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We introduce a type of fully nonlinear path-dependent (parabolic) partial differential equation (PDE) in which the path 𝜔
𝑡
on an

interval [0, 𝑡] becomes the basic variable in the place of classical variables (𝑡, 𝑥) ∈ [0, 𝑇] × R𝑑. Then we study the comparison
theorem of fully nonlinear PPDE and give some of its applications.

1. Introduction

Motivated by uncertainty problems, risk measures, and the
superhedging in finance mathematics, Peng [1] systemi-
cally established 𝐺-expectation theory. In the 𝐺-expectation
framework, the notion of 𝐺-Brownian motion and the cor-
responding stochastic calculus of Itô’s type were established.
The key issue is that 𝐺-diffusion processes are connected to a
large class of fully nonlinear PDEs in theMarkov case studied
by Peng [2] and Soner et al. [3].

Recently, Dupire [4] andCont and Fournié [5] introduced
a new functional Itô formula which nontrivially generalized
the classical one through new notion-path derivatives (see
[6, 7] for more general and systematic research). It extends
the Itô stochastic calculus to functionals of a given process. It
provides an excellent tool for the study of path-dependence.
In fact, they showed that a smooth path functional solves
a linear path-dependent PDE if its composition with a
Brownian motion generates a martingale, which provided a
functional extension of the classical Feynman-Kac formula.
Moreover, by virtue of a backward stochastic differential
equation approach, we can obtain the uniqueness of the
smooth solution to the semilinear path-dependent PDE
(see also [8–10] and the references therein). However, these
methods are mainly based on stochastic calculus.

The objective of this paper is to study fully nonlinear
PPDE. We refer to Krylov [11] andWang [12] for the classical
fully nonlinear PDE (see also [13–15]). Peng [16] introduced
an approach of frozenness of the main course of the paths

where the maximization takes place. This approach is based
on techniques of PDE and can be directly applied to treat
fully nonlinear path-dependent PDE. The advantage of this
PDE approach is that one can treat the solution locally
(path by path), whereas stochastic calculus is mainly a global
approach. In this paper, we will use this method to obtain a
comparison principle of fully nonlinear PPDE. In particular,
some properties of the solution to fully nonlinear PPDE
are also obtained. We claim that these ideas carry over to
much more general frameworks, such as the case of viscosity
solution to PPDE. Moreover, this method can have direct
applications to stochastic analysis, for example, martingales
under a fully nonlinear expectation, stochastic optimal con-
trol problems, stochastic games, nonlinear pricing and risk
measuring, and backward stochastic differential equations.
These more technical details are left to future work and will
be presented in forthcoming papers.

The paper is organized as follows. In Section 2, we present
some existing results in the theory ofDupire’s path derivatives
that we will use in this paper. In Section 3, we obtain the
comparison theorem of fully nonlinear PPDE and give some
of its applications.

2. Preliminaries

In this section, we give an overview of the definitions
concerning path derivatives. The following notations are
mainly from Dupire [4] and Cont and Fournié [5].
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2 Abstract and Applied Analysis

Let 𝑇 > 0 be fixed. For each 𝑡 ∈ [0, 𝑇], we denote by Λ
𝑡

the set of right continuousR𝑑-valued functions on [0, 𝑡]. For
each 𝜔

𝑇
∈ Λ
𝑇
the value of 𝜔

𝑇
at time 𝑠 ∈ [0, 𝑇] is denoted

by 𝜔(𝑠). Thus 𝜔
𝑇
= 𝜔(𝑠)

0≤𝑠≤𝑇
is a right continuous process

on [0, 𝑇] and its value at time 𝑠 is 𝜔(𝑠). The path of 𝜔
𝑇
up to

time 𝑡 is denoted by 𝜔
𝑡
; that is, 𝜔

𝑡
= 𝜔(𝑠)

0≤𝑠≤𝑡
∈ Λ
𝑡
. Denote

Λ = ⋃
𝑡∈[0,𝑇]

Λ
𝑡
. We sometimes specifically write

𝜔
𝑡
= 𝜔(𝑠)

0≤𝑠<𝑡
= (𝜔(𝑠)

0≤𝑠<𝑡
, 𝜔 (𝑡)) (1)

to indicate the terminal position 𝜔(𝑡) of 𝜔
𝑡
which often plays

a special role in this framework. For each 𝜔
𝑡
∈ Λ and 𝑥 ∈

R𝑑, denote by 𝜔(𝑠) the value of 𝜔
𝑡
at 𝑠 ∈ [0, 𝑡] and 𝜔𝑥

𝑡
:=

(𝜔(𝑠)
0≤𝑠<𝑡

, 𝜔(𝑡) + 𝑥) which is also an element of Λ
𝑡
.

Now consider the function 𝑢 of path; that is, 𝑢 : Λ → R.
This function 𝑢 = 𝑢(𝜔

𝑡
)
𝜔
𝑡
∈Λ

can be also regarded as a family
of real valued functions:

𝑢 (𝜔
𝑡
) = 𝑢 (𝑡, 𝜔

𝑡
(𝑠)
0≤𝑠≤𝑡

) = 𝑢 (𝑡, 𝜔(𝑠)
0≤𝑠<𝑡

, 𝜔 (𝑡)) ,

𝜔
𝑡
∈ Λ
𝑡
, 𝑡 ∈ [0, 𝑇] .

(2)

Denote 𝑢(𝜔𝑥
𝑡
) := 𝑢(𝑡, 𝜔(𝑠)

0≤𝑠<𝑡
, 𝜔(𝑡)+𝑥), for 𝜔

𝑡
∈ Λ
𝑡
, 𝑥 ∈ R𝑑.

We introduce the distance on Λ. Let ⟨⋅, ⋅⟩ and | ⋅ | denote
the inner product and norm in R𝑑. For each 0 ≤ 𝑡 ≤ 𝑡 ≤ 𝑇
and 𝜔

𝑡
, 𝜔
𝑡
∈ Λ, denote





𝜔
𝑡





:= sup
𝑠∈[0,𝑡]





𝜔
𝑡
(𝑠)




,

𝑑
∞
(𝜔
𝑡
, 𝜔
𝑡
) := sup
𝑠∈[0,𝑡∨𝑡]





𝜔 (𝑠 ∧ 𝑡) − 𝜔 (𝑠 ∧ 𝑡)





+




𝑡 − 𝑡






1/2

.

(3)

It is obvious thatΛ
𝑡
is a Banach space with respect to ‖ ⋅ ‖.

Since Λ is not a linear space, 𝑑
∞

is not a norm.

Definition 1 (continuous). A function 𝑢 : Λ → R is said to
be Λ-continuous at 𝜔

𝑡
∈ Λ, if for any 𝜀 > 0 there exists 𝛿 >

0 such that for each 𝜔
𝑡
∈ Λ with 𝑑

∞
(𝜔
𝑡
, 𝜔
𝑡
) < 𝛿 we have

|𝑢(𝜔
𝑡
) − 𝑢(𝜔

𝑡
)| < 𝜀. 𝑢 is said to be Λ-continuous if it is Λ-

continuous at each 𝜔
𝑡
∈ Λ.

Remark 2. In our framework we often regard 𝑢(𝜔𝑥
𝑡
) as a

function of 𝑡, 𝜔
𝑡
, and 𝑥; that is, 𝑢(𝜔𝑥

𝑡
) = 𝑢(𝑡, 𝜔(𝑠)

0≤𝑠<𝑡
, 𝜔(𝑡) +

𝑥). Thus, for a fixed 𝜔
𝑡
∈ Λ, 𝑢(𝜔𝑥

𝑡
) is regarded as a function of

(𝑡, 𝑥) ∈ [0, 𝑇] ×R𝑑.

Definition 3. Given 𝑢 : Λ → R and 𝜔
𝑡
∈ Λ, if there exists

𝑝 ∈ R𝑑, such that

𝑢 (𝜔
𝑥

𝑡
) = 𝑢 (𝜔

𝑡
) + ⟨𝑝, 𝑥⟩ + 𝑜 (|𝑥|) as 𝑥 → 0, 𝑥 ∈ R

𝑑
,

(4)

thenwe say that𝑢 is (vertically) differentiable at𝜔
𝑡
anddenote

𝐷
𝑥
𝑢(𝜔
𝑡
) = 𝑝. 𝑢 is said to be vertically differentiable in Λ if

𝐷
𝑥
𝑢(𝜔
𝑡
) exists for each 𝜔

𝑡
∈ Λ. We can similarly define the

Hessian 𝐷
𝑥𝑥
𝑢(𝜔
𝑡
). It is an S(𝑑)-valued function defined on

Λ, where S(𝑑) is the space of all 𝑑 × 𝑑 symmetric matrices.

For each 𝜔
𝑡
∈ Λ, 𝜔

𝑡
∈ Λ, with 𝑡 ≥ 𝑡, set

𝜔
𝑡,𝑡
(𝑟) := 𝜔 (𝑟) 1

[0,𝑡)
(𝑟) + 𝜔 (𝑡) 1

[𝑡,𝑡]
(𝑟) , 𝑟 ∈ [0, 𝑡] ,

𝜔
𝑡
⊗ 𝜔
𝑡
(𝑟) := 𝜔 (𝑟) 1

[0,𝑡)
(𝑟) + (𝜔 (𝑟) − 𝜔 (𝑡) + 𝜔 (𝑡)) 1

[𝑡,𝑡]
(𝑟) ,

𝑟 ∈ [0, 𝑡] .

(5)

It is clear that 𝜔
𝑡,𝑡
∈ Λ
𝑡
and 𝜔

𝑡
⊗ 𝜔
𝑡
∈ Λ
𝑡
.

Definition 4. For a given 𝜔
𝑡
∈ Λ if

𝑢 (𝜔
𝑡,𝑠
) = 𝑢 (𝜔

𝑡
) + 𝑎 (𝑠 − 𝑡) + 𝑜 (|𝑠 − 𝑡|) as 𝑠 → 𝑡, 𝑠 ≥ 𝑡,

(6)

then we say that 𝑢(𝜔
𝑡
) is (horizontally) differentiable in 𝑡

at 𝜔
𝑡
and denote 𝐷

𝑡
𝑢(𝜔
𝑡
) = 𝑎. 𝑢 is said to be horizontally

differentiable in Λ if𝐷
𝑡
𝑢(𝜔
𝑡
) exists for each 𝜔

𝑡
∈ Λ.

Definition 5. Define C𝑗,𝑘(Λ) as the set of functions 𝑢 defined
on Λ which are 𝑗 times horizontally and 𝑘 times vertically
differentiable in Λ, such that all these derivatives are Λ-
continuous.

Example 6. If 𝑢(𝜔
𝑡
) = 𝑓(𝑡, 𝜔(𝑡)) with 𝑓 ∈ 𝐶1,1([0, 𝑇) × R),

then

𝐷
𝑡
𝑢 (𝜔
𝑡
) = 𝜕
𝑡
𝑓 (𝑡, 𝜔 (𝑡)) , 𝐷

𝑥
𝑢 (𝜔
𝑡
) = 𝜕
𝑥
𝑓 (𝑡, 𝜔 (𝑡)) ,

(7)

which is the classic derivative. In general, these derivatives
also satisfy the classic properties: linearity, product, and chain
rule.

3. Comparison Theorem for
Fully Nonlinear PPDE

Now we introduce the following fully nonlinear path-
dependent PDE:

𝐷
𝑡
𝑢 (𝜔
𝑡
) + 𝐺 (𝜔

𝑡
, 𝑢 (𝜔
𝑡
) , 𝐷
𝑥
𝑢 (𝜔
𝑡
) , 𝐷
2

𝑥𝑥
𝑢 (𝜔
𝑡
)) = 0,

𝜔
𝑡
∈ Λ,

𝑢 (𝜔
𝑇
) = Φ (𝜔

𝑇
) , 𝜔

𝑇
∈ Λ
𝑇
,

(8)

where 𝑢 : Λ → R and 𝐺 : Λ × R × R𝑑 × S(𝑑) → R

are continuous functions. Moreover, 𝐺 satisfies the following
elliptic conditions: for each 𝜔

𝑡
∈ Λ, 𝑟 ∈ R, 𝑝 ∈ R𝑑, 𝑋,𝑌 ∈

S(𝑑),

𝐺 (𝜔
𝑡
, 𝑟, 𝑝, 𝑋) ≥ 𝐺 (𝜔

𝑡
, 𝑟, 𝑝, 𝑌) , whenever 𝑋 ≥ 𝑌 (9)

and, for each 𝑟
1
, 𝑟
2
∈ R, 𝑝

1
, 𝑝
2
∈ R𝑑, 𝑋

1
, 𝑋
2
∈ S(𝑑), there

exists some constant 𝐶 such that




𝐺 (𝜔
𝑡
, 𝑟
1
, 𝑝
1
, 𝑋
1
) − 𝐺 (𝜔

𝑡
, 𝑟
2
, 𝑝
2
, 𝑋
2
)





≤ 𝐶 (




𝑟
1
− 𝑟
2





+




𝑝
1
− 𝑝
2





+




𝑋
1
− 𝑋
2





) .

(10)
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Definition 7. A function 𝑢 ∈ C1,2(Λ) is called a C1,2-solution
of the path-dependent PDE (8) if, for each 𝜔

𝑡
∈ Λ, 𝑡 ∈

[0, 𝑇), equality (8) is satisfied. 𝑢 is called a subsolution (resp.,
supersolution) of (8) if the “=” in (8) is replaced by “≥” (resp.,
“≤”).

Remark 8. Thesolution of classical PDE is a special casewhen
𝑢(𝜔
𝑡
) = 𝑢(𝑡, 𝜔(𝑡)), 𝑢 ∈ 𝐶1,2([0, 𝑇) × R). Indeed, for each 𝜔

𝑡
∈

Λ and 𝑡 ∈ [0, 𝑇),

𝜕
𝑡
𝑢 (𝑡, 𝜔 (𝑡)) = 𝐷

𝑡
𝑢 (𝜔
𝑡
) ,

𝜕
𝑥
𝑢 (𝑡, 𝜔 (𝑡)) = 𝐷

𝑥
𝑢 (𝜔
𝑡
) ,

𝜕
2

𝑥𝑥
𝑢 (𝑡, 𝜔 (𝑡)) = 𝐷

2

𝑥𝑥
𝑢 (𝜔
𝑡
) ,

(11)

and thus 𝑢(𝑡, 𝑥) is a classical solution of PDE.

The following result is the so-called comparison principle
or comparison theorem of path-dependent PDE.

Theorem 9. Suppose 𝑢
1
is a C1,2-subsolution and 𝑢

2
is a C1,2-

supersolution. Moreover, 𝑢
1
is bounded from above and 𝑢

2
is

bounded from below. Then the maximum principle holds: if
𝑢
1
(𝜔
𝑇
) ≤ 𝑢

2
(𝜔
𝑇
) for all 𝜔

𝑇
∈ Λ
𝑇
, then 𝑢

1
(𝜔
𝑡
) ≤ 𝑢

2
(𝜔
𝑡
) for

each 𝜔
𝑡
∈ Λ.

Remark 10. In the case when 𝐺(𝜔
𝑡
, 𝑟, 𝑝, 𝑋) = (1/2) tr[𝑋] +

𝑓(𝜔
𝑡
, 𝑟, 𝑝) for some Lipschitz function 𝑓 on Λ × R × R𝑑, the

above result is the comparison theorem of semilinear path-
dependent PDE, which is given by [9].

In order to prove Theorem 9, we will make use of the
following definitions.

Definition 11. 𝑢 : Λ → 𝑅 is said to be inUSC
∗
(Λ), if it satisfies

the following conditions:

(i) for each fixed 𝜔
�̂�
∈ Λ, 𝑢(𝑡, 𝑥) := 𝑢((𝜔

𝑥

�̂�
)
�̂�,𝑡−�̂�
) is an

upper semicontinuous function of (𝑡, 𝑥) ∈ [�̂�, 𝑇]×R𝑑,
(ii) for each 𝜔

𝑡
∈ Λ with 𝑡

𝑖
↑ 𝑡, lim sup

𝑖→∞
𝑢(𝜔
𝑡
𝑖

) ≤

sup
𝑥
𝑢(𝜔
𝑥

𝑡
).

We also denote LSC
∗
(Λ) := {−𝑢 | 𝑢 ∈ USC

∗
(Λ)}.

A function 𝑢 ∈ USC
∗
(Λ) (resp., 𝑢 ∈ LSC

∗
(Λ)) is called

a C-upper (resp., C-lower) semicontinuous function. 𝑢 ∈

C(Λ) := USC
∗
(Λ) ∩ LSC

∗
(Λ) is called a C-continuous

function.

Definition 12. Define C1,2(Λ) as the set of functions 𝑢 ∈

C(Λ) ∪ C(Λ), such that, for each 𝜔
𝑡
∈ Λ, 𝐷

𝑡
𝑢(𝜔
𝑡
), 𝐷
𝑥
𝑢(𝜔
𝑡
),

𝐷
𝑥𝑥
𝑢(𝜔
𝑡
) exist.

Definition 13. A function𝑢 ∈ C1,2(Λ) is called aC1,2-solution
of the path-dependent PDE (8) if for each 𝜔

𝑡
∈ Λ, 𝑡 ∈ [0, 𝑇)

equality (8) is satisfied. 𝑢 is called a C1,2-subsolution (resp.,
C1,2-supersolution) of (8) if the “=” in (8) is replaced by “≥”
(resp., “≤”).

Theorem 14. Suppose 𝑢
1
is a C1,2-subsolution of PPDE (8)

with 𝐺
1
and 𝑢

2
is a C1,2-supersolution of PPDE (8) with 𝐺

2
,

where 𝐺
1
(𝜔
𝑡
, 𝑟, 𝑝, 𝑋) ≤ 𝐺

2
(𝜔
𝑡
, 𝑟, 𝑝, 𝑋) for each (𝜔

𝑡
, 𝑟, 𝑝, 𝑋) ∈

Λ × R × R𝑑 × S(𝑑). Moreover, 𝑢
1
is bounded from above and

𝑢
2
is bounded from below. Then the maximum principle holds:

if 𝑢
1
(𝜔
𝑇
) ≤ 𝑢
2
(𝜔
𝑇
) for all 𝜔

𝑇
∈ Λ
𝑇
, then 𝑢

1
(𝜔
𝑡
) ≤ 𝑢
2
(𝜔
𝑡
) for

each 𝜔
𝑡
∈ Λ.

It is obvious that C1,2(Λ) ⊂ C1,2(Λ). ThenTheorem 9 is a
direct consequence of Theorem 14.

For each 𝛼 > 0 and 𝜔
𝑡
∈ Λ, set

𝑤
𝛼
(𝜔
𝑡
) = 𝑢
1
(𝜔
𝑡
) − 𝑢
2
(𝜔
𝑡
) − 𝛼𝜔

2
(𝑡) . (12)

In order to prove Theorem 14, we need the following
lemma, which is essentially from Peng [16, Lemma 6].

Lemma 15. If 𝑤
𝛼
(𝜔
𝑡
) > 0 for some 𝜔

𝑡
∈ Λ, then there exists

𝜔
𝑡
∈ Λ, satisfying 𝑡 ≥ 𝑡, 𝑤

𝛼
(𝜔
𝑡
) ≤ 𝑤

𝛼
(𝜔
𝑡
), and 𝜔

𝑡
= 𝜔
𝑡
⊗ 𝜔
𝑡
,

such that

𝑤
𝛼
(𝜔
𝑡
) = sup
𝛾
𝑡
∈Λ,𝑡≥𝑡

𝑤
𝛼
(𝜔
𝑡
⊗ 𝛾
𝑡
) . (13)

Proof. For each 𝜔
𝑡
∈ Λ and 𝑤

𝛼
(𝜔
𝑡
) > 0, we can find 𝑥 ∈ R

such that

𝑤
𝛼
(𝜔
𝑥

𝑡
) = sup
𝑥

𝑤
𝛼
(𝜔
𝑥

𝑡
) , (14)

and for each 𝜔
𝑡
∈ Λ with 𝑡

𝑖
↑ 𝑡 we get

lim sup
𝑖→∞

𝑤
𝛼
(𝜔
𝑡
𝑖

) ⩽ sup
𝑥

𝑤
𝛼
(𝜔
𝑥

𝑡
) . (15)

Then the proof is immediate in light of Lemma 6 of Peng
[16].

Lemma 16. Let 𝑢 ∈ C1,2(Λ) and 𝜔
𝑡
∈ Λ be given satisfying

𝑢(𝜔
𝑡
) ≥ 𝑢(𝜔

𝑡
⊗ 𝜔
𝑡
) for all 𝜔

𝑡
∈ Λ, 𝑡 ≥ 𝑡. Then

𝐷
𝑡
𝑢 (𝜔
𝑡
) ≤ 0, 𝐷

𝑥
𝑢 (𝜔
𝑡
) = 0, 𝐷

2

𝑥𝑥
𝑢 (𝜔
𝑡
) ≤ 0. (16)

Proof. Since 𝑢(𝜔
𝑡
) ≥ 𝑢(𝜔

𝑡,𝑡+𝛿
) for each 𝛿, we conclude

𝐷
𝑡
𝑢 (𝜔
𝑡
) ≤ 0. (17)

For each 𝑥 ∈ R𝑑,

𝑢 (𝜔
𝑡
) = sup
𝑥

𝑢 (𝜔
𝑥

𝑡
) , (18)

and thus

𝐷
𝑥
𝑢 (𝜔
𝑡
) = 0, 𝐷

2

𝑥𝑥
𝑢 (𝜔
𝑡
) ≤ 0, (19)

which is the desired result.

Now we are going to give the proof of Theorem 14.

Proof of Theorem 14. We first observe that, for 𝛿 > 0, the
functions defined by 𝑢

1
:= 𝑢
1
− 𝛿/𝑡 are a subsolution of

𝐷
𝑡
𝑢
1
(𝜔
𝑡
) + 𝐺
1
(𝜔
𝑡
, 𝑢
1
(𝜔
𝑡
) , 𝐷
𝑥
𝑢
1
(𝜔
𝑡
) ,

𝐷
𝑥𝑥
𝑢
1
(𝜔
𝑡
)) =

𝛿

𝑡
2
,

(20)
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where 𝐺
1
(𝜔
𝑡
, 𝑟, 𝑝, 𝑋) := 𝐺

1
(𝜔
𝑡
, 𝑟 + 𝛿/𝑡, 𝑝, 𝑋). It is easy to

check that the function𝐺
1
satisfies the same conditions as𝐺

1
.

Since 𝑢
1
≤ 𝑢
2
follows from 𝑢

1
≤ 𝑢
2
in the limit 𝛿 → 0, it

suffices to proveTheorem 14 under the additional assumption

𝐷
𝑡
𝑢
1
(𝜔
𝑡
) + 𝐺
1
(𝜔
𝑡
, 𝑢
1
(𝜔
𝑡
) , 𝐷
𝑥
𝑢
1
(𝜔
𝑡
) , 𝐷
𝑥𝑥
𝑢
1
(𝜔
𝑡
)) ≥ 𝑐,

𝑐 =

𝛿

𝑇
2
,

lim
𝑡→0

𝑢 (𝜔
𝑡
) = −∞, uniformly on [0, 𝑇) .

(21)

We make the following assumption.
(A) For each 𝜔

𝑡
∈ Λ, 𝑢, V ∈ R, 𝑝 ∈ R𝑑, and𝑄 ∈ S(𝑑) such

that 𝑢 ≥ V, we have
𝐺 (𝜔
𝑡
, 𝑢, 𝑝, 𝑄) ≤ 𝐺 (𝜔

𝑡
, V, 𝑝, 𝑄) . (22)

Set𝑢
1
(𝜔
𝑡
) = 𝑢
1
(𝜔
𝑡
)𝑒
−𝜆𝑡,𝑢
2
(𝜔
𝑡
) = 𝑢
2
(𝜔
𝑡
)𝑒
−𝜆𝑡, for some𝜆 <

−𝐶. Then it is easy to check that 𝑢
𝑖
(𝑖 = 1, 2) is a subsolution

or supersolution of

𝐷
𝑡
𝑢
𝑖
(𝜔
𝑡
) + 𝐺
𝑖
(𝜔
𝑡
, 𝑢
𝑖
(𝜔
𝑡
) , 𝐷
𝑥
𝑢
𝑖
(𝜔
𝑡
) , 𝐷
𝑥𝑥
𝑢
𝑖
(𝜔
𝑡
)) = 0,

(23)

where, for each (𝜔
𝑡
, 𝑢, 𝑝, 𝑄) ∈ Λ × R × R𝑑 × S(𝑑),

𝐺
𝑖
(𝜔
𝑡
, 𝑟, 𝑝, 𝑄) is given by

𝐺
𝑖
(𝜔
𝑡
, 𝑢, 𝑝, 𝑄) = 𝜆𝑢 + 𝑒

−𝜆𝑡
𝐺
𝑖
(𝜔
𝑡
, 𝑒
𝜆𝑡
𝑢, 𝑒
𝜆𝑡
𝑝, 𝑒
𝜆𝑡
𝑄) , (24)

which satisfies the assumption (A). Since 𝑢
1
≤ 𝑢
2
implies

𝑢
1
≤ 𝑢
2
, it suffices to prove Theorem 14 under the additional

assumption (A).
Without loss of generality, assume 𝑤

𝛼
≤ 𝐶
2. Suppose by

the contrary that there exist 𝜔0
𝑡
0

∈ Λ, 𝑡
0
< 𝑇, and √𝛼 <

𝑐/4(𝐶 ∨ 𝐶
2
) ∧ 1, such that

𝑚
0
:= 𝑤
𝛼
(𝜔
0

𝑡
0

) > 0. (25)

Then, by Lemma 15, there exists 𝜔
𝑡
∈ Λ such that

𝑤
𝛼
(𝜔
𝑡
) = sup
𝛾
𝑡
∈Λ,𝑡≥𝑡

𝑤
𝛼
(𝜔
𝑡
⊗ 𝛾
𝑡
) ≥ 𝑚

0
. (26)

Consequently,

𝐷
𝑡
𝑢
1
(𝜔
𝑡
) − 𝐷
𝑡
𝑢
2
(𝜔
𝑡
) ≤ 0,

𝐷
𝑥
𝑢
1
(𝜔
𝑡
) − 𝐷
𝑥
𝑢
2
(𝜔
𝑡
) = 2𝛼𝜔 (𝑡) ,

𝐷
𝑥𝑥
𝑢
1
(𝜔
𝑡
) − 𝐷
𝑥𝑥
𝑢
2
(𝜔
𝑡
) ≤ 2𝛼.

(27)

Since 𝛼𝜔2(𝑡) ≤ 𝐶2, we have 𝛼𝜔(𝑡) ≤ 𝐶√𝛼. Then
0 < 𝑐

≤ 𝐷
𝑡
𝑢
1
(𝜔
𝑡
) + 𝐺
1
(𝜔
𝑡
, 𝑢
1
(𝜔
𝑡
) , 𝐷
𝑥
𝑢
1
(𝜔
𝑡
) , 𝐷
𝑥𝑥
𝑢
1
(𝜔
𝑡
))

≤ 𝐷
𝑡
𝑢
2
(𝜔
𝑡
) + 𝐺
2
(𝜔
𝑡
, 𝑢
2
(𝜔
𝑡
) , 𝐷
𝑥
𝑢
2
(𝜔
𝑡
) + 2𝛼𝜔 (𝑡) ,

𝐷
𝑥𝑥
𝑢
2
(𝜔
𝑡
) + 2𝛼)

≤ 2𝐶 (𝛼 + 𝐶√𝛼) < 𝑐.

(28)

This induces a contradiction and the proof is completed.

Corollary 17. The path-dependent PDE (8) has at most one
bounded C1,2-solution.

Lemma 18. If 𝑢 is a bounded C1,2-subsolution of PPDE (8)
and Φ is a bounded function on Λ

𝑇
, then, for each 𝜔

𝑡
∈ Λ,

𝑢 (𝜔
𝑡
) ≤ sup
𝜔
𝑇
∈Λ
𝑇

Φ(𝜔
𝑇
) . (29)

Proof. Since sup
𝜔
𝑇
∈Λ
𝑇

|Φ(𝜔
𝑇
)| is a C1,2-supersolution of

PPDE (8), applying Theorem 14, we have the desired
result.

Remark 19. If 𝑢(𝜔
𝑡
) = 𝑢(𝑡, 𝜔(𝑡)) is the C1,2-solution of PPDE

(8) for some bounded 𝑢 ∈ 𝐶1,2([0, 𝑇) × R), then the above
theorem is the classical comparison theorem of PDE of [17].

Example 20. Consider the following PPDE:

𝐷
𝑡
𝑢 (𝜔
𝑡
) + 𝐺 (𝐷

2

𝑥𝑥
𝑢 (𝜔
𝑡
)) = 0, 𝜔

𝑡
∈ Λ,

𝑢 (𝜔
𝑇
) = Φ (𝜔

𝑇
) , 𝜔 ∈ Λ

𝑇
,

(30)

where𝐺(𝑎) := (1/2)(𝜎2𝑎+−𝜎2𝑎−) for some 0 < 𝜎2 ≤ 𝜎2 < ∞.
If Φ(𝜔) = 𝜑(𝜔(𝑡), 𝜔(𝑇)) for some bounded Lipschitz

function 𝜑 ∈ 𝐶(R2) and 𝑡 ∈ [0, 𝑇], then we can solve the
PPDE (30) by the following method.

First consider the following system of fully nonlinear
parabolic partial differential equations, defined on [0, 𝑇]×R2
and parameterized by 𝑦 ∈ R:

𝜕
𝑠
V
1
(𝑠, 𝑥, 𝑦) + 𝐺 (𝜕

2

𝑥𝑥
V
1
(𝑠, 𝑥, 𝑦)) = 0,

V
1
(𝑇, 𝑥, 𝑦) = 𝜑 (𝑥, 𝑦) ,

(31)

and, then, another one defined on [0, 𝑡] ×R:

𝜕
𝑠
V
2
(𝑠, 𝑥) + 𝐺 (𝜕

2

𝑥𝑥
V
2
(𝑠, 𝑥)) = 0,

V
2
(𝑡, 𝑥) = V

1
(𝑡, 𝑥, 𝑥) .

(32)

From Krylov [11] and Wang [18], for each 𝑦 ∈ R, V
1
(𝑠, 𝑥, 𝑦) ∈

𝐶
1+𝛼/2,2+𝛼

([0, 𝑇−𝜅)×R), and V
2
(𝑠, 𝑥) ∈ 𝐶

1+𝛼/2,2+𝛼
([0, 𝑡 − 𝜅)×

R), where 𝛼 ∈ (0, 1) and 𝜅 > 0.
Denote 𝑢(𝜔

𝑠
) := V

1
(𝑠, 𝜔(𝑠), 𝜔(𝑡))1

𝑡≤𝑠
+ V
2
(𝑠, 𝜔(𝑠))1

𝑠<𝑡
; we

obtain 𝑢 ∈ C1,2(Λ). Applying Theorem 14, 𝑢 is the unique
C1,2-solution of PPDE (30). Indeed, 𝑢(𝜔

𝑡
) is the conditional

𝐺-expectation ofΦ(𝜔
𝑇
) (see [19, 20]).
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stochastic integral representation of martingales,”TheAnnals of
Probability, vol. 41, no. 1, pp. 109–133, 2013.
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