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Imbalanced datasets are frequently found in many real applications. Resampling is one of the effective solutions due to generating
a relatively balanced class distribution. In this paper, a hybrid sampling SVM approach is proposed combining an oversampling
technique and an undersampling technique for addressing the imbalanced data classification problem.The proposed approach first
uses an undersampling technique to delete some samples of the majority class with less classification information and then applies
an oversampling technique to gradually create some new positive samples.Thus, a balanced training dataset is generated to replace
the original imbalanced training dataset. Finally, through experimental results on the real-world datasets, our proposed approach
has the ability to identify informative samples and deal with the imbalanced data classification problem.

1. Introduction

In the literature and in real-world problems, the scenario
of imbalanced data distribution appears when the size of
samples in one class is greatly larger than the size of samples
in the other class. Many applications such as fraud detection,
intrusion prevention, riskmanagement, andmedical research
often have the imbalanced class distribution problem. Clas-
sifiers constructed based on imbalanced datasets usually
perform well on the majority class data but poorly on the
minority class data [1]. However, in many cases, the minority
class data are the most important ones to detect, for example,
in the medical field for disease diagnosis or in the industrial
field for fault diagnosis.

Class imbalance has been appointed as one of the most
challenging problems in the data mining field [2]. Many
traditional classificationmethods tend to be overwhelmed by
the majority class and ignore the minority class. Their clas-
sification performances on the minority class are negatively
affected. Actually, these traditional classifiers, such as support
vector machine (SVM), decision trees, and neural networks,
are designed to optimize the overall performance on the
whole dataset. In order to cope with the class imbalance
problem, researchers have proposed many methods from the

view of data-level approaches and algorithmic approaches.
The data-level approaches balance the training dataset of the
classifier by resampling techniques, while the algorithmic
approaches deal with the development of new algorithms
expressly designed to cope with uneven datasets. The two
approaches are independent of each other and can be com-
bined to enhance each other’s performance [3].

Resampling is one of the effective approaches for bal-
ancing the training dataset of a classifier, which includes
undersampling and oversampling techniques. In this paper, a
new hybrid sampling approach combining oversampling and
undersampling is presented to address the class imbalance
problem.The proposed approach first uses undersampling to
delete some samples of the majority class with less classifica-
tion information and then applies oversampling to gradually
create some new positive samples. Thus, a balanced training
dataset is generated to replace the original imbalanced train-
ing dataset. Through experimental results on the real-world
datasets, our approach has the ability to identify informative
samples and deal with the imbalanced data classification
problem. In addition, the proposed approach selects SVMas a
base classifier. As we have known, SVM is one of the effective
approaches for solving pattern recognition problems, which
is an approximate implementation of the structural risk
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minimization principal based on statistical learning theory
(SLT) rather than the empirical risk minimization method
[4].

The rest of the paper is organized as follows. Section 2
presents a comprehensive study on the class imbalance
problem and discusses the existing class imbalance solu-
tions. Section 3 gives a simple description of support vector
machine and then proposes a hybrid sampling SVMapproach
for addressing class imbalance problem. In Section 4, we
compare the performance of the proposed approach with the
existing methods. Finally, Section 5 concludes this paper.

2. Related Work

Since many real applications have met the class imbalance
problem, researchers have proposed several methods to solve
this problem. In general, there are two kinds of approaches to
cope with the class imbalance problem: data-level approaches
and algorithmic approaches [2]. In this section, wewill review
some of the most effective methods that have been proposed
within these two categories.

At the data-level approaches, resampling is one of the
effective approaches which can obtain amore or less balanced
class distribution. The resampling techniques try to balance
out the dataset either randomly or deterministically, which
include undersamplingmethods, oversamplingmethods, and
hybrid methods.

Undersampling methods create a subset of the original
dataset by randomly or selectively deleting some of the
samples of the majority class while keeping the original
population of the minority class [5, 6]. Despite the fact that
this method results in information loss for the majority
class, it must be noted that undersampling is generally quite
successful at countering the class imbalance problem, espe-
cially when it uses sophisticated data elimination methods.
EasyEnsemble and BalanceCascade proposed by Liu et al.
[7] are two effective informed undersampling methods. Kim
[8] proposes an undersampling method based on a self-
organizing map (SOM) neural network to obtain sampling
data which retains the original data characteristics. Garćıa
and Herrera [9] present an evolutionary undersampling
method for classification with imbalanced datasets. Yen and
Lee [10] propose cluster-based undersampling approaches. Its
basic idea is to select the representative data as training data,
which improve the classification accuracy for minority class
in the imbalanced class distribution environment.

Oversampling methods [11] generate a superset of the
original dataset by replicating some of the samples of the
positive class or creating new samples from the original posi-
tive class instances. A widely used oversampling technique is
called SMOTE (synthetic minority oversampling technique)
[11], which creates new synthetic samples to the minority
class by randomly interpolating pairs of the closest neighbors
in the minority class. SMOTE is effective to increase the
significance of the positive class in the decision region.There
exist many methods based on the SMOTE for generating
more appropriate instances [12]. Borderline-SMOTE [13]
is another approach based on the synthetic generation of

instances proposed in SMOTE. Gao et al. [14] propose
probability density function estimation based oversampling
approach for two-class imbalanced classification problems.
RWO-sampling [15] is a randomwalk oversampling approach
to balance different class samples by creating synthetic sam-
ples through randomly walking from the real data. RWO-
sampling also expands the minority class boundary after
synthetic samples have been generated.

Hybrid methods use the oversampling technique com-
bined with the undersampling technique to balance the class
size. AdaOUBoost [16] adaptively oversamples the minority
positive samples and undersamples the majority negative
samples to form different subclassifiers and combines these
subclassifiers according to their accuracy to create a strong
classifier. Cateni et al. [17] present a new resampling approach
to address the class imbalance problem, which combines
a normal distribution-based oversampling technique and a
similarity-based undersampling technique. Cao et al. [18]
propose a hybrid probabilistic sampling combined with
diverse random subspace ensemble for imbalanced data
learning. Luengo et al. [19] analyze the usefulness of the
data complexity measures and propose an approach based
on SMOTE-based oversampling and evolutionary undersam-
pling to deal with the class imbalance problem.

Algorithmic approach is another way to deal with the
imbalanced data problem, which tries to modify the classi-
fiers to suit the imbalanced datasets. Cost-sensitive learning
is an effective solution based on algorithmic approaches,
which can improve the performance of classification by
setting different misclassification cost to the majority and
minority datasets. In the cost-sensitive framework, the costs
of misclassifying minority samples are higher with respect
to other kinds of errors in order to encourage their correct
classification. Cost-sensitive learning is one of the most
important topics in machine learning and data mining and
has attracted high attention in recent years [3, 20, 21]. Many
algorithms combining resampling and cost-sensitive learning
have also been proposed [22].

Many works make somemodification of the classification
algorithms. Several specific attempts using SVMs have been
made to improve their class prediction accuracy in the case
of class imbalances [23–26]. Fu and Lee [27] present a
certainty-based active learning algorithm to deal with the
imbalanced data classification problem. In order to improve
the classification of imbalanced data, Oh [28] proposes a new
error function for the error back-propagation algorithm of
multilayer perceptrons.

As we have known, in recent years, an ensemble of
classifiers have arisen as a possible solution to the class imbal-
ance problem attracting great interest among researchers
because of their flexible characteristics [29, 30]. Ensembles
are designed to increase the accuracy of a single classifier
by training several different classifiers and combining their
decisions to output a single class label. Liu et al. [31] present
an ensemble of SVMs to improve the prediction performance,
which incorporates both oversampling and undersampling.
Guo and Viktor [32] present an approach DataBoost-IM,
which generated new data and classified imbalanced data by
an ensemble classifier. Oh et al. [33] propose an ensemble
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learning method combined with active example selection
to deal with the class imbalance problem. Woźniak et al.
[34] present ensemble classifiers from a new point of view
including approaches to imbalanced data classification.

3. The Proposed Hybrid Sampling
SVM Approach

In this section, we first give a description of support vector
machine, and then we present our proposed approach.

3.1. Review of Support Vector Machine. SVM was first intro-
duced to solve the pattern classification and regression
problems by Vapnik and his colleagues [4, 35]. In recent
years, SVM has drawn considerable attentions due to its high
generalization ability of a wide range of applications and
better performance than other traditional learningmachines.
The goal of the SVM learning algorithm is to find a separating
hyperplane that separates these data points into two classes.

Consider a binary classification problem consisting of 𝑙
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a linear classifier can be written in the following form:

w ⋅ x + 𝑏 = 0, (1)

where w and 𝑏 are parameters of the model. To have more
flexible ways to deal with nonlinear separable data, we can
first transform the training samples into a high-dimensional
feature space using a nonlinearmappingΦ.Therefore, (1) can
be rewritten as w ⋅ Φ(x) + 𝑏 = 0.

The support vector technique requires the solution of the
following optimization problem:
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If𝑓(x) = 1, then the test sample x is classified as a positive
class; otherwise, it is classified as a negative class.
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3.2. The Proposed Hybrid Sampling Approach. This paper
proposes a hybrid sampling approach based on support
vector machine to address the imbalanced data classification
problem. The proposed approach first uses SVM method to
generate a classification hyperplane and applies an undersam-
pling technique to reduce negative samples which include less
classification information. And then, we divide the training
dataset into several subsets, in which we synthesize new
positive samples using an oversampling technique. Once the
majority class has been undersampled and the minority class
has been oversampled, a new balanced training dataset is
created and is used to train an SVM classifier. The proposed
approach effectively balances the initial imbalanced dataset
and improves classification precision on the basis ofmaximiz-
ing data balance.

The framework of our proposed approach is pres-
ented as follows. Given the training dataset 𝑇 = {(𝑥
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labels of the negative and positive samples, respectively, 𝑘 is
the size of the training dataset. Suppose that an imbalanced
dataset contains 𝑛 samples from the majority class and 𝑚
samples from the minority class, where 𝑛 ≫ 𝑚 and 𝑛+𝑚 = 𝑙.
The imbalance ratio IR is 𝑛/𝑚.

In undersampling phase, the proposed approach first
trains an SVM classifier for training dataset 𝑇 and obtains a
classification hyperplane 𝑤 ⋅ 𝑥 + 𝑏 = 0 and then deletes some
negative samples with less information by undersampling.
Our approach is based on the distance between sample 𝑧 and
the hyperplane as follows:

𝑑 = ‖𝑤 ⋅ 𝑧 + 𝑏‖ . (5)

We proportionately delete some negative samples far
away from the hyperplane according the calculated distances.
After undersampling, the imbalance ratio is reduced; for
instance, the imbalance ratio is the half of original IR. We
label the training dataset after undersampling as 𝑇

0
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𝑛
0
negative samples and𝑚

0
positive samples.

In oversampling phase, the proposed approach first ran-
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1
for dataset 𝐺
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.

For the 𝑖th one of the rest k−1 subsets, we select𝑝
𝑖
negative

samples near the hyperplane of classifier 𝐹
𝑖−1

according to
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(5) and generate synthetic instances using SMOTE method.
Similarly, a new training dataset𝐺

𝑖
is generated bymerging all

𝑛
𝑖
positive samples and the new synthetic samples into 𝐺

𝑖−1
.

We train an SVM classifier 𝐹
𝑖
for dataset 𝐺

𝑖−1
.

In the oversampling for the positive class, the smaller
the size of positive samples within a subset is, the more the
instances are oversampled.

Based on the description above, the proposed hybrid
sampling SVM approach is described in Algorithm 1.

4. Experiment and Analysis

In this section, we evaluate the performances for our pro-
posed hybrid sampling approach on real datasets. In the
following, we first describe several evaluation measures for
class imbalanced problem and then compare 𝐹-measure and
𝐺-mean of our method with the other methods.

4.1. Evaluation Measures. In general, the performance of a
classifier is evaluated based on its overall accuracy on an
independent test dataset. However, the overall classification
accuracy on an imbalanced dataset is mainly dominated by
the majority class. Therefore, accuracy is not an appropriate
evaluation measure for imbalanced data. Researchers use
different metrics to evaluate the performance of imbalanced
data classification methods. These metrics include the accu-
racy rate, 𝐹-measure, geometric mean (𝐺-mean), and AUC
[36].

The result of classification can be categorized into four
cases as follows. TP (true positive) is the number of actual
positives that were correctly classified as positives. FP (false
positive) is the number of actual negatives that were incor-
rectly classified as positives. TN (true negative) is the number
of actual negatives that were correctly classified as negatives.
FN (false negative) is the number of actual positives that were
incorrectly classified as negatives.

Accuracy is the most used evaluationmetric for assessing
the classification performance and guiding the classifier
modeling. The overall accuracy is defined as

Accuracy = TP + TN
TP + FP + TN + FN

. (6)

𝐺-mean is the geometric mean of accuracies measured
separately on each class, which is commonly utilized when
performance of both classes is concerned and expected to be
high simultaneously. 𝐺-mean is defined as

𝐺-mean = √𝑆sens × 𝑆spec, (7)

where 𝑆sens and 𝑆spec denote sensitivity and specificity, respec-
tively. Sensitivity, also called the TP rate (TPrate) or the
recall (Recall), shows the performance of the positive class as
follows:

𝑆sens = 𝑇𝑃𝑟𝑎𝑡𝑒 = 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
. (8)

Specificity, also called the TN rate (TNrate), shows the
performance of the negative class as follows:

𝑆spec = 𝑇𝑁𝑟𝑎𝑡𝑒 =
TN

TN + FP
. (9)

𝐹-measure is often used in the fields of information
retrieval and machine learning for measuring search, doc-
ument classification, and query classification performance.
𝐹-measure considers both the Precision and the Recall to
compute the score. Generally, for a classifier, if the Precision
is high, then the Recall will be low; that is, the two criteria
are trade-off. Precision and Recall are combined to form
a criterion 𝐹-measure, which is shown in expression (10).
Consider

𝐹-measure =
(1 + 𝛽)

2

× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (10)

where 𝛽 is set to 1 in this paper. The Precision for minority
class is the correct-classified percentage of samples which are
predicted as minority class by the classifier. It is defined as
follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
. (11)

AUC is the area under the receiver operating character-
istic (ROC) curve. ROC consists of plotting the true positive
rate as a function of the false positive rate along all possible
threshold values for the classifier. An ROC curve depicts
relative trade-offs between true positives and false positives
across a range of thresholds of a classifier. However, it is
difficult to compare several classification models through
curves. Therefore, it is common for results to be reported
with respect to AUC. AUC can be interpreted as the expected
proportion of positive samples ranked before a uniformly
drawn random negative sample [36].

In the following, we use the two criteria 𝐹-measure and
𝐺-mean discussed above to evaluate the performance of
our approaches by comparing our methods with the other
methods.

4.2. Experimental Results and Analysis. In this subsection,
we will compare our proposed approach to address the class
imbalance problemwith several techniques.The experiments
use 6 datasets which have different degrees of imbalance from
KEEL [37], including Cmc2, Glass7, Abalone7, Vowel, Yeast,
and Letter4. Information about these datasets is summarized
in Table 1. They are very varied in their size of classes, size
of attributes, size of samples, and imbalance ratio. When
more than two classes exist in the dataset, the target class
is considered to be positive and all the other classes are
considered to be negative. For each dataset, the size of
samples (number of samples), the size of attributes (number
of attributes), the size of samples of each class (number of
positives and number of negatives), and imbalance ratio are
listed. We calculate class imbalance ratio of the size of the
majority class to the size of the minority class.

We compared the performance of 4 methods, including
undersampling (Under), SMOTE [11], EasyEnsemble [7], and
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Input: Imbalanced training data set 𝑇
0

Output: An SVM classifier 𝐹
𝑘

Step 1. Train an SVM classifier for training dataset 𝑇
0
and delete some negative samples using (5).

Step 2. Divide randomly T into k disjoint equivalent subsets 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
.

Step 3. Select subset 𝑇
1
and over-sample the positive samples using SMOTE method; generate a

new training data set 𝐺
1
by merging the new synthetic samples into 𝑇

1
; train an initial SVM

classifier 𝐹
1
for data set 𝐺

1
.

Step 4. For each subset 𝑇
𝑖
in the rest 𝑘 − 1 subsets do

Step 2.1. Compute the distances between negative samples and the hyperplane of classifier 𝐹
𝑖−1

according to (5).
Step 2.2. Select 𝑝

𝑖
negative samples with the smallest distances; generate synthetic instances

using SMOTE method.
Step 2.3.Merge all 𝑛

𝑖
positive samples and the new synthetic samples into 𝐺

𝑖−1
, and obtain data

set 𝐺
𝑖
.

Step 2.4. Train an SVM classifier 𝐹
𝑖
for dataset 𝐺

𝑖
.

Step 5. Classify data set 𝐺
𝑘
using SVMmethod, and obtain a classifier 𝐹

𝑘
.

Algorithm 1: The hybrid sampling SVMmethod.

Table 1: Summary of data sets.

Data set #Samples #Attributes #Positves #Negatives Imbalance
ratio

Cmc2 1473 10 333 1140 3.4
Glass7 214 9 29 185 6.4
Abalone7 4177 8 391 3786 9.7
Vowel 990 13 90 900 10.0
Yeast 1332 8 84 1248 14.9
Letter4 20000 16 805 19195 23.8

Table 2: F-measure of the compared methods.

F-measure Under SMOTE EasyEnsemble Our approach
Cmc2 0.4308 0.4631 0.5267 0.5491
Glass7 0.8272 0.8539 0.8965 0.8867
Abalone7 0.2976 0.4250 0.5913 0.5946
Vowel 0.7632 0.7769 0.8431 0.8752
Yeast 0.6342 0.6281 0.7038 0.7234
Letter4 0.5308 0.5752 0.6076 0.6614

our proposed method. For undersampling, we use a random
sampling method. SMOTE is used with five neighbours.
EasyEnsemble selects C4.5 decision tree as the baseline
classifier. In all our experiments, we perform a 10-fold cross
validation.

In our experiments, 𝐹-measure and 𝐺-mean are used
as metrics. Table 2 shows the average 𝐹-measure obtained
by 4 methods. The results indicate that our proposed
approach has higher 𝐹-measure than that of other compared
methods on Cmc2, Abalone7, Vowel, Yeast, and Letter4
datasets. EasyEnsemble outperforms other compared meth-
ods on Glass7 dataset. The results indicate that our proposed
approach can further improve the 𝐹-measure metric of
imbalanced learning.

Table 3: G-mean of the compared methods.

G-mean Under SMOTE EasyEnsemble Our approach
Cmc2 0.5325 0.5461 0.5734 0.5823
Glass7 0.8432 0.8865 0.9237 0.9125
Abalone7 0.3524 0.4672 0.6613 0.6653
Vowel 0.8125 0.8333 0.8769 0.9013
Yeast 0.6631 0.6547 0.7532 0.7845
Letter4 0.5543 0.5945 0.6217 0.6976

Table 3 lists the results of the average 𝐺-mean of the
compared methods. The results show that our proposed
approach has higher 𝐺-mean than other compared methods
on most of datasets, while EasyEnsemble is slightly higher𝐺-
mean than our proposed approach on Glass7 dataset. This is
consistent with our analysis in 𝐹-measure.

5. Conclusions

For the class imbalance problem, resampling technique is an
effective approach to resolve it. This paper proposes a hybrid
sampling SVM approach, which combines undersampling
and oversampling techniques. The proposed approach gen-
erates a relatively balanced dataset without significant loss
of information and without the addition of a great number
of synthetic samples. Thus, SVM classifier employed by our
proposed approach can effectively improve the classification
accuracy of original imbalanced dataset. Experimental results
show that the proposed approach outperforms existing over-
sampling and undersampling techniques.
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