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This paper investigates the existence of positive solutions for a class of singular 𝑝-Laplacian fractional differential equations with
integral boundary conditions. By using the Leggett-Williams fixed point theorem, the existence of at least three positive solutions
to the boundary value system is guaranteed.

1. Introduction

This paper investigates the singular 𝑝-Laplacian fractional
boundary value problem:

𝐷
𝛽

0+
(𝜙𝑝
1

(𝐷
𝛼
0+𝑢 (𝑡)))

= 𝑓1 (𝑡, 𝑢 (𝑡) , V (𝑡) , 𝐷
𝜇

0+
𝑢 (𝑡) , 𝐷

]
0+V (𝑡)) , 0 < 𝑡 < 1,

𝐷
𝛽

0+
(𝜙𝑝
2

(𝐷
𝛼
0+V (𝑡)))

= 𝑓2 (𝑡, 𝑢 (𝑡) , V (𝑡) , 𝐷
𝜇

0+
𝑢 (𝑡) , 𝐷

]
0+V (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 𝑢
󸀠
(0) = 𝑢

󸀠󸀠
(0) = 0,

𝑢
󸀠󸀠
(1) = (𝛼 − 1) (𝛼 − 2) ∫

1

0
𝑢 (𝑠) 𝑑𝜉1 (𝑠) ,

𝐷
𝛼
0+𝑢 (0) = 0, 𝜙𝑝

1

(𝐷
𝛼
0+𝑢 (1))=∫

1

0
𝜙𝑝
1

(𝐷
𝛼
0+𝑢 (𝑠)) 𝑑𝜂1 (𝑠) ,

V (0) = V󸀠 (0) = V󸀠󸀠 (0) = 0,

V󸀠󸀠 (1) = (𝛼 − 1) (𝛼 − 2) ∫

1

0
V (𝑠) 𝑑𝜉2 (𝑠) ,

𝐷
𝛼
0+V (0) = 0, 𝜙𝑝

2

(𝐷
𝛼
0+V (1))=∫

1

0
𝜙𝑝
2

(𝐷
𝛼
0+V (𝑠)) 𝑑𝜂2 (𝑠) ,

(1)

where 1 < 𝛽 ≤ 2, 3 < 𝛼 ≤ 4 and 5 < 𝛼 + 𝛽 ≤ 6,
0 < 𝜇 ≤ 1,1 < ] < 2 are real numbers. 𝜙𝑝

𝑖

(𝑥) = |𝑥|
𝑝
𝑖
−2
𝑥,

𝑝𝑖 > 1, 𝜙𝑞
𝑖

= 𝜙
−1
𝑝
𝑖

, 1/𝑝𝑖 + 1/𝑞𝑖 = 1, and 𝜉𝑖, 𝜂𝑖 : [0, 1] → 𝑅
+

are nondecreasing functions of bounded variation 𝑖 = 1, 2.
𝐷
𝛼 and 𝐷

𝛽 are the standard Riemann-Liouville fractional
derivatives of order 𝛼, 𝛽, respectively, and the integrals in
(1) are Riemann-Stieltjes integrals. Here 𝑓𝑖: [0, 1] × Ω →

R+ is Carathéodory function; that is, 𝑓𝑖 satisfies the local
Carathéodory condition on [0, 1] ×Ω, and 𝑓𝑖(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4)
may be singular at the value 0 of all its space variables
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑖 = 1, 2, in which Ω = (0,∞)

4, R+ = [0,∞).
We say that 𝑓 satisfies the local Carathéodory condition

on [0, 1] × Ω, (𝑓 ∈ Car([0, 1] × Ω)), if

(i) 𝑓(⋅; 𝑥1, 𝑥2, 𝑥3, 𝑥4): [0, 1] → R+ is measurable for all
(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ Ω;

(ii) 𝑓(𝑡; ⋅, ⋅, ⋅, ⋅): Ω → R+ is continuous for a.e. 𝑡 ∈ [0, 1];

(iii) for each compact setK ⊂ Ω there is a function 𝜑K ∈

𝐿
1
[0, 1] such that |𝑓(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4)| ≤ 𝜑K(𝑡) for a.e.

𝑡 ∈ [0, 1] and all (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ K.

A vector (𝑢, V) ∈ (𝐶
2
[0, 1]) × (𝐶

2
[0, 1]) is called positive

solution of system (1) if and only if (𝑢, V) satisfies (1) and
𝑢(𝑡) > 0, V(𝑡) ≥ 0 or V(𝑡) > 0, 𝑢(𝑡) ≥ 0 for any 𝑡 ∈ [0, 1].

Fractional differential equation can describe many phe-
nomena in various fields of science and engineering, such
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as control, porous media, electrochemistry, and electromag-
netic. For details, see [1–8] and the references therein. There
are also a large number of papers dealing with the solvability
of nonlinear fractional differential equations. Papers [9–13]
discuss fractional boundary value problems with nonlineari-
ties having singularities in space variables.

Paper [14] is concerned with the existence of positive
solutions to the following BVP for nonlinear fractional
differential equations with boundary conditions involving
Riemann-Stieltjes integrals:

𝐷
𝛼
0
+

𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠
(𝑡) , . . . , 𝑢

(𝑛−2)
(𝑡)) = 0,

0 < 𝑡 < 1,

𝑢 (0) = 𝑢
󸀠
(0) = ⋅ ⋅ ⋅ = 𝑢

𝑛−2
(0) = 0,

𝑢
𝑛−2

(1) = ∫

1

0
𝑢
𝑛−2

(𝑠) 𝑑𝐴 (𝑠) ,

(2)

where 𝑛 − 1 < 𝛼 ≤ 𝑛 and 𝑛 ≥ 2 is positive integer,
the integrals ∫1

0
𝑢
𝑛−2

(𝑠)𝑑𝐴(𝑠) are Riemann-Stieltjes integrals,
and 𝑓 is a Carathéodory function on [0, 1] × R𝑛−1 → R+.
Some existence and multiplicity results of positive solutions
are obtained by using the Krasnosel’skii fixed point theorem,
the Leray-Schauder nonlinear alternative, and the Leggett-
Williams fixed point theorem.

In the past few decades, in order to meet the demands
of research, the 𝑝-Laplacian equation is introduced in some
BVP, such as [15, 16].

Paper [15] investigates the existence of solutions for the
BVP of fractional 𝑝-Laplacian equation with the following
form:

𝐷
𝛽

0+
(𝜙𝑝 (𝐷

𝛼
0+𝑥 (𝑡))) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷

𝛼
0+𝑥 (𝑡)) ,

𝑡 ∈ [0, 1] ,

𝐷
𝛼
0+𝑥 (0) = 𝐷

𝛼
0+𝑥 (1) = 0,

(3)

where 0 < 𝛼, 𝛽 ≤ 1, and 1 < 𝛼 + 𝛽 ≤ 2, and 𝑝 > 1, 𝜙𝑝(𝑠) =
|𝑠|
𝑝−2

𝑠 is a 𝑝-Laplacian operator. 𝐷𝛼 is a Caputo fractional
derivative. A new result on the existence of solutions for the
above fractional boundary value problem is obtained, which
generalize and enrich some known results to some extent
from the literature, by using the coincidence degree theory.

Paper [16] studies the existence of positive solutions of the
following singular fourth-order coupled system with integral
boundary conditions:

(𝜙𝑝
1

(𝑢
󸀠󸀠
(𝑡)))
󸀠󸀠
= 𝜆
𝑝
1𝑎1 (𝑡) 𝑓1 (𝑡, 𝑢 (𝑡) , V (𝑡)) ,

0 < 𝑡 < 1,

(𝜙𝑝
2

(V󸀠󸀠 (𝑡)))
󸀠󸀠
= 𝜇
𝑝
2𝑎2 (𝑡) 𝑓2 (𝑡, 𝑢 (𝑡) , V (𝑡)) ,

0 < 𝑡 < 1,

𝑢 (0) = 𝑢 (1) = ∫

1

0
𝑢 (𝑠) 𝑑𝜉1 (𝑠) ,

𝜙𝑝
1

(𝑢
󸀠󸀠
(0)) = 𝜙𝑝

1

(𝑢
󸀠󸀠
(1)) = ∫

1

0
𝜙𝑝
1

(𝑢
󸀠󸀠
(𝑠)) 𝑑𝜂1 (𝑠) ,

V (0) = V (1) = ∫

1

0
V (𝑠) 𝑑𝜉2 (𝑠) ,

𝜙𝑝
2

(V󸀠󸀠 (0)) = 𝜙𝑝
2

(V󸀠󸀠 (1)) = ∫

1

0
𝜙𝑝
2

(V󸀠󸀠 (𝑡)) 𝑑𝜂2 (𝑠) ,

(4)

where 𝜆 and 𝜇 are positive parameters, 𝜙𝑝
𝑖

(𝑥) = |𝑥|
𝑝
𝑖
−2
𝑥, 𝑝𝑖 >

1, 𝜙𝑞
𝑖

= 𝜙
−1
𝑝
𝑖

, 1/𝑝𝑖 + 1/𝑞𝑖 = 1, and 𝜉𝑖, 𝜂𝑖 : [0, 1] → 𝑅
+ are

nondecreasing functions of bounded variation, 𝑖 = 1, 2, and
the integrals in (4) are Riemann-Stieltjes integrals, 𝑓1: [0, 1]×
R+0 × R+ → R+ and 𝑓2: [0, 1] × R+ × R+0 → R+ are two
continuous functions, and𝑓1(𝑡, 𝑥, 𝑦)maybe singular at𝑥 = 0,
while𝑓2(𝑡, 𝑥, 𝑦)may be singular at 𝑦 = 0; 𝑎1, 𝑎2: (0, 1) → R+

are continuous and may be singular at 𝑡 = 0 and/or 𝑡 = 1,
in which R+ = [0,∞) and R+0 = (0,∞). By using the fixed
point theory in cones, explicit range for 𝜆 and 𝜇 is derived
such that for any 𝜆 and 𝜇which lie in their respective interval,
the existence of at least one positive solution to the boundary
value system is guaranteed.

Inspired by aboveworks, ourwork presented in this paper
has the following new features. Firstly, our study is on singular
nonlinear differential systems; that is, 𝑓𝑖(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4)may
be singular at the value 0 of all its space variables𝑥1, 𝑥2, 𝑥3, 𝑥4,
𝑖 = 1, 2, which bring about many difficulties. Secondly, the
techniques used in this paper are approximation methods,
and a special cone has been developed to overcome the
difficulties due to the singularity and to apply the fixed-point
theorem. Finally, we discuss the BVP with integral boundary
conditions, that is, system (1) including multipoint and
nonlocal boundary value problems as special cases. To our
knowledge, very few authors studied the existence of positive
solutions for𝑝-Laplacian fractional differential equationwith
boundary conditions involving Riemann-Stieltjes integrals.
Hence we improve and generalize the results of previous
papers to some degree, and so it is interesting and important
to study the existence of positive solutions for system (1).

Throughout the paper, ‖𝑢‖1 = ∫
1

0
|𝑢(𝑡)|𝑑𝑡 is the norm in

the Banach𝐿1[0, 1] and ‖𝑢‖∞ = max𝑡∈[0,1]|𝑢(𝑡)| is the norm in
the Banach𝐶[0, 1]. Let 𝐸 = 𝐶

2
[0, 1]; then 𝐸 is a Banach space

endowed with the norm ‖𝑢‖∗ = max{‖𝑢‖∞, ‖𝑢
󸀠
‖∞, ‖𝑢

󸀠󸀠
‖∞}.

Thus, (𝐸 × 𝐸, ‖ ⋅ ‖) is a Banach with the norm defined by
‖(𝑢, V)‖ = max{‖𝑢‖∗, ‖V‖∗} for (𝑢, V) ∈ 𝐸 × 𝐸.

This paper is organized as follows. In Section 2,we present
some results of fractional calculus theory and auxiliary
technical lemmas, which are used in the next two sections.
Section 3 deals with the approximate problem of (1). We
induce the solvability of this problem to the existence of a
fixed point of an operator 𝑇𝑛. By the Leggett-Williams fixed
point theorem, the existence of at least three fixed points
of 𝑇𝑛 is obtained. In Section 4, we prove the existence and
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multiplicity of positive solutions of problem (1) by applying
the results of Sections 2 and 3.

2. Preliminaries

For the convenience of the reader, we present here the
necessary definitions and lemmas from fractional calculus
theory. These definitions and lemmas can be found in the
recent literatures [14, 17–19].

For convenience, we list the following signs and assump-
tions for system (1).

We note that

(1) 𝑎𝑖 = ∫
1

0
𝑑𝜉𝑖(𝑠), 𝑏𝑖 = ∫

1

0
𝑑𝜂𝑖(𝑠), 𝐴 𝑖 = ∫

1

0
𝑠
𝛼−1

𝑑𝜉𝑖(𝑠),
𝐵𝑖 = ∫

1

0
𝑠
𝛼−1

𝑑𝜂𝑖(𝑠), 𝑖 = 1, 2;

(2) 𝑒𝛼(𝑠) = 𝑠(1 − 𝑠)
𝛼−1, 𝑒𝛽(𝑠) = 𝑠(1 − 𝑠)

𝛽−1.

We assume that

(H1) 0 ≤ 𝑎𝑖 < 1, 0 ≤ 𝑏𝑖 < 1, and 𝑖 = 1, 2.

Obviously, 𝐴 𝑖 ≤ 𝑎𝑖, 𝐵𝑖 ≤ 𝑏𝑖, 𝑖 = 1, 2.

Definition 1 (see [17]). The fractional integral of order 𝛼 > 0

of a function 𝑓: (0,∞) → R is defined by

𝐼
𝛼
0+𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0
(𝑡 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠 (5)

provided that the right-hand side exists.

Definition 2 (see [17]). The Riemann-Liouville fractional
order derivative of order 𝛼 ∈ (𝑛 − 1, 𝑛] of a function 𝑓:
(0,∞) → R is defined by

𝐷
𝛼
0+𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0
(𝑡 − 𝑠)

𝑛−𝛼−1
𝑓 (𝑠) 𝑑𝑠

(6)

provided that the right-hand side exists.

Lemma 3 (see [17]). Let 𝛼 ∈ (𝑛 − 1, 𝑛] and 𝑢 ∈ 𝐶(0, 1) ∩

𝐿
1
(0, 1). Then

𝐼
𝛼
0+𝐷
𝛼
0+𝑢 (𝑡) = 𝑢 (𝑡) + 𝐶1𝑡

𝛼−1
+ 𝐶2𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶𝑛𝑡
𝛼−𝑛

,

(7)

where 𝐶𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛.

Lemma 4 (see [18]). Suppose that 𝜇 ∈ (0, 1], ] ∈ (1, 2) and
𝑢 ∈ 𝐶

2
[0, 1], 𝑢(0) = 𝑢

󸀠
(0) = 0. Then 𝐷𝜇

0+
𝑢 ∈ 𝐶[0, 1],𝐷]

0+𝑢 ∈

𝐶[0, 1], and

𝐷
𝜇

0+
𝑢 (𝑡) =

1

Γ (2 − 𝜇)
∫

𝑡

0
(𝑡 − 𝑠)

1−𝜇
𝑢
󸀠󸀠
(𝑠) 𝑑𝑠,

𝐷
]
0+𝑢 (𝑡) =

1

Γ (2 − ])
∫

𝑡

0
(𝑡 − 𝑠)

1−]
𝑢
󸀠󸀠
(𝑠) 𝑑𝑠.

(8)

Lemma 5. If (H1) holds, then for any 𝑦 ∈ 𝐿
1
(0, 1) and 𝛼 ∈

(3, 4] the boundary value problem

−𝐷
𝛼
0+𝑥 (𝑡) = 𝜙𝑞

𝑖

(𝑦 (𝑡)) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥
󸀠
(0) = 𝑥

󸀠󸀠
(0) = 0,

𝑥
󸀠󸀠
(1) = (𝛼 − 1) (𝛼 − 2) ∫

1

0
𝑥 (𝑠) 𝑑𝜉𝑖 (𝑠)

(9)

has a unique solution

𝑥 (𝑡) = ∫

1

0
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

(𝑦 (𝑠)) 𝑑𝑠, 𝑖 = 1, 2, (10)

where

𝐻𝑖 (𝑡, 𝑠) = 𝐺𝛼 (𝑡, 𝑠) +
𝑡
𝛼−1

1 − 𝐴 𝑖
∫

1

0
𝐺𝛼 (𝜏, 𝑠) 𝑑𝜉𝑖 (𝜏) ,

𝑖 = 1, 2,

(11)

𝐺𝛼 (𝑡, 𝑠)

=
1

Γ (𝛼)
{
𝑡
𝛼−1

(1 − 𝑠)
𝛼−3

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝛼−1

(1 − 𝑠)
𝛼−3

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(12)

Proof. By Lemma 3, we can see that

𝑥 (𝑡) = −𝐼
𝛼
0+ (𝜙𝑞𝑖

(𝑦 (𝑡))) + 𝐶1𝑡
𝛼−1

+ 𝐶2𝑡
𝛼−2

+𝐶3𝑡
𝛼−3

+ 𝐶4𝑡
𝛼−4

.

(13)

Considering that solutions satisfy 𝑥(0) = 𝑥
󸀠
(0) = 𝑥

󸀠󸀠
(0) = 0

and 𝑥
󸀠󸀠
(1) = (𝛼 − 1)(𝛼 − 2) ∫

1

0
𝑥(𝑠)𝑑𝜉𝑖(𝑠), we can get 𝐶2 =

𝐶3 = 𝐶4 = 0 and 𝐶1 = (∫
1

0
(1 − 𝑠)

𝛼−3
𝜙𝑞
𝑖

(𝑦(𝑠))𝑑𝑠 − ∫
1

0
∫
𝑠

0
(𝑠 −

𝜏)
𝛼−1

𝜙𝑞
𝑖

(𝑦(𝜏))𝑑𝜏𝑑𝜉𝑖(𝑠))/Γ(𝛼)(1 − 𝐴 𝑖). As a result,

𝑥 (𝑡) =
𝑡
𝛼−1

Γ (𝛼) (1 − 𝐴 𝑖)
[∫

1

0
(1 − 𝑠)

𝛼−3
𝜙𝑞
𝑖

(𝑦 (𝑠)) 𝑑𝑠

−∫

1

0
∫

𝑠

0
(𝑠 − 𝜏)

𝛼−1
𝜙𝑞
𝑖

(𝑦 (𝜏)) 𝑑𝜏𝑑𝜉𝑖 (𝑠)]

−
1

Γ (𝛼)
∫

𝑡

0
(𝑡 − 𝑠)

𝛼−1
𝜙𝑞
𝑖

(𝑦 (𝑠)) 𝑑𝑠

= ∫

1

0
𝐺𝛼 (𝑡, 𝑠) 𝜙𝑞

𝑖

(𝑦 (𝑠)) 𝑑𝑠

+
𝑡
𝛼−1

1 − 𝐴 𝑖
∬

1

0
𝐺𝛼 (𝜏, 𝑠) 𝜙𝑞

𝑖

(𝑦 (𝑠)) 𝑑𝜉𝑖 (𝜏) 𝑑𝑠

= ∫

1

0
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

(𝑦 (𝑠)) 𝑑𝑠.

(14)
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Lemma 6 (see [14]). If (H1) holds, then for any 𝑧 ∈ 𝐿
1
(0, 1)

and 𝛽 ∈ (1, 2] the boundary value problem

−𝐷
𝛽

0+
𝑥 (𝑡) = 𝑧 (𝑡) , 0 < 𝑡 < 1,

𝑦 (0) = 0, 𝑥 (1) = ∫

1

0
𝑦 (𝑠) 𝑑𝜂𝑖 (𝑠)

(15)

has a unique solution

𝑦 (𝑡) = ∫

1

0
𝐾𝑖 (𝑡, 𝑠) 𝑧 (𝑠) 𝑑𝑠, 𝑖 = 1, 2, (16)

where

𝐾𝑖 (𝑡, 𝑠) = 𝐺𝛽 (𝑡, 𝑠) +
𝑡
𝛽−1

1 − 𝐵𝑖
∫

1

0
𝐺𝛽 (𝜏, 𝑠) 𝑑𝜂𝑖 (𝜏) ,

𝑖 = 1, 2,

(17)

𝐺𝛽 (𝑡, 𝑠)

=
1

Γ (𝛽)
{
𝑡
𝛽−1

(1 − 𝑠)
𝛽−1

− (𝑡 − 𝑠)
𝛽−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝛽−1

(1 − 𝑠)
𝛽−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(18)

Lemma 7 (see [18]). Let 𝐺𝛼 and 𝐺𝛽 be as defined in (12) and
(18). Then

(1) 𝐺𝛼(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and 𝐺𝛼(𝑡, 𝑠) > 0 on (0, 1) ×
(0, 1),

(2) 𝑒𝛼(1 − 𝑡)𝑒𝛼(𝑠)/Γ(𝛼) ≤ 𝐺𝛼(𝑡, 𝑠) ≤ 1/Γ(𝛼) for (𝑡, 𝑠) ∈

[0, 1] × [0, 1],
(3) (𝜕/𝜕𝑡)𝐺𝛼(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and (𝜕/𝜕𝑡)𝐺𝛼(𝑡, 𝑠) >

0 on (0, 1) × (0, 1),
(4) (𝜕/𝜕𝑡)𝐺𝛼(𝑡, 𝑠) ≤ 1/Γ(𝛼 − 1) for (𝑡, 𝑠) ∈ [0, 1] × [0, 1],
(5) (𝜕2/𝜕𝑡2)𝐺𝛼(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and (𝜕

2
/𝜕𝑡
2
)

𝐺𝛼(𝑡, 𝑠) > 0 on (0, 1) × (0, 1),
(6) (𝜕2/𝜕𝑡2)𝐺𝛼(𝑡, 𝑠) ≤ 1/Γ(𝛼 − 2) for (𝑡, 𝑠) ∈ [0, 1] × [0, 1],
(7) 𝐺𝛽(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and 𝐺𝛽(𝑡, 𝑠) > 0 on (0, 1) ×

(0, 1),
(8) 𝑒𝛽(1 − 𝑡)𝑒𝛽(𝑠)/Γ(𝛽) ≤ 𝐺𝛽(𝑡, 𝑠) ≤ 1/Γ(𝛽) for (𝑡, 𝑠) ∈

[0, 1] × [0, 1].

Proof. For notational convenience, we denote by

𝐺
∗
𝛼 (𝑡, 𝑠)

=
1

Γ (𝛼)
{
𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(19)

From paper [19], (7) and (8) hold. Likewise, we have 𝑒𝛼(1 −
𝑡)𝑒𝛼(𝑠)/Γ(𝛼) ≤ 𝐺

∗
𝛼(𝑡, 𝑠), since (1 − 𝑠)

𝛼−1
≤ (1 − 𝑠)

𝛼−3; for
𝑠 ∈ [0, 1], we have 𝐺𝛼(𝑡, 𝑠) ≤ 𝐺

∗
𝛼(𝑡, 𝑠), so we have 𝑒𝛼(1 −

𝑡)𝑒𝛼(𝑠)/Γ(𝛼) ≤ 𝐺𝛼(𝑡, 𝑠), and from [18], (1)–(6) hold.

Lemma 8. Let 𝐻𝑖, 𝐾𝑖 be as defined in (11) and (17), 𝑖 = 1, 2.
Then

(1) 𝐻𝑖(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and𝐻𝑖(𝑡, 𝑠) > 0 on (0, 1) ×
(0, 1),

(2) 𝑒𝛼(1 − 𝑡)𝑒𝛼(𝑠)/Γ(𝛼) ≤ 𝐻𝑖(𝑡, 𝑠) ≤ 1/(Γ(𝛼)(1 − 𝑎𝑖)) for
(𝑡, 𝑠) ∈ [0, 1] × [0, 1],

(3) (𝜕/𝜕𝑡)𝐻𝑖(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and (𝜕/𝜕𝑡)𝐻𝑖(𝑡, 𝑠) >
0 on (0, 1) × (0, 1),

(4) (𝜕/𝜕𝑡)𝐻𝑖(𝑡, 𝑠) ≤ 1/(Γ(𝛼− 1)(1 − 𝑎𝑖)) for (𝑡, 𝑠) ∈ [0, 1] ×
[0, 1],

(5) (𝜕2/𝜕𝑡2)𝐻𝑖(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and (𝜕
2
/𝜕𝑡
2
)

𝐻𝑖(𝑡, 𝑠) > 0 on (0, 1) × (0, 1),
(6) (𝜕2/𝜕𝑡2)𝐻𝑖(𝑡, 𝑠) ≤ 1/(Γ(𝛼−2)(1−𝑎𝑖)) for (𝑡, 𝑠) ∈ [0, 1]×

[0, 1],
(7) 𝐾𝑖(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]) and 𝐾𝑖(𝑡, 𝑠) > 0 on (0, 1) ×

(0, 1),
(8) 𝑒𝛽(1 − 𝑡)𝑒𝛽(𝑠)/Γ(𝛽) ≤ 𝐾𝑖(𝑡, 𝑠) ≤ 1/(Γ(𝛽)(1 − 𝑏𝑖)) for

(𝑡, 𝑠) ∈ [0, 1] × [0, 1].

Proof . By (H1), (11), and Lemma 7, we have 𝐺𝛼(𝑡, 𝑠) ≤

𝐻𝑖(𝑡, 𝑠) ≤ (1/Γ(𝛼))(1 + 𝑎𝑖/(1 − 𝐴 𝑖)) ≤ 1/(Γ(𝛼)(1 − 𝑎𝑖)), so
(2) holds; likewise, (1) and (3)–(8) hold.

3. Auxiliary Regular Problem

To overcome singularity, we consider the following approxi-
mate problem of (1):

𝐷
𝛽

0+
(𝜙𝑝
1

(𝐷
𝛼
0+𝑢 (𝑡)))

= 𝑓1𝑛 (𝑡, 𝑢 (𝑡) , V (𝑡) , 𝐷
𝜇

0+
𝑢 (𝑡) , 𝐷

]
0+V (𝑡)) , 0 < 𝑡 < 1,

𝐷
𝛽

0+
(𝜙𝑝
2

(𝐷
𝛼
0+V (𝑡)))

= 𝑓2𝑛 (𝑡, 𝑢 (𝑡) , V (𝑡) , 𝐷
𝜇

0+
𝑢 (𝑡) , 𝐷

]
0+V (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 𝑢
󸀠
(0) = 𝑢

󸀠󸀠
(0) = 0,

𝑢
󸀠󸀠
(1) = (𝛼 − 1) (𝛼 − 2) ∫

1

0
𝑢 (𝑠) 𝑑𝜉1 (𝑠) ,

𝐷
𝛼
0+𝑢 (0) = 0, 𝜙𝑝

1

(𝐷
𝛼
0+𝑢 (1))=∫

1

0
𝜙𝑝
1

(𝐷
𝛼
0+𝑢 (𝑠)) 𝑑𝜂1 (𝑠) ,

V (0) = V󸀠 (0) = V󸀠󸀠 (0) = 0,

V󸀠󸀠 (1) = (𝛼 − 1) (𝛼 − 2) ∫

1

0
V (𝑠) 𝑑𝜉2 (𝑠) ,

𝐷
𝛼
0+V (0) = 0, 𝜙𝑝

2

(𝐷
𝛼
0+V (1))=∫

1

0
𝜙𝑝
2

(𝐷
𝛼
0+V (𝑠)) 𝑑𝜂2 (𝑠) ,

(20)

where 𝑛 is a positive integer and

𝑓𝑖𝑛 (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓𝑖 (𝑡,max {𝑥1, 𝑛
−1
} ,max {𝑥2, 𝑛

−1
} ,

max {𝑥3, 𝑛
−1
} ,max {𝑥4, 𝑛

−1
}) .

(21)
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Clearly, 𝑓𝑖𝑛 ∈ Car([0, 1] ×R+ ×R+ ×R+ ×R+,R+), 𝑖 = 1, 2.
Define a cone 𝑃 in 𝐸 as

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 (0) = 𝑢
󸀠
(0) = 0, 𝑢 (𝑡) ≥ 0, 𝑢

󸀠
(𝑡) ≥ 0,

𝑢
󸀠󸀠
(𝑡) ≥ 0, 𝑡 ∈ [0, 1]} .

(22)

By Lemma 4, we can obtain that

𝐷
𝜇

0+
𝑢 ∈ 𝐶 [0, 1] , 𝐷

]
0+𝑢 ∈ 𝐶 [0, 1] ,

𝐷
𝜇

0+
𝑢 (𝑡) ≥ 0, 𝐷

]
0+𝑢 (𝑡) ≥ 0,

(23)

for 𝑢 ∈ 𝑃 and 𝑡 ∈ [0, 1].
For each 𝑛 ∈ N+, let us define operators 𝑇1𝑛 : 𝑃 → 𝐸,

𝑇2𝑛 : 𝑃 → 𝐸 and 𝑇𝑛 : 𝑃 × 𝑃 → 𝐸 × 𝐸 by

𝑇𝑖𝑛 (𝑢, V) (𝑡)

= ∫

1

0
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛

× (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷𝜇
0+
𝑢 (𝜏) , 𝐷

]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠,

𝑖 = 1, 2,

(24)

and 𝑇𝑛(𝑢, V) = (𝑇1𝑛(𝑢, V), 𝑇2𝑛(𝑢, V)). By Lemmas 5 and 6, we
know that fixed points of𝑇𝑛 are positive solution of the system
(20).

Lemma 9. 𝑇𝑛 : 𝑃 × 𝑃 → 𝑃 × 𝑃 is a completely continuous
operator.

Proof. We divide the proof into three steps.

Step 1. We prove that 𝑇𝑛 : 𝑃 × 𝑃 → 𝑃 × 𝑃 is well defined.
For all (𝑢, V) ∈ 𝑃 × 𝑃, let 𝜌𝑖(𝑡) =

𝑓𝑖𝑛(𝑡, 𝑢(𝑡), V(𝑡), 𝐷
𝜇

0+
𝑢(𝑡), 𝐷

]
0+V(𝑡)). Then by (21) and (23),

we have 𝜌𝑖 ∈ 𝐿
1
[0, 1], 𝑖 = 1, 2. It follows from Lemma 8 that

𝐻𝑖, (𝜕/𝜕𝑡)𝐻𝑖, (𝜕
2
/𝜕𝑡
2
)𝐻𝑖, 𝐾𝑖 are nonnegative and continuous

on [0, 1] × [0, 1]. Therefore, we get 𝑇𝑖𝑛(𝑢, V) ∈ 𝐶
2
[0, 1],

𝑇𝑖𝑛(𝑢, V)(0) = 𝑇
󸀠
𝑖𝑛(𝑢, V)(0) = 0 and 𝑇𝑖𝑛(𝑢, V)(𝑡) ≥ 0,

𝑇
󸀠
𝑖𝑛(𝑢, V)(𝑡) ≥ 0, and 𝑇

󸀠󸀠
𝑖𝑛(𝑢, V)(𝑡) ≥ 0 on [0, 1]. As a result,

𝑇𝑖𝑛(𝑢, V) ∈ 𝑃; then we can get 𝑇𝑛(𝑢, V) ∈ 𝑃 × 𝑃.

Step 2. We prove that 𝑇𝑛: 𝑃 × 𝑃 → 𝑃 × 𝑃 is continuous.
Let {(𝑢𝑚, V𝑚)} ⊂ 𝑃×𝑃 be a convergent sequence. Suppose

that lim𝑚→∞(𝑢𝑚, V𝑚) = (𝑢, V). That is, lim𝑚→∞𝑢𝑚 = 𝑢

and lim𝑚→∞V𝑚 = V. Then lim𝑚→∞𝑢
(𝑗)
𝑚 (𝑡) = 𝑢(𝑡) and

lim𝑚→∞V
(𝑗)
𝑚 (𝑡) = V(𝑡) uniformly on [0, 1], where 𝑗 = 0, 1, 2.

Since, by Lemma 4, for 𝜇 ∈ (0, 1] and ] ∈ (1, 2),
󵄨󵄨󵄨󵄨󵄨
𝐷
𝜇

0+
𝑢𝑚 (𝑡) − 𝐷

𝜇

0+
𝑢 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (2 − 𝜇)
∫

𝑡

0
(𝑡 − 𝑠)

1−𝜇 󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠
𝑚 (𝑠) − 𝑢

󸀠󸀠
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
𝑚 − 𝑢
󸀠󸀠󵄩󵄩󵄩󵄩󵄩∞

Γ (3 − 𝜇)
,

󵄨󵄨󵄨󵄨𝐷
]
0+V𝑚 (𝑡) − 𝐷

]
0+V (𝑡)

󵄨󵄨󵄨󵄨

≤
1

Γ (2 − ])
∫

𝑡

0
(𝑡 − 𝑠)

1−] 󵄨󵄨󵄨󵄨󵄨
V󸀠󸀠𝑚 (𝑠) − V󸀠󸀠 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤

󵄩󵄩󵄩󵄩󵄩
V󸀠󸀠𝑚 − V󸀠󸀠

󵄩󵄩󵄩󵄩󵄩∞

Γ (3 − ])
,

(25)

we have lim𝑚→∞𝐷
𝜇

0+
𝑢𝑚(𝑡) = 𝐷

𝜇

0+
𝑢(𝑡) and lim𝑚→∞𝐷

]
0+V𝑚(𝑡)

= 𝐷
]
0+V(𝑡) uniformly on [0, 1]. In addition, it follows from (8),

for 𝜇 ∈ (0, 1] and ] ∈ (1, 2), that
󵄩󵄩󵄩󵄩󵄩
𝐷
𝜇

0+
𝑢𝑚

󵄩󵄩󵄩󵄩󵄩∞

≤

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
𝑚

󵄩󵄩󵄩󵄩󵄩∞

Γ (2 − 𝜇)
∫

𝑡

0
(𝑡 − 𝑠)

1−𝜇
𝑑𝑠 ≤

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
𝑚

󵄩󵄩󵄩󵄩󵄩∞

Γ (3 − 𝜇)
,

󵄩󵄩󵄩󵄩𝐷
]
0+V𝑚

󵄩󵄩󵄩󵄩∞

≤

󵄩󵄩󵄩󵄩󵄩
V󸀠󸀠𝑚
󵄩󵄩󵄩󵄩󵄩∞

Γ (2 − ])
∫

𝑡

0
(𝑡 − 𝑠)

1−]
𝑑𝑠 ≤

󵄩󵄩󵄩󵄩󵄩
V󸀠󸀠𝑚
󵄩󵄩󵄩󵄩󵄩∞

Γ (3 − ])
.

(26)

Let

𝜌𝑖𝑚 (𝑡) = 𝑓𝑖𝑛 (𝑡, 𝑢𝑚 (𝑡) , V𝑚 (𝑡) , 𝐷
𝜇

0+
𝑢𝑚 (𝑡) , 𝐷

]
0+V𝑚 (𝑡)) . (27)

Since lim𝑚→∞𝑢𝑚 = 𝑢, lim𝑚→∞V𝑚 = V, and
lim𝑚→∞𝐷

𝜇

0+
𝑢𝑚(𝑡) = 𝐷

𝜇

0+
𝑢(𝑡) and lim𝑚→∞𝐷

]
0+V𝑚(𝑡) =

𝐷
]
0+V(𝑡) uniformly on [0, 1], we have lim𝑚→∞𝜌𝑖𝑚(𝑡) = 𝜌𝑚(𝑡),

for 𝑡 ∈ [0, 1]. Since {𝑢𝑚} and {V𝑚} are bounded in𝐶
2
[0, 1] and

𝑓𝑖𝑛 ∈ Car([0, 1] × R+ × R+ × R+ × R+,R+), inequalities (26)
imply that {𝐷𝜇

0+
𝑢𝑚} and {𝐷

]
0+V𝑚} are bounded in 𝐶[0, 1]. As

a result, there exists 𝜑𝑖 ∈ 𝐿
1
[0, 1] such that 𝜌𝑖𝑚(𝑡) ≤ 𝜑𝑖(𝑡),

for 𝑡 ∈ [0, 1] and all 𝑚 ∈ N+; from (8) in Lemma 8, we
have 𝐾𝑖(𝑠, 𝜏)𝜌𝑖𝑚(𝜏) ≤ 𝜑𝑖(𝜏)/Γ(𝛽)(1 − 𝑏𝑖); for 𝑠, 𝜏 ∈ [0, 1]

and all 𝑚 ∈ N+. From the Lebesgue dominated convergence
theorem, we can obtain

lim
𝑚→∞

∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖𝑚 (𝜏) 𝑑𝜏 = ∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖 (𝜏) 𝑑𝜏,

for 𝑠 ∈ [0, 1] .
(28)

Since 𝜙𝑞
𝑖

(𝑥) = 𝑥
1/(𝑝
𝑖
−1) is continuous on [0,∞), we have 𝜙𝑞

𝑖

is
uniformly continuous on [0, ‖𝜑𝑖‖1/(1−𝑏𝑖)Γ(𝛽)]; that is, for all
𝜖 > 0, ∃𝛿 > 0, such that for all 𝑥1, 𝑥2 ∈ [0,∞) and |𝑥1 −𝑥2| <
𝛿, we have

󵄨󵄨󵄨󵄨󵄨
𝜙𝑞
𝑖

(𝑥1) − 𝜙𝑞
𝑖

(𝑥2)
󵄨󵄨󵄨󵄨󵄨
< 𝜖. (29)
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For (28) we can say that for above 𝛿 > 0 and ∃𝑁 > 0, for each
𝑚 > 𝑁, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖𝑚 (𝜏) 𝑑𝜏 − ∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛿. (30)

Since Lemma 8 and 𝜌𝑖𝑚(𝑡) ≤ 𝜑𝑖(𝑡), for 𝑡 ∈ [0, 1], all 𝑚 ∈ N+,
we have

0 ≤ ∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖𝑚 (𝜏) 𝑑𝜏 ≤

󵄩󵄩󵄩󵄩𝜑𝑖
󵄩󵄩󵄩󵄩1

(1 − 𝑏𝑖) Γ (𝛽)
,

0 ≤ ∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖𝑚 (𝜏) 𝑑𝜏 ≤

󵄩󵄩󵄩󵄩𝜑𝑖
󵄩󵄩󵄩󵄩1

(1 − 𝑏𝑖) Γ (𝛽)
.

(31)

From (29), (30), and (31), we can get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜙𝑞
𝑖

(∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖𝑚 (𝜏) 𝑑𝜏) − 𝜙𝑞

𝑖

(∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖 (𝜏) 𝑑𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖,

(32)

so
󵄨󵄨󵄨󵄨𝑇𝑖𝑛 (𝑢𝑚, V𝑚) (𝑡) − 𝑇𝑖𝑛 (𝑢, V) (𝑡)

󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼) (1 − 𝑎𝑖)
∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜙𝑞
𝑖

(∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖𝑚 (𝜏) 𝑑𝜏)

−𝜙𝑞
𝑖

(∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝜌𝑖 (𝜏) 𝑑𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

<
𝜖

Γ (𝛼) (1 − 𝑎𝑖)
,

(33)

and likewise,
󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠
𝑖𝑛 (𝑢𝑚, V𝑚) (𝑡) − 𝑇

󸀠
𝑖𝑛 (𝑢, V) (𝑡)

󵄨󵄨󵄨󵄨󵄨
<

𝜖

Γ (𝛼 − 1) (1 − 𝑎𝑖)
,

󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠
𝑖𝑛 (𝑢𝑚, V𝑚) (𝑡) − 𝑇

󸀠󸀠
𝑖𝑛 (𝑢, V) (𝑡)

󵄨󵄨󵄨󵄨󵄨
<

𝜖

Γ (𝛼 − 2) (1 − 𝑎𝑖)
.

(34)

Then

󵄩󵄩󵄩󵄩𝑇𝑖𝑛 (𝑢𝑚, V𝑚) − 𝑇𝑖𝑛 (𝑢, V)
󵄩󵄩󵄩󵄩∗ <

𝜖

Γ (𝛼 − 2) (1 − 𝑎𝑖)
. (35)

That is, lim𝑚→∞𝑇𝑖𝑛(𝑢𝑚, V𝑚) = 𝑇𝑖𝑛(𝑢, V), so lim𝑚→∞𝑇𝑛
(𝑢𝑚, V𝑚) = 𝑇𝑛(𝑢, V).

We prove that 𝑇𝑛: 𝑃 × 𝑃 → 𝑃 × 𝑃 is continuous.

Step 3. We prove that 𝑇𝑛 : 𝑃 × 𝑃 → 𝑃 × 𝑃 is compact; that
is, for all D ∈ 𝑃 × 𝑃, let D be a bounded set, and 𝑇𝑛(D) is
relatively compact in 𝐸 × 𝐸. For notational convenience, we
denote by 𝐿 𝑖 = [‖𝜑𝑖‖1/(1 − 𝑏𝑖)Γ(𝛽)]

1/(𝑝
𝑖
−1)
, 𝑖 = 1, 2.

(I) We prove 𝑇𝑛(D) is uniformly bounded in 𝐸 × 𝐸.
For allD ∈ 𝑃 × 𝑃,D is a bounded set; then ∃𝑅 > 0, such

that for all (𝑢, V) ∈ D, we have ‖(𝑢, V)‖ ≤ 𝑅; that is, ‖𝑢‖∗ ≤ 𝑅,

‖V‖∗ ≤ 𝑅, and from (26), for 𝜇 ∈ (0, 1] and ] ∈ (1, 2), we
have ‖𝐷𝜇

0+
𝑢‖
∞
≤ 𝑅/Γ(3−𝜇) and ‖𝐷]

0+V‖∞ ≤ 𝑅/Γ(3−]). Since
𝑓𝑖𝑛 ∈ Car([0, 1] × R+ × R+ × R+ × R+,R+), for some 𝜑𝑖 ∈
𝐿
1
[0, 1], such that 𝑓𝑖𝑛(𝑡, 𝑢(𝑡), V(𝑡), 𝐷

𝜇

0+
𝑢(𝑡), 𝐷

]
0+V(𝑡)) ≤ 𝜑𝑖(𝑡),

for 𝑡 ∈ [0, 1] and all𝑚 ∈ N+, then

0 ≤ 𝑇𝑖𝑛 (𝑢, V) (𝑡)

= ∫

1

0
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

≤
1

Γ (𝛼) (1 − 𝑎𝑖)
∫

1

0
𝜙𝑞
𝑖

(
1

Γ (𝛽) (1 − 𝑏𝑖)
∫

1

0
𝜑𝑖 (𝜏) 𝑑𝜏)𝑑𝑠

≤
1

Γ (𝛼) (1 − 𝑎𝑖)
[

󵄩󵄩󵄩󵄩𝜑𝑖
󵄩󵄩󵄩󵄩1

(1 − 𝑏𝑖) Γ (𝛽)
]

1/(𝑝
𝑖
−1)

=
𝐿 𝑖

Γ (𝛼) (1 − 𝑎𝑖)
,

0 ≤ 𝑇
󸀠
𝑖𝑛 (𝑢, V) (𝑡)

= ∫

1

0

𝜕

𝜕𝑡
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

≤
𝐿 𝑖

Γ (𝛼 − 1) (1 − 𝑎𝑖)
,

0 ≤ 𝑇
󸀠󸀠
𝑖𝑛 (𝑢, V) (𝑡)

= ∫

1

0

𝜕
2

𝜕𝑡2
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

≤
𝐿 𝑖

Γ (𝛼 − 2) (1 − 𝑎𝑖)
,

(36)

and then ‖𝑇𝑖𝑛(𝑢, V)‖∗ ≤ 𝐿 𝑖/Γ(𝛼 − 2)(1 − 𝑎𝑖); that is 𝑇𝑖𝑛(D)

is uniformly bounded in 𝐸 × 𝐸, so 𝑇𝑛(D) is also uniformly
bounded in 𝐸 × 𝐸.

(II) We prove 𝑇(𝑗)𝑛 (D) is equicontinuous on [0, 1], where
𝑗 = 1, 2.
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From Lemma 8, we can get 𝐻𝑖(𝑡, 𝑠), (𝜕/𝜕𝑡)𝐻𝑖(𝑡, 𝑠), and
(𝜕
2
/𝜕𝑡
2
)𝐻𝑖(𝑡, 𝑠) is uniformly continuous on [0, 1]; that is,

for all 𝜖 > 0, ∃𝛿 > 0 such that for all 𝑡1, 𝑡2,
𝑠 ∈ [0, 1] and |𝑡1 − 𝑡2| < 𝛿, we have |𝐻𝑖(𝑡1, 𝑠) −

𝐻𝑖(𝑡2, 𝑠)| < 𝜖/𝐿 𝑖,|(𝜕/𝜕𝑡)𝐻𝑖(𝑡1, 𝑠) − (𝜕/𝜕𝑡)𝐻𝑖(𝑡2, 𝑠)| < 𝜖/𝐿 𝑖,
and |(𝜕

2
/𝜕𝑡
2
)𝐻𝑖(𝑡1, 𝑠) − (𝜕

2
/𝜕𝑡
2
)𝐻𝑖(𝑡2, 𝑠)| < 𝜖/𝐿 𝑖.

For all (𝑢, V) ∈ D, we have

󵄨󵄨󵄨󵄨𝑇𝑖𝑛 (𝑢, V) (𝑡1) − 𝑇𝑖𝑛 (𝑢, V) (𝑡2)
󵄨󵄨󵄨󵄨

≤ ∫

1

0

󵄨󵄨󵄨󵄨𝐻𝑖 (𝑡1, 𝑠) − 𝐻𝑖 (𝑡2, 𝑠)
󵄨󵄨󵄨󵄨 𝜙𝑞𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) ,

𝐷
𝜇

0+
𝑢 (𝜏) , 𝐷

]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

<
𝜖

𝐿 𝑖
⋅ 𝐿 𝑖 = 𝜖;

(37)

likewise
󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠
𝑖𝑛 (𝑢, V) (𝑡1) − 𝑇

󸀠
𝑖𝑛 (𝑢, V) (𝑡2)

󵄨󵄨󵄨󵄨󵄨
< 𝜖,

󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠
𝑖𝑛 (𝑢, V) (𝑡1) − 𝑇

󸀠󸀠
𝑖𝑛 (𝑢, V) (𝑡2)

󵄨󵄨󵄨󵄨󵄨
< 𝜖.

(38)

That is, 𝑇(𝑗)𝑖𝑛 (D) is equicontinuous on [0, 1], so 𝑇(𝑗)𝑛 (D) is also
equicontinuous on [0, 1], 𝑗 = 1, 2.

Applying the Arzelà-Ascoli theorem, 𝑇𝑛(D) is relatively
compact in 𝐸 × 𝐸, so we prove that 𝑇𝑛 : 𝑃 × 𝑃 → 𝑃 × 𝑃 is
compact.

From Steps 1–3, we can get 𝑇𝑛 : 𝑃 × 𝑃 → 𝑃 × 𝑃 is a
completely continuous operator.

The proof of Lemma 9 is completed.

Lemma 10 (see [20, 21]). Let 𝑊 be a cone in a real Banach
space 𝐹, 𝑊𝑐 = {𝑥 ∈ 𝑊 : ‖𝑥‖ < 𝑐}, let 𝜃 be a nonnegative
continuous concave functional on𝑊 such that 𝜃(𝑥) ≤ ‖𝑥‖ for
all 𝑥 ∈ 𝑊𝑐, and 𝑊(𝜃, 𝑏, 𝑑) = {𝑥 ∈ 𝑊 : 𝜃(𝑥) ≥ 𝑏, ‖𝑥‖ ≤ 𝑑}.
Suppose that 𝐴:𝑊𝑐 → 𝑊𝑐 is completely continuous and there
exist positive constants 0 < 𝑎 < 𝑏 < 𝑑 ≤ 𝑐 such that

(C1) {𝑥 ∈ 𝑊(𝜃, 𝑏, 𝑑) : 𝜃(𝑥) > 𝑏} ̸= 0 and 𝜃(𝐴𝑥) > 𝑏 for
𝑥 ∈ 𝑊(𝜃, 𝑏, 𝑑),

(C2) ‖𝐴𝑥‖ < 𝑎 for 𝑥 ∈ 𝑊𝑎,

(C3) 𝜃(𝐴𝑥) > 𝑏 for 𝑥 ∈ 𝑊(𝜃, 𝑏, 𝑐) with ‖𝐴𝑥‖ > 𝑑.

Then 𝐴 has at least three fixed points 𝑥1, 𝑥2, and 𝑥3 satisfying

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩 < 𝑎, 𝑏 < 𝜃 (𝑥2) ,

󵄩󵄩󵄩󵄩𝑥3
󵄩󵄩󵄩󵄩 > 𝑎, 𝜃 (𝑥3) < 𝑏.

(39)

Remark 11. If 𝑑 = 𝑐, then condition (𝐶1) of Lemma 10 implies
condition (𝐶3) of Lemma 10.

We note𝑊 = 𝑃 × 𝑃,𝑊𝑐 = {(𝑢, V) ∈ 𝑊 : ‖(𝑢, V)‖ < 𝑐}, and
a nonnegative continuous concave functional 𝜃 on the cone
𝑊 defined by

𝜃 (𝑢, V) = min
𝑡∈[𝜁,𝜔]

|𝑢 (𝑡) + V (𝑡)| , (40)

in which Γ(3 − 𝜇)/2 < 𝜁 < 𝜔 < 1. Since 0 < 𝜇 ≤ 1, we get
0 < Γ(3 − 𝜇)/2 < 1, and 𝜃 is well defined.

For notational convenience, we introduce the following
constants:

ℎ𝛼 = min
𝑡∈[𝜁,𝜔]

𝑒𝛼 (1 − 𝑡) , ℎ𝛽 = min
𝑡∈[𝜁,𝜔]

𝑒𝛽 (1 − 𝑡) , (41)

𝑚𝑖 = ∫

1

0
𝑒𝛼 (𝑠) 𝜙𝑞

𝑖

(∫

𝜔

𝜁
𝑒𝛽 (𝜏) 𝑑𝜏) 𝑑𝑠,

𝑛𝑖 = (
ℎ𝛽

Γ (𝛽)
)

1/(𝑝
𝑖
−1)

,

𝑖 = 1, 2,

(42)

𝐽𝑖 = Γ (𝛼 − 2) (1 − 𝑎𝑖) [Γ (𝛽) (1 − 𝑏𝑖)]
1/(𝑝
𝑖
−1)
,

Λ = [(
ℎ𝛽

Γ (𝛽)
) (𝑚1𝑛1 + 𝑚2𝑛2)]

−1

,

𝑖 = 1, 2.

(43)

We work with the following conditions on 𝑓𝑖 in (1), 𝑖 =
1, 2.

∃𝑎, 𝑏, 𝑐 and 2 < 𝑎 < 𝑏 < 𝑐, such that 𝑓𝑖 satisfies the
following conditions:

(H2) 𝑓𝑖(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) < (𝐽𝑖𝑎)
𝑝
𝑖
−1, for (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈

[0, 1] × (0, 𝑎] × (0, 𝑎] × (0, 𝑎/Γ(3−𝜇)] × (0, 𝑎/Γ(3− ])],
(H3) 𝑓𝑖(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ≤ (𝐽𝑖𝑐)

𝑝
𝑖
−1, for (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈

[0, 1] × (0, 𝑐] × (0, 𝑐] × (0, 𝑐/Γ(3 − 𝜇)] × (0, 𝑐/Γ(3 − ])],
(H4) 𝑓𝑖(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) > (Λ𝑐)

𝑝
𝑖
−1, for (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈

[𝜁, 𝜔] × [𝑏, 𝑐] × [𝑏, 𝑐] × [(𝜁/Γ(3 −𝜇))𝑏, (𝜔/Γ(3 −𝜇))𝑐] ×

[(𝜁/Γ(3 − ]))𝑏, (𝜔/Γ(3 − ]))𝑐],
where 𝐽𝑖, Λ are defined by (43).

Since 𝑓𝑖𝑛(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) =

𝑓𝑖(𝑡,max{𝑥1, 𝑛
−1
},max{𝑥2, 𝑛

−1
},max{𝑥3, 𝑛

−1
},max{𝑥4, 𝑛

−1
}),

we can get 𝑓𝑖𝑛 satisfies the following conditions:

(H2)
󸀠
𝑓𝑖𝑛(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) < (𝐽𝑖𝑎)

𝑝
𝑖
−1, for (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈

[0, 1] × [0, 𝑎] × [0, 𝑎] × [0, 𝑎/Γ(3−𝜇)] × [0, 𝑎/Γ(3− ])],
(H3)
󸀠
𝑓𝑖𝑛(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ≤ (𝐽𝑖𝑐)

𝑝
𝑖
−1, for (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈

[0, 1] × [0, 𝑐] × [0, 𝑐] × [0, 𝑐/Γ(3 − 𝜇)] × [0, 𝑐/Γ(3 − ])],
(H4)
󸀠
𝑓𝑖𝑛(𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) > (Λ𝑐)

𝑝
𝑖
−1, for (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈

[𝜁, 𝜔] × [𝑏, 𝑐] × [𝑏, 𝑐] × [(𝜁/Γ(3 −𝜇))𝑏, (𝜔/Γ(3 −𝜇))𝑐] ×

[(𝜁/Γ(3 − ]))𝑏, (𝜔/Γ(3 − ]))𝑐].

Theorem 12. Assume that (H1)–(H4) hold. Then, for 𝑛 ∈

N+, BVP (20) have at least three positive solutions (𝑢1𝑛, V1𝑛),
(𝑢2𝑛, V2𝑛), and (𝑢3𝑛, V3𝑛) in𝑊𝑐, satisfying

󵄩󵄩󵄩󵄩(𝑢1𝑛, V1𝑛)
󵄩󵄩󵄩󵄩 < 𝑎, 𝑏 < min

𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢2𝑛 (𝑡) + V2𝑛 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑎 <
󵄩󵄩󵄩󵄩(𝑢3𝑛, V3𝑛)

󵄩󵄩󵄩󵄩 , min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢3𝑛 (𝑡) + V3𝑛 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑏.

(44)
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Proof. We will show that all conditions of Lemma 10 are
satisfied.

Firstly, we prove 𝑇𝑛:𝑊𝑐 → 𝑊𝑐 is completely continuous.
For all (𝑢, V) ∈ 𝑊𝑐, then ‖(𝑢, V)‖ ≤ 𝑐. So we have 0 ≤

𝑢
(𝑗)
(𝑡) ≤ 𝑐, 0 ≤ V(𝑗)(𝑡) ≤ 𝑐, and 𝑡 ∈ [0, 1], 𝑗 = 0, 1, 2. By (26)

wehave 0 ≤ 𝐷
𝜇

0+
𝑢(𝑡) ≤ 𝑐/Γ(3−𝜇) and 0 ≤ 𝐷

]
0+V(𝑡) ≤ 𝑐/Γ(3−]).

By condition (H3), we can get (H3)
󸀠 hold, so it follows from

condition (H3) that

𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷
𝜇

0+
𝑢 (𝜏) , 𝐷

]
0+V (𝜏)) ≤ (𝐽𝑖𝑐)

𝑝
𝑖
−1
,

𝜏 ∈ [0, 1] .
(45)

Thus, for any (𝑢, V) ∈ 𝑊𝑐, by (45), we have

󵄨󵄨󵄨󵄨𝑇𝑖𝑛 (𝑢, V) (𝑡)
󵄨󵄨󵄨󵄨

= ∫

1

0
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

(∫

1

0
𝐾𝑖 (𝑠, 𝜏)𝑓𝑖𝑛(𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

≤
1

Γ (𝛼) (1 − 𝑎𝑖)

× ∫

1

0
𝜙𝑞
𝑖

(∫

1

0
[

1

(1 − 𝑏𝑖) Γ (𝛽)
] (𝐽𝑖𝑐)

𝑝
𝑖
−1
𝑑𝜏)𝑑𝑠

=
1

Γ (𝛼) (1 − 𝑎𝑖)
[

1

(1 − 𝑏𝑖) Γ (𝛽)
]

1/(𝑝
𝑖
−1)

⋅ 𝐽𝑖𝑐

<
𝐽𝑖𝑐

𝐽𝑖
= 𝑐,

󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠
𝑖𝑛 (𝑢, V) (𝑡)

󵄨󵄨󵄨󵄨󵄨

= ∫

1

0

𝜕

𝜕𝑡
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

≤
1

Γ (𝛼 − 1) (1 − 𝑎𝑖)

× ∫

1

0
𝜙𝑞
𝑖

(∫

1

0
[

1

(1 − 𝑏𝑖) Γ (𝛽)
] (𝐽𝑖𝑐)

𝑝
𝑖
−1
𝑑𝜏)𝑑𝑠

=
1

Γ (𝛼 − 1) (1 − 𝑎𝑖)
[

1

(1 − 𝑏𝑖)Γ(𝛽)
]

1/(𝑝
𝑖
−1)

⋅ 𝐽𝑖𝑐

<
𝐽𝑖𝑐

𝐽𝑖
= 𝑐,

󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠
𝑖𝑛 (𝑢, V) (𝑡)

󵄨󵄨󵄨󵄨󵄨

= ∫

1

0

𝜕
2

𝜕𝑡2
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

≤
1

Γ (𝛼 − 2) (1 − 𝑎𝑖)

× ∫

1

0
𝜙𝑞
𝑖

(∫

1

0
[

1

(1 − 𝑏𝑖) Γ (𝛽)
] (𝐽𝑖𝑐)

𝑝
𝑖
−1
𝑑𝜏)𝑑𝑠

=
1

Γ (𝛼 − 2) (1 − 𝑎𝑖)
[

1

(1 − 𝑏𝑖) Γ (𝛽)
]

1/(𝑝
𝑖
−1)

⋅ 𝐽𝑖𝑐

<
𝐽𝑖𝑐

𝐽𝑖
= 𝑐,

(46)

which means that ‖𝑇𝑖𝑛(𝑢, V)‖∗ ≤ 𝑐, so we have ‖𝑇𝑛(𝑢, V)‖ ≤ 𝑐

and (𝑢, V) ∈ 𝑊𝑐. Therefore, 𝑇𝑛: 𝑊𝑐 → 𝑊𝑐. By Lemma 9, we
know that 𝑇𝑛:𝑊𝑐 → 𝑊𝑐 is completely continuous.

Next, similar to (46), it follows from condition (H2) that
if (𝑢, V) ∈ 𝑊𝑎, then ‖𝑇(𝑢, V)‖ < 𝑎. So the condition (C2) of
Lemma 10 holds.

Now, we take 𝑢0(𝑡) = (𝑏+𝑐)/4 and V0(𝑡) = (𝑏+𝑐)/4, where
𝑡 ∈ [0, 1]; then

𝜃 (𝑢0, V0) = min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢0 (𝑡) + V0 (𝑡)
󵄨󵄨󵄨󵄨 =

𝑏 + 𝑐

2
> 𝑏,

󵄩󵄩󵄩󵄩(𝑢0, V0)
󵄩󵄩󵄩󵄩 =

𝑏 + 𝑐

4
< 𝑐,

(47)

which means that (𝑢0, V0) ∈ 𝑊(𝜃, 𝑏, 𝑐) and 𝜃(𝑢0, V0) > 𝑏, This
proves that {(𝑢0, V0) ∈ 𝑊(𝜃, 𝑏, 𝑐) : 𝜃(𝑢0, V0) > 𝑏} ̸= 0.

On the other hand, if (𝑢, V) ∈ 𝑊(𝜃, 𝑏, 𝑐), then 𝑏 ≤ 𝑢
(𝑗)
(𝑡) ≤

𝑐 and 𝑏 ≤ V(𝑗)(𝑡) ≤ 𝑐, where 𝑡 ∈ [𝜁, 𝜔] and 𝑗 = 0, 1, 2. By
Lemma 4, for 𝑡 ∈ [𝜁, 𝜔], we have

𝐷
𝜇

0+
𝑢 (𝑡) =

1

Γ (2 − 𝜇)
∫

𝑡

0
(𝑡 − 𝑠)

1−𝜇
𝑢
󸀠󸀠
(𝑠) 𝑑𝑠

≥
𝑡

Γ (3 − 𝜇)
𝑏 ≥

𝜁

Γ (3 − 𝜇)
𝑏,

𝐷
𝜇

0+
𝑢 (𝑡) =

1

Γ (2 − 𝜇)
∫

𝑡

0
(𝑡 − 𝑠)

1−𝜇
𝑢
󸀠󸀠
(𝑠) 𝑑𝑠

≤
𝑡

Γ (3 − 𝜇)
𝑐 ≤

𝜔

Γ (3 − 𝜇)
𝑐,

(48)

and similarly, we can get (𝜁/Γ(3 − ]))𝑏 ≤ 𝐷
]
0+V(𝑡) ≤ (𝜔/Γ(3 −

]))𝑐, where 𝑡 ∈ [𝜁, 𝜔]. By condition (H4), we can get (H4)
󸀠

hold, so it follows from condition (H4) that

𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷
𝜇

0+
𝑢 (𝜏) , 𝐷

]
0+V (𝜏)) > (Λ𝑏)

𝑝
𝑖
−1
,

𝜏 ∈ [𝜁, 𝜔]
(49)
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since

𝜃 (𝑇𝑛 (𝑢, V)) = 𝜃 (𝑇1𝑛 (𝑢, V) , 𝑇2𝑛 (𝑢, V))

= min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑇1𝑛 (𝑢, V) (𝑡) + 𝑇2𝑛 (𝑢, V) (𝑡)
󵄨󵄨󵄨󵄨

= 𝑇1𝑛 (𝑢, V) (𝑡0) + 𝑇2𝑛 (𝑢, V) (𝑡0) ,

(50)

in which 𝑡0 ∈ [𝜁, 𝜔].
Hence, by(49), we have

min
𝑡∈[𝜁,𝜔]

𝑇𝑖𝑛 (𝑢, V) (𝑡)

= min
𝑡∈[𝜁,𝜔]

∫

1

0
𝐻𝑖 (𝑡, 𝑠) 𝜙𝑞

𝑖

× (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

≥ min
𝑡∈[𝜁,𝜔]

∫

1

0

𝑒𝛼 (1 − 𝑡) 𝑒𝛼 (𝑠)

Γ (𝛼)
𝜙𝑞
𝑖

× (∫

1

0

𝑒𝛽 (1 − 𝑠) 𝑒𝛽 (𝜏)

Γ (𝛽)

× 𝑓𝑖𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷
𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

> min
𝑡∈[𝜁,𝜔]

𝑒𝛼 (1 − 𝑡)

Γ (𝛼)
∫

1

0
𝑒𝛼 (𝑠) 𝜙𝑞

𝑖

× (∫

𝜔

𝜁

ℎ𝛽

Γ (𝛽)
𝑒𝛽 (𝜏) (Λ𝑏)

𝑝
𝑖
−1
𝑑𝜏)𝑑𝑠

=
ℎ𝛼

Γ (𝛼)
⋅
ℎ𝛽

Γ (𝛽)

1/(𝑝
𝑖
−1)

∫

1

0
𝑒𝛼 (𝑠) 𝜙𝑞

𝑖

(∫

𝜔

𝜁
𝑒𝛽 (𝜏) 𝑑𝜏) 𝑑𝑠 ⋅ Λ𝑏

=
ℎ𝛼

Γ (𝛼)
𝑚𝑖𝑛𝑖Λ𝑏,

(51)

so we can get

𝑇𝑖𝑛 (𝑢, V) (𝑡0) ≥ min
𝑡∈[𝜁,𝜔]

𝑇𝑖𝑛 (𝑢, V) (𝑡) >
ℎ𝛼

Γ (𝛼)
𝑚𝑖𝑛𝑖Λ𝑏. (52)

Hence, by (50), (51), and (52), we have

𝜃 (𝑇𝑛 (𝑢, V)) = 𝑇1𝑛 (𝑢, V) (𝑡0) + 𝑇2𝑛 (𝑢, V) (𝑡0)

>
ℎ𝛽

Γ (𝛽)
(𝑚1𝑛1 + 𝑚2𝑛2) Γ𝑏 = 𝑏,

(53)

which implies that 𝜃(𝑇𝑛(𝑢, V)), for (𝑢, V) ∈ 𝑊(𝜃, 𝑏, 𝑐). This
shows that condition (C1) of Lemma 10 is also satisfied.

By Remark 11, condition (C3) of Lemma 10 holds; that
is, we show that all conditions of Lemma 10 are satisfied.
So we obtain that BVP (20) have at least three positive
solutions (𝑢1𝑛, V1𝑛), (𝑢2𝑛, V2𝑛), and (𝑢3𝑛, V3𝑛) in 𝑊𝑐, such that
‖(𝑢1𝑛, V1𝑛)‖ < 𝑎, 𝑏 < 𝜃(𝑢2𝑛, V2𝑛), ‖(𝑢3𝑛, V3𝑛)‖ > 𝑎, and
𝜃(𝑢3𝑛, V3𝑛) < 𝑏, hence satisfying

󵄩󵄩󵄩󵄩(𝑢1𝑛, V1𝑛)
󵄩󵄩󵄩󵄩 < 𝑎, 𝑏 < min

𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢2𝑛 (𝑡) + V2𝑛 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑎 <
󵄩󵄩󵄩󵄩(𝑢3𝑛, V3𝑛)

󵄩󵄩󵄩󵄩 , min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢3𝑛 (𝑡) + V3𝑛 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑏.

(54)

The proof of Theorem 12 is completed.

Lemma 13. Assume that (H1)–(H4) hold. Let (𝑢𝑛, V𝑛) in 𝑊𝑐
be a solution of problem (20). Then the sequence {(𝑢𝑛, V𝑛)} is
relatively compact in 𝐸 × 𝐸.

Proof. Firstly, we prove {(𝑢𝑛, V𝑛)} is uniformly bounded. Note
that

𝑢𝑛 (𝑡) = ∫

1

0
𝐻1 (𝑡, 𝑠) 𝜙𝑞

1

× (∫

1

0
𝐾1 (𝑠, 𝜏) 𝑓1𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠,

V𝑛 (𝑡) = ∫

1

0
𝐻2 (𝑡, 𝑠) 𝜙𝑞

2

× (∫

1

0
𝐾2 (𝑠, 𝜏) 𝑓2𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠.

(55)

Since (𝑢𝑛, V𝑛) is in 𝑊𝑐, we can get {(𝑢𝑛, V𝑛)} is uniformly
bounded.

Next, we prove {(𝑢𝑛, V𝑛)} is equicontinuous on [0, 1]. Since
(𝑢𝑛, V𝑛) is in 𝑊𝑐, we have ‖𝑢𝑛‖∗ ≤ 𝑐, ‖V𝑛‖∗ ≤ 𝑐, and by (26),
we have 0 ≤ 𝐷

𝜇

0+
𝑢(𝑡) ≤ 𝑐/Γ(3 − 𝜇) and 0 ≤ 𝐷

]
0+V(𝑡) ≤

𝑐/Γ(3−𝜇). From Lemma 8, we can get𝐻1(𝑡, 𝑠), (𝜕/𝜕𝑡)𝐻1(𝑡, 𝑠),
and (𝜕2/𝜕𝑡2)𝐻1(𝑡, 𝑠) are uniformly continuous on [0, 1], that
is, for all 𝜖 > 0, ∃𝛿 > 0 such that for all 𝑡1 and 𝑡2, 𝑠 ∈ [0, 1],
|𝑡1 − 𝑡2| < 𝛿, and we have

󵄨󵄨󵄨󵄨𝐻1 (𝑡1, 𝑠) − 𝐻1 (𝑡2, 𝑠)
󵄨󵄨󵄨󵄨 < 𝜖,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝐻1 (𝑡1, 𝑠) −

𝜕

𝜕𝑡
𝐻1 (𝑡2, 𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜖,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2

𝜕𝑡2
𝐻1 (𝑡1, 𝑠) −

𝜕
2

𝜕𝑡2
𝐻1 (𝑡2, 𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖.

(56)
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By (H2) and Lemma 8, we have
󵄨󵄨󵄨󵄨𝑢𝑛 (𝑡1) − 𝑢𝑛 (𝑡2)

󵄨󵄨󵄨󵄨

≤ ∫

1

0

󵄨󵄨󵄨󵄨𝐻1 (𝑡1, 𝑠) − 𝐻1 (𝑡2, 𝑠)
󵄨󵄨󵄨󵄨 𝜙𝑞1

× (∫

1

0
𝐾1 (𝑠, 𝜏) 𝑓1𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

< 𝜖𝜙𝑞
1

(
1

(1 − 𝑏1) Γ (𝛽)
(𝐽1𝑎)
𝑝
1
−1
)

=
𝐽1𝑎

[(1 − 𝑏1) Γ (𝛽)]
1/(𝑝
1
−1)

𝜖,

(57)

and similar to (57), we get

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠
𝑛 (𝑡1) − 𝑢

󸀠
𝑛 (𝑡2)

󵄨󵄨󵄨󵄨󵄨
<

𝐽1𝑎

[(1 − 𝑏1) Γ (𝛽)]
1/(𝑝
1
−1)

𝜖,

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠
𝑛 (𝑡1) − 𝑢

󸀠󸀠
𝑛 (𝑡2)

󵄨󵄨󵄨󵄨󵄨
<

𝐽1𝑎

[(1 − 𝑏1) Γ (𝛽)]
1/(𝑝
1
−1)

𝜖.

(58)

That is, {𝑢(𝑗)𝑛 } is equicontinuous on [0, 1] and 𝑗 = 1, 2.
Likewise, we can get {V(𝑗)𝑛 } is equicontinuous on [0, 1]. That
is, {(𝑢(𝑗)𝑛 , V

(𝑗)
𝑛 )} is equicontinuous on [0, 1] and 𝑗 = 1, 2.

Applying the Arzelà-Ascoli theorem, sequence {(𝑢𝑛, v𝑛)}
is relatively compact in 𝐸 × 𝐸.

The proof of Lemma 13 is completed.

4. Main Results

Theorem 14. Assume that (H1)–(H4) hold. Then, for 𝑛 ∈ N+,
BVP (1) have at least three positive solutions (𝑢1, V1), (𝑢2, V2),
and (𝑢3, V3) in𝑊𝑐, satisfying

󵄩󵄩󵄩󵄩(𝑢1, V1)
󵄩󵄩󵄩󵄩 ≤ 𝑎, 𝑏 ≤ min

𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢2 (𝑡) + V2 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑎 ≤
󵄩󵄩󵄩󵄩(𝑢3, V3)

󵄩󵄩󵄩󵄩 , min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢3 (𝑡) + V3 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑏.

(59)

Proof. If (H1)–(H4) hold, by Theorem 12 and Lemma 13, we
get BVP (20) have at least three positive solutions (𝑢1𝑛, V1𝑛),
(𝑢2𝑛, V2𝑛), and (𝑢3𝑛, V3𝑛) in𝑊𝑐, satisfying

󵄩󵄩󵄩󵄩(𝑢1𝑛, V1𝑛)
󵄩󵄩󵄩󵄩 < 𝑎, 𝑏 < min

𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢2𝑛 (𝑡) + V2𝑛 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑎 <
󵄩󵄩󵄩󵄩(𝑢3𝑛, V3𝑛)

󵄩󵄩󵄩󵄩 , min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢3𝑛 (𝑡) + V3𝑛 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑏,

(60)

for 𝑛 ∈ N+ and for 𝑡 ∈ [0, 1] and the sequence (𝑢1𝑛, V1𝑛),
(𝑢2𝑛, V2𝑛), and (𝑢3𝑛, V3𝑛) are relatively compact in 𝐸 × 𝐸.

We first consider the situation (𝑢1𝑛, V1𝑛); without loss of
generality, assume that (𝑢1𝑛, V1𝑛) is convergent in 𝐸 × 𝐸 and

lim𝑛→∞(𝑢1𝑛, V1𝑛) = (𝑢1, V1); that is, lim𝑛→∞𝑢1𝑛 = 𝑢1 and
lim𝑛→∞V1𝑛 = V1. Similar to the proof of Lemma 9, we
have lim𝑛→∞𝐷

𝜇

0+
𝑢1𝑛(𝑡) = 𝐷

𝜇

0+
𝑢1(𝑡) and lim𝑛→∞𝐷

]
0+V1𝑛(𝑡) =

𝐷
]
0+V1(𝑡) uniformly on [0, 1]. Then

lim
𝑛→∞

𝑓𝑖𝑛 (𝑡, 𝑢1𝑛 (𝑡) , V1𝑛 (𝑡) , 𝐷
𝜇

0+
𝑢1𝑛 (𝑡) , 𝐷

]
0+V1𝑛 (𝑡))

= 𝑓𝑖 (𝑡, 𝑢1 (𝑡) , V1 (𝑡) , 𝐷
𝜇

0+
𝑢1 (𝑡) , 𝐷

]
0+V1 (𝑡)) .

(61)

Since 𝑓𝑖𝑛 ∈ Car([0, 1] × R+ × R+ × R+ × R+,R+), then there
exists 𝜑𝑖 ∈ 𝐿

1
[0, 1], such that

𝑓𝑖𝑛 (𝜏, 𝑢1𝑛 (𝜏) , V1𝑛 (𝜏) , 𝐷
𝜇

0+
𝑢1𝑛 (𝜏) , 𝐷

]
0+V1𝑛 (𝜏)) ≤ 𝜑𝑖 (𝜏) ,

(62)

for 𝜏 ∈ [0, 1] and all𝑚 ∈ N+. Hence we can get

𝐻1 (𝑡, 𝑠) 𝜙𝑞
1

×(∫

1

0
𝐾1 (𝑠, 𝜏)𝑓1𝑛(𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) , 𝐷

]
0+V (𝜏))𝑑𝜏)

≤
1

Γ (𝛼) (1 − 𝑎1)
[

1

(1 − 𝑏1) Γ (𝛽)
]

1/(𝑝
1
−1)

𝜙𝑞
1

(
󵄩󵄩󵄩󵄩𝜑1

󵄩󵄩󵄩󵄩1) .

(63)

By (61), (63), and the Lebesgue dominated convergence
theorem, we can obtain

lim
𝑛→∞

∫

1

0
𝐾1 (𝑠, 𝜏) 𝑓1𝑛 (𝜏, 𝑢1𝑛 (𝜏) , V1𝑛 (𝜏) , 𝐷

𝜇

0+
𝑢1𝑛 (𝜏) ,

𝐷
]
0+V1𝑛 (𝜏)) 𝑑𝜏

= ∫

1

0
𝐾1 (𝑠, 𝜏) 𝑓1 (𝑡, 𝑢1 (𝜏) , V1 (𝜏) , 𝐷

𝜇

0+
𝑢1 (𝜏) ,

𝐷
]
0+V1 (𝜏)) 𝑑𝜏

𝑢1 (𝑡) = lim
𝑛→∞

𝑢1𝑛 (𝑡)

= lim
𝑛→∞

∫

1

0
𝐻1 (𝑡, 𝑠) 𝜙𝑞

1

× (∫

1

0
𝐾1 (𝑠, 𝜏) 𝑓1𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠
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= ∫

1

0
𝐻1 (𝑡, 𝑠) lim

𝑛→∞
𝜙𝑞
1

× (∫

1

0
𝐾1 (𝑠, 𝜏) 𝑓1𝑛 (𝜏, 𝑢 (𝜏) , V (𝜏) , 𝐷

𝜇

0+
𝑢 (𝜏) ,

𝐷
]
0+V (𝜏)) 𝑑𝜏) 𝑑𝑠

= ∫

1

0
𝐻1 (𝑡, 𝑠) 𝜙𝑞

1

× (∫

1

0
𝐾1 (𝑠, 𝜏) 𝑓1 (𝑡, 𝑢1 (𝜏) , V1 (𝜏) , 𝐷

𝜇

0+
𝑢1 (𝜏) ,

𝐷
]
0+V1 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(64)

Similarly, we can also get

V1𝑛 (𝑡) = ∫

1

0
𝐻2 (𝑡, 𝑠) 𝜙𝑞

2

× (∫

1

0
𝐾2 (𝑠, 𝜏) 𝑓2 (𝑡, 𝑢1 (𝜏) , V1 (𝜏) , 𝐷

𝜇

0+
𝑢1 (𝜏) ,

𝐷
]
0+V1 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(65)

By Lemmas 5 and 6, we can obtain (𝑢1, V1) is positive solution
of BVP (1).

Similarly, we can also obtain (𝑢2, V2) and (𝑢3, V3) are
positive solutions of BVP (1).

Since
󵄩󵄩󵄩󵄩(𝑢1𝑛, V1𝑛)

󵄩󵄩󵄩󵄩 < 𝑎, 𝑏 < min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢2𝑛 (𝑡) + V2𝑛 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑎 <
󵄩󵄩󵄩󵄩(𝑢3𝑛, V3𝑛)

󵄩󵄩󵄩󵄩 , min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢3𝑛 (𝑡) + V3𝑛 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑏,

(66)

for 𝑛 ∈ N+ and for 𝑡 ∈ [0, 1], now, we pass to the limit as
𝑛 → ∞ in (66). Hence, we have

󵄩󵄩󵄩󵄩(𝑢1, V1)
󵄩󵄩󵄩󵄩 ≤ 𝑎, 𝑏 ≤ min

𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢2 (𝑡) + V2 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑎 ≤
󵄩󵄩󵄩󵄩(𝑢3, V3)

󵄩󵄩󵄩󵄩 , min
𝑡∈[𝜁,𝜔]

󵄨󵄨󵄨󵄨𝑢3 (𝑡) + V3 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑏.

(67)

The proof of Theorem 14 is completed.
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