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Nonlinear behaviors of tail dependence and cross-correlation of financial time series are reproduced and investigated by stochastic
voter dynamic system. The voter process is a continuous-time Markov process and is one of the interacting dynamic systems. The
tail dependence of return time series for pairs of Chinese stock markets and the proposed financial models is studied by copula
analysis, in an attempt to detect and illustrate the existence of relevant correlation relationships. Further, the multifractality of
cross-correlations for return series is studied by multifractal detrended cross-correlation analysis, which indicates the analogous
cross-correlations and some fractal characters for both actual data and simulative data and provides an intuitive evidence formarket
inefficiency.

1. Introduction

Nonlinear analysis of return time series is an active topic to
understand and model distributions of financial price fluc-
tuations, which has long been a focus of economic research.
Fluctuations of two related financial markets usually exhibit
the correlated (or “indirect” correlated) phenomena, and the
approach of analyzing the correlations is definitely significant
to realize the inner relations between the financial markets.

There have been considerable results about non-Gaussian
characteristics in the fields of economics and finance [1, 2].
The empirical research shows that there exist fat-tail distri-
butions for financial time series instead of understanding the
possibility of large event by employing the Gaussian distri-
bution. The features of peak and fat-tail behaviors of returns
are useful to achieve accurate and rational descriptions about
stock’s volatilities in financialmarkets, and the corresponding
phenomenon is often called fat-tailed Lévy-distribution [1–
3]. In the present work, the approach of studying nonlinear
dependence of tails for two return time series has been
performed by the copula analysis. With the interpretation of
Kendall’s 𝜅, Spearman order correlation coefficient 𝜌

𝑠
, and

tail dependence coefficients 𝜓
𝑢
and 𝜓

𝑙
, we investigate the

dependence behaviors of two return series with the copula

functions. Copula analysis was introduced for understand-
ing the relationships between multidimensional probability
function and its lower dimension margins; see Sklar [4]
and Nelsen [5]. Then copula analysis is now widely used
in statistics, since copula is the function that connects joint
distribution function and marginal distribution functions.

Much progress has beenmade in the exploration of fractal
properties for financial time series. Hurst [6] proposed R/S
method to analyze the long memory properties in the hydro-
logical field, deriving the longmemory of the time series from
tide data. Peng et al. [7] introduced the detrended fluctuation
analysis (DFA) to study the characters of DNA sequences,
which is effective in the interpretation on the quality of
monofractal scaling. In order to indicate the multifractality
properties in time sequences, amethod called themultifractal
detrended fluctuation analysis (MF-DFA) was put forward by
Castro E Silva and Moreira [8] and then further developed
by Weber and Talkner [9] and Kantelhardt et al. [10].
The MF-DFA method was used in capturing the nature
of equity price in financial market and relevant research
field [1, 10, 11]. Furthermore, the detrended cross-correlation
analysis (DCCA) was developed by Podobnik and Stanley
[12] to investigate the power-law cross-correlation between
two simultaneously recorded time series in the presence of
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nonstationary behavior, where the cross-correlation between
two time series describes the normalized cross covariance
function. Zhou [13] proposed a new method which is called
multifractal detrended cross-correlation analysis (MF-X-
DFA)with the combination ofMF-DFA andDCCAmethods,
illustrating the validity in financial time series. Jiang and
Zhou [14] put forward MF-X-DMA method which is based
on MF-DMA [15] and DMA [16], comparing the perfor-
mances among the forward, centered, and backward MF-X-
DMA algorithm. Another extension of multifractal analysis
method like MF-XHA [17] is proposed by Kristoufek. In
this work, we will make an empirical research at testifying
and quantifying cross-correlations between the financial time
series by multifractal detrended analysis.

Recently, there has been a considerable interest in the
application of statistical physics systems (or interacting par-
ticle systems) to financial market dynamics [18–28], since
financial modeling is vital in financial time series analysis.
The modeling of dynamics of forwards prices is becom-
ing a key problem in financial decision making, such as
risk management, physical assets valuation, and derivatives
pricing. Any modeling, an abstract representation of reality,
aiming at understanding price fluctuations, needs to define a
mechanism for the formation of the price, in an attempt to
reproduce and explain performance and nature of financial
assets. In the present paper, a financial agent-based price
model is established by stochastic voter process [21, 22, 25, 29,
30], andmain stylized facts of financial time series of stochas-
tic votermodel such as the distribution of returns (power-law
distribution for absolute returns), volatility clustering, long
memory (long-range correlation in the volatility), and related
DFA analysis have been studied [21, 22, 31]. Supported by
these outcomes above, wemake a further attempt to reveal the
empirical laws in correlations of returns based on the voter
model as well. The tail dependence and cross-correlation of
two return series of the proposedmodel are studied by copula
analysis and MF-DCCA analysis, respectively. Further, the
price data of Shanghai Stock Exchange (SSE) Composite
Index and Shenzhen Stock Exchange (SZSE) Component
Index are selected for the empirical research in order to study
the fluctuation correlations of actual market and proposed
model by comparison.

2. Financial Time Series Model

2.1. Stochastic Voter Dynamic System. Stochastic voter pro-
cess is a continuous-time Markov process [32] and is one
of interacting particle systems (or statistical physics systems)
[29, 30, 33, 34]. Individuals placed at the points of Z𝑑 might
have one of two possible opinions on a political issue (in favor
or against); at independent exponential times, an individual
reassesses his view by choosing a neighbor at random with
certain probabilities and then adopting his position. To write
this as a set-valued process, we let 𝜉

𝜏
be the set of voters

in favor. Then the dynamics of the voter model can be
formulated as follows. Let 𝜉𝐴

𝜏
denote the state at time 𝜏 with

the initial state set 𝜉𝐴
0

= 𝐴, and let 𝜉{0}
𝜏

(𝑥) be the state of 𝑥 ∈

Z𝑑 at time 𝜏 for 𝜉{0}
0

= {0}. The stochastic dynamics of voter

model 𝜉
𝜏
is Markov process on a configuration space {0, 1}Z

𝑑

whose generator has the form

A𝑔 (𝜉) = ∑

𝑥∈Z𝑑

𝑐 (𝑥, 𝜉) [𝑔 (𝜉
𝑥

) − 𝑔 (𝜉)] , (1)

where the functions 𝑔 on {0, 1}
Z𝑑 depend on finitely many

coordinates, and 𝜉
𝑥

(𝑧) = 𝜉(𝑧) if 𝑧 ̸= 𝑥, 𝜉𝑥(𝑧) = 1 − 𝜉(𝑥) if
𝑧 = 𝑥, for 𝑥, 𝑧 ∈ Z𝑑. 𝑐(𝑥, 𝜉) is the transition rate function for
the process which is given as follows. For any 𝜉 ∈ {0, 1}

Z𝑑 , the
state of 𝑥 ∈ Z𝑑 flips according to the transition rates

0 → 1 at rate 𝜆 ∑

𝑦∈Z𝑑

𝑝 (𝑥, 𝑦) 𝐼
{𝜉(𝑦)=1}

,

1 → 0 at rate ∑

𝑦∈Z𝑑

𝑝 (𝑥, 𝑦) 𝐼
{𝜉(𝑦)=0}

,

(2)

where 𝐼 is the indicative function, 𝑝(𝑥, 𝑦) ⩾ 0 for 𝑥, 𝑦 ∈ Z𝑑,
and ∑

𝑦∈Z𝑑 𝑝(𝑥, 𝑦) = 1 for all 𝑥 ∈ Z𝑑. Here, we suppose that
the transition probability 𝑝(𝑥, 𝑦) is translation invariant and
symmetric, such that the Markov chain with those transition
probabilities is irreducible. 𝜆 is an intensity which is called
the “carcinogenic advantage” in the voter model. The model
is called the voter model for 𝜆 = 1, and the model is called
the biased voter model for 𝜆 > 1. For the biased voter model,
there exists a “critical value” for the process which is defined
as [29, 30]

𝜆
𝑐
= inf {𝜆 : 𝑃 (






𝜉
{0}

𝜏






> 0, ∀𝜏 ⩾ 0) > 0} , (3)

where |𝜉
{0}

𝜏
| is the cardinality of 𝜉{0}

𝜏
. Assume 𝜆 > 𝜆

𝑐
; then

there is a convex set 𝐶 so that, on Ω
∞

= {𝜉
{0}

𝜏
̸= 0, ∀𝜏}, we

have for any 𝜀 > 0 and for all 𝜏 sufficiently large

(1 − 𝜀) 𝜏𝐶 ∩ Z
𝑑

⊂ 𝜉
{0}

𝜏
⊂ (1 + 𝜀) 𝜏𝐶 ∩ Z

𝑑

. (4)

If 𝜆 < 𝜆
𝑐
, for some positive 𝜂(𝜆), we have

𝑃 (𝜉
{0}

𝜏
̸= 0) ⩽ 𝑒

−𝜂𝜏

. (5)

The above results imply that, on 𝑑-dimensional lattice, the
process becomes vacant exponentially for 𝜆 < 𝜆

𝑐
; the process

survives with the positive probability for 𝜆 > 𝜆
𝑐
.

2.2. Financial Agent-Based Price Process. In this section,
a financial agent-based price model is developed by the
voter interacting system. We suppose that the information
about the financial market leads to the volatilities of stock
prices.There are three kinds of information including buying
information, selling information, and neutral information
which classify the investors into their corresponding groups.
Suppose each trader can trade the stock several times at each
day 𝑡 ∈ {1, 2, . . . , 𝑛}, but at most unit number of the stock
at each time. Let 𝑙 be the time length of trading day; we
denote the stock price at time 𝜏 in the 𝑡th trading day by
𝑃
𝑡
(𝜏), where 𝜏 ∈ [0, 𝑙]. Assume that the stock is made up

of 𝑚 + 1 (𝑚 is sufficiently large) investors, who are located
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in a line {−𝑚/2, . . . , −1, 0, 1, . . . , 𝑚/2} ⊂ Z (similarly for 𝑑-
dimensional lattice Z𝑑) [30]. At the beginning of trading in
each day, suppose that only the investor at the origin site
“0” receives some information. We define a random variable
𝜁
𝑡
with the values 1, −1, and 0 to represent this investor

holds buying opinion, selling opinion, or neutral opinion
with probabilities 𝑝

1
, 𝑝
−1
, or 1 − 𝑝

1
− 𝑝
−1

[21, 22, 25], respec-
tively. Then, this investor sends bullish, bearish, or neutral
signal to his nearest neighbors. According to 𝑑-dimensional
voter process system, investors can affect each other or the
information can be transmitted, which is supposed to be
the main factor of price fluctuations for the market; see the
following in detail. (a) When 𝜁

𝑡
= 1, if 𝜉{0}

𝜏
(𝑤) = 1, we say

that the investor at 𝑤 holds buying opinion at time 𝜏, and
this investor recovers to neutral position at a rate equal to the
number of the vacant neighbors; if 𝜉{0}

𝜏
(𝑤) = 0, we think the

investor at 𝑤 holds neutral opinion at 𝜏, and this investor is
changed to hold buying opinion by his nearest neighbors at
rate 𝜆∑V:|𝑤−V|=1 𝜉

{0}

𝜏
(V). (b) When 𝜁

𝑡
= −1, if 𝜉{0}

𝜏
(𝑤) = 1, we

say that the investor at 𝑤 holds selling opinion at time 𝜏; also
this investor recovers to neutral opinion at a rate equal to the
number of the vacant neighbors; if 𝜉{0}

𝜏
(𝑤) = 0, the investor

is changed to hold selling opinion by his nearest neighbors at
rate 𝜆∑V:|𝑤−V|=1 𝜉

{0}

𝜏
(V). (c) When the initial random variable

𝜁
𝑡
= 0, the process 𝜉

{0}

𝜏
(𝑤) is ignored; this means that the

behaviors of investors do not affect the fluctuations of stock
prices. For a fixed trading day 𝑡 ∈ {1, . . . , 𝑛} and 𝜏 ∈ [0, 𝑙], let

𝑀
𝑡
(𝜏) =

𝜁
𝑡
⋅






𝜉
{0}

𝜏







𝑚

,
(6)

where |𝜉
{0}

𝜏
| = ∑

𝑚/2

𝑤=−𝑚/2
𝜉
{0}

𝜏
(𝑤) and 𝑚 may depend on the

trading days 𝑛. Then, we define the formula of a discrete time
stock price as follows [35]:

𝑃
𝑡
(𝜏) = exp {𝛼𝑀

𝑡
(𝜏)} 𝑃
𝑡−1

(𝜏) , (7)

where 𝑃
0
is the stock price at time 0. According to the theory

of the voter process, if 𝜆 > 𝜆
𝑐
, the information will be spread

widely, so this will affect the investors positions and at last
will affect the fluctuation of the stock price. On the contrary,
if 𝜆 < 𝜆

𝑐
, the influence on the stock price by the investors is

limited. Further, we give the formula of the stock logarithmic
return from time 𝑡 − 1 to 𝑡 as follows:

𝑟 (𝑡) = ln𝑃
𝑡
(𝜏) − ln𝑃

𝑡−1
(𝜏) . (8)

From the above proposed financial model and the computer
simulation, Figure 1 presents the fluctuations of price time
series and the corresponding returns, respectively, when
intensity 𝜆 = 3.

3. Dependence Behavior of Returns by
Copula Analysis

3.1. Brief Description of Copula Function. Copula theory was
put forward by Sklar [4]; copulas provide a convenient way to
express joint distributions of two or more random variables.
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Figure 1: Fluctuations of prices and returns, respectively, for the
financial price model.

The research results show that any 𝑁-dimensional joint
distribution function may be decomposed into 𝑁 marginal
distributions, and the copula completely describes the depen-
dence between the 𝑁 variables. Thus, the copula is a special
multivariate distribution function which fully captures the
dependence of the data used in many studies.The research of
the present work is mainly concerned about the relationship
between two variables. For any two-dimensional copula
function 𝐶(⋅, ⋅), it should be satisfied with the following
properties:

(1) 𝐶(⋅, ⋅): [0, 1] × [0, 1] → [0, 1];
(2) 𝐶(⋅, ⋅) is grounded and two dimensional increasing,

especially for all 𝑢
1
, 𝑢
2
, V
1
, V
2

∈ [0, 1], when 𝑢
1

<

𝑢
2
, V
1
< V
2
, then 𝐶(𝑢

2
, V
2
) − 𝐶(𝑢

2
, V
1
) − 𝐶(𝑢

1
, V
2
) +

𝐶(𝑢
1
, V
1
) ≥ 0;

(3) for all variables 𝑢, V ∈ [0, 1], 𝐶(𝑢, 1) = 𝑢, 𝐶(1, V) = V,
and 𝐶(0, V) = 𝐶(𝑢, 0) = 0.

In order to explore the dependence between two financial
series, we introduce bivariate t-copula in the following. The
distribution function and density function of t-copula can be
written as follows [36, 37]:

𝐶 (𝑢, V; 𝜌, ]) = ∫

𝑇
−1

] (𝑢)

−∞

∫

𝑇
−1

𝜇
(V)

−∞

1

2𝜋√1 − 𝜌
2

× [1 +

𝑠
2

+ 𝑡
2

− 2𝜌𝑠𝑡

](1 − 𝜌)
2

]

−(]+2)/2

𝑑𝑠 𝑑𝑡,

𝑐 (𝑢, V; 𝜌, ]) = 𝜌
−1/2

Γ ((] + 2) /2) Γ (]/2)
[Γ ((] + 1) /2)]

2

×

[1+(𝜍
2

1
+𝜍
2

2
−2𝜌𝜍
1
𝜍
2
) /] (1−𝜌2)]

−(]+2)/2

Π
2

𝑖=1
(1+𝜍
2

𝑖
/])−(]+2)/2

,

(9)

where 𝜌 ∈ (−1, 1) denotes the linear correlation coeffi-
cient and 𝑇

−1

] (⋅) is the inverse function of one-dimensional
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t-distribution function with ] degrees, 𝜍
1

= 𝑇
−1

𝜇
(𝑢), 𝜍
2

=

𝑇
−1

𝜇
(V).

3.2. Tail Dependence andConcordance of Returns by t-Copula.
Tail dependence coefficient was introduced to reveal the
effect on the other variable when one variable was given
an extremely (comparatively) large or small value [38]. The
survival function of copula 𝐶(𝑢, V) can be written as 𝐶(𝑢, V),
whose definition is 𝐶(𝑢, V) = 𝑢 + V − 1 + 𝐶(1 − 𝑢, 1 − V). By
variable substitution, we can easily obtain 𝐶(1 − 𝑢, 1 − V) =

1 − 𝑢 − V + 𝐶(𝑢, V). For 𝑢∗ ∈ [0, 1], we define [39]

𝜓 (𝑢
∗

) = 𝑃 [𝑈 > 𝑢
∗

| 𝑉 > 𝑢
∗

] =

𝐶 (1 − 𝑢
∗

, 1 − 𝑢
∗

)

1 − 𝑢
∗

. (10)

Here, 𝜓(𝑢∗) is called “quantile-dependent measure of depen-
dence.” We mainly consider the limit value of 𝜓(𝑢∗) when
𝑢
∗

→ 1. Provided lim
𝑢
∗
→1

𝜓(𝑢
∗

) exists, it can describe the
properties of tail dependence. Further, for continuous ran-
dom vector (𝑋, 𝑌), let 𝐹(𝑥) and 𝐺(𝑦) represent its marginal
distributions, respectively; we define

𝜓
𝑢
= lim
𝑢→1

𝑃 [𝑌 > 𝐺
−1

(𝑢) | 𝑋 > 𝐹
−1

(𝑢)]

= lim
𝑢→1

𝐶 (1 − 𝑢, 1 − 𝑢)

1 − 𝑢

,

𝜓
𝑙
= lim
𝑢→0

𝑃 [𝑌 < 𝐺
−1

(𝑢) | 𝑋 < 𝐹
−1

(𝑢)] = lim
𝑢→0

𝐶 (𝑢, 𝑢)

𝑢

,

(11)

where 𝜓
𝑢
is the upper dependence coefficient between 𝑋

and 𝑌 and 𝜓
𝑙
is the lower dependence coefficient between

𝑋 and 𝑌. If 𝜓
𝑢
(or 𝜓
𝑙
) exists and has positive value (0 <

𝜓
𝑢
, 𝜓
𝑙

≤ 1), we say random variables 𝑋,𝑌 are upper (or
lower) asymptotically dependent or correlated. When 𝜓

𝑢
(or

𝜓
𝑙
) is equal to zero, we say 𝑋, 𝑌 are upper (or lower) asymp-

totically independent. For an intuitive aspect, the upper
tail dependence coefficient 𝜓

𝑢
stands for the probability of

two financial markets’ turning up an extremely large price
simultaneously, and the lower tail dependence coefficient 𝜓

𝑙

represents the probability of two financial markets’ turning
up an extremely small price simultaneously. It is clear that,
for analysis in financial markets and financial assets, tail
dependence coefficient of copula will be quite convenient and
effective. For example, we can understand whether a slump
in one stock price results in a slump in another stock price by
studying the behavior of the tail dependence coefficientwhich
is greatly helpful for the explanation on volatility spillover in
financial markets.

In addition to tail dependence coefficient, there are sev-
eral kinds ofmeasures of correlations with respect to t-copula
function, for example, Kendall order correlation coefficient
[40] and Spearman order correlation coefficient [41]. Assume
(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) are the observed values of random vector

(𝑋, 𝑌), and we say (𝑥
1
, 𝑦
1
) and (𝑥

2
, 𝑦
2
) are concordant if

(𝑥
1
− 𝑥
2
)(𝑦
1
− 𝑦
2
) > 0 and otherwise discordant for (𝑥

1
−

𝑥
2
)(𝑦
1
− 𝑦
2
) < 0. Two mutual independent two-dimensional

random vectors (𝑋
1
, 𝑌
1
), (𝑋
2
, 𝑌
2
) have the same distribution

as (𝑋, 𝑌); let 𝑃[(𝑋
1
−𝑋
2
)(𝑌
1
−𝑌
2
) > 0] denote the probability

of their concord and 𝑃[(𝑋
1
− 𝑋
2
)(𝑌
1
− 𝑌
2
) < 0] denote

the probability of their discord. The difference between
concordant and discordant probability is the Kendall order
correlation coefficient 𝜅. Suppose (𝑋

𝑖
, 𝑌
𝑖
) (𝑖 = 1, 2, . . . , 𝑛)

are the samples from (𝑋, 𝑌); 𝑐 and 𝑑 denote the observed
numbers of concord and discord. Hence, we get the samples’
Kendall order correlation coefficient

𝜅 =

𝑐 − 𝑑

𝑐 + 𝑑

=

𝑐 − 𝑑

(
𝑛

2
)

. (12)

Generally, (𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) are independent and identically

distributed vectors; 𝜅 is defined as follows:

𝜅 ≡ 𝑃 [(𝑥
1
− 𝑥
2
) (𝑦
1
− 𝑦
2
) > 0]

− 𝑃 [(𝑥
1
− 𝑥
2
) (𝑦
1
− 𝑦
2
) < 0] .

(13)

We can judge the degree of correlation between random
variable 𝑋 and 𝑌 from the definition of 𝜅. When 𝜅 = 1,
𝑋 varies in full accord with 𝑌 and they are positive cross-
correlated; when 𝜅 = −1, 𝑋 varies in full opposite accord
with 𝑌 and they are negative cross-correlated; when 𝜅 = 0,
the variation between 𝑋 and 𝑌 is half in accord and half in
opposite accord, indicating an unclear correlation between𝑋

and 𝑌.
Suppose (𝑋

1
, 𝑌
1
), (𝑋
2
, 𝑌
2
), (𝑋
3
, 𝑌
3
) are two-dimensional

random vectors with mutual independence and have the
same distribution as (𝑋, 𝑌). We define Spearman order
correlation coefficient as follows:

𝜌
𝑠
= 3 {𝑃 [(𝑋

1
− 𝑋
2
) (𝑌
1
− 𝑌
3
) > 0]

−𝑃 [(𝑋
1
− 𝑋
2
) (𝑌
1
− 𝑌
3
) < 0]} ;

(14)

(𝑋
𝑖
, 𝑌
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) are samples from (𝑋, 𝑌), let 𝑅

𝑖

represent the order of 𝑋
𝑖
in (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
), and let 𝑄

𝑖

represent the order of𝑌
𝑖
in (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
). Then the samples’

Spearman order correlation coefficient is

𝜌
𝑠
=

∑
𝑛

𝑖=1
(𝑅
𝑖
− 𝑅) (𝑄

𝑖
− 𝑄)

√∑
𝑛

𝑖=1
(𝑅
𝑖
− 𝑅)

2

√∑
𝑛

𝑖=1
(𝑄
𝑖
− 𝑄)

2

, (15)

where𝑅 = (1/𝑛)∑
𝑛

𝑖=1
𝑅
𝑖
,𝑄 = (1/𝑛)∑

𝑛

𝑖=1
𝑄
𝑖
. By simplification,

we can obtain

𝜌
𝑠
= 1 −

6

𝑛 (𝑛
2
− 1)

𝑛

∑

𝑖=1

(𝑅
𝑖
− 𝑄
𝑖
)
2

. (16)

In the introductions of tail dependence coefficient (𝜓
𝑢

and𝜓
𝑙
), Kendall order correlation coefficient 𝜅 and Spearman

order coefficient 𝜌
𝑠
in t-copula method interpret the strength

of tail dependence and concordance among the real markets
and the financial model. It is possible to evaluate the possibil-
ity for two financial markets’ turning up an extremely large
(small) value simultaneously, which is of great help in fields
of asset pricing and financial risk management.
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Figure 2: Continued.
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Figure 2: Plots of SSE and SZSE indexes by t-copula. (a) Frequency histogram; (b) density function diagram; (c) contour of joint density
functions; (d) contour of distribution functions. Plots of the model with S.data1 (𝜆 = 2 and 𝜆 = 2.5) by t-copula. (e) Frequency histogram;
(f) density function diagram; (g) contour of joint density functions; (h) contour of distribution functions. Plots of the model with S.data1
(𝜆 = 3 and 𝜆 = 2.5) by t-copula. (i) Frequency histogram; (j) density function diagram; (k) contour of joint density functions; (l) contour of
distribution functions.

3.3. Empirical Results of t-Copula Analysis. In this part, we
make an empirical research on the tail dependence of real
data and simulation data by t-copula function.The empirical
data comes from intraday data of SSE and SZSE from April
2, 2009, to May 9, 2013, and two pairs of simulated data are
generated from the proposed model with different parameter
values (S.data1: 𝜆 = 2 and 𝜆 = 2.5 and S.data2: 𝜆 = 3

and 𝜆 = 2.5). We select the proper parameter values by
Monte Carlo method above the threshold of financial model
and ensure these two pairs of simulative financial time series
close to the real markets data in some degree. Figure 2
shows the plots of frequency histogram, density function
diagram, contour of joint density functions, and contour of
distribution functions for both actual data (SSE and SZSE)
and two pairs of simulated data (𝜆 = 2 and 𝜆 = 2.5 and
𝜆 = 3 and 𝜆 = 2.5). From Figures 2(a), 2(e), 2(i), 2(b),
2(f), and 2(j), the plots exhibit that there exists relatively
strong tail dependence by t-copula in three groups of data,
which demonstrate the dependence in the actual data and the
proposed model. By comparing the contours of Figures 2(c),

2(g), and 2(k) of joint density functions, we find that S.data1
(𝜆 = 2 and 𝜆 = 2.5) is closer to the real market and has a
larger peak height and faster converge than S.data2 (𝜆 = 3 and
𝜆 = 2.5). FromFigures 2(d), 2(h), and 2(l), we have analogical
features about the contours of distribution functions for three
groups of data and a better understanding of the t-copula
distribution functions from another aspect.

For further evidence and explanation about the tail
dependence, we give the correspondingmeasures by t-copula
in Table 1. From Table 1, the values of Kendall and Spearman
coefficients for SSE and SZSE are larger than those of S.data1
and S.data2, stating a stronger property of concordance in
the real market data itself and better correlations between
two Chinese stock markets. It also indicates that SSE and
SZSE simultaneously go up and fall down for most of
time. According to the symmetrical character of t-copula,
the upper tail dependence coefficient 𝜓

𝑢
is equal to the

lower tail dependence coefficient 𝜓
𝑙
. For the tail dependence

coefficients of three pairs of data, all of them are positive
values, showing a positive upper and lower tail correlated
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Table 1: Measures for concordance and tail dependence of returns.

Data 𝜅 𝜌
𝑠

𝜓
𝑙

𝜓
𝑢

SSE and SZSE 0.7871 0.9395 0.7384 0.7384
Pair of S.data1 0.7546 0.9200 0.6937 0.6937
Pair of S.data2 0.6153 0.8099 0.5941 0.5941

phenomenon.The actual one (SSE and SZSE) with the biggest
upper and lower tail dependence coefficientmeans the closely
positive correlation between two stock markets in China.
In an intuitive way, we can say that two real Chinese stock
markets’ (SSE and SZSE) turning up an extremely large or
small value simultaneously has a possibility of 0.7384 and
is larger than the possibilities of two pairs of simulative
markets (0.6937 and 0.5941), clearly showing the strong tail
dependence and concordance among them and providing a
new idea anddecisionmaking in the fields of asset pricing and
financial risk management. In the meantime, the simulation
data (S.data1 and S.data2) of the proposed model present the
similar features of concordance and tail dependence as well,
demonstrating the rationality and feasibility of the proposed
model.

4. Methodology for Statistical Analysis

4.1. Test for Cross-Correlation. There have developed several
statistical methods aiming at demonstrating and quantifying
the cross-correlation from the aspects of detrended cross-
correlation and power-law cross-correlation [42]. Here, we
use a cross-correlation statistic put forward by Podobnik et al.
[43] to testify and quantify the cross-correlation in Chinese
markets (SSE and SZSE) and financial model data. Below is
the test for the existence of cross-correlation between two
time series. Suppose {𝑥(𝑖)} and {𝑦(𝑖)} are two financial time
series with the same length of𝑁. We have the relationship as
follows:

𝐶
𝑖
=

∑
𝑁

𝑘=𝑖+1
𝑥
𝑘
𝑦
𝑘−𝑖

√∑
𝑁

𝑘=1
𝑥
2

𝑘
∑
𝑁

𝑘=1
𝑦
2

𝑘

. (17)

Thus, we can obtain the cross-correlation statistic

𝑄
𝑐𝑐
(𝑚) = 𝑁

2

𝑚

∑

𝑖=1

𝐶
2

𝑖

𝑁 − 𝑖

. (18)

The cross-correlation statistic 𝑄
𝑐𝑐
(𝑚) complies well with the

𝜒
2

(𝑚)
distribution if there exists no cross-correlation between

two time series. If the value of cross-correlations statistic
𝑄
𝑐𝑐
(𝑚) exceeds the critical value of the𝜒2

(𝑚)
distribution, indi-

cating significant cross-correlations at a significance level, we
present the critical value of the 𝜒2

(𝑚)
distribution and relevant

cross-correlation statistic 𝑄
𝑐𝑐
(𝑚) for the three pairs of time

series at the 5% level of significance with the degrees of
freedom ranging from 1 to 600 in Figure 3.

From Figure 3, we can clearly see these three pairs of
data all exceeding the critical value of the 𝜒

2

(𝑚)
distribution

at the 5% level of significance, suggesting the existence of
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Figure 3: The cross-correlation statistic 𝑄
𝑐𝑐
(𝑚) of return series for

the real markets and the financial model.

cross-correlation in both real stock markets and proposed
financial model. In some aspect, it also reflects the rationality
and feasibility in proposed financial model. Further, we also
can figure out the strength of cross-correlation by the distance
between the critical value line and 𝑄

𝑐𝑐
(𝑚). The strength of

cross-correlation between SSE and SZSE is obviously stronger
than another two pairs of data in proposed model, and the
first simulative pair’s (S.data1) cross-correlation is stronger
than the second pair’s (S.data2).

4.2. MF-DCCA for Financial Time Series. In this section, we
apply the multifractal detrended cross-correlation analysis
(MF-DCCA) to investigating the cross-correlation of returns
with multifractality [10, 11, 13]. Suppose two time series {𝑥(𝑡)}
and {𝑦(𝑡)} (𝑡 = 1, . . . , 𝑁) with the same length of 𝑁. Firstly,
we calculate the “profiles” of {𝑥(𝑡)} and {𝑦(𝑡)}

𝑋 (𝑖) =

𝑖

∑

𝑘=1

[𝑥
𝑘
− 𝑥] , 𝑌 (𝑖) =

𝑖

∑

𝑘=1

[𝑦
𝑘
− 𝑦] , (19)

where 𝑥 and 𝑦 denote the average of two whole time series
{𝑥(𝑡)} and {𝑦(𝑡)}, respectively. Then, we separate 𝑋(𝑖) and
𝑌(𝑖) into𝑁

𝑠
= [𝑁/𝑠] nonoverlapping segments with an equal

length 𝑠 (𝑠 is often called timewindow).We perform the same
process as well from the other end tomake sure that thewhole
series could be considered as far as possible. Thus, we can
get 2𝑁

𝑠
segments with the equal length 𝑠. We estimate the

local trends for each of the 2𝑁
𝑠
segments by an 𝑚th-order

polynomial fit. The corresponding detrended covariance is
provided as follows, for V = 1, 2, . . . , 𝑁

𝑠
,

𝐹
2

DCCA (𝑠, V) =
1

𝑠

𝑠

∑

𝑗=1





𝑋 ((V − 1) 𝑠 + 𝑗) − 𝑋

V
(𝑗)






×




𝑌 ((V − 1) 𝑠 + 𝑗) − 𝑌

V
(𝑗)






(20)
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and for V = 𝑁
𝑠
+ 1,𝑁

𝑠
+ 2, . . . , 2𝑁

𝑠

𝐹
2

DCCA (𝑠, V) =
1

𝑠

𝑠

∑

𝑗=1





𝑋 (𝑁 − (V − 𝑁

𝑠
) 𝑠 + 𝑗) − 𝑋

V
(𝑗)






×




𝑌 (𝑁 − (V − 𝑁

𝑠
) 𝑠 + 𝑗) − 𝑌

V
(𝑗)





.

(21)

The trends𝑋V
(𝑗),𝑌V

(𝑗) are the fitting polynomials with order
𝑚 in segment V. Then average overall segments to obtain the
𝑞th-order fluctuation function

𝐹
𝑞
(𝑠) = {

1

2𝑁
𝑠

2𝑁𝑠

∑

V=1
[𝐹
2

DCCA (𝑠, V)]
𝑞/2

}

1/𝑞

,

𝐹
0
(𝑠) = exp{

1

4𝑁
𝑠

ln [𝐹
2

DCCA (𝑠, V)]} .

(22)

We analyze the scaling behavior by studying log-log plots
of 𝐹
𝑞
(𝑠) versus 𝑠 for each value of 𝑞. Two long-range cross-

correlated series exhibit a power-law expression: 𝐹
𝑞
(𝑠) ∝

𝑠
ℎ𝑥𝑦(𝑞).Thepower-law relationship between the two correlated
series can be described by ℎ

𝑥𝑦
(𝑞). If ℎ

𝑥𝑦
(𝑞) depends on 𝑞,

we say that there exists the phenomenon of multifractality.
If the cross-correlation exponent ℎ

𝑥𝑦
(𝑞) > 0.5, the cross-

correlations between the return fluctuations of two series
related 𝑞 are persistent (positive), which implies that one
market is likely to increase (decrease) following an increase
(decrease) of the other market. If ℎ

𝑥𝑦
(𝑞) < 0.5, the cross-

correlations between the return fluctuations of two series
related 𝑞 are antipersistent (negative), which implies that one
market is likely to increase (decrease) following a decrease
(increase) of the other market. These two situations above
illustrate the persistent (positive) or antipersistent (negative)
cross-correlation between two financial markets, which do
not conform to the concept and definition of Brownian
fluctuation, leading to the violation of the well-knownmarket
efficiency hypothesis put forward by Fama [44]. If ℎ

𝑥𝑦
(𝑞) =

0.5, there are no cross-correlations between two series and
the volatility of one market may not influence the other
market evidently. At the same time, the price changes cannot
be predicted and comply with the Brownian motion (or
random walk), which is consistent with the market efficiency
hypothesis. The Hurst exponent also provides a measure to
determine the speed of prices’ adjustment to a random walk,
namely, recovering to an efficient market [45, 46].

In particular, when the time series {𝑥(𝑡)} is identical to
{𝑦(𝑡)}, it is clear that

𝐹
2

DCCA (𝑠, V) = 𝐹
2

DFA (𝑠, V) ,

𝐹
𝑞
(𝑠) = {

1

2𝑁
𝑠

2𝑁𝑠

∑

V=1
[𝐹
2

DFA (𝑠, V)]
𝑞/2

}

1/𝑞

;

(23)

MF-DCCA is retrieved to MF-DFA. When 𝑞 = 2,

𝐹
𝑞
(𝑠) = {

1

2𝑁
𝑠

2𝑁𝑠

∑

V=1
[𝐹
2

DCCA (𝑠, V)]}
1/2

; (24)

MF-DCCA is reduced to DCCA.The cross-correlation expo-
nent ℎ

𝑥𝑦
(𝑞) is equivalent to the generalized Hurst exponent

ℎ
𝑥𝑦
(2). The similar relationships between classical multifrac-

tal scaling exponents can be shown as follows: 𝜛
𝑥𝑦
(𝑞) =

𝑞ℎ
𝑥𝑦
(𝑞) − 1. If 𝜛

𝑥𝑦
(𝑞) is linear with 𝑞, the cross-correlation of

correlated series is monofractal; otherwise it is multifractal.
By the Legendre transformation [11], we can obtain the
following relationships: 𝛼 = ℎ

𝑥𝑦
(𝑞) + 𝑞ℎ



𝑥𝑦
(𝑞), 𝑓

𝑥𝑦
(𝛼) =

𝑞[𝛼 − ℎ
𝑥𝑦
(𝑞)] + 1, where ℎ



𝑥𝑦
(𝑞) denotes the derivative of

ℎ
𝑥𝑦
(𝑞) with respect to 𝑞 and 𝛼 is the Hölder exponent or

singularity strength, which characterizes the singularities in
the time series. For the situation of multifractality, different
portions are characterized by different 𝛼, causing the exis-
tence of spectrum 𝑓(𝛼). The strength of multifractality can
be estimated by the width of multifractal spectrum, which
is given by Δ𝛼 = 𝛼max − 𝛼min. The difference of the fractal
dimensions of the maximum probability subset (𝛼 = 𝛼min)
and the minimum one (𝛼 = 𝛼max) is as follows [47]:

Δ𝑓 = 𝑓 (𝛼min) − 𝑓 (𝛼max) . (25)

Further, we give the concept of fractal asymmetric exponent
FAE = (Δ𝛼

𝑙
− Δ𝛼
𝑟
)/(Δ𝛼

𝑙
+ Δ𝛼
𝑟
), in which Δ𝛼

𝑙
and Δ𝛼

𝑟

are defined as Δ𝛼
𝑙

= �̂� − 𝛼min and Δ𝛼
𝑟

= 𝛼max − �̂�.
Here, �̂� is the value on condition that 𝑓(�̂�) = max𝑓(𝛼). By
this formulation, we can understand that the larger value of
Δ𝛼 will lead to the wider probability distribution and larger
difference between the highest stock price and lowest stock
price.

The application of MF-DCCA method aims at consid-
ering the cross-correlation for both real data and simulated
data in an angle of multifractality different from copula
theory mentioned in Section 3. The generalized Hurst expo-
nent illustrates the multifractal positive (persistent) cross-
correlation in Chinese stock markets along with the financial
model and provides an evidence of the market inefficiency.
Also, the strength of multifractal spectra 𝑓(𝛼) implies the
proof for the inefficiency of financial market which violates
the well-known market efficiency hypothesis [44].

4.3. Empirical Research by MF-DCCA Analysis. The mul-
tifractal detrended cross-correlations between two return
series by MF-DCCA are displayed in Figure 4. There are 21
empirical curves in each plot and they emerge in a descending
order of 𝑞 (𝑞 = −10, −9, . . . , 9, 10) from bottom to top, which
suggests that return series for both the real markets and the
simulation data display the similar character of power-law
scaling, sharing the power-law scaling property of fluctuation
function with each other. It may provide a sign ofmultifractal
detrended cross-correlations that a large increment of price
changes in one market may be more likely to be followed by
a large increment of price changes in another geographically
or temporally correlated market.

Figure 5 shows the tendency of cross-correlation expo-
nents ℎ

𝑥𝑦
(𝑞) of return series for SSE and SZSE as well as

the proposed model. It also exhibits that the value of cross-
correlation exponent ℎ

𝑥𝑦
(𝑞) decreases when 𝑞 increases.

If the cross-correlation exponent ℎ
𝑥𝑦
(𝑞) is a constant, the

market ismonofractal; otherwise it ismultifractal.These plots
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Figure 4: Log-log plots of 𝐹
𝑥𝑦
(𝑞, 𝑠) versus 𝑠 for (a) the real markets and (b), (c) the proposed model with S.data1 and S.data2, respectively.

show that the cross-correlation relationships are nonlinear
and multifractal, since there are dissimilar exponents ℎ for
different values of 𝑞. Figure 6 exhibits the plots ofmultifractal
scaling exponents 𝜛

𝑥𝑦
(𝑞) of return series for the real markets

and the proposed model. The multifractal exponents 𝜛 is
nonlinearly dependent on 𝑞, which provides the empirical
evidence that the multifractality exists in three pairs of time
series.

The corresponding detailed values of cross-correlation
exponent ℎ

𝑥𝑦
(𝑞) andmultifractal scaling exponent𝜛

𝑥𝑦
(𝑞) for

the real markets and the proposed model are displayed in
Table 2. Table 2 shows the monotone diminution of ℎ

𝑥𝑦
(𝑞)

and the monotone nonlinear increase of 𝜛
𝑥𝑦
(𝑞) with the

increasing of 𝑞, reflecting the apparent multifractal property
of cross-correlation for actual and simulated data. When
𝑞 < 4, the cross-correlation exponent ℎ

𝑥𝑦
(𝑞) > 0.5 for the

real data, there has a persistent (positive) cross-correlation
between SSE and SZSE, stating that the distinct rise and
fall for SSE may be followed as the same type in SZSE
later. When 𝑞 = 2, the generalized Hurst exponent ℎ

𝑥𝑦
(𝑞)

of real markets is also greater than 0.5 (0.5766), showing
a weak persistent (positive) cross-correlation between two
stock markets. When 𝑞 > 4, ℎ

𝑥𝑦
(𝑞) < 0.5 displays

an antipersistent (negative) cross-correlation, signifying that
the distinct rise and fall for SSE may be followed as the
opposite type in SZSE later. The similar explanations above
can go right with regard to the model data (S.data1 and
S.data2). From the viewpoint of market efficiency hypothesis,
we can judge that the cross-correlation does not comply
with the random walk [46] at the situation of 𝑞 < 4 and
𝑞 > 4, illustrating a fact of market inefficiency. Only when
𝑞 is around 4 (ℎ

𝑥𝑦
is about 0.5), the cross-correlation is
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Table 2: Cross-correlation exponent ℎ
𝑥𝑦
(𝑞) and multifractal scaling exponent 𝜛

𝑥𝑦
(𝑞).

Data Cross-correlation exponent ℎ
𝑥𝑦
(𝑞) Multifractal scaling exponent 𝜛

𝑥𝑦
(𝑞)

𝑞 R.data S.data1 S.data2 R.data S.data1 S.data2
−10 0.8664 0.8425 0.8076 −8.8641 −8.8248 −8.5758

−9 0.8569 0.8321 0.8014 −7.9922 −7.9489 −7.7622

−8 0.8456 0.8196 0.7942 −7.1247 −7.0772 −6.9537

−7 0.8320 0.8045 0.7820 −6.2643 −6.2117 −6.1520

−6 0.8158 0.7860 0.7665 −5.4148 −5.3562 −5.3592

−5 0.7965 0.7634 0.7479 −4.5824 −4.5171 −4.5782

−4 0.7739 0.7364 0.7281 −3.7756 −3.7055 −3.8123

−3 0.7483 0.7060 0.7035 −3.0049 −2.9379 −3.0654

−2 0.7200 0.6748 0.6800 −2.2800 −2.2296 −2.3420

−1 0.6891 0.6447 0.6551 −1.6091 −1.5847 −1.6490

0 0.6507 0.6143 0.6252 −1 −1 −1

1 0.6172 0.5870 0.5972 −0.4628 −0.4730 −0.4128

2 0.5766 0.5590 0.5602 −0.0067 −0.0020 0.1004
3 0.5370 0.5321 0.5241 0.3711 0.4163 0.5423
4 0.5024 0.5072 0.4917 0.6898 0.7887 0.9269
5 0.4744 0.4848 0.4642 0.9722 1.1242 1.2710
6 0.4524 0.4653 0.4414 1.2346 1.4321 1.5886
7 0.4351 0.5486 0.4386 1.4858 1.7204 1.8893
8 0.4213 0.5344 0.4074 1.7306 1.9953 2.1793
9 0.4102 0.4224 0.3947 1.9715 2.2614 2.4622
10 0.4010 0.4122 0.3841 2.2097 2.5216 2.7405
Note: R.data means the real data; S.data1 and S.data2 denote two pairs of simulated data.
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Figure 5: Cross-correlation exponent ℎ(𝑞) of return series for the
real markets and the financial model.

consistent with Brownian fluctuation, supporting the market
efficiency hypothesis [44]. In order to realize the multifractal
character of two financial time series, we study multifractal
scaling exponent 𝜛

𝑥𝑦
(𝑞) and observe its specific numerical

values. From Table 2, both the actual and simulated data

SSE and SZSE
S.data1

S.data2

𝜛xy(0) = −1

𝜛
x
y
(q
)
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−10
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q

Figure 6: Multifractal scaling exponent 𝜛(𝑞) of return series for the
real markets and the financial model.

present the trend of increase with respect to 𝑞 in a nonlinear
way, uncovering the multifractality of cross-correlation. In
addition, the three pairs of data share the same value𝜛

𝑥𝑦
(𝑞) =

−1 at the point 𝑞 = 0, which agrees with the relevant theory
and the coincident point is also labeled in Figure 6.
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Table 3: Multifractal spectra for real markets and simulated data.

Data Δ𝛼
𝑙

Δ𝛼
𝑟

Δ𝑓 FAE
SSE and SZSE 0.3708 0.2628 0.0278 0.1705
Pair of S.data1 0.3245 0.2912 0.0142 0.0541
Pair of S.data2 0.3707 0.1673 −0.3967 0.3780
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Figure 7: Multifractal spectra 𝑓(𝛼) of returns for the real data and
the simulation data.

Now we study the multifractal strength by the mul-
tifractal spectra method. A system is monofractal if the
multifractal spectrum of monofractality is a point; that is,
the width of multifractal spectrum is zero. In fact, the
width of multifractal spectrum can be regarded as a measure
of multifractal strength. In Figure 7, the widths of cross-
correlation multifractal spectral for the return series are
significantly nonzero, which illustrate that there exist clearly
departures from random walk process for cross-correlated
return series. Table 3 gives the multifractal strength of the
real data and the simulation data. We notice the three pairs
of data are satisfied with Δ𝛼

𝑙
> Δ𝛼
𝑟
. In addition, R.data (SSE

and SZSE) and S.data1 have approximate values of Δ𝛼
𝑙
and

Δ𝛼
𝑟
, indicating the multifractal strength of cross-correlation

in real markets is similar to that in the first simulation data
(S.data1). However, S.data2 has a weakermultifractal strength
with respect to R.data and S.data1 for its smallerΔ𝛼. As to the
fractal asymmetric exponent FAE, not only the actualmarkets
but also the model are all greater than zero, and the value of
FAE of the R.data is between those of S.data1 and S.data2.

By MF-DCCA method, we also detect the existence of
multifractality of cross-correlation in both real and simu-
lative markets. The measures of strength of multifractality
Δ𝛼 (Δ𝛼

𝑙
+ Δ𝛼
𝑟
) of real and simulative markets are 0.6336,

0.6157, and 0.5380, respectively, implying the evidence that
a stronger multifractality is accompanied with a more ineffi-
cient market [45]. From the results in Table 3, the real finan-
cialmarkets (SSE and SZSE) have the strongestmultifractality

of cross-correlation together with the most inefficiency (also
the farthest from the random walk or Brownian motion)
among all pairs of data.

5. Conclusion

In the present paper, we analyze tail dependence and multi-
fractal detrended cross-correlations of return series between
two real stock market indexes (SSE and SZSE) by copula and
MF-DCCA method, respectively. And we also introduce a
stock price process by applying the voter interacting dynamic
system to perform empirical research for comparisons with
the actual data. The empirical results show that the return
series for both the actual data and the simulated data have
the property of positive upper and lower tail dependence,
multifractality, and cross-correlation. The results supply an
intuitive possibility to display the tail dependence coefficient
of two financial markets which is helpful in the fields of asset
pricing and financial risk management and also obtain an
intuitive evidence of market inefficiency from the view of
multifractality. Through the comparisons between the real
markets and the proposed model, we hope to show that the
financial model of the present work is reasonable to some
extent.
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marges,” vol. 8, pp. 229–231, 1959.

[5] R. B. Nelsen, An Introduction to Copula, Elsevier Science, New
York, NY, USA, 1983.

[6] H. E. Hurst, “Long term storage capacity of reservoirs,”Transac-
tions American Society of Civil Engineers, vol. 116, pp. 770–808,
1951.

[7] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E.
Stanley, and A. L. Goldberger, “Mosaic organization of DNA
nucleotides,” Physical Review E, vol. 49, no. 2, pp. 1685–1689,
1994.



12 Abstract and Applied Analysis

[8] A. Castro E Silva and J. G. Moreira, “Roughness exponents to
calculate multi-affine fractal exponents,” Physica A: Statistical
Mechanics and Its Applications, vol. 235, no. 3-4, pp. 327–333,
1997.

[9] R. O.Weber and P. Talkner, “Spectra and correlations of climate
data from days to decades,” Journal of Geophysical Research D:
Atmospheres, vol. 106, no. 17, pp. 20131–20144, 2001.

[10] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S.
Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended
fluctuation analysis of nonstationary time series,” Physica A:
Statistical Mechanics and Its Applications, vol. 316, no. 1–4, pp.
87–114, 2002.

[11] L. Zunino, A. Figliola, B. M. Tabak, D. G. Pérez, M. Garavaglia,
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