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We consider a dependent multirisk model in insurance, where all the claims constitute a linearly extended negatively orthant
dependent (LENOD) random array, and then upper and lower bounds for precise large deviations of nonrandom and random
sums of random variables with dominated variation are investigated. The obtained results extend some related existing ones.

1. Introduction

In a classic insurance risk model the surplus is described
as the initial surplus plus the premium income with the
claims taken off. Since asymptotic behavior for precise large
deviations of the loss process of insurance risk models has
theoretical significance and extensive applications, it has been
widely investigated and there appeared to be a great deal
of research literature. Some earlier works on precise large
deviations can be found in Nagaev [1, 2], Heyde [3, 4], and
Nagaev [5, 6], among others. Recent works on this field can
be found in Cline and Hsing [7], Klüppelberg and Mikosch
[8], Tang et al. [9], Tang [10], Liu [11], Chen and Zhang [12],
Shen and Lin [13], Liu [14], Chen et al. [15], and Chen and
Yuen [16], among others.

In consideration of insurance reality, some researchers
have begun to focus on the precise large deviations of multi-
risk models in the past few years. See S. Wang and W. Wang
[17], Lu [18, 19], He at al. [20], and S. J. Wang andW. S. Wang
[21], among others. For convenience of representation, we
adopt the notations of S.Wang andW.Wang [17]. Assume that
the insurermanages𝑘 types of insurance contracts at the same
time, where 𝑘 is any fixed positive integer.The 𝑖th related loss
amounts (claims) are denoted by random variables {𝑋

𝑖𝑗
, 𝑗 ≥

1} with common distribution 𝐹
𝑖
(𝑥) = 𝑃(𝑋

𝑖
≤ 𝑥) := 1 − 𝐹

𝑖
(𝑥)

satisfying 𝐹
𝑖
(𝑥) > 0 for all 𝑥 ∈ (−∞,∞). Let {𝑁

𝑖
(𝑡), 𝑖 =

1, . . . , 𝑘, 𝑡 > 0} be independent nonnegative integer-valued

counting processes independent of {𝑋
𝑖𝑗
, 𝑖 = 1, . . . , 𝑘, 𝑗 ≥ 1},

satisfying 𝐸𝑁
𝑖
(𝑡) = 𝜆

𝑖
(𝑡) → ∞ as 𝑡 → ∞. In insurance

multi-risk models, {𝑁
𝑖
(𝑡), 𝑡 > 0}

𝑘

𝑖=1
always denote the 𝑖th

claim numbers of the related insurance contracts. Obviously,
all the claims constitute the following random array:

(

𝑋
11

𝑋
12

𝑋
13

⋅ ⋅ ⋅

𝑋
21

𝑋
22

𝑋
23

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑋
𝑘1

𝑋
𝑘2

𝑋
𝑘3

⋅ ⋅ ⋅

) . (1)

Therefore, the loss process of the insurer during the period
[0, 𝑡] can be described as 𝑆(𝑘; 𝑡) = ∑

𝑘

𝑖=1
∑
𝑁𝑖(𝑡)

𝑗=1
𝑋
𝑖𝑗
. If the

random arrays (1) are independent (i.e., to say all random
variables {𝑋

𝑖𝑗
, 𝑖 = 1, . . . , 𝑘, 𝑗 ≥ 1} are independent) and all

the claims have consistently varying tails (see the definition
below), under some mild conditions, S. Wang and W. Wang
[17] obtained the following result. For any fixed 𝛾 > 0, as
𝑡 → ∞, the relation

𝑃(𝑆 (𝑘; 𝑡) −

𝑘

∑

𝑖=1

𝜇
𝑖
𝜆
𝑖 (𝑡) > 𝑥) ∼

𝑘

∑

𝑖=1

𝜆
𝑖 (𝑡) 𝐹𝑖 (𝑥) (2)

holds uniformly for 𝑥 ≥ max{𝛾𝜆
𝑖
(𝑡), 𝑖 = 1, . . . , 𝑘} := Γ(𝑘).

The relation (2) describes the so-called precise large devi-
ations for random sums in multi-risk models. Subsequently,
Lu [18, 19] investigated precise large deviations with subex-
ponential and long-tailed claims in multi-risk models under
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independent structures, respectively. He et al. [20] obtained
the lower bounds of precise large deviations of multi-risk
models with nonnegative random variables (regardless of
heavy or light tails) under a specific dependence structure.
However, on the one hand, for practical reasons, the inde-
pendence assumptions in the above-mentioned papers are
quite unrealistic. On the other hand, up to now, most works
on precise large deviations with heavy tails concentrated
on the consistent variation or some other heavy-tailed sub-
classes although some specific dependence structures have
been considered. Therefore, it is more interesting to study
the estimation of precise large deviation probabilities of
aggregate claims in the presence of dominated variation
and some dependence structures, where dominated variation
strictly includes consistent variation. More recently, some
researchers have begun to focus on this issue and obtained
some interesting results. See Wang et al. [22], Wang et al.
[23], Yang et al. [24], Yang and Wang [25], and Chen and Qu
[26], among others. Motivated by the two reasons mentioned
above, in this paper, upper and lower bounds for precise large
deviations of aggregate claims with dominated variation in
dependent multi-risk models (see the dependent structures
in Definitions 1 and 2 below) are investigated. The obtained
results extend some related existing ones.

To close this section, we introduce two new dependence
structures called ENOD and LENOD, respectively, which are
the basic assumptions in this paper. The idea of Definition 1
comes from Liu [14].

Definition 1. We call random arrays {𝑋
𝑖𝑗
, 𝑖 = 1, . . . , 𝑘, 𝑗 ≥ 1}

(1) Extended Negatively Lower Orthant Dependent
(ENLOD) if there exists some constant 𝑀 > 0 such
that for each 𝑛 = 1, 2, . . ., {𝑖

1
, . . . , 𝑖

𝑛
} ⊂ {1, . . . , 𝑘},

{𝑗
1
, . . . , 𝑗

𝑛
} ⊂ {1, 2, . . .}, and all 𝑥

1
, . . . , 𝑥

𝑛
,

𝑃 (𝑋
𝑖1𝑗1

≤ 𝑥
1
, . . . , 𝑋

𝑖𝑛𝑗𝑛
≤ 𝑥

𝑛
) ≤ 𝑀

𝑛

∏

𝑘=1

𝑃 (𝑋
𝑖𝑘𝑗𝑘

≤ 𝑥
𝑘
) ; (3)

(2) Extended Negatively Upper Orthant Dependent
(ENUOD) if there exists some constant𝑀 > 0 such
that for each 𝑛 = 1, 2, . . ., {𝑖

1
, . . . , 𝑖

𝑛
} ⊂ {1, . . . , 𝑘},

{𝑗
1
, . . . , 𝑗

𝑛
} ⊂ {1, 2, . . .}, and all 𝑥

1
, . . . , 𝑥

𝑛
,

𝑃 (𝑋
𝑖1𝑗1

> 𝑥
1
, . . . , 𝑋

𝑖𝑛𝑗𝑛
> 𝑥

𝑛
) ≤ 𝑀

𝑛

∏

𝑘=1

𝑃 (𝑋
𝑖𝑘𝑗𝑘

> 𝑥
𝑘
) ; (4)

(3) Extended Negatively Orthant Dependent (ENOD)
if both (3) and (4) hold for each 𝑛 = 1, 2, . . .,
{𝑖
1
, . . . , 𝑖

𝑛
} ⊂ {1, . . . , 𝑘}, {𝑗

1
, . . . , 𝑗

𝑛
} ⊂ {1, 2, . . .}, and

all 𝑥
1
, . . . , 𝑥

𝑛
.

Definition 2. We call random arrays {𝑋
𝑖𝑗
, 𝑖 = 1, . . . , 𝑘, 𝑗 ≥ 1}

(1) Linearly Extended Negatively Lower Orthant Depen-
dent (LENLOD) if for each 𝑚 = 1, 2, . . ., any

finite disjoint subsets 𝐴
1
, 𝐴

2
, . . . , 𝐴

𝑚
of {1, . . . , 𝑘} ×

{1, 2, . . .}, and positive 𝑟
𝑖𝑗
’s,

∑

(𝑖,𝑗)∈𝐴1

𝑟
𝑖𝑗
𝑋
𝑖𝑗
, ∑

(𝑖,𝑗)∈𝐴2

𝑟
𝑖𝑗
𝑋
𝑖𝑗
, . . . ,

∑

(𝑖,𝑗)∈𝐴𝑚

𝑟
𝑖𝑗
𝑋
𝑖𝑗
are ENLOD;

(5)

(2) Linearly Extended Negatively Upper Orthant Depen-
dent (LENUOD) if for each 𝑚 = 1, 2, . . ., any
finite disjoint subsets 𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑚
of {1, . . . , 𝑘} ×

{1, 2, . . .}, and positive 𝑟
𝑖𝑗
’s,

∑

(𝑖,𝑗)∈𝐴1

𝑟
𝑖𝑗
𝑋
𝑖𝑗
, ∑

(𝑖,𝑗)∈𝐴2

𝑟
𝑖𝑗
𝑋
𝑖𝑗
, . . . ,

∑

(𝑖,𝑗)∈𝐴𝑚

𝑟
𝑖𝑗
𝑋
𝑖𝑗
are ENUOD;

(6)

(3) Linearly Extended Negatively Orthant Dependent
(LENOD) if both (5) and (6) hold for each 𝑚 =

1, 2, . . ., any finite disjoint subsets 𝐴
1
, 𝐴

2
, . . . , 𝐴

𝑚
of

{1, . . . , 𝑘} × {1, 2, . . .} and positive 𝑟
𝑖𝑗
’s.

Remark 3. The idea of Definition 2 is due to Newman
[27] who first put forward the concept of LNQD (linearly
negative quadrant dependent) when studying the central
limit theorem.Other related dependence structures are called
NQD and NA. See Joag-Dev and Proschan [28] for more
details. It is well known that NA implies LNQD and LNQD
is slightly stronger than NQD. In the consideration of the
need of studyingmultivariate randomvariables, we introduce
the concept of LENOD random arrays in this paper. By
definitions, one can also easily check that NA random arrays
must be LENODones and LENOD implies ENQD.Moreover,
LENOD is more comprehensive than NA in that it can reflect
not only a negative association structure but also a positive
one to some extent.

Remark 4. It is worth to mention that there maybe exist
some flaws in the definition of extended negatively associated
(ENA) structure of S. J. Wang and W. S. Wang [21]. In fact, S.
J. Wang and W. S. Wang [21] stated that the relationship

Cov (𝑓 (𝑋
𝑖𝑗
; (𝑖, 𝑗) ∈ 𝐴) , 𝑔 (𝑋

𝑖𝑗
; (𝑖, 𝑗) ∈ 𝐵)) ≤ 𝑀 (7)

holds for fixed 𝑀 > 0 and any pair of coordinate-
wise increasing functions 𝑓, 𝑔. Considering the case that
Cov(𝑓(𝑋

𝑖𝑗
; (𝑖, 𝑗) ∈ 𝐴), 𝑔(𝑋

𝑖𝑗
; (𝑖, 𝑗) ∈ 𝐵)) > 0, inequality (7)

can not hold because

lim
𝑐→∞

Cov (𝑐𝑓 (𝑋
𝑖𝑗
; (𝑖, 𝑗) ∈ 𝐴) , 𝑐𝑔 (𝑋

𝑖𝑗
; (𝑖, 𝑗) ∈ 𝐵)) = ∞.

(8)

It might be questionable.Therefore, in this paper, we redefine
a new dependence structure called LENOD for random
arrays to avoid this problem. Fortunately, under this new
dependence structure, the main results still hold and extend
some related existing ones.
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The rest of this paper is organized as follows. Section 2
gives some preliminaries. Precise large deviations for non-
random sums and random sums with dominated variation in
dependent multi-risk models are presented in Sections 3 and
4.

2. Preliminaries

For convenience, hereafter, for two positive infinitesimals𝑓(⋅)
and 𝑔(⋅) satisfying

𝑎 ≤ lim inf
𝑓 (⋅)

𝑔 (⋅)
≤ lim sup

𝑓 (⋅)

𝑔 (⋅)
≤ 𝑏, (9)

we write 𝑓(⋅) = 𝑂(𝑔(⋅)) if 𝑏 < ∞; 𝑓(⋅) = 𝑜(𝑔(⋅)) if 𝑏 = 0.
For two positive bivariate functions 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥), we
say 𝑓(𝑡, 𝑥) ∼ 𝑔(𝑡, 𝑥) holds as 𝑡 → ∞ uniformly for all 𝑥 ∈

D(𝑡) ̸= 𝜙 in the sense that lim
𝑡→∞

sup
𝑥∈D(𝑡)|(𝑓(𝑡, 𝑥)/𝑔(𝑡, 𝑥))−

1| = 0.
For simplicity, for any positive integer sequence {𝑛

𝑖
, 𝑖 =

1, . . . , 𝑘}, we use the following notations:

𝑆
𝑛
=

𝑛

∑

𝑘=1

𝑋
𝑘
, 𝑆

𝑛𝑖
=

𝑛𝑖

∑

𝑗=1

𝑋
𝑖𝑗
, 𝑆 (𝑘; 𝑛

1
, . . . , 𝑛

𝑘
) =

𝑘

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑋
𝑖𝑗
,

𝑆
𝑁(𝑡)

=

𝑁(𝑡)

∑

𝑘=1

𝑋
𝑘
, 𝑆

𝑁𝑖(𝑡)
=

𝑁𝑖(𝑡)

∑

𝑘=1

𝑋
𝑖𝑗
, 𝑖 = 1, . . . , 𝑘.

(10)

2.1. Heavy-Tailed Distributions. In risk theory, heavy-tailed
distribution functions are often used to model large claims.
They play a key role in some fields such as insurance, financial
mathematics, and queueing theory.We say that a nonnegative
random variable 𝑋 (or its distribution function 𝐹) is heavy-
tailed if it has no finite exponential moments. For details,
we refer the reader to Embrechts, Klüppelberg, and Mikosch
[8], among others. For convenience of use, we recall some
important subclasses of heavy-tailed distributions. A quite
large subclass is called long-tailed distribution class denoted
by L. A distribution function 𝐹 is said to belong to L if for
all 𝑦 ∈ (−∞, +∞)

lim
𝑥→∞

𝐹 (𝑥 + 𝑦)

𝐹 (𝑥)
= 1. (11)

Another important subclass is called the class of random
variables with dominatedly varying tails (or the class of
distribution functions with dominated variation) denoted by
D. We say that a distribution function 𝐹 is in D if for any
0 < 𝑦 < 1 (or equivalently for some 0 < 𝑦 < 1)

lim sup
𝑥→∞

𝐹 (𝑥𝑦)

𝐹 (𝑥)
< ∞. (12)

Furthermore, for any 𝑦 > 1, set 𝐹
∗
(𝑦) =

lim inf
𝑥→∞

(𝐹(𝑥𝑦)/𝐹(𝑥)) and then define

𝐿
𝐹
= lim

𝑦↓1

𝐹
∗
(𝑦) , 𝐽

+

𝐹
:= inf {−

log𝐹
∗
(𝑦)

log𝑦
, 𝑦 > 1} .

(13)

In the terminology of Tang and Tsitsiashvili [29], 𝐽+
𝐹

is
called the (upper) Matuszewska index of 𝐹. The following
proposition is well known.

Proposition 5. Consider 𝐹 ∈ D ⇔ 𝐹
∗
(𝑦) > 0 for all 𝑦 >

1 ⇔ 𝐹
∗
(𝑦) > 0 for some 𝑦 > 1 ⇔ 𝐿

𝐹
> 0 ⇔ 𝐽

+

𝐹
< ∞.

Some other subclasses are as follows. Denote byC = {𝐹 :

𝐿
𝐹
= 1} the class of random variables with consistently vary-

ing tails (or distribution functions with consistent variation).
For some 0 < 𝛼 ≤ 𝛽 < ∞, denote by ERV(−𝛼, −𝛽) = {𝐹 :

𝑦
−𝛽

≤ 𝐹
∗
(𝑦) ≤ 𝐹

∗

(𝑦) ≤ 𝑦
−𝛼 for all 𝑦 > 1} the extended

regularly varying class. Particularly, if 𝛼 = 𝛽, it reduces to the
regularly varying class, denoted byR

−𝛼
. For the heavy-tailed

distribution subclassesmentioned above, it is well known that
the following inclusions hold:

R
−𝛼
⊂ ERV (−𝛼, −𝛽) ⊂ C ⊂ D ∩L ⊂ D. (14)

Finally, we define an important quantity of heavy-tailed
distribution function needed in the main results.

Definition 6. For any heavy-tailed distribution 𝐹 and 𝑦 ≥ 0,
define

𝜌
𝐹
(𝑦) = lim inf

𝑥→∞

𝐹 (𝑥 + 𝑦)

𝐹 (𝑥)
. (15)

Remark 7. Obviously, 𝜌
𝐹
(0) = 1. Furthermore, if 𝐹 ∈ L, then

𝜌
𝐹
(𝑦) ≡ 1 for any 𝑦 > 0 by the definition ofL.

2.2. Some Lemmas. In this sequel, we will give some lemmas
needed in the proofs of the main results. Lemmas 1 and 2 are
due to S. J. Wang and W. S. Wang [21] (Lemmas 2.3 and 2.5).
To state the results, we should introduce two assumptions
added on the process {𝑁(𝑡), 𝑡 ≥ 0}, which also appeared in
Chen et al. [15] and S. J. Wang and W. S. Wang [21].

Assumption A. For any 𝛿 > 0 and some 𝑝 > 𝐽+
𝐹
, as 𝑡 → ∞,

𝐸𝑁
𝑝
(𝑡) 1(𝑁(𝑡)>(1+𝛿)𝜆(𝑡)) = 𝑂 (𝜆 (𝑡)) . (16)

Assumption B. For all 0 < 𝛿 < 1, as 𝑡 → ∞,

𝑃 (𝑁 (𝑡) ≤ (1 − 𝛿) 𝜆 (𝑡)) = 𝑜 (𝜆 (𝑡) 𝐹 (𝜆 (𝑡))) . (17)

Lemma 1. Let {𝑋
𝑘
, 𝑘 = 1, 2, . . .} be ENOD random variables

with common distribution 𝐹 ∈ D and finite mean 𝜇, satisfying
𝐸(𝑋

−

1
)
𝑟
< ∞ for some 𝑟 > 1 and

𝐹 (−𝑥) = 𝑜 (𝐹 (𝑥)) , 𝑥 󳨀→ ∞; (18)

then, for any 𝛾 > 0, as 𝑛 → ∞, the relation

𝑃 (𝑆
𝑛
− 𝑛𝜇 ≤ −𝑥) = 𝑜 (𝑛𝐹 (𝑥)) (19)

holds uniformly for 𝑥 ≥ 𝛾𝑛.

Lemma 2. Let {𝑋
𝑘
, 𝑘 = 1, 2, . . .} be a sequence of ENOD

random variables with common distribution function 𝐹 ∈ D
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and finite mean 𝜇, satisfying (18), and let {𝑁(𝑡), 𝑡 ≥ 0} be
a nonnegative integer-valued counting process independent of
{𝑋

𝑘
, 𝑘 = 1, 2, . . .}, satisfying Assumptions A and B; then, for

any 𝛾 > 0, as 𝑡 → ∞, the relation

𝑃 (𝑆
𝑁(𝑡)

− 𝜇𝜆 (𝑡) ≤ −𝑥) = 𝑜 (𝜆 (𝑡) 𝐹 (𝑥)) (20)

holds uniformly for 𝑥 ≥ 𝛾𝜆(𝑡).

Lemmas 3–5 play important roles in the proofs of main
results and have their own interests. Lemma 3 describes an
important property of the quantity 𝜌

𝐹
defined inDefinition 6.

Lemmas 4 and 5 present precise large deviations for nonran-
dom and random sums of random variables with dominated
variation in single-risk models, respectively.

Lemma 3. Let any distribution 𝐹 ∈ D, and, for any fixed real
number 𝑧, denote the distribution 𝐹(⋅ + 𝑧) by 𝐹

+𝑧
(⋅). Then,

(i) 𝐿
𝐹
≤ 𝐿

𝐹+𝑧
≤ 𝜌

−1

𝐹
(𝑧)𝐿

𝐹
when 𝑧 ≥ 0;

(ii) 𝜌
𝐹
(−𝑧)𝐿

𝐹
≤ 𝐿

𝐹+𝑧
≤ 𝐿

𝐹
when 𝑧 < 0.

Proof. (i) By the definition of D, one can easily check that
𝐹
+𝑧
∈ D.
When 𝑧 ≥ 0, we get

𝐿
𝐹+𝑧

= lim
𝑦↓1

lim inf
𝑥→∞

𝐹 (𝑥𝑦 + 𝑧)

𝐹 (𝑥 + 𝑧)

≥ lim
𝑦↓1

lim inf
𝑥→∞

𝐹 ((𝑥 + 𝑧) 𝑦)

𝐹 (𝑥 + 𝑧)
= 𝐿

𝐹
.

(21)

Conversely, for any 0 < 𝜀 < 1 and large enough 𝑥, noticing
that 𝐹 ∈ D, we have

𝐿
𝐹+𝑧

≤ lim
𝑦↓1

lim inf
𝑥→∞

𝐹 (𝑥𝑦)

𝐹 (𝑥 + 𝑧)

≤
lim

𝑦↓1
lim inf

𝑥→∞
(𝐹 (𝑥𝑦) /𝐹 (𝑥))

lim inf
𝑥→∞

(𝐹 (𝑥 + 𝑧) /𝐹 (𝑥))
= 𝜌

−1

𝐹
(𝑧) 𝐿𝐹.

(22)

(ii) For any𝑦 ≥ 0 and fixed real number 𝑧, byDefinition 6,
one can easily obtain 𝜌

𝐹+𝑧
(𝑦) = 𝜌

𝐹
(𝑦). Thus, when 𝑧 < 0,

(21) and (22) imply 𝐿
𝐹
≥ 𝐿

𝐹+𝑧
and 𝐿

𝐹
≤ 𝜌

−1

𝐹+𝑧
(−𝑧)𝐿

𝐹+𝑧
=

𝜌
−1

𝐹
(−𝑧)𝐿

𝐹+𝑧
. It ends the proof of Lemma 3.

Remark 8. It is interesting that Lemma 3 indicates that the
quantity 𝐿

𝐹+𝑧
maybe will not be equal to 𝐿

𝐹
when we let

𝐹
+𝑧
(⋅) = 𝐹(⋅ + 𝑧) for any fixed real number 𝑧. In essence, it is

due to the fact thatD is not a subset ofL.Thus, we should be
very cautious when dealing with the random variables from
the subclassD.

Lemma 4. Let {𝑋
𝑘
, 𝑘 ≥ 1} be a sequence of ENOD random

variables with common distribution 𝐹 ∈ D and finite mean 𝜇,
satisfying

𝐹 (−𝑥) = 𝑜 (𝐹 (𝑥)) as 𝑥 󳨀→ ∞,

𝐸
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨
𝑟1
{𝑋1≤0}

< ∞ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟 > 1.

(23)

Then, for any fixed 𝛾 > 0,

𝜌
𝐹
(
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨) 𝐿𝐹 ≤ lim inf

𝑛→∞
inf
𝑥≥𝛾𝑛

𝑃 (𝑆
𝑛
− 𝑛𝜇 > 𝑥)

𝑛𝐹 (𝑥)

≤ lim sup
𝑛→∞

sup
𝑥≥𝛾𝑛

𝑃 (𝑆
𝑛
− 𝑛𝜇 > 𝑥)

𝑛𝐹 (𝑥)
≤ 𝑀

𝐹,𝜇
𝐿
−1

𝐹
,

(24)

where𝑀
𝐹,𝜇

:= 1
{𝜇≥0}

+ 𝜌
−2

𝐹
(|𝜇|)1

{𝜇<0}
.

Proof. If 𝜇 = 0, one canmimic the proof of Theorem 1.1 of Liu
[14] to prove (24). Also one can get the relation (24) directly
from Corollaries 1 and 2 of Wang et al. [23]. Therefore, we
omit the process here.

For the case of 𝜇 ̸= 0, let𝑋󸀠

𝑖
= 𝑋

𝑖
−𝜇, 𝑖 = 1, 2, . . ., and note

that 𝑋󸀠

𝑖
is distributed by 𝐹

+𝜇
(see the notation in Lemma 3).

Therefore, if 𝜇 < 0, by the fact that 𝐹 ∈ D and Lemma 3, it
yields that

lim inf
𝑛→∞

inf
𝑥≥𝛾𝑛

𝑃 (𝑆
𝑛
− 𝑛𝜇 > 𝑥)

𝑛𝐹 (𝑥)

≥ lim inf
𝑛→∞

inf
𝑥≥𝛾𝑛

𝑃 (𝑆
𝑛
− 𝑛𝜇 > 𝑥)

𝑛𝐹
+𝜇 (𝑥)

lim inf
𝑥→∞

𝐹 (𝑥 + 𝜇)

𝐹 (𝑥)

≥ 𝐿
𝐹+𝜇

≥ 𝜌
𝐹
(
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨) 𝐿𝐹,

(25)

lim sup
𝑛→∞

sup
𝑥≥𝛾𝑛

𝑃 (𝑆
𝑛
− 𝑛𝜇 > 𝑥)

𝑛𝐹 (𝑥)

≤ lim sup
𝑛→∞

sup
𝑥≥𝛾𝑛

𝑃 (𝑆
𝑛
− 𝑛𝜇 > 𝑥)

𝑛𝐹
+𝜇 (𝑥)

lim sup
𝑥→∞

𝐹 (𝑥 + 𝜇)

𝐹 (𝑥)

≤ 𝐿
−1

𝐹+𝜇
(lim inf

𝑥→∞

𝐹 (𝑥)

𝐹 (𝑥 + 𝜇)
)

−1

≤ 𝜌
−2

𝐹
(
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨) 𝐿

−1

𝐹
.

(26)

Combining (25) and (26), we get (24). Similarly as above, one
can also check that the relation (24) holds if 𝜇 > 0 and this
ends the proof of Lemma 4.

Lemma 5. Let {𝑋
𝑘
, 𝑘 ≥ 1} be a sequence of ENOD random

variables with common distribution 𝐹 ∈ D and finite mean 𝜇,
satisfying (23), and let {𝑁(𝑡), 𝑡 ≥ 0} be a nonnegative integer-
valued counting process independent of {𝑋

𝑘
, 𝑘 ≥ 1}. Then, for

any fixed 𝛾 > 0, the relation

𝜌
𝐹
(
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨) 𝐿

2

𝐹
≤ lim inf

𝑡→∞
inf

𝑥≥𝛾𝜆(𝑡)

𝑃 (𝑆
𝑁(𝑡)

− 𝜇𝜆 (𝑡) > 𝑥)

𝜆 (𝑡) 𝐹 (𝑥)

≤ lim sup
𝑡→∞

sup
𝑥≥𝛾𝜆(𝑡)

𝑃 (𝑆
𝑁(𝑡)

− 𝜇𝜆 (𝑡) > 𝑥)

𝜆 (𝑡) 𝐹 (𝑥)
≤ 𝑀

𝐹,𝜇
𝐿
−2

𝐹

(27)

holds under one of the following two conditions (where𝑀
𝐹,𝜇

is
defined in Lemma 4):

(i) when 𝜇 ≥ 0, Assumption A holds;
(ii) when 𝜇 < 0, Assumption B holds.
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To prove Lemma 5, one can mimic the proof of Theorem
3.1 of S. Wang and X. Wang, [30] by replacing C by D and
using Lemma 3. For simplicity, we also omit it here.

3. Large Deviations for Nonrandom Sums

In this section, we will give precise large deviations for non-
random sums with dominated variation in multi-risk models
under LENOD structures. Hereafter, 𝑀 always represents a
finite and positive constant whose value may vary in different
places.

Theorem 9. Let {𝑋
𝑖𝑗
, 𝑗 ≥ 1}

𝑘

𝑖=1
be LENOD random arrays.

For all 𝑖 = 1, . . . , 𝑘, {𝑋
𝑖𝑗
, 𝑗 ≥ 1} have common distribution

function 𝐹
𝑖
(𝑥) and finite expectation 𝜇

𝑖
, satisfying

𝐹
𝑖 (−𝑥) = 𝑜 (𝐹𝑖 (𝑥)) , 𝑥 󳨀→ ∞. (28)

If 𝐸|𝑋
𝑖𝑗
|
𝑟
1
{𝑋𝑖𝑗≤0}

< ∞ for some 𝑟 > 1 and 𝐹
𝑖
∈ D for all 𝑖 =

1, . . . , 𝑘, then, for any fixed 𝛾 > 0, we have, for the lower bound,

lim inf
𝑛1,...,𝑛𝑘→∞

inf
𝑥≥Δ(𝑘)

𝑃 (𝑆 (𝑘; 𝑛
1
, . . . , 𝑛

𝑘
) − ∑

𝑘

𝑖=1
𝑛
𝑖
𝜇
𝑖
> 𝑥)

∑
𝑘

𝑖=1
𝜌
𝐹𝑖
(
󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨) 𝐿

𝑘

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝑥)

≥ 1,

(29)

and, for the upper bound,

lim sup
𝑛1,...,𝑛𝑘→∞

sup
𝑥≥Δ(𝑘)

𝑃 (𝑆 (𝑘; 𝑛
1
, . . . , 𝑛

𝑘
) − ∑

𝑘

𝑖=1
𝑛
𝑖
𝜇
𝑖
> 𝑥)

∑
𝑘

𝑖=1
𝑀

𝐹𝑖 ,𝜇𝑖
𝐿
−𝑘

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝑥)

≤ 1,

(30)

where Δ(𝑘) := max{𝛾𝑛
𝑖
, 𝑖 = 1, . . . , 𝑘} and 𝑀

𝐹𝑖 ,𝜇𝑖
:= 1

{𝜇𝑖≥0}
+

𝜌
−2

𝐹𝑖
(|𝜇

𝑖
|)1

{𝜇𝑖<0}
, 𝑖 = 1, 2, . . . , 𝑘.

Remark 10. InTheorem 9, if we assume𝐹
𝑖
∈ D∩L, then (29)

and (30) hold with 𝜌
𝐹𝑖
(|𝜇

𝑖
|) = 𝑀

𝐹𝑖 ,𝜇𝑖
≡ 1 for all 𝑖 = 1, 2, . . . , 𝑘.

Particularly, if 𝐹
𝑖
∈ C for all 𝑖 = 1, . . . , 𝑘, then 𝐿

𝐹𝑖
= 1. Hence,

Theorem 9 reduces to Theorem 3.1 of S. J. Wang and W. S.
Wang [21]. Moreover, if we also assume {𝑋

𝑖𝑗
, 𝑗 ≥ 1}

𝑘

𝑖=1
are

nonnegative independent random arrays, one can easily see
the condition (28) naturally holds. Therefore, (29) and (30)
constitute the results ofTheorem 3.1 of S.Wang andW.Wang
[17].

Remark 11. If we suppose 𝑘 = 1 or all 𝐹
𝑖
(𝑥) (𝑖 = 1, . . . , 𝑘)

are the same distribution functions, then Theorem 9 implies
Lemma 4. It means that Theorem 9 extends the result of
Lemma 4 tomulti-riskmodels. Particularly, if we also assume
𝐹
1
∈ C, thenTheorem 9 reduces to Theorem 2.1 of Liu [14].

Proof. As usual, we use induction to prove Theorem 9. For
the case of 𝑘 = 2, we first show that

lim inf
𝑛1 ,𝑛2→∞

inf
𝑥≥Δ(2)

𝑃 (𝑆 (2; 𝑛
1
, 𝑛
2
) − ∑

2

𝑖=1
𝑛
𝑖
𝜇
𝑖
> 𝑥)

𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹1
𝑛
1
𝐹
1 (𝑥) + 𝜌𝐹2

(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹2
𝑛
2
𝐹
2 (𝑥)

≥ 1.

(31)

By using the same decomposition method of S. J. Wang and
W. S. Wang [21], for any 0 < 𝜀 < 1 and any 𝑥 > 0, it holds that

𝑃 (𝑆 (2; 𝑛
1
, 𝑛
2
) − 𝑛

1
𝜇
1
− 𝑛

2
𝜇
2
> 𝑥)

≥ 𝑃 (𝑆
𝑛1
− 𝑛

1
𝜇
1
> (1 + 𝜀) 𝑥, 𝑆𝑛2

− 𝑛
2
𝜇
2
> −𝜀𝑥)

+ 𝑃 (𝑆
𝑛2
− 𝑛

2
𝜇
2
> (1 + 𝜀) 𝑥, 𝑆𝑛1

− 𝑛
1
𝜇
1
> −𝜀𝑥)

− 𝑃 (𝑆
𝑛1
− 𝑛

1
𝜇
1
> (1 + 𝜀) 𝑥, 𝑆𝑛2

− 𝑛
2
𝜇
2
> (1 + 𝜀) 𝑥)

:= 𝐾
1
+ 𝐾

2
− 𝐾

3
.

(32)

For 𝐾
1
and 𝐾

2
, by the same argument of relation (3.7) of S.

J. Wang and W. S. Wang [21], and Lemmas 1 and 4, one can
easily obtain, for any sufficiently small 𝛿 > 0, that there exist
sufficiently large 𝑛

1
, 𝑛
2
such that, uniformly for 𝑥 ≥ Δ(2),

𝐾
1
≥ (1 − 𝛿) 𝜌𝐹1

(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿𝐹1
𝑛
1
𝐹
1 ((1 + 𝜀) 𝑥)

+ 𝑜 (𝜌
𝐹2
(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹2
𝑛
2
𝐹
2 (𝑥)) ,

(33)

𝐾
2
≥ (1 − 𝛿) 𝜌𝐹2

(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿𝐹2
𝑛
2
𝐹
2 ((1 + 𝜀) 𝑥)

+ 𝑜 (𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹1
𝑛
1
𝐹
1 (𝑥)) .

(34)

Next we turn to estimate 𝐾
3
. Noticing that random arrays

{𝑋
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑘, 𝑗 ≥ 1} are LENOD, again by Lemma 4,

for sufficiently large 𝑛
1
, 𝑛
2
and uniformly for 𝑥 ≥ Δ(2), we

arrive at

𝐾
3
≤ 𝑀(1 + 𝛿)

2
𝑀

𝐹1 ,𝜇1
𝐿
−1

𝐹1
𝑛
1
𝐹
1 ((1 + 𝜀) 𝑥)

×𝑀
𝐹2 ,𝜇2

𝐿
−1

𝐹2
𝑛
2
𝐹
2 ((1 + 𝜀) 𝑥)

≤ 𝑀(1 + 𝛿)
2
𝑀

𝐹1 ,𝜇1
𝐿
−1

𝐹1
𝑀

𝐹2 ,𝜇2
𝐿
−1

𝐹2
𝑛
1
𝐹
1 (𝑥) 𝑛2𝐹2 (𝑥)

= 𝑜 (𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹1
𝑛
1
𝐹
1 (𝑥) + 𝜌𝐹2

(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹2
𝑛
2
𝐹
2 (𝑥)) ,

(35)

where in the last step we use the fact that
lim

𝑛𝑖→∞
sup

𝑥≥𝛾𝑛𝑖
𝑛
𝑖
𝐹
𝑖
(𝑥) = 0, 𝑖 = 1, 2. Furthermore,

note that lim
𝜀↓0

lim inf
𝑥→∞

(𝐹
𝑖
((1 + 𝜀)𝑥)/𝐹

𝑖
(𝑥)) = 𝐿

𝐹𝑖
for

𝑖 = 1, 2; hence, for sufficiently small 𝜀 > 0 and sufficiently
large 𝑥,

𝐹
𝑖 ((1 + 𝜀) 𝑥) ≥ (𝐿𝐹𝑖

− 𝛿) 𝐹
𝑖 (𝑥) , 𝑖 = 1, 2. (36)

Combining (32)–(36), it holds that the left-hand side of (32)
is bounded from below by

(1 − 𝛿) [𝜌𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿𝐹1
(𝐿

𝐹1
− 𝛿) 𝑛

1
𝐹
1 (𝑥)

+𝜌
𝐹2
(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿𝐹2
(𝐿

𝐹2
− 𝛿) 𝑛

2
𝐹
2 (𝑥)]

+ 𝑜 (𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹1
𝑛
1
𝐹
1 (𝑥) + 𝜌𝐹2

(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹2
𝑛
2
𝐹
2 (𝑥)) .

(37)
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Therefore, (31) can be derived directly from above by the
arbitrariness of 𝛿.

Next we show that

lim sup
𝑛1 ,𝑛2→∞

sup
𝑥≥Δ(2)

𝑃 (𝑆 (2; 𝑛
1
, 𝑛
2
) − 𝑛

1
𝜇
1
− 𝑛

2
𝜇
2
> 𝑥)

𝑀
𝐹1 ,𝜇1

𝐿
−2

𝐹1
𝑛
1
𝐹
1 (𝑥) + 𝑀𝐹2 ,𝜇2

𝐿
−2

𝐹2
𝑛
2
𝐹
2 (𝑥)

≤1.

(38)

For any 𝜀 ∈ (0, 1/2) and 𝑥 > 0, Lemma 4 yields that, for
any 0 < 𝛿 < 1, sufficiently large 𝑛

1
, 𝑛
2
, and uniformly for

𝑥 ≥ Δ(2),

𝑃 (𝑆 (2; 𝑛
1
, 𝑛
2
) − 𝑛

1
𝜇
1
− 𝑛

2
𝜇
2
> 𝑥)

≤ 𝑃 (𝑆
𝑛1
− 𝑛

1
𝜇
1
> (1 − 𝜀) 𝑥)

+ 𝑃 (𝑆
𝑛2
− 𝑛

2
𝜇
2
> (1 − 𝜀) 𝑥)

+𝑀𝑃(𝑆
𝑛1
− 𝑛

1
𝜇
1
> 𝜀𝑥) 𝑃 (𝑆

𝑛2
− 𝑛

2
𝜇
2
> 𝜀𝑥)

≤ (1 + 𝛿) [𝑀𝐹1 ,𝜇1
𝐿
−1

𝐹1
𝑛
1
𝐹
1 ((1 − 𝜀) 𝑥)

+𝑀
𝐹2 ,𝜇2

𝐿
−1

𝐹2
𝑛
2
𝐹
2 ((1 − 𝜀) 𝑥)]

+ 𝑀(1 + 𝛿)
2
𝑀

𝐹1 ,𝜇1
𝐿
−1

𝐹1
𝑛
1
𝐹
1 (𝜀𝑥)𝑀𝐹2 ,𝜇2

𝐿
−1

𝐹2
𝑛
2
𝐹
2 (𝜀𝑥) .

(39)

Note that

𝑛
1
𝐹
1 (𝜀𝑥) 𝑛2𝐹2 (𝜀𝑥)

𝑀
𝐹1 ,𝜇1

𝐿
−2

𝐹1
𝑛
1
𝐹
1 (𝑥) + 𝑀𝐹2 ,𝜇2

𝐿
−2

𝐹2
𝑛
2
𝐹
2 (𝑥)

= (𝑀
𝐹1 ,𝜇1

𝐿
−2

𝐹1

𝐹
1 (𝑥)

𝐹
1 (𝜀𝑥)

1

𝑛
2
𝐹
2 (𝜀𝑥)

+𝑀
𝐹2 ,𝜇2

𝐿
−2

𝐹2

𝐹
2 (𝑥)

𝐹
2 (𝜀𝑥)

1

𝑛
1
𝐹
1 (𝜀𝑥)

)

−1

.

(40)

It is easy to check that lim
𝑛𝑖→∞

sup
𝑥≥𝛾𝑛i

𝑛
𝑖
𝐹
𝑖
(𝜀𝑥) = 0,

𝑖 = 1, 2. Moreover, since 𝐹
1
, 𝐹

2
∈ D, we have, for any

0 < 𝜀 < 1, lim inf
𝑛1→∞

inf
𝑥≥𝛾𝑛1

(𝐹
1
(𝑥)/𝐹

1
(𝜀𝑥)) > 0 and

lim inf
𝑛2→∞

inf
𝑥≥𝛾𝑛2

(𝐹
2
(𝑥)/𝐹

2
(𝜀𝑥)) > 0. Therefore, we have,

as 𝑛
1
, 𝑛
2
→ ∞, uniformly for 𝑥 ≥ Δ(2),

𝑛
1
𝐹
1 (𝜀𝑥) 𝑛2𝐹2 (𝜀𝑥)

= 𝑜 (𝑀
𝐹1 ,𝜇1

𝐿
−2

𝐹1
𝑛
1
𝐹
1 (𝑥) + 𝑀𝐹2 ,𝜇2

𝐿
−2

𝐹2
𝑛
2
𝐹
2 (𝑥)) .

(41)

Furthermore, by the definition of 𝐿
𝐹𝑖
, for sufficiently small

𝜀 > 0 and sufficiently large 𝑥, similarly as (36), it yields that

𝐹
𝑖 ((1 − 𝜀) 𝑥) ≤ (𝐿

−1

𝐹𝑖
+ 𝛿) 𝐹

𝑖 (𝑥) , 𝑖 = 1, 2. (42)

Substituting (41) and (42) into (39) and letting 𝛿 ↓ 0, (38)
holds andTheorem 9 is proved in the case of 𝑘 = 2.

Now suppose (29) holds for 𝑘 − 1; for the case of 𝑘, using
the similar argument as (32), it holds that

𝑃(𝑆 (𝑘; 𝑛
1
, . . . , 𝑛

𝑘
) −

𝑘

∑

𝑖=1

𝑛
𝑖
𝜇
𝑖
> 𝑥)

≥ 𝑃(

𝑘−1

∑

𝑖=1

𝑆
𝑛𝑖
−

𝑘−1

∑

𝑖=1

𝑛
𝑖
𝜇
𝑖
> (1 + 𝜀) 𝑥, 𝑆𝑛𝑘

− 𝑛
𝑘
𝜇
𝑘
> −𝜀𝑥)

+ 𝑃(

𝑘−1

∑

𝑖=1

𝑆
𝑛𝑖
−

𝑘−1

∑

𝑖=1

𝑛
𝑖
𝜇
𝑖
> −𝜀𝑥, 𝑆

𝑛𝑘
− 𝑛

𝑘
𝜇
𝑘
> (1 + 𝜀) 𝑥)

−𝑀𝑃(

𝑘−1

∑

𝑖=1

S
𝑛𝑖
−

𝑘−1

∑

𝑖=1

𝑛
𝑖
𝜇
𝑖
> (1 + 𝜀) 𝑥)

× 𝑃 (𝑆
𝑛𝑘
− 𝑛

𝑘
𝜇
𝑘
> (1 + 𝜀) 𝑥)

:= 𝐼
1
+ 𝐼

2
−𝑀𝐼

3
.

(43)

To estimate 𝐼
1
and 𝐼

2
, similarly as (33) and (34), by Lemma 1,

Lemma 4, and induction hypothesis, we have, for any 0 < 𝛿 <
1, all 𝑖 = 1, . . . , 𝑘, sufficiently small 𝜀 > 0, as 𝑛

𝑖
→ ∞,

𝐼
1
≥ (1 − 𝛿)

𝑘−1

∑

𝑖=1

𝜌
𝐹𝑖
(
󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨) 𝐿

𝑘−1

𝐹𝑖
(𝐿

𝐹𝑖
− 𝛿) 𝑛

𝑖
𝐹
𝑖 (𝑥)

+ 𝑜 (𝜌
𝐹𝑘
(
󵄨󵄨󵄨󵄨𝜇𝑘

󵄨󵄨󵄨󵄨) 𝐿
𝑘

𝐹𝑘
𝑛
𝑘
𝐹
𝑘 (𝑥)) ,

𝐼
2
≥ (1 − 𝛿) 𝜌𝐹𝑘

(
󵄨󵄨󵄨󵄨𝜇𝑘

󵄨󵄨󵄨󵄨) 𝐿
𝑘−1

𝐹𝑘
(𝐿

𝐹𝑘−
𝛿) 𝑛

𝑘
𝐹
𝑘 (𝑥)

+ 𝑜(

𝑘−1

∑

𝑖=1

𝜌
𝐹𝑖
(
󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨) 𝐿

𝑘

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝑥)) .

(44)

Finally for 𝐼
3
, similarly as (35), we arrive at

𝐼
3
= 𝑜(

𝑘

∑

𝑖=1

𝜌
𝐹𝑖
(
󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨) 𝐿

𝑘

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝑥)) . (45)

Combining (43)–(45) and letting 𝛿 ↓ 0, we have

lim inf
𝑛1 ,...,𝑛𝑘→∞

inf
𝑥≥Δ(𝑘)

𝑃 (𝑆 (𝑘; 𝑛
1
, . . . , 𝑛

𝑘
) − ∑

𝑘

i=1 𝑛𝑖𝜇𝑖 > 𝑥)

∑
𝑘

𝑖=1
𝜌
𝐹𝑖
(
󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨) 𝐿

𝑘

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝑥)

≥ 1.

(46)
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To obtain the reverse inequality, for any 𝜀 ∈ (0, 1/2) and 𝑥 >

0, by Lemma 4 and induction hypothesis, it holds that, for any
0 < 𝛿 < 1, sufficiently small 𝜀 > 0,

𝑃(𝑆 (𝑘; 𝑛
1
, . . . , 𝑛

𝑘
) −

𝑘

∑

𝑖=1

𝑛
𝑖
𝜇
𝑖
> 𝑥)

≤ 𝑃(

𝑘−1

∑

𝑖=1

𝑆
𝑛𝑖
−

𝑘−1

∑

𝑖=1

𝑛
𝑖
𝜇
𝑖
> (1 − 𝜀) 𝑥)

+ 𝑃 (𝑆
𝑛𝑘
− 𝑛

𝑘
𝜇
𝑘
> (1 − 𝜀) 𝑥)

+𝑀𝑃(

𝑘−1

∑

𝑖=1

𝑆
𝑛𝑖
−

𝑘−1

∑

𝑖=1

𝑛
𝑖
𝜇
𝑖
> 𝜀𝑥)𝑃 (𝑆

𝑛𝑘
− 𝑛

𝑘
𝜇
𝑘
> 𝜀𝑥)

≤ (1 + 𝛿) [

𝑘−1

∑

𝑖=1

𝑀
𝐹𝑖 ,𝜇𝑖

𝐿
−(𝑘−1)

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 ((1 − 𝜀) 𝑥)

+𝑀
𝐹𝑘 ,𝜇𝑘

𝐿
−1

𝐹𝑘
𝑛
𝑘
𝐹
𝑘 ((1 − 𝜀) 𝑥) ]

+ (1 + 𝛿)
2
𝑀

𝑘−1

∑

𝑖=1

𝑀
𝐹𝑖 ,𝜇𝑖

𝐿
−(𝑘−1)

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝜀𝑥)

× 𝑀
𝐹𝑘 ,𝜇𝑘

𝐿
−1

𝐹𝑘
𝑛
𝑘
𝐹
𝑘 (𝜀𝑥)

≤ (1 + 𝛿) [

𝑘−1

∑

𝑖=1

𝑀
𝐹𝑖 ,𝜇𝑖

𝐿
−(𝑘−1)

𝐹𝑖
(𝐿

−1

𝐹𝑖
+ 𝛿) 𝑛

𝑖
𝐹
𝑖 (𝑥)

+𝑀
𝐹𝑘 ,𝜇𝑘

𝐿
−(𝑘−1)

𝐹𝑘
(𝐿

−1

𝐹𝑘
+ 𝛿) 𝑛

𝑘
𝐹
𝑘 (𝑥) ]

+ 𝑜(

𝑘

∑

𝑖=1

𝑀
𝐹𝑖 ,𝜇𝑖

𝐿
−𝑘

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝑥)) .

(47)

Letting 𝛿 ↓ 0, we get

lim sup
𝑛1,...,𝑛𝑘→∞

sup
𝑥≥Δ(𝑘)

𝑃 (𝑆 (𝑘; 𝑛
1
, . . . , 𝑛

𝑘
) − ∑

𝑘

𝑖=1
𝑛
𝑖
𝜇
𝑖
> 𝑥)

∑
𝑘

𝑖=1
𝑀

𝐹𝑖 ,𝜇𝑖
𝐿
−𝑘

𝐹𝑖
𝑛
𝑖
𝐹
𝑖 (𝑥)

≤ 1.

(48)

Therefore, Theorem 9 follows from (46) and (48) immedi-
ately.

4. Large Deviations for Random Sums

In this section, we will give precise large deviations for
random sums with dominated variation in multi-risk models
under LENOD structures.

Remark 12. It is worth to mention that Assumption B was
firstly introduced by Chen et al. [15]. Furthermore, one can
easily see that both Assumptions A and B imply that

𝑁(𝑡)

𝜆 (𝑡)

𝑃

󳨀→ 1. (49)

Theorem 13. Let {𝑋
𝑖𝑗
, 𝑗 ≥ 1}

𝑘

𝑖=1
be LENOD random arrays

satisfying the conditions of Theorem 9, and let {𝑁
𝑖
(𝑡)}

𝑘

𝑖=1
be

independent nonnegative integer-valued process independent of
{𝑋

𝑖𝑗
, 𝑗 ≥ 1}

𝑘

𝑖=1
, satisfying Assumptions A and B; then, for any

fixed 𝛾 > 0, we have, for the lower bound,

lim inf
𝑡→∞

inf
𝑥≥Γ(𝑘)

𝑃 (𝑆 (𝑘; 𝑡) − ∑
𝑘

𝑖=1
𝜆
𝑖 (𝑡) 𝜇𝑖 > 𝑥)

∑
𝑘

𝑖=1
𝜌
𝐹𝑖
(
󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨) 𝐿

𝑘+1

𝐹𝑖
𝜆
𝑖 (𝑡) 𝐹𝑖 (𝑥)

≤ 1, (50)

and, for the upper bound,

lim sup
𝑡→∞

sup
𝑥≥Γ(𝑘)

𝑃 (𝑆 (𝑘; 𝑡) − ∑
𝑘

𝑖=1
𝜆
𝑖 (𝑡) 𝜇𝑖 > 𝑥)

∑
𝑘

𝑖=1
𝑀

𝐹𝑖 ,𝜇𝑖
𝐿
−(𝑘+1)

𝐹𝑖
𝜆
𝑖 (𝑡) 𝐹𝑖 (𝑥)

≤ 1, (51)

where Γ(𝑘) := max{𝛾𝜆
𝑖
(𝑡), 𝑖 = 1, . . . , 𝑘} and 𝑀

𝐹𝑖 ,𝜇𝑖
is defined

in Theorem 9.

Remark 14. InTheorem 13, if we assume𝐹
𝑖
∈ D∩L, then (50)

and (51) hold with 𝜌
𝐹𝑖
(|𝜇

𝑖
|) = 𝑀

𝐹𝑖 ,𝜇𝑖
≡ 1 for all 𝑖 = 1, 2, . . . , 𝑘.

Particularly, if 𝐹
𝑖
∈ C for all 𝑖 = 1, . . . , 𝑘, then 𝐿

𝐹𝑖
= 1. Hence,

Theorem 13 reduces to Theorem 4.1 of S. J. Wang and W. S.
Wang [21]. Moreover, if we also assume {𝑋

𝑖𝑗
, 𝑗 ≥ 1}

𝑘

𝑖=1
are

nonnegative independent random arrays, one can easily see
the condition (28) naturally holds. Therefore, (50) and (51)
constitute the results ofTheorem 4.1 of S. Wang andW.Wang
[17].

Remark 15. If we suppose 𝑘 = 1 or all 𝐹
𝑖
(𝑥) (𝑖 = 1, . . . , 𝑘)

are the same distribution function, then Theorem 13 implies
Lemma 5. It means that Theorem 13 extends the result of
Lemma 5 tomulti-riskmodels. Particularly, if we also assume
𝐹
1
∈ C, thenTheorem 13 indicatesTheorem 3.1 of Chen et al.

[15] andTheorem 3.2 of S. Wang and X. Wang [30].

Proof. Similarly as the proof of Theorem 9, again by induc-
tion, it is sufficient to show that Theorem 13 holds for 𝑘 = 2.
We first show that

lim inf
𝑡→∞

inf
𝑥≥Γ(2)

𝑃 (𝑆 (2; 𝑡)−𝜆
1
(𝑡) 𝜇

1
−𝜆

2
(𝑡) 𝜇

2
> 𝑥)

𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1
󵄨󵄨󵄨󵄨) 𝐿

3

𝐹1
𝜆
1
(𝑡) 𝐹

1
(𝑥)+𝜌

𝐹2
(
󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨) 𝐿

3

𝐹2
𝜆
2
(𝑡) 𝐹

2
(𝑥)

≥ 1.

(52)

The similar argument as (32) yields that, for any 0 < 𝜀 < 1

and any 𝑥 > 0,

𝑃 (𝑆 (2; 𝑡) − 𝜆1 (𝑡) 𝜇1 − 𝜆2 (𝑡) 𝜇2 > 𝑥)

≥ 𝑃 (𝑆
𝑁1(𝑡)

− 𝜆
1 (𝑡) 𝜇1 > (1 + 𝜀) 𝑥,

𝑆
𝑁2(𝑡)

− 𝜆
2 (𝑡) 𝜇2 > −𝜀𝑥)
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+ 𝑃 (𝑆
𝑁2(𝑡)

− 𝜆
2 (𝑡) 𝜇2 > (1 + 𝜀) 𝑥,

𝑆
𝑁1(𝑡)

− 𝜆
1 (𝑡) 𝜇1 > −𝜀𝑥)

− 𝑃 (𝑆
𝑁1(𝑡)

− 𝜆
1 (𝑡) 𝜇1 > (1 + 𝜀) 𝑥,

𝑆
𝑁2(𝑡)

− 𝜆
2 (𝑡) 𝜇2 > (1 + 𝜀) 𝑥)

:= 𝐽
1
+ 𝐽

2
− 𝐽

3
.

(53)

To deal with 𝐽
1
, note that

𝐽
1
≥ 𝑃 (𝑆

𝑁1(𝑡)
− 𝜆

1 (𝑡) 𝜇1 > (1 + 𝜀) 𝑥)

− 𝑃 (𝑆
𝑁2(𝑡)

− 𝜆
2 (𝑡) 𝜇2 ≤ −𝜀𝑥) .

(54)

It follows from Lemmas 2 and 5 that, for any 𝛿 > 0,

𝐽
1
≥ (1 − 𝛿) 𝜌𝐹1

(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹1
(𝐿

𝐹1
− 𝛿) 𝜆

1 (𝑡) 𝐹1 (𝑥)

+ 𝑜 (𝜌
𝐹2
(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
3

𝐹2
𝜆
2 (𝑡) 𝐹2 (𝑥)) ,

(55)

𝐽
2
≥ (1 − 𝛿) 𝜌𝐹2

(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹2
(𝐿

𝐹2
− 𝛿) 𝜆

2 (𝑡) 𝐹2 (𝑥)

+ 𝑜 (𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
3

𝐹1
𝜆
1 (𝑡) 𝐹1 (𝑥)) .

(56)

Next we turn to estimate 𝐽
3
. Note that {𝑁

𝑖
(𝑡)}

2

𝑖=1
being

independent and {𝑋
𝑖𝑗
, 𝑗 ≥ 1}

2

𝑖=1
being LENOD, by Lemma 5,

one gets

𝐽
3
≤ 𝑀𝑃(𝑆

𝑁1(𝑡)
− 𝜆

1 (𝑡) 𝜇1 > (1 + 𝜀) 𝑥)

× 𝑃 (𝑆
𝑁2(𝑡)

− 𝜆
2 (𝑡) 𝜇2 > (1 + 𝜀) 𝑥)

≤ 𝑀(1 + 𝛿)
2
𝑀

𝐹1 ,𝜇1
𝐿
−2

𝐹1
𝜆
1 (𝑡) 𝐹1 (𝑥)𝑀𝐹2 ,𝜇2

× 𝐿
−2

𝐹2
𝜆
2 (𝑡) 𝐹2 (𝑥)

= 𝑜 (𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
3

𝐹1
𝜆
1 (𝑡) 𝐹1 (𝑥)

+𝜌
𝐹2
(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
3

𝐹2
𝜆
2 (𝑡) 𝐹2 (𝑥)) ,

(57)

where in the last step we use the fact that
lim

𝑡→∞
sup

𝑥≥𝛾𝜆𝑖(𝑡)
𝜆
𝑖
(𝑡)𝐹

𝑖
(𝑥) = 0, 𝑖 = 1, 2. Therefore, by

(53)–(57), for any sufficiently large 𝑡 and uniformly for
𝑥 ≥ Γ(2),

𝑃 (𝑆 (2; 𝑡) − 𝜆1 (𝑡) 𝜇1 − 𝜆2 (𝑡) 𝜇2 > 𝑥)

≥ (1 − 𝛿) [𝜌𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹1
(𝐿

𝐹1
− 𝛿) 𝜆

1 (𝑡) 𝐹1 (𝑥)

+𝜌
𝐹2
(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
2

𝐹2
(𝐿

𝐹2
− 𝛿) 𝜆

2 (𝑡) 𝐹2 (𝑥)]

+ 𝑜 (𝜌
𝐹1
(
󵄨󵄨󵄨󵄨𝜇1

󵄨󵄨󵄨󵄨) 𝐿
3

𝐹1
𝜆
1 (𝑡) 𝐹1 (𝑥)

+𝜌
𝐹2
(
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨) 𝐿
3

𝐹2
𝜆
2 (𝑡) 𝐹2 (𝑥)) .

(58)

Letting 𝛿 ↓ 0, (52) derives directly from the inequality above.

Next we show that

lim sup
𝑡→∞

sup
𝑥≥Γ(2)

𝑃 (𝑆 (2; 𝑡) − 𝜆1 (𝑡) 𝜇1 − 𝜆2 (𝑡) 𝜇2 > 𝑥)

𝑀
𝐹1 ,𝜇1

𝐿
−3

𝐹1
𝜆
1 (𝑡) 𝐹1 (𝑥) + 𝑀𝐹2 ,𝜇2

𝐿
−3

𝐹2
𝜆
2 (𝑡) 𝐹2 (𝑥)

≤ 1.

(59)

For any ∈ (0, 1/2), 𝑥 > 0, 0 < 𝛿 < 1, by Lemma 5, (41), and
(42), we arrive at

𝑃 (𝑆 (2; 𝑡) − 𝜆1 (𝑡) 𝜇1 − 𝜆2 (𝑡) 𝜇2 > 𝑥)

≤ 𝑃 (𝑆
𝑁1(𝑡)

− 𝜆
1 (𝑡) 𝜇1 > (1 − 𝜀) 𝑥)

+ 𝑃 (𝑆
𝑁2(𝑡)

− 𝜆
2 (𝑡) 𝜇2 > (1 − 𝜀) 𝑥)

+𝑀𝑃(𝑆
𝑁1(𝑡)

− 𝜆
1 (𝑡) 𝜇1 > 𝜀𝑥)

× 𝑃 (𝑆
𝑁2(𝑡)

− 𝜆
2 (𝑡) 𝜇2 > 𝜀𝑥)

≤ (1 + 𝛿) [𝑀𝐹1 ,𝜇1
𝐿
−2

𝐹1
𝜆
1 (𝑡) 𝐹1 ((1 − 𝜀) 𝑥)

+𝑀
𝐹2 ,𝜇2

𝐿
−2

𝐹2
𝜆
2 (𝑡) 𝐹2 ((1 − 𝜀) 𝑥)]

+ (1 + 𝛿)
2
𝑀𝑀

𝐹1 ,𝜇1
𝐿
−2

𝐹1
𝜆
1 (𝑡) 𝐹1 (𝜀𝑥)𝑀𝐹2 ,𝜇2

× 𝐿
−2

𝐹2
𝜆
2 (𝑡) 𝐹2 (𝜀𝑥)

≤ (1 + 𝛿) [𝑀𝐹1 ,𝜇1
𝐿
−2

𝐹1
(𝐿

−1

𝐹1
+ 𝛿) 𝜆

1 (𝑡) 𝐹1 (𝑥)

+𝑀
𝐹2 ,𝜇2

𝐿
−2

𝐹2
(𝐿

−1

𝐹2
+ 𝛿) 𝜆

2 (𝑡) 𝐹2 (𝑥)]

+ 𝑜 (𝑀
𝐹1 ,𝜇1

𝐿
−3

𝐹1
𝜆
1 (𝑡) 𝐹1 (𝑥)

+𝑀
𝐹2 ,𝜇2

𝐿
−3

𝐹2
𝜆
2 (𝑡) 𝐹2 (𝑥)) .

(60)

Letting 𝛿 ↓ 0, thus we get (59).
Combining (52) and (59), it indicates that Theorem 13

holds for 𝑘 = 2. Finally, by induction similar as Theorem 9,
the proof of Theorem 13 is now completed.
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