (1, v,) € W(0, b, c) and 0(uy, vy) > b, This
proves that {(¢, v,) € W(0,b,¢) : O(uy,v,) > b} #0.

On the other hand, if (u, v) € W(60, b,c), thenb < u(j)(t) <
cand b < v(t) < ¢, where t € [(,w] and j = 0,1,2. By
Lemma 4, for t € [{, w], we have

Du(t) = = (21_ 3 L (= )" (5) ds
t ¢
FG-u) TG-u
(48)
DE.u(t) = ﬁj (t— )" (s) ds
< ! c< @ ¢,
FB-u) T(B-4)

and similarly, we can get ({/T(3 —v))b < Dg.v(t) < (w/T(3 -
v))c, where t € [{,w]. By condition (H,), we can get (H4)'
hold, so it follows from condition (H,) that

o590 D) D5 9) > A0

7€ [{,w] (49)
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since

0(T, (u,v))

0 (Tln (u> V) > T2n (u, V))

min Ty (4, 9) () + T ,v) (B)] (50)

=Ty, (V) (tg) + Ty, () (t5) 5

in which ¢, € [{, w].
Hence, by(49), we have

tn[nnT (u,v) (1)

= min H;(t,s
te[r:lwlj (5:5) ¢y

X (JIK,. (5:7) fin (10 (2),v (1), Db (1),
0

Dy:v (T)) dT> ds

Le (1-t
> min J ad-0e (s )ea(s)(p.
te[Cw] Jo 1“(oc) 9

1 eﬁ(l —s)eﬁ (1)
X(L r(f)

><fm(‘r u(r),v(1), D Lu(r),
Dgw('r)) dT) ds

e, (1-1)
I'(a)

1
© hg
X (j ) ———ep(7) (Ab)P~ ldr) ds
h hy Y@

_ a _ﬁ w .
T (@) T (p) L €y () Py (J’{ eg (1) dr) ds-Ab
h

> min
te[w]

T (Zc)
(51)
so we can get
T;, (u,v) (t) = ttel[lég]ﬂn (u,v) (t) T (‘;) (52)
Hence, by (50), (51), and (52), we have
0 (Tn (u) V)) = Tln (M, V) (tO) + T2n (M, V) (tO)
(53)

(myn, + myn,)Tb = b,

T (ﬁ)

which implies that 6(T,,(u, v)), for (u,v) € W(8,b,c). This
shows that condition (C,) of Lemma 10 is also satisfied.

By Remark 11, condition (C;) of Lemma 10 holds; that
is, we show that all conditions of Lemma 10 are satisfied.
So we obtain that BVP (20) have at least three positive
solutions (u4,,,, v1,,)> (thy» Vs,,)> and (uds,,, v3,) in W, such that
Iy, vi )l < a, b < 0(uy,, va,)s (s, vl > a, and
0(us,, v5,,) < b, hence satisfying

|2ty vi)| < @ b < min |u,, (t) + v,, ()],
te[{,w]

(54)
a< "(uSn’ V?m)" > tII[l(ln lu3n (t) T Vi t)| <b.
The proof of Theorem 12 is completed. O

Lemma 13. Assume that (H,)-(H,) hold. Let (u,,v,) in WC
be a solution of problem (20). Then the sequence {(u,,, v,)} is
relatively compact in E x E.

Proof. Firstly, we prove {(u,,, v,)} is uniformly bounded. Note
that

1
u, (t) = L H, (t,5) ¢,
1
X (L K, (5,7) fin (T,u(r),v(‘r) ,Diu(r),
Dy.v (T)) dr) ds,
1
v, () = L H, (t,5) ¢y,
1
X (L K, (5, 7) fo, (T, u(r),v(r), Dg+u (1),

Dy (7)) dr) ds.
(55)

Since (u,,v,) is in W,, we can get {(u,,
bounded.

Next, we prove {(u,,, v,,)} is equicontinuous on [0, 1]. Since
(u,,v,) is in W we have [u,l, < ¢ v,|l, < ¢, and by (26),
we have 0 < D” u(t) < ¢/T(3 — ) and 0 < Dy.v(t) <
¢/T(3—p). From Lemma 8, we can get H, (¢, s), (0/0t)H,(t, s),
and (0* /Btz)H1 (t,s) are uniformly continuous on [0, 1], that
is, for all € > 0, 35 > 0 such that for all ¢, and ¢,, s € [0, 1],
[t, —t,] < 8, and we have

v,)} is uniformly

|H, (t,,5) — Hy (t,,5)| <

a d

| (009) - o Hy (19 < 6
aZ
atzHl (ts) - H1 (t9)] <
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By (H,) and Lemma 8, we have

|, (£1) = u, (1)

< JO |H, (t1,s) = H, (t2,9)| &,

1
X <I K, (5,7) fin (T,u(T),v(T),ng(T),

0
Dy.v (T)) dr) ds
<epy | e (e
B\ (1-b)r(p)""
= ]la €
[(1-b)T (B
(57)
and similar to (57), we get
u (1) -u (t,)] < ha €,
N
(58)
J a
w! (t) —ul ()] < L €.
1 < o e
That is, {uﬁlj)} is equicontinuous on [0,1] and j = 1,2.

Likewise, we can get {v;j)} is equicontinuous on [0, 1]. That
is, {(uflj), vflj))} is equicontinuous on [0, 1] and j =1,2.

Applying the Arzela-Ascoli theorem, sequence {(u,,v,)}
is relatively compact in E x E.

The proof of Lemma 13 is completed. O

4. Main Results

Theorem 14. Assume that (H,)-(H,) hold. Then, forn € N,
BVP (1) have at least three positive solutions (u;,v,), (145, v,),
and (us, v5) in W, satisfying
Iy, v,)| < @ b < min |u, (t) + v, (t)],
te[{w]
(59)
a < ||(us,v3)| min |u; (1) + v; ()] < b.
te[{w]
Proof. If (H,)-(H,) hold, by Theorem 12 and Lemma 13, we
get BVP (20) have at least three positive solutions (u;,,, v;,,)
(Uyy> Vo)> and (us,,, v5,,) in W, satisfying
[ty vi)|| < @ b < min |uy, (t) + v, ()],
te[l,w]
(60)

a< "(u3n’ V3n)|| > min |u3n (t) + V3n (t)l < b)
te[{,w]

forn € N* and for t € [0,1] and the sequence (uy,,v;,),
(Uy,> Vop)> and (us,,, v5,,) are relatively compact in E x E.

We first consider the situation (u,,,, v1,,); without loss of
generality, assume that (u,,,, v,,) is convergent in E x E and

Abstract and Applied Analysis

lim, , (u,,vy,) = (uy,vy); that is, lim, , u,, = u; and
lim,_, v, = v;. Similar to the proof of Lemma9, we
have lim,, _, ., D{, u,,,(t) = D, u,(t) and lim,, _, . Dj. v, () =
Dy v, (t) uniformly on [0, 1]. Then

lim_f;, (t, 141, (), V1, (), Dhyouty,, (1), Dyovy, ()
(61)
= fi (t,uy (0, v, (), Dy (), Dy, (1))

Since f;, € Car([0,1] x R" x R" x R" x R",R"), then there
exists ¢, € L'[0, 1], such that

fin (T, uy, (1), vy, (1), Dh.uy, (1), Dgevy, (T)) <o (1),

(62)
for T € [0,1] and all m € N*. Hence we can get
H, (t,5) ¢y,
1
x (JO K, (5,7) fia(mu (1), v (1), Dhu (1), Dgw(r))dT)
1 1 1/(p—-1)
ratmlarE) e
(63)

By (61), (63), and the Lebesgue dominated convergence
theorem, we can obtain

1

nlglgo J;) Kl (S’ T) fln (T’ uln (T) > Vln (T) > Dg+uln (T) >

Dyvy, (T)) dr

1
= Jo K, (s,7) f (t,ul (1), (T),DZJJI (1),
Dy:v, (T)) dr

u, (1) = nangouln ()
1
- lim L H (699,
1
x (L Ky (5,7) fin (T u (1), v (1), Dhou(7),

Dy.v (T)) d‘l’) ds
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1
= J H, (t,s) lim ¢,
0 n— 00 1

1
X (L K (5,7) fi, (1.0 (1), v (1), Dhu (),

Dy.v (T)) d‘l’) ds

1
= j Hl (t) S) (qu

0

1

X (L K, (s,7) f; (t,u1 (1), v, (1), Dfouy (1),
Dy:vy (T)) dT) ds.

(64)

Similarly, we can also get

1

Vi, () = J H, (t,5) ¢y,

0

1
x (J K, (s,7) fo (t:uy (1), v, (1), Dby (1),

0

Dyvy (T)) dT) ds.
(65)

By Lemmas 5 and 6, we can obtain (u,, v,) is positive solution
of BVP (1).

Similarly, we can also obtain (u,,v,) and (us,v;) are
positive solutions of BVP (1).

Since

[ty v10)| < @ b < min |u,, (t) + vy, ()],
te[l,w]
(66)
a <|(usm s, min fu, (8) + 3, (O] < b
te[{,w]

for n € N* and for t € [0, 1], now, we pass to the limit as
n — oo in (66). Hence, we have
[(wpv)l| <a b < min |u, () +v, 1)],
te[l,w]

(67)

a < ||(us, v3)| > tg{l(i)g] us ) + v5 (1) < .

The proof of Theorem 14 is completed. O
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