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This paper deals with a nonlinear boundary value problem for bihypermonogenic functions in Clifford analysis. The integrals of
quasi-Cauchy’s type and Plemelj formula for bihypermonogenic functions are firstly reviewed briefly. The nonlinear Riemmann
boundary value problem for bihypermonogenic functions is discussed and the existence of solutions is obtained, which also
indicates that the linear boundary value problem has a unique solution.

1. Introduction

Clifford algebra is an associative and noncommutative alge-
braic structure that was set up at the beginning of the
twentieth century. Clifford analysis is an important branch of
modern analysis, which studies the functions defined in R"*!
with the value in Clifford algebra space [1]. Clifford analysis
possesses not only important theoretical value but also appli-
cable value, which plays an important role in many fields,
such as quantum mechanics, Maxwell equation, and Yang-
Mills field. Since 1987, Xu [2, 3], Wen [4], Huang [5, 6], Qiao
[7-9], and so forth have done a lot of work on boundary value
problems for monogenic functions and biregular functions in
Clifford analysis. Eriksson and Leutwiler [10-12] introduced
hypermonogenic functions in Clifford analysis, studied some
of its properties, and discussed the integral representation
for hypermonogenic functions. Qiao [9] investigated the
boundary value problems of hypermonogenic functions. In
recent years, Zhang and Du [13, 14] discussed Riemann
boundary value problems and singular integral equations in
Clifford analysis. Bian et al. [15] obtained the integral for-
mulas and Plemelj formula for bihypermonogenic functions.
Yang et al. [16] studied a kind of boundary value problem
for hypermonogenic function vector. Zhang and Giirlebeck
[17] studied Riemann boundary value problems in Clifford
analysis.

In this paper, based on the integral formulas and Plemelj
formula for bihypermonogenic functions presented in [15],
we study a nonlinear Riemann boundary value problem
for bihypermongenic functions. We first review briefly the
integrals of quasi-Cauchy’s type and Plemelj formula for
bihypermonogenic functions and then prove the existence of
solutions of a nonlinear Riemann boundary value problem
and derive the unique solution of the corresponding linear
Riemann boundary value problem.

2. Preliminaries

Let C¢,, be a real Clifford algebra over an n + 1-
dimensional real vector space R**" with orthogonal basis e :=
{eg- €15 .., €,}, satisfying the relation e;e; +eje; = —=25;; (i, j =
1,...,n), where §;; is the usual Kronecker delta. Then C¢,,
has its basis e, = 1,e;,...,€,5€,€5,...,€, 1€,5...5€ " €,,.
Hence the real Clifford algebra is formed by the elements
presentedasa = Y , x,e4, x4 € R, where A = {i},i),..., i |
1<i)<iy<---<ig<nforA=0@ande; = e,.
For a € Cl,,, we give some calculations as follows:

! !
a = ZerA’ (1)
A
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where e;‘ = (—l)lAleA and |A| = n, is the cardinality of A; that
is, when A = 0, |A| = 0 and when A = {a},p,...,00,} #0,
then |A| = h;e(') = l,e; =-e,i=1,...,n.

Recall that any element x € C¢;, may be uniquely
decomposed as x = b + ce,, for b,c € C¢;,, , (the Clifford
algebra generated by e, ..., e, ;). Using this decomposition,
we define the mappings P : C¢,,, — C¢;,, ;andQ: C¢,, —
Cty,_, by Px = band Qx = c. Note thatif x = ) , x,e, €
C¢,,,» then

Px = ZerA, Qx = ZerA\{n}’
n¢gA neA
o ! I ! 2)
Px= ZerA, Qx= ZerA\{n}.
n¢A neA

We also introduce the Dirac operator

n af n af
D = =, D = _
lf izzoel axl rf lZaxl (3)
and the modified Dirac operator
QI
M'f(x) = Dy f (x) + (n—1) xf,

n

(4)
Qf

n

M f(x)=D,f(x)+(n-1)

Denote by Q = Q, x Q, an open connected set in the
R, 1 <m <n,1<k<n Definea
set F g) to consist of all functions

floy)= ) D

Ac{l,...m}Bc{m+1,...,m+k}

Euclidean space R™"" x

Jas(x,y) esen (5)

with values in C€,,, for which f, z(x, y) € €"(Q).

Definition 1. Let f € Jf

R\ {y =
on Q, if

Jand x € R™!\ {x,, = 0}, y €
0}. A functlon f(x, y) is called bihypermonogenic

M, f (x,y) =0,

for any (x, y) € Q, where

Mf(x)=0  (©

M, f (x,y) = aa—f i ; (x, )

(7)
Q. (f ()

m

+(m-1)

is the left modified Dirac operator in C¢,,, calculated with
respect to x € R”™"\ {x,, = 0} and

k

M f (x,y) = Z

1

: Q, (f (%))
Yk

X, y) €itm
(8)
+ (k-1
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is the right modified Dirac operator in the Clifford algebra
generated by e;, €,,,,1, - - - » €, Calculated with respectto y €
R\ {y, = 0}, where

Q;f (x,y) = Z ZfA,B (x,9) e;‘x\{m}eB

meA B

= Y AL 5 (% y) eaymess )

meA B

ny (x,y) = Z Z fas (x, ) € ACB\{m+k}-

A m+keB

3. The Cauchy Integral Formula
and Plemelj Formula

In this section, we give some simple review on the Cauchy
integral formula and Plemelj formula for bihypermonogenic
functions obtained by us and presented in [15]. We first give
some notations which will be used in the following analysis.

A function f(x,y) : 0Q; x 0Q, — Cl,,, is said to be
Holder continuous on 0Q); x 9, if f(x, y) satisfies

|f (k1o 91) = f (320 32)| < My | (31, 1) = (x2>y2)|ﬁ’
(x5 1) (32, 2) €09 x0Q,, (0<B<1).

(10)

Denote by H(0Q), x 0€),, ) the set of all Hélder continuous
functions on 0Q; x 0Q, with the index . For any f ¢
H(0Q, x 0Q,, 8), define the norm in H(9Q,; x 0Q,, ) as
I fll5 = C(f,0Q, x 0Q,) + H(f, 00, x 08y, ), where

|f (up,vy) =

000,300, |(uy,v;) —
(u1,v1) # (up,0,) |

f(”z’V2)|,

(”2>V2)|ﬁ

C(f,0Q,x0Q,) =

H(f,00, x0Q,,p) =
(f X 2 ﬁ) (u,v)?ggf(xaﬂz

|f (u’ U)| >
f € H(0Q, x0Q,,p).
(1)

Furthermore, for any f, g € H(0Q; x 0Q,, ), we have

| falls < Toll flglalls- (12)

Theorem 2 (see [15]). Let Q' and Q"' be open subsets ofIRT“
and lel, respectively. Suppose that Q, and Q, satisfy Q, c Q'

and Q, ¢ Q", respectively. The boundaries 9Q);, 0Q, of Q,,
Q, are differentiable, oriented, compact Liapunov surfaces. If
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@(x, y) is a bihypermonogenic functionin Q'xQ", x € Q,, y € Definition 3 (see [15]). The integral
Q,, then

q)(x)y) ¢(t1’t2)

:AL)mEMw@MMMW%WM“Wh@J) ZALM&EM%mﬂ%WWWWM%WWAWJ

-2 LQ N E,, (u,x)do,, (1) mka (v, y) -A Llean E,, (u,t)) do,, (1) p(u, v)do (V)i (v, 1,)

-2 Ja(z N F,, (u,x) m)mdak M E; (v, y) -A LleaQZ F,, (u,t,)do,,(w)e(u, v)do, (v) E; (v,t,)

N AJ E, (u, %) do, (0)@(e, VAo F, (v, 7). +A LQ - E, (u.t))do,,(w)e(u,v)do(v)F, (v,t,)

0Q x0Q, 1 2
(13) (16)
where is called a singular integral on 0Q); x 0Q),, where A, E, (1, ,),
do,, =dx, Ndx, A---dx,, E.(v,t,), E,,(u,t,), and F,.(v, t;) are given in Theorem 2.

m ; Definition 4 (see [15]). Let § > 0 be a constant and A5 =
+ Z(—l) e;dxg N+ Ndxi ) Ndxi, A---dx,, B, (t,,8) x B,(t,,68), where B;(t;,0) (i = 1,2) are balls with
i=1 the center at ¢; and the radius 8 > 0. Denote

doy =dy, Ndy, \---dy;

s (L1 1
k s (1:1)
+ Y (-1, dyy Ady, A--- Ady,_ | Ay,
i;( ) €iem Yo N dy; Vi1 N AYiy = LQ o E,, (u,t,)do,, (u) ¢ (u,v)do, (v) E; (v, 1)
1 2 )
. —Aj E,, (u,t,) do,, (u) gl )do, (0)E, (n.t,)
V=Vo+ Vi€ T F Vit 0Q; x0Q,\As
Y=Yot Vi€mi1 t F Y€k -A JaQ 0, \1 Fm (M, tl) m)(mdak (V) Ek (V’ tZ)
1 2 8
2m—1xm—12k—1yk—1
A= m k , — T
Wpyp1 Wit 1 +A v[anxaQZ\AﬁFm (u’ tl) dom(u)(P(u> V)dak(V)Fk (V’ tz) .
) (17)
E; (u,x) = (ul_lx) —, uxeR™,
fu =l = x] Iflimg _, , ¢5(t;,t,) = I, then I is called the Cauchy principal
F, (1, ) (- x)" Rl value of a singular integral, denoted by I = ¢(¢t,,1,).
1\U, X =) —> WX € ,
|t = X |u = X| Lemma 5 (see [11]). Let Q) be an open subset of[RTrl ={x =
(v- y)fl (x> X15-..>%,) | x,, > 0} and let K be an n+ 1-chain satisfying
E (v,y) = = = K c Q; then
=yl lv-3"
_ _ 2n—1yn—1 .
(V—)’)l 2 <J E,(x, dax—J F, (x, dax)
Fl (V’ y) = -1 -1 wn+1 oK " ( y) ( ) oK " ( y) ( )
lv=y"|v- 7] ” (18)
14 {1, yeKk,
= n+l g
and the involutions ~ and ~ are defined by 0, yeR," -K
e =¢, i€{0,1,....m+k}\{m}, Lemma 6 (see [11]). Let Q, K and 0K be as in Lemma 5 and
_ —~ = y € OK; then
e, =—e,, ab=ab,
"m i €{0,1 k-1} ) 2Lyl
e =¢, i€{0,1,....m+k-1}, — 1
2 (J E,(x,y)do (x) - J F,(x,y) da(x)) =_.
~ = W41 oK oK 2
€tk = “Cm+io> ab = ab. (19)



Theorem 7 (see [15]). Ifo(u,v) € H(0Q, x0Q,, B), then there
exists the Cauchy principal value of singular integrals and

¢ (t,t,)
1
=71? (tioty) + X, (t5 1) + X, (8, 1,) + X5 (81, 15)

+ Xy (t,1y) + (Pl‘P+P2‘P)+ (Q1‘P+Q2§D)

(20)
where
X, (t)ty)

A j E, (ut,)do, )y, (u,v)do (v)
0Q, x0Q,
< E (v.1y),
X2 (tl’ tz)
_ 2 j E, (wt,)do, )y, (uv)doy, ()
00 x0Q,
xF (n,t,),
X5 (t,t5)
=-2 J F, (ut,)do,, (s (u,v) doy (v)
00, x0Q,

< B, (n.1;),

X4 (tl’ t2)

A [ () o, Gy, 0 da )
0Q, x0Q,

< Fy (11,), @y

vy () =@ () =9 (uty) =@ (t,v) + @ (£1,15) s

Wz(”)V)ZW)_q’(”’tz) (P(tl’ v)+¢(t,t),

s ,0) = 9 v) — 9 (1,) — 9 (11,v) + 9 (01,1,),

v ) = 9(v) — 9 (1,) — 9 (11,9) + 9 (01,1,),

Py =21, E,, (u,t,)do,, ) ¢ (ut,),

Py =21 t1> V) do; (v) E; (V’ tz)

L
e
Go=h ], 5
2,

dO’ (we (u,t,),

Qp=- @ (ty U) d"k (E (nty),

2m—1xm—1 2k—1ylkc—l
/\1 — —m’ Az - 7k

W41 Wyt
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SetQf =Q,, (i=1,2),Q; =R\ Q,Q, =R\ Q,,
and denote x(¢ Q]) — t; € 9Q, by x — t;. Moreover
denote y (¢ Q;) — t, € 9Q, by y — ¢, and denote by
™ (t,,t,) the limits of ¢(x, y) when (x, y) — (tf, t;‘r). Then
we have the following important theorem.

Theorem 8 (see [15]). If p(u,v) € H(0Q), x 0Q,, ), then

§ (1)
= 2o () + P (9) + P2 (9) + Q) (9) + Qu )
+3 (p)],
¢ (1)
= 20 (6) - P (9) + P (9) - Qu (9) +Qu (9)
+; (9)],
¢ (1)
= 210 () + PL(0) - P (9) + Q1 (9) - Qu (9)
+P; (¢)]
¢ (1)
= 2o (1) - Pi9) - P,(9) - Q (9) - Qs )
+y (p)],
(22)
where (t,,t,) € 9, x 0Q,, Py(9) = 4¢ (£,,1,).

4. The Boundary Value Problem for
Bihypermonogenic Functions

In this section, we consider the boundary value problem.

Definition 9. Let Q; x Q, and H(9Q); x 0€,, ) be as before.
We want to find a bihypermonogenic function ¢(x, y) defined
in R™! x R*! /90, x 9Q,, which is continuous to Q) x dQ,
and ¢"(x,00) = ¢ (00, y) = ¢ (00,00) = 0 and satisfies
the nonlinear boundary condition

At )" (tty) + Bt ty) ¢ (t51,)
+C(tpty) ¢ " (tty) +D(thty) ¢ (t0t,)
=g (1) f (b6, (1 15),¢™ (L 15) 67"
¢ (tnta)),

(ti.15),

(23)

in Wthh A(tl’ t2)> B(tI; tz), C(tp tz)S D(tl’ t2)> g(tl’ tz) €
H(0Q, x 0Q,,p) and f are known functions. The above
boundary value problem is called Problem R.
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From Theorem 8, we can transform the boundary condi-
tion of Problem R into an integral equation

Fo = ¢, (24)
where

Fo
=(A+B)(¢+Po+Pp+Q¢+Qp+P;9)
+(C+D)(~¢+P¢p - Py +Qp—Q0+P;p)

+(B+D) (29 - 2P,¢ — 2Q,¢9) + (1~ 4B) ¢ — 4gf.
(25)

Theorem 10 (see [9]). Let Q,0Q C Rl:l, and let H(0C, 8) be
the set of Holder continuous functions on 0Q with the index f3.
For ¢ € H(0Q), B) and

@
9‘P=¢<P‘5»

zl—lxé—l

Wiy

b = H E, (t,x)do, () ¢ (¢) (26)
0Q

- Fy (6.2 do, (09 1),

where E(t, x), Fi(t, x) are as before, then O¢ is a hypermono-
genic function with

1015 < T lloll (27)
where ], is a constant independent of ¢.

Lemma 11 (see [6]). Let E,, (u,x), E,, (u,t,) be the same as in

Theorem 2. If u € Q,, x € Q,, t, € Q,, then there exists a
constant M such that

|Em (u’ X) - Em (Ll, t1)|

m—1 o (28)
<M[; _| |u s fx-t, |]|u o
Lemma 12. If¢(t,,t,) € H(0Q, X 0Q,, ), then
lo + (P + Qi(/))"ﬁ <) "(P"ﬁ’
(29)

IPo +Qlls < Llgls i=1.2,
where ], is a positive constant.

Proof. Using the following equations:

Pio+Qip =21 _LQ E,, (ut))do,, (1) ¢ (4. t,)

2, [ F, () do, f)glaty),
20,

5
Py + Qup =24, LQ ¢ (t;,v) doy (v) Ey (v, t,)
-21, | gl o OF (vt

(30)

and Theorem 10, we can obtain the result. O

Theorem 13. Suppose the boundaries 0Q),, 0Q, of Q;, Q,
be differentiable, oriented, compact Liapunov surfaces. If
@(t,,t,) € H(0Q, x 0Q,, ), then

(P + Qu9) £ Psgp|| 5 < J5] ]l (31)

where J5 is a positive constant which is independent of ¢.

Proof. From (20), it follows that

4
Po+Qp-Pp=9¢- 4ZX1‘ (tit;) = (P + Qo). (32)

i-1
Moreover, based on Lemmal2 we only need to
prove "Z?:lXi(tl’t2)||ﬁ < ]4||(p||/3. It is easy to
prove |Z?:1 X(t,, )] < Blll(pllﬁ. We rewrite v;(u,v)
as y)(t,t,), (i = 1,2,3,4). Now we consider
H(YE, X,(t),t,), 0Q, x 0Q,, B) and write 8 = |(t,,t,) —

(A, )] = /82 + 62 for any (t,,1,), (t,t)) € 9Q, x 0Q,
and denote by py,, po2» P> Pu, the projections of |u — #],
[v—t,], |u— til, v - t;l on the tangent plane of t,, t,, t;, t;,
respectively. Moreover we construct spheres O;(t;, 36;) with
the center at t; and radius 38;, where 65; < d;,0; < 1,i = 1,2,
where d; is a constant as in [5]. Denote by 9€;;, 0Q);, the
part of 0, lying inside the sphere O; and its surplus part,
respectively, and set

R(0Q, x 0Q,) = ZX (t,ty) - ZX (t1.15)

4 o 4 —

=Y X; (09, x00,) - Y X; (00, x 3Q,).
i=1 i=1 (33)

From

|V’? (tl’t2)| < M”‘P”pl” - tllﬁ’

|1l/i0 (tl’t2)| < Mll(Pllﬁ|U - t2|ﬁ’

i (£1,13)] < Mol glus — £ i

[v? (#1.15)] < Mlglfo - & Gy

i=1,2,3,
"/’2 (tptz)' < M|l

Jvs (£1,65)] < Mol 5



we obtain that

|E,, (u,t,) do,, ) v (t,,t,) doy (v) By (v,1,))|

(35)
s M“?’”;;Péfm 1dP(nP(glz;/Z) ldpoz)
[E,n (1,11) doy, )5 (11, 1;) doy )Fe (0, 1,)
3 (36)
s M“‘P”ﬁpgl dpo1dpops
'Fm (. t)) dm)wg (t1.1,) doy (v) Ey (v, t2)|
. 3)
s M“S"”;;dpmpoz dpoy»
[E, (1,1) do, @y (11,1) doy @), (0,1,) .
38

< M“‘P”/;dedPoz-
Thus we have
lR (0, x anl)l

<

OR

1

4
'Z (0, x anl)' + Z |Y1 (00 x aQ21)| (39)
i=1

1

< BZl|¢|lﬁ|(t1’t2) - (t;’t;)|ﬁ'

Noting that |v — 5| > 28,, [v — t,] > 38, > 0 on 0Q,,, we
have

(t;,t;)'ﬁ. (40)
ROQ, x 9Q,) <

IR (002, x 0Qy,)| < Ba"‘l’”g'(tptz) -

Similarly, we can obtain

Byllplgl(t1, 1) — (¢}, £ 1.
Next we want to prove

|R (0Q, x anz)| = C4"‘P"/§'(tl’t2) - (t;’t;)'ﬁ' (41)
According to (33), we have

X, (00, X 00,,) = X, (9, X 00y,)
A [ (B ) =By (it} doy 0¥ (6101)
00, %00,
x doy. (v) E;. (v,t,)
) j E,, (1,2)) do,, ) y? (t,, 1) oy, (v)
00, %00,
X [Ek (U, t2) - Ek (U, t;)]
+A J E, (u, t;) do,, (1)
00, %00,

x [‘//(1) (ty,t;) - ‘//(1) (ti’t;)]
x doy (v) E (v, té)

=E, +E, +E;.
(42)

Abstract and Applied Analysis
Similarly, we can deal with
X, (00, X 0Qy,) - ?2(6912 x00y,) = F + F, + Fy,
X, (00, % 30,,) - X, (30, x 3Q,,) = G, + G, + Gy,

X_4(a(212 x 0Qy,) - X:4(aQIZ x 0Qy,) = H, + H, + H;.
(43)

From Lemmall and (35) and by |v — t,| > 35, >
0, lv-— t;l > 28,, we obtain |E,| < C, ||(p||l3|(t1,t2) - (t;,t;)lﬁ.

Similarly, we can get the inequality estimation for E; and G,.
By (36) and (37), v — t,| = 38, > 0, |v - t;l > 20,, we have

|F,| < C2||(p||/3|(t1, t,) — (t;, t;)lﬁ. Similarly, we can obtain the
inequality estimation for F,, G,, H;, and H,.
Since

E,;+F,+G;+ H,

==\ J:_mu E,, (u, t;) do,, (u) [go (u, t;) - ¢ (u, tz)]

[ Bt do ) [l - ety
b [ [o(t00) -0 (00)] o ) B (w)

5[ (o) 460 daiF (v.))

22

!

1 1
+ Z‘P(fptz) 4 (ti’tz))
(44)

by (35)-(38), we have |E; + F; + Gy + H,| <

Cullglglty 1)~ (1}, )1
Summarizing the above discussion shows that

R (002, % 00y,)| < C4"(p"ﬁ|(tl’t2) - (ti,t£)|ﬁ- (45)
Thus we infer

IR(@Q, x30,)| < Cslpl (1o 12) - (61.83)]. (46)

Hence
4
Y Xt < Tl (47)
i=1 B
This completes the proof. O
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Corollary 14. If ¢(t,,t,) € H(0Q, x 0Q,, B), then

"¢++(t1>t2)"[3 < ]5"?’";;’ ||‘/’+_(t1st2)||ﬁ < ]5"(P”ﬂ’
(48)

o™t 1)l < Tsllell 67"t ta)ll5 < Ts |l -

Theorem 15. Let A(x, y), B(x, y), C(x, ¥), D(x, y), g(x, y) €
H@Q, x 0Qy, B); then the function f(t,,t,, ¢, ¢% ¢, ¢*)
is a Holder continuous function for (t,,t,) € 0Q; x 0Q,
and satisfies the Lipschitz-condition for ¢', ¢, ¢, ¢* and any
(t,,t,), namely,

|f (£ t21, 61,6161, 81) = f (t1o £ 63063, 63,63 )|
<ol (i tar) = (b )| + 7 [0 - 03] (49)

+Jg |¢f _¢§| +Jo |¢f _¢;| +J1o |‘/"1l - ¢§' ]

where J; (i = 6,...,10) is a positive constant and has nothing
to do with t,;,t,;,¢,....¢5, j = 1,2. If £(0,0,0,0,0,0) =
0,][A+Blg < & IC+Dlg <& ID+Blg <& |1 -4Bllg <
§0<e<,0<u=¢/)2ls+],+1) <1, ||g||ﬁ<8,0<6<
M1 —w)/4- Jo(J;5 + J14M), then the problem R has at least
one solution, where M(llglls < M), J13,J,4 are both positive

constants satisfying IIfIIﬁ <Jiz+ ]14||(p||ﬁ.

Proof. Suppose that T = {9 | ¢ € H(0Q, x 0Q,, f), ||go||ﬁ <
M} be denoted a subset of C(0Q); x 0€),). From Theorem 13,
Corollary 14, and (38), we obtain C(f,0Q; x 0Q,) < J;; +
]12||(p||ﬁ. Similarly, we can get IIfIIﬁ <Ji5+ ]14||<p||ﬁ. Hence, by
(12) and Fo = ¢, ||F<p||ﬁ < M is derived. This shows that the
operator F is the mapping of T — T.

Next we prove the F is a continuous mapping.

Suppose that the sequence of functions {¢,} € T
uniformly converges to a function ¢(t,,t,), (t;,t,) € 0Q,; x
0Q),; thus for arbitrary e > 0 and if n is large enough, then
(P, + Q)e, — (P + Q)ol <&, (i =1,2).

Now we consider P;¢, — P3¢ by

P3q)n_P3(P

2 2
= Y A; (09, x 3Q,) + Y B; (30 x00,)
i=1

i=1

2 2 3
+ ZCi (09 x0Q,) + ZD,- (09, x0Q,) + ZEi’
i=1 i=1 i=1

(50)

where

A, (00, x 00,
=4) J E,, (u,t,)do,, (u) v, (u,v) doy (v)
0Q; x0Q,

x By (v,1,),

A, (09, x 0Q,)
= —4) J E,, (u,t,)do,, (u) ¢, (u,v)do, (v)
00, x0Q,

x Ey (v,t,),

B, (0Q, x 0Q),)

_ _4) J E,, (u,t,) do,, (1) v, (u, v) doy (0)
0Q); x0Q,

x F (v,t,),

B, (09, x 0Q),)
1) I E, (ut,)do, )y, (u,v) oy, (0)
00, x0Q,

x F (v, t,)

C, (0, x 9Q,)
=41 J F, (ut,)do,, (u)ys, (u,v) doy (v)
00 x0Q,

x E (v.t5),

C, (00 x 09),)
— 4 J E, (ut,) do. @)y, (u,v) doy (v)
00, %00,

x E (v,t,),

D, (0Q, x 0Q,)
=44 J F, (u.t) dm)%n&mﬁk (v.13),
0Q; x0Q,
D, (09, x 0Q,)

—-ad [ () o, ydoy F (0.1),
00 x0Q,

E; = ¢(t,ty) -9, (1),
Ey=(P+Q) ¢, (P, +Q)o,
E;

=(P,+ Q) 9, — (P, +Q,) 0.
(51)



Suppose 66 < d;, i = 1,2,6 > 0,0((t;,t,),39) is the
38-neighborhood of (t,,t,) with the center at point (¢,¢,) €
0Q); x 0Q), and the radius 36, 0Q);; x 0Q);, is as above; then

0, (0Q, x 0Q,)

= 0; (0Q,; x 00y,) + 0, (09, x 0Q,)

(52)
+0; (09, X 0Qy;) + 0 (0Q, X 0Qy,),
(O0=A,B,C,D, j=1,2).
By (35), we can obtain that
|A1 (09, x anl)| < ]158[; < ]166ﬂ/2’
A, (90,, x00,,)| < 1,07, (53)

|A, (00, x 0,,)| < 1,58

Similarly, we can get the inequality estimations for A, (00, x

0Q,,), A,(0Q, X 0Q,,), and A,(0Q,; x 0Q,,). By (35), (36),

and (37), we can obtain the similar inequality estimations for

B;(0Q; X0Q,,), B;(0Q, x0Q,,), B;(0€Q); X0Q,,), C;(0€2; X

0Q,,), C;(0Q, x 0Q,,), Ci(0Qy; x 0Q,,), D;(0Q;; X 0Q,,),

D;(0Q),, x 0Q,,), and D;(0Q; X 9Q,,), i = 1,2, respectively.
From

A (0Q); X 00y,) + A, (00, x 0Qy,)
— 4 j E,, (u,t,)do,, (W)W, (u,0)do, (1) (54)
0Q 1, %00,
x E; (v,t,),
where
Wi (u,v)

=g w0) =9 W, 0)] = [@, (t;,v) — ¢ (t,,0)]}

e, (t ) o (t6)] = [, (wt,) — @ (u1,)}
(55)

since [W,(u,v)| < 2o, - gollﬁlu - t1|'8/2|v - tzlﬁ/2 and from
(35), we have

|41 (00, X 00,) + Ay (0, X 0Qy,)| < Jrsen — (P”ﬁ'
(56)

Similarly, we can get the inequality estimations for B, (00, x
0Q,,) + B, (0Q, X 0Q,,),C, (00, X 0Q,,) + C, (00, X 0Q,,).
From

D, (09, X 0Qy,) + D, (00, X 0Qy,)

=4\ J F, (u,t,)do, ()W, (u,v) do (0)F, (v,1,)
00, %00,
(57)
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where

Wy (u,v)
_ {[q,;(’ﬁ) —ﬁu,\v)] ~[¢n (510) —¢m)]}

g (60 12) - 9 (t12)] = [0 (1) -0 (w15) ]}
(58)

since [W,(u,v)| < 4llp, — <p||ﬁ and from (38), we obtain that

Dy (091, X 00,) + D, (9, X 00| < Tl — (P”ﬁ'
(59)

Summarizing the above discussion, we conclude |P;¢,, —
Pipl < Jy(e + 8P &+ o, - (pllﬁ). Then for arbitrary ¢ > 0,
we first choose a sufficiently small number § and next select
a sufficiently large positive integer n; we have

|Pyg, — P3| < Ge, (60)

where G is a positive constant.

Finally, we can choose # large enough such that |Fo, —
Fo| < We (W is a positive constant). Hence we can obtain F :
T — T isacontinuous mapping. According to Ascoli-Arzela
Theorem, T is a compact set in the space C(0Q); x0),). Based
on the Schauder fixed point principle, there exists a function
@ € H(0Q, x 0Q),, B) satisfying the equation Fo = ¢. O

Corollary 16. If f = 1 in Theorem 15, then the Problem R has
the unique solution.

Proof. This corollary is not difficult to verify by the contrac-
tion mapping principle when f = 1 in Theorem 15. O
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