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We propose a numerical reconstruction method for solving a time-fractional backward heat conduction problem. Based on the
idea of reproducing kernel approximation, we reconstruct the unknown initial heat distribution from a finite set of scattered
measurements of transient temperature at a fixed final time. The standard Tikhonov regularization technique using the norm
of reproducing the kernel Hilbert space as the penalty term is adopted to provide a stable solution when the measurement data
contains noise. Numerical results indicate that the proposed method is efficient.

1. Introduction

Let Ω ⊂ R𝑑, 𝑑 ∈ N, be a bounded domain with suf-
ficiently smooth boundary 𝜕Ω. Consider the following initial
boundary value problem for time-fractional diffusion equa-
tion (TFDE):

0𝐷
𝛾

𝑡
𝑢 (𝑥, 𝑡) = L𝑢, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ Ω,

B𝑢 (𝑥, 𝑡) := 𝜇𝑢 (𝑥, 𝑡) + 𝛽
𝜕𝑢

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(1)

Here 0𝐷
𝛾

𝑡
denotes the Caputo fractional derivative with

respect to 𝑡 and is defined by

0𝐷
𝛾

𝑡
𝜓 (𝑡) =

{{

{{

{

1

Γ (1 − 𝛾)
∫

𝑡

0

𝜓

(𝜏)

(𝑡 − 𝜏)
𝛾
𝑑𝜏, 0 < 𝛾 < 1,

𝜓

(𝑡) , 𝛾 = 1.

(2)

Γ(⋅) is the Gamma function andL is a symmetric uniformly
elliptic operator and 𝑇 > 0 is a fixed final time, 𝜇 and 𝛽

are constants, and ] is the outward unit normal vector of the
domainΩ. In what follows, let 0 < 𝛾 < 1 andL be given by

L𝑢 (𝑥) :=

𝑑

∑

𝑖=1

𝜕

𝜕𝑥𝑖

(

𝑑

∑

𝑗=1

𝐷𝑖𝑗 (𝑥)
𝜕

𝜕𝑥𝑗

𝑢 (𝑥))

+ 𝑄 (𝑥) 𝑢 (𝑥) , 𝑥 ∈ Ω,

(3)

where 𝑄 ∈ 𝐶(Ω), 𝑄(𝑥) ≤ 0 for 𝑥 ∈ Ω and𝐷𝑖𝑗 = 𝐷𝑗𝑖 ∈ 𝐶
1
(Ω),

1 ≤ 𝑖, 𝑗 ≤ 𝑑. Moreover, we assume that there exists a positive
constant𝐷 > 0 such that

𝐷

𝑑

∑

𝑖=1

𝜂
2

𝑖
≤

𝑑

∑

𝑖,𝑗=1

𝐷𝑖𝑗 (𝑥) 𝜂𝑖𝜂𝑗, 𝑥 ∈ Ω, 𝜂 ∈ R
𝑑
. (4)

Recently, people are shifting their partial focus to
fractional-order differential equations (FDEs) with the real-
ization that the use of fractional-order derivatives and inte-
grals leads to formulas of certain physical processes (for
instance, some anomalous diffusion processes) which ismore
economical and useful than the classical approach in terms
of Fick’s laws of diffusion. In this paper, we consider the
fractional-order partial differential equation (FPDE) in (1),
which is obtained from the standard diffusion equation by
replacing the first-order time derivative with a fractional
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derivative of order 𝛾, with 0 < 𝛾 < 1. Different models
using this kind of FDEs have been proposed [1–3], and there
has been significant interest in developing numerical schemes
for their solution. Physically, the time-fractional partial
differential equations describe the continuous time random
walk problems (the non-Markovian process). The physical
interpretation of the fractional derivative is that it represents
a degree of memory in the diffusing material [4]. Actually,
the convolution integral in the definition of the Caputo
fractional-order derivatives for 𝛾 ∈ (0, 1) at time 𝑡 requires
all the knowledge of classical derivative 𝜓

(𝜏) for 𝜏 ∈ (0, 𝑡),
which reflects the “memory effect” of fractional derivatives.
The utilization of the memory effect of fractional derivatives
comes with a high cost regarding numerical solvability. Any
algorithm using a discretization of a noninteger derivative
has to take into account its nonlocal structure which means
in general a high storage requirement and great overall
complexity of the algorithm. Similar convolution model can
be used to depict the tumor-immune system [5]. Fractional
dimensional model is also used to characterize the binary
images of DNA [6] and oscillators [7, 8]. In [9], a general
approach is proposed to approximate ideal filters based on
fractional calculus from the point of view of systems of
fractional order. Recently, numerous attempts to solve TFDE
can be found in the literature [4, 10–14]. We can refer to [15–
18] for more specified knowledge about fractional calculus.

The backward problem governed by time-fractional par-
tial differential equation in (1) is to recover the heat distribu-
tion at any earlier time 0 ≤ 𝑡 < 𝑇 from the measurement
𝑢𝜖(𝑥, 𝑇), written as 𝑢𝜖

𝑇
, which is noise-contaminated data for

the exact temperature 𝑢(𝑥, 𝑇):

𝑢𝜖 (⋅, 𝑇) − 𝑢 (⋅, 𝑇)
𝐿2(Ω)

≤ 𝜖 (5)

for some known noise level 𝜖 > 0. Such inverse problems
have been considered by several authors. Based on the eigen-
function expansions, Sakamoto and Yamamoto [19] establish
the unique existence of the weak solution and the asymptotic
behavior as the time 𝑡 goes to∞ for the forward problem and
prove the stability and uniqueness in the backward problem
in time. For the one-dimensional case, Liu and Yamamoto
[20] propose a regularizing scheme by the quasi-reversibility
to restore the stability of the backward problem. In [21], a
regularization by projection is applied to the same problem as
in [20] and the corresponding convergence rates are obtained
under a priori and a posteriori parameter choice strategies,
respectively. Here, we pay our attention to the situation of
stable reconstruction of the initial heat distribution 𝑓(𝑥)

from some scattered noisy data of 𝑢𝜖(⋅, 𝑇). More specifically,
the data 𝑢𝜖(⋅, 𝑇) are collected only at a finite set of points
{𝑧1, 𝑧2, . . . , 𝑧𝑚} ∈ Ω. We then reconstruct the initial tem-
perature distribution 𝑢(𝑥, 0) from the scattered noisy data
at 𝑡 = 𝑇. For solving the backward diffusion problem,
we employ a discretized Tikhonov regularization by the
Ritz approach coupled with the reproducing kernel Hilbert
space (RKHS), which is proposed in [22].

The Tikhonov regularization method has been widely
studied and applied to all varieties of ill-posed problems
[23, 24]. The discretized Tikhonov regularization method

and its relative theories are also explored in detail [24]. We
adopt the Tikhonov regularization method by a reproducing
kernel Hilbert space into the backward problem (1). As we
know, the theory and practice of reproducing kernel are a
fast growing research area.The numerical methods by RKHS
have been also rapidly developed in recent years [25, 26].
These developments are due to the increasing interest in the
use of reproducing kernel for the solution of mathematical
and engineering problems, for instance, machine learning
[27], signal processing [28], stochastic processes [29], wavelet
transforms [30], and so forth. For the details of RKHS, we are
able to refer to [31]. However, to the authors’ knowledge, there
are few applications of RKHS to inverse problems.Weprovide
the partial list of the recent works. Takeuchi and Yamamoto
[22] prove the convergence of the discretized Tikhonov reg-
ularization method by RKHS. Hon and Takeuchi [32] apply
this method into a backward heat conduction problem for
parabolic-type partial differential equations. In reproducing
the kernel Hilbert space settings, an inverse source identifi-
cation problem for parabolic equations is considered in [33].
In [34], Saitoh discusses comprehensively the corresponding
applications of RKHS in inverse problems.

The remainder of this paper is composed of five sections.
In Section 2, we discuss Green’s function for problem (1)
and use it to construct the reproducing kernel. In Section 3,
we state the reconstruction method of the fractional back-
ward diffusion problem by using the reproducing kernel. In
Section 4, some numerical examples are given to illustrate
the effectiveness of our method. A summary is made in the
Section 5. Finally, we list some existing knowledge about the
reproducing kernel Hilbert space in the Appendix.

2. Green’s Function and
the Reproducing Kernel

In this section, we explore Green’s function of system (1) and
use it to construct the reproducing kernel. Firstly, let function
𝐺(𝑥, 𝑡; 𝜉) be Green’s function of the system (1); that is, 𝐺
satisfies the following equations in distribution’s sense:

0𝐷
𝛾

𝑡
𝐺 (𝑥, 𝑡; 𝜉) = L𝐺 (𝑥, 𝑡; 𝜉) , 𝑥, 𝜉 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝐺 (𝑥, 0; 𝜉) = 𝛿 (𝑥 − 𝜉) , 𝑥, 𝜉 ∈ Ω,

B𝐺 (𝑥, 𝑡; 𝜉) := 𝜇𝐺 (𝑥, 𝑡; 𝜉) + 𝛽
𝜕𝐺

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(6)

It is easy to know that problem (6) is equivalent to the
following problem:

0𝐷
𝛾

𝑡
𝐺 (𝑥, 𝑡; 𝜉) −L𝐺 (𝑥, 𝑡; 𝜉) = 𝛿 (𝑥 − 𝜉) 𝛿 (𝑡) ,

𝑥, 𝜉 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝐺 (𝑥, 0; 𝜉) = 0, 𝑥, 𝜉 ∈ Ω,

B𝐺 (𝑥, 𝑡; 𝜉)

:= 𝜇𝐺 (𝑥, 𝑡; 𝜉) + 𝛽
𝜕𝐺

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(7)
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Let us employ the Laplace transform to solve the system (6).
The Laplace transform of a function 𝜑 on R+ is defined by

𝜙 (𝑠) := ∫

∞

0

𝑒
−𝑠𝑡
𝜑 (𝑡) 𝑑𝑡, Re (𝑠) > 0. (8)

The Laplace transform of the Caputo fractional derivative is
given by [10]

∫

∞

0

𝑒
−𝑠𝑡

0
𝐷

𝛾

𝑡
𝜑 (𝑡) 𝑑𝑡 = 𝑠

𝛾
𝜙 (𝑠) −

𝐽−1

∑

𝑘=0

𝑠
𝛾−𝑘−1

0𝐷
𝑘

𝑡
𝜑 (0) , (9)

where 𝐽−1 < 𝛾 ≤ 𝐽.The Caputo fractional derivative appears
more suitable to be treated by the Laplace transforming in
that it requires the knowledge of initial values of the function
and of its integer derivatives of order 𝑘 = 1, 2, . . . , 𝐽−1. By the
Laplace transforming about the time variable 𝑡, the system (6)
becomes

𝑠
𝛾
𝑔 (𝑥, 𝑠; 𝜉) − 𝑠

𝛾−1
𝛿 (𝑥 − 𝜉)

= L𝑔 (𝑥, 𝑠; 𝜉) , 𝑥, 𝜉 ∈ Ω, Re (𝑠) > 0,

𝜇𝑔 (𝑥, 𝑠; 𝜉) + 𝛽
𝜕𝑔

𝜕]
(𝑥, 𝑠; 𝜉) = 0,

(10)

where 𝑔 denotes the Laplace transform of Green’s function
𝐺. It should be noted here that the system in (1) is only
defined on 𝑡 ∈ [0, 𝑇], not on [0, +∞). When we make the
Laplace transform, some necessary preprocess, for example,
the function continuation technique, needs to be done on
the solution of (1) to satisfy the condition of the Laplace
transform. Because we do not use the value of 𝑢 for 𝑡 > 𝑇,
the condition can be satisfied easily.

Applying this technique of eigenfunction expansions to
problems (10), we have that

𝑔 (𝑥, 𝑠; 𝜉) =

∞

∑

𝑛=1

𝑠
𝛾−1

𝑠𝛾 + 𝜆2
𝑛

𝜑𝑛 (𝜉) 𝜑𝑛 (𝑥) , (11)

where 𝜑𝑛(𝑥) is the 𝑛th orthonormal eigenfunction and 𝜆𝑛 is
the corresponding eigenvalue to the Sturm-Liouville problem

L𝜑 (𝑥) + 𝑘
2
𝜑 (𝑥) = 0, (12)

subject to the boundary conditions

𝜇𝜑 (𝑥) + 𝛽
𝜕𝜑

𝜕]
= 0. (13)

Taking the Laplace inverse of (11), we have that

𝐺 (𝑥, 𝑡; 𝜉) =

∞

∑

𝑛=1

𝐸𝛾 (−𝜆
2

𝑛
𝑡
𝛾
) 𝜑𝑛 (𝜉) 𝜑𝑛 (𝑥) , (14)

where 𝐸𝛾(𝑧) is the Mittag-Leffler function defined by

𝐸𝛾 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛾𝑘 + 1)
. (15)

For the details of the Mittag-Leffler function, one can refer
to [3]. Subsequently, one can easily verify that the unique
solution of system (1) with initial value 𝑢(𝑥, 0) = 𝑓 ∈ 𝐻 can
be written as

𝑢 (𝑥, 𝑡) = ∫
Ω

𝐺 (𝑥, 𝑡; 𝜉) 𝑓 (𝜉) 𝑑𝜉, (16)

where 𝐺(𝑥, 𝑡; 𝜉) is Green’s function defined by (14). With the
aid of (16), for each 𝑓 ∈ 𝐿

2
(Ω), introducing the operator 𝐾 :

𝐿
2
(Ω) → 𝐿

2
(Ω) by

𝐾𝑓 (𝑥) := ∫
Ω

𝐺 (𝑥, 𝑇; 𝜉) 𝑓 (𝜉) 𝑑𝜉, (17)

wemay formulate the inverse problem as an integral equation
of the first kind

𝐾𝑓 (𝑥) = 𝑢 (𝑥, 𝑇) . (18)
The symmetry of Green’s function indicates that the

operator 𝐾 is self-adjoint. We proceed by giving a brief
account on the close connections of the ill posedness of
operator equation (18) with the singular value system of oper-
ator 𝐾. According to the symmetry of operator 𝐾, we only
need to discuss its eigensystem. It is easy to know that the
eigensystem of𝐾 is given by

{𝐸𝛾(−𝑇
𝛾
𝜆

2

𝑛
), 𝜑𝑛}

∞

𝑛=1
, (19)

where 𝐸𝛾(−𝑇
𝛾
𝜆

2

𝑛
) is the eigenvalue and 𝜑𝑛 is the correspond-

ing eigenfunction. We can see the decay of the eigenvalues
{𝐸𝛾(−𝑇

𝛾
𝜆

2

𝑛
)}

∞

𝑛=1
with the increase of 𝜆𝑛 from the following

asymptotic behavior of the Mittag-Leffler function 𝐸𝛾(⋅)

which can be found in [20, 21] or by the results in [3].

Lemma 1 (see [20]). Let 0 < 𝛾0 < 𝛾1 < 1. Then there exist
constants 𝐶1,±, 𝐶2,± > 0 depending only on 𝛾0 and 𝛾1 such that

𝐶1,−

𝛾
𝑒

𝑥
1/𝛾

≤ 𝐸𝛾 (𝑥) ≤
𝐶1,+

𝛾
𝑒

𝑥
1/𝛾

, ∀𝑥 ≥ 0, (20)

𝐶2,−

Γ (1 − 𝛾)

1

1 − 𝑥
≤ 𝐸𝛾 (𝑥) ≤

𝐶2,+

Γ (1 − 𝛾)

1

1 − 𝑥
, ∀𝑥 ≤ 0. (21)

These estimates are uniform for all 𝛾 ∈ [𝛾0, 𝛾1].

Next, we consider the construction of reproducing kernel
using Green’s function 𝐺(𝑥, 𝑡; 𝜉). DefineΦ(𝑥, 𝜉) := 𝐺(𝑥, 𝑡0; 𝜉)
for some 𝑡0 ∈ (0, 𝑇). The symmetry about the space variable
𝑥, 𝜉 of Green’s function indicates that Φ(⋅, ⋅) : Ω × Ω → R

is symmetric. Now that Φ is a symmetric positive definite
kernel, a unique RKHS in which the given kernel acts as the
reproducing kernel can be constructed (see [26] for details).
Henceforth we denote by 𝐻𝑡

0

the RHKS generated by the
kernel Φ(𝑥, 𝜉) = 𝐺(𝑥, 𝑡0; 𝜉). Actually, according to [26,
Chapter 10], the inner product and norm on𝐻𝑡

0

are defined
by

(𝑓, 𝑔)
𝐻
𝑡0

:=

∞

∑

𝑛=1

1

𝐸𝛾 (−𝜆
2
𝑛
𝑡
𝛾

0
)
(𝑓, 𝜑𝑛)𝐿2(Ω)

(𝑔, 𝜑𝑛)𝐿2(Ω)
,

𝑓


2

𝐻
𝑡0

:=

∞

∑

𝑛=1

1

𝐸𝛾 (−𝜆
2
𝑛
𝑡
𝛾

0
)


(𝑓, 𝜑𝑛)𝐿2(Ω)



2

,

(22)
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respectively. The space𝐻𝑡
0

is actually given by

𝐻𝑡
0

= {𝑓 ∈ 𝐿
2
(Ω) :

∞

∑

𝑛=1

1

𝐸𝛾 (−𝜆
2
𝑛
𝑡
𝛾

0
)


(𝑓, 𝜑𝑛)𝐿2(Ω)



2

< ∞} .

(23)

The second inequalities in Lemma 1 show that, as the function
of 𝜆𝑛, 1/𝐸𝛾(−𝜆

2

𝑛
𝑡
𝛾

0
) ∈ SI, where SI denotes the collection

of slowly increasing functions [26] defined by

SI := {𝑓 : R
𝑑
→ R | 𝑓 (𝑥) = 𝑂 (‖𝑥‖

𝑚

2
)

as ‖𝑥‖2 → ∞ for some 𝑚 ∈ N0} .

(24)

Hence, according to the theoretical results of [26, Chapter 10],
we assert that the space 𝐻𝑡

0

is consistent with some Sobolev
space 𝐻𝑘

(Ω) for 𝑘 > 𝑑/2 and the norm on 𝐻𝑡
0

is equivalent

to the norm ‖𝑓‖
𝐻𝑘(Ω)

= [∑
|𝛼|≤𝑘

‖𝐷
𝛼
𝑓‖

2

𝐿2(Ω)
]
1/2

.

3. Formulation of the Inverse Problem and
the Reconstruction Method

In order to find the initial temperature distribution 𝑓(𝑥),
we would like to determine the solution of minimization
problem

inf
𝑓∈𝐿2(Ω)

𝐾𝑓 − 𝑢𝜖 (⋅, 𝑇)
𝐿2(Ω)

. (25)

However, the minimization element of (25) generally is a
poor approximation of the desired initial function 𝑓 due
to the error 𝜖 in 𝑢(𝑥, 𝑇) and the ill posedness of operator
equation (18). The Tikhonov regularization replaces the
minimization problem (25) by the solution of a penalized
least-squares problem

inf
𝑓∈𝐻
𝑡0

(Ω)

𝐽𝛼 (𝑓) := inf
𝑓∈𝐻
𝑡0

(Ω)

𝐾𝑓 − 𝑢𝜖(⋅, 𝑇)


2

𝐿2(Ω)
+ 𝛼

𝑓


2

𝐻
𝑡0

(26)

with regularization parameter 𝛼 > 0. We can see from [23,
Proposition 3.11] that the convergence of any regularization
method can be arbitrarily slow in general. Actually, conver-
gence rates can be given only on some subset of 𝐻𝑡

0

, that
is, under a priori assumptions on the exact data. Here, we
assume the exact solution 𝑓 belongs to the set of source
conditions

M𝜇 := {𝑓 ∈ 𝐻𝑡
0
(Ω) : 𝑓 = (𝐾

∗
𝐾)

𝜇
𝜔, ‖𝜔‖𝐿2(Ω) ≤ 𝐸} , (27)

where 𝐸 is the a priori bound and 𝜇 > 0 is a constant.
As in [23], we know that there exists a constant 𝜇0, named
the “qualification” of the regularization method, such that
0 < 𝜇 ≤ 𝜇0. For the Tikhonov regularization method, the
qualification 𝜇0 = 1. However, according to (21), it is easy to
know thatM𝜇

2

⊂ M𝜇
1

as 𝜇1 > 𝜇2 andM1/4 = 𝐻𝑡
0

. Therefore,
here we only need consider the case of 0 < 𝜇 ≤ 1/4 for the
Tikhonov method (26).

In order to solve the minimization problem (26), some
discretization scheme needs to be given. A natural way to
obtain such discretization is to generate a finite dimensional
approximation to theminimal element of the Tikhonov func-
tional 𝐽𝛼. For this, we define a subspace 𝑉𝑁 := span{Φ(⋅, 𝜉) :
𝜉 ∈ 𝑋𝑁} ⊂ 𝐻𝑡

0

, where 𝑋𝑁 := {𝜉1, 𝜉2, . . . , 𝜉𝑁} ⊂ Ω. This
approximation by discretization is equivalent to finding the
minimal norm least-squares solution of the equation

𝐾𝑁𝑓 := 𝐾𝑃𝑁𝑓 = 𝑢𝑇, (28)

where 𝑃𝑁 : 𝐻𝑡
0

→ 𝑉𝑁 is the projection operator. Moreover,
we produce a finite dimensional approximation 𝑓𝛼,𝑁 to𝐾†

𝑢𝑇

by minimizing the Tikhonov functional (26) over the finite
dimensional space 𝑉𝑁. Denote by 𝑓𝛼,𝑁,𝜖 the minimizer of 𝐽𝛼

for noise input data 𝑢𝜖

𝑇
. It is well known that 𝑓𝛼,𝑁,𝜖 satisfy [23,

24]

𝑓𝛼,𝑁,𝜖 = (𝐾
∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝑢

𝜖

𝑇
. (29)

Provided {𝑉𝑁} is an expanding sequence, the convergence of
the Tikhonov regularized solutions is proved [24]. Takeuchi
and Yamamoto [22] show that the discretized Tikhonov
regularized solutions converge to the exact solution without
the monotonicity of 𝑉𝑁 under an a priori choice strategy for
𝑁 and 𝛼. However, one can see that, from the existing results,
in both cases, the regularized solutions𝑓𝛼,𝑁 converging to the
exact solution depends on whether 𝑟𝑁 := ‖𝐾(𝐼 − 𝑃𝑁)‖ →

0, (𝑁 → ∞). Moreover, the convergence of 𝑟𝑁 requires the
knowledge of the fill distance ℎ𝑋

𝑁
,Ω, which is defined by [26]

ℎ𝑋
𝑁

,Ω := sup
𝑥∈Ω

min
𝜉
𝑘
∈𝑋
𝑁

𝑥 − 𝜉𝑘

 . (30)

The fill distance can be interpreted in various geometrical
ways. For example, we can consider it as the radius of the
largest ball which is completely contained in Ω and which
does not contain a data site. In this sense ℎ𝑋

𝑁
,Ω describes the

largest data-site-free hole inΩ.
Here, we utilize the same proof as in [32] to give the

following lemma.

Lemma 2. Consider 𝑟𝑁 = ‖𝐾(𝐼 − 𝑃𝑁)‖ → 0 as𝑁 → ∞.

Proof. Consider

𝐾 (𝐼 − 𝑃𝑁)
 = sup

𝑓∈𝐻
𝑡0

𝑓 ̸= 𝜃

𝐾 (𝐼 − 𝑃𝑁) 𝑓
𝐿2(Ω)

𝑓
𝐻
𝑡0

. (31)

It is obvious that the kernel function Φ(𝑥, 𝑦) is sufficiently
smooth. Therefore, according to the error estimate in the
Appendix, we can find a positive constant 𝑘 such that the
estimate

𝑓 − 𝑃𝑁𝑓
𝐿∞(Ω)

≤ ℎ
𝑘

𝑋
𝑁

,Ω

𝑓
𝐻
𝑡0

(32)
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holds for all 𝑓 ∈ 𝐻𝑡
0

. Meanwhile, it is easy to know

𝐾𝑓
𝐿2(Ω)

= [∫
Ω

𝐾𝑓


2
𝑑𝑥]

1/2

= [∫
Ω


∫

Ω

𝐺 (𝑥, 𝑇; 𝜉) 𝑓 (𝜉) 𝑑𝜉



2

𝑑𝑥]

1/2

≤ 𝐶
𝑓
𝐿∞(Ω)

, ∀𝑓 ∈ 𝐻𝑡
0

,

(33)

where 𝐶 := {∫
Ω
[∫

Ω
|𝐺(𝑥, 𝑇; 𝜉)|𝑑𝜉]

2
𝑑𝑥}

1/2 is a constant. More-
over, the property of RKHS, 𝑓(𝑥) = (𝑓(⋅), Φ(𝑥, ⋅)), leads to

𝑓
𝐿∞(Ω)

≤ sup
𝑥∈Ω

√Φ (𝑥, 𝑥)
𝑓
𝐻
𝑡0

. (34)

Combining (32)–(34), we get
𝐾 (𝐼 − 𝑃𝑁) 𝑓

𝐿2(Ω)
≤ 𝑀

𝑓 − 𝑃𝑁𝑓
𝐿∞(Ω)

≤ 𝑀ℎ
𝑘

𝑋
𝑁

,Ω

𝑓
𝐻
𝑡0

,

(35)

where 𝑀 is a constant. Consequently, substituting the esti-
mate (35) into (31) and letting 𝑁 → ∞, we complete the
proof.

According to the classical results on the Tikhonov regu-
larization for linear ill-posed problem (see, e.g., [23, 24]) and
in view of (1), it holds that

𝑓 − 𝑓𝛼,𝑁,𝜖

 ≤

𝑓 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝑢


+

(𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
(𝑢 − 𝑢

𝜖

𝑇
)


≤

𝑓 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝑢

+

𝜖

2√𝛼
.

(36)

As in [35], we can estimate the noise-free term as follows:

𝑓 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝑢


=

𝑓 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝐾𝑓



≤

[𝐼 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝐾𝑁] 𝑓



+

(𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
(𝐾𝑁 − 𝐾)𝑓



=

[𝐼 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝐾𝑁] (𝐾

∗
𝐾)

𝜇
𝑤


+

(𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
(𝐾𝑁 − 𝐾)𝑓



≤

[𝐼 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝐾𝑁]

× [(𝐾
∗
𝐾)

𝜇
− (𝐾

∗

𝑁
𝐾𝑁)

𝜇
]𝑤



+

[𝐼 − (𝐾

∗

𝑁
𝐾𝑁 + 𝛼𝐼)

−1
𝐾

∗

𝑁
𝐾𝑁] (𝐾

∗

𝑁
𝐾𝑁)

𝜇
𝑤


+
1

√𝛼

𝐾 (𝐼 − 𝑃𝑁) 𝑓


≤

[(𝐾

∗
𝐾)

𝜇
− (𝐾

∗

𝑁
𝐾𝑁)

𝜇
]𝑤



+ 𝛼
𝜇
𝐸 +

1

√𝛼

𝐾 (𝐼 − 𝑃𝑁) 𝑓


≤
𝐾

∗
𝐾 − 𝐾

∗

𝑁
𝐾𝑁



𝜇
𝐸 + 𝛼

𝜇
𝐸

+
1

√𝛼

𝐾 (𝐼 − 𝑃𝑁) 𝑓


≤ 𝐶
𝐾 (𝐼 − 𝑃𝑁)



2𝜇
𝐸 + 𝛼

𝜇
𝐸

+
1

√𝛼

𝐾 (𝐼 − 𝑃𝑁) 𝑓


≤ 𝐶
𝐾 (𝐼 − 𝑃𝑁)



2𝜇
𝐸 + 𝛼

𝜇
𝐸

+
1

√𝛼

𝐾 (𝐼 − 𝑃𝑁)


2𝜇+1
,

(37)

where𝐶 is a constant. In view of the best possible error bound
being 𝜖2𝜇/(2𝜇+1), the term ‖𝐾(𝐼 − 𝑃𝑁)‖ has to be chosen such
that

𝐾 (𝐼 − 𝑃𝑁)
 ≤ 𝜖

1/(2𝜇+1)
. (38)

From the above discussions, we have the following theorem.

Theorem 3. Under assumptions (5) and (38), there holds that

𝑓 − 𝑓𝛼,𝑁,𝜖

 ≤ 𝐶𝜖
2𝜇/(2𝜇+1)

+ 𝛼
𝜇
𝐸 +

𝜖

√𝛼
. (39)

Moreover, if the regularization parameter 𝛼 is chosen by 𝛼 =

𝑂(𝜖
2/(2𝜇+1)

), one then obtains the following estimate:

𝑓 − 𝑓𝛼,𝑁,𝜖

 ≤ 𝐶𝜖
2𝜇/(2𝜇+1)

, (40)

where the constant 𝐶 does not depend on 𝜖.

4. Numerical Tests

In this section, we present numerical results to illustrate the
feasibility of the reconstruction method as described in the
previous section.

In practical situation, we only can get the scattered noisy
data of 𝑢(⋅, 𝑇), that is, {𝑢𝜖(𝑧1, 𝑇), 𝑢𝜖(𝑧2, 𝑇), . . . , 𝑢𝜖(𝑧𝑚, 𝑇)}. As
a result, instead of solving (25) we intend to deal with the
following problem:

inf
𝑓∈𝑉
𝑁

𝐾𝑓 − 𝑢𝜖(⋅, 𝑇)


2

R𝑚
+ 𝛼

𝑓


2

𝐻
𝑡0

(Ω)
, (41)

where

𝐾𝑓 − 𝑢𝜖 (⋅, 𝑇)
R𝑚

=
{

{

{

𝑚

∑

𝑗=1


𝐾𝑓 (𝑧𝑗) − 𝑢𝜖 (𝑧𝑗, 𝑇)



2}

}

}

1/2

. (42)

Since 𝑉𝑁 = span{Φ(⋅, 𝜉) | 𝜉 ∈ {𝜉1, 𝜉2, . . . , 𝜉𝑁}}, the minimizer
𝑓𝛼,𝑁,𝜖 can be written as

𝑓𝛼,𝑁,𝜖 (⋅) =

𝑁

∑

𝑘=1

�̃�𝑘Φ(⋅, 𝜉𝑘) =

𝑁

∑

𝑘=1

�̃�𝑘𝐺 (⋅, 𝑡0; 𝜉𝑘) , 𝜉𝑘 ∈ 𝑋𝑁.

(43)
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From the definition of RKHS, it follows that

𝑓𝛼,𝑁,𝜖



2

𝐻
𝑡0

=

𝑁

∑

𝑗,𝑘=1

�̃�𝑘�̃�𝑗𝐺(𝜉𝑘, 𝑡0; 𝜉𝑗) . (44)

In addition, we know that

𝐾𝐺(𝑧𝑗, 𝑡0; 𝜉𝑘)

= ∫
Ω

𝐺(𝑧𝑗, 𝑇; 𝜉) 𝐺 (𝜉, 𝑡0; 𝜉𝑘) 𝑑𝜉 = 𝐺 (𝑧𝑗, 𝑡0 + 𝑇; 𝜉𝑘)

(45)

for 𝑗 = 1, 2, . . . , 𝑚 and 𝑘 = 1, 2, . . . , 𝑁. Now, it is easy to see
that the coefficient vector �̃� = (�̃�𝑘)

𝑁

𝑘=1
satisfies the following

linear system:

(𝐴
∗
𝐴 + 𝛼𝐵) �̃� = 𝐴

∗
𝑢

𝜖

𝑇
, (46)

where 𝐴 is an𝑚 ×𝑁matrix, 𝐴∗ is the transpose of 𝐴, and 𝐵
is an𝑁 ×𝑁matrix defined by

𝐴𝑗,𝑘 = 𝐺 (𝑧𝑗, 𝑡0 + 𝑇; 𝜉𝑘) , 𝑗 = 1, . . . , 𝑚, 𝑘 = 1, . . . , 𝑁,

𝐵𝑗,𝑘 = 𝐺 (𝜉𝑗, 𝑡0; 𝜉𝑘) , 𝑗, 𝑘 = 1, . . . , 𝑁.

(47)

If we truncate Green’s function to the former 𝐽 terms, matrix
𝐵 can be decomposed to the following product:

𝐵 = 𝐿
∗
𝐿, (48)

where 𝐿∗ denotes the conjugate transpose of 𝐿 and 𝐿 is given
by

𝐿 = (𝐿𝑗,𝑘) = ([𝐸𝛾 (−𝜆
2

𝑗
𝑡
𝛾

0
)]

1/2

𝜑𝑗 (𝜉𝑘)) ,

𝑗 = 1, 2, . . . , 𝐽, 𝑘 = 1, 2, . . . , 𝑁.

(49)

Moreover, we turn to search for the minimizer �̃� of the
following functional:

𝐹𝛼 (𝜆) :=
𝐴𝜆 − 𝑢

𝜖

𝑇



2

R𝑚
+ ‖𝐿𝜆‖

2

R𝐽 .
(50)

After obtaining the vector �̃�, we substitute it into (43) and
then get the regularized approximation 𝑓𝛼,𝑁,𝜖.

In our tests, the measurement points {𝑧𝑗}
𝑚

𝑗=1
, which are

randomly generated by using the Matlab function rand(⋅),
are scattered in the domain Ω. Now we generate the final
measurement data at 𝑇 with noise by

𝑢
𝜖

𝑇
= 𝑢 (𝑧, 𝑇) + √

2

𝜋

𝜖

100
× rand (𝑧) × norm (𝑢 (𝑧, 𝑇)) , (51)

where 𝑧 = {𝑧𝑗}
𝑚

𝑗=1
are the measurement points and rand(𝑧)

generates a standard 𝑚-dimensional random vector. To

evaluate the proposed method, we compute the relative error
of the reconstructed solutions denoted by 𝑅(𝑓):

𝑅 (𝑓) =

𝑓𝛼,𝑁,𝜖 (⋅) − 𝑓 (⋅)
𝑙2

𝑓 (⋅)
𝑙2

, for 1-dimensional case,

𝑅 (𝑓) =

𝑓𝛼,𝑁,𝜖 (⋅) − 𝑓 (⋅)
∞

𝑓 (⋅)
∞

, for 2-dimensional case,

(52)

where ‖ ⋅ ‖𝑙2 denotes the 𝑙
2 norm and ‖ ⋅ ‖∞ denotes the ∞

norm. Before we proceed, it is natural that we have to deter-
mine 𝑡0, 𝑋𝑁, measurement points {𝑧𝑗}

𝑚

𝑗=1
, and observation

time𝑇 to define𝐴, 𝐵. According to the convergence theorem,
smaller ℎ𝑋

𝑁
,Ω yields better numerical solution, which implies

that we need to choose as large𝑁 as possible. However, the ill
posedness of the backward diffusion problem results in the ill
condition of the matrix 𝐴∗

𝐴, which causes us not to imple-
ment the numerical computation of the inverse of 𝐴∗

𝐴 + 𝛼𝐵

when the regularizing term 𝐵 is also ill conditioned. We
use the following one-dimensional example to depict the
change trend of the condition number of 𝐵, cond(𝐵), with
respect to𝑁.

Example 1. Consider the following Dirichlet boundary value
problem:

0𝐷
𝛾

𝑡
𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
, 𝑥 ∈ (0, 1) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑥 (1 − 𝑥) , 𝑥 ∈ [0, 1] ,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, 𝑡 ∈ [0, 1] .

(53)

The forward problem has a unique solution

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝑑𝑛𝐸𝛾 (−𝑛
2
𝜋

2
𝑡
𝛾
) sin 𝑛𝜋𝑥, (54)

where the coefficient

𝑑𝑛 = 2∫

1

0

𝑢 (𝑥, 0) sin 𝑛𝜋𝑥 𝑑𝑥

=
4

𝑛3𝜋3
[1 − (−1)

𝑛
] , 𝑛 = 1, 2, . . . .

(55)

To clarify the numerical influence of some relative param-
eters but 𝛾, we fix parameter 𝛾 = 1/2 firstly.

In this test, we fix 𝑚 = 59 firstly. In Figure 1, for the
cases of 𝑡0 ∈ {1𝑒 − 8, 1𝑒 − 9, 1𝑒 − 10}, we plot cond(𝐵) versus
the number of 𝑁 running from 10 to 100, respectively. The
displayed results in Figure 1 show that the condition number
cond(𝐵) increases exponentially as𝑁 increases. Nevertheless,
we can remove such influence of the ill condition of 𝐵
on numerical computation through modifying its small
singular value as a fixed small constant 𝜖. And in doing so,
the numerical precision does not change significantly. There-
fore, we can implement the proposed method without wor-
rying so much about the size limitation of 𝑁. For the
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Figure 1: The effect of an increasing number of𝑁 on the condition
number of 𝐵 for the cases when 𝑡

0
∈ {1𝑒 − 8, 1𝑒 − 9, 1𝑒 − 10}.

Table 1: Example 1: the relative errors with 𝑡0 = 1𝑒 − 10, 𝑁 = 59,
and𝑚 = 59.

𝜖
𝑇

1 5 10

0.1% 0.0143 0.0156 0.0177

1% 0.0295 0.0239 0.0332

2% 0.0388 0.0390 0.0387

5% 0.0483 0.0441 0.0505

10% 0.0528 0.0601 0.0703

choice of 𝑡0, we compare the computational results for
some different 𝑡0’s and 𝑇’s using exact final data 𝑢(𝑥, 𝑇) for
Example 1. For this, a preset value for the regularization
parameter 𝛼 needs to be provided. Here, we simply choose
𝛼 = 10

−5
(max(𝐴∗

𝐴)/max(𝐵)) as in [32], where max(𝐶) =
max𝑖,𝑗 𝑐𝑖𝑗 for matrix 𝐶 = (𝑐𝑖𝑗). In the following computation,
the Matlab code developed by Hansen [36, 37] is used to
obtain the approximation solution for solving the discrete
system (46). In addition, note that theMittag-Leffler function
is numerically realized by implementing the Matlab toolbox
by Podlubny [38]. In Figure 2, we plot the relative errors for
different 𝑡0, 𝑡0 = 1𝑒 − 5, 1𝑒 − 7, 1𝑒 − 10, versus the number
of 𝑁 running from 10 to 100 for 𝜖 = 0 and 𝑇 = 25. The
computational results show that, using smaller 𝑡0, we have less
relative error. In addition, we also see from Figure 2 that, with
the increase of the number of 𝑁, the relative error becomes
smaller firstly and then it remains steady after arriving to a
certain extent.

We also need to consider the effect of the number 𝐽
of truncation term of Green’s function and the number of
measurement points𝑚 on the numerical precision.With 𝑇 =

3, we display the numerical results for several𝑚 and 𝐽 as the
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Figure 2: The effect of an increasing number of 𝑁 on the relative
error for the cases when 𝑡

0
∈ {1𝑒 − 5, 1𝑒 − 7, 1𝑒 − 10} with noise-free

data.

0 1
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0.4 0.6 0.8

0.1

x

u
(x
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Figure 3: Exact solution 𝑢(𝑥, 0) and numerical solution for 𝜖 = 20%
with the final time 𝑇 = 25 and𝑚 = 59,𝑁 = 59, and 𝑡0 = 1𝑒 − 10.

noise level 𝜖 = 0 in Table 2. It can be seen that when 𝐽 and𝑚
become sufficiently large, the relative errors almost remain at
the level 10−4.

Next, in the absence of the a priori information, we only
evaluate the proposed algorithm in (46) for noisy data by
using L-curve parameter choice method instead of that in
Theorem 3. In Example 1, we fix 𝑁 = 59, 𝑚 = 59, and
𝑡0 = 1𝑒 − 10. Table 1 reports the relative errors of 𝑓𝛼,𝑁,𝜖

for different noise levels 𝜖 and final measurement times 𝑇.
These numerical results for all noisy cases are satisfactory. In
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Table 2: Example 1: the relative errors with 𝑡0 = 1𝑒 − 10,𝑁 = 59, and 𝜖 = 0%.

𝐽
𝑚

19 29 39 49 59 69
5 3.3721𝑒 − 3 3.4356𝑒 − 3 3.3769𝑒 − 3 3.3737𝑒 − 3 3.4008𝑒 − 3 3.3724𝑒 − 3

10 1.0725𝑒 − 3 1.5791𝑒 − 3 9.9642𝑒 − 4 9.9488𝑒 − 4 9.9616𝑒 − 4 9.9901𝑒 − 4

15 6.1811𝑒 − 4 3.4322𝑒 − 4 5.7376𝑒 − 4 3.2938𝑒 − 4 3.2952𝑒 − 4 3.3259𝑒 − 4

20 5.0304𝑒 − 3 3.5813𝑒 − 4 8.9305𝑒 − 4 4.7205𝑒 − 4 9.8808𝑒 − 4 5.4753𝑒 − 4

25 3.7310𝑒 − 3 4.3286𝑒 − 4 2.1742𝑒 − 4 1.5605𝑒 − 4 1.5743𝑒 − 4 1.5375𝑒 − 4

30 5.9706𝑒 − 3 2.6680𝑒 − 3 1.6015𝑒 − 4 1.5884𝑒 − 4 2.0451𝑒 − 4 1.3825𝑒 − 4
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Figure 4: The relative error versus order 𝛾 for Example 1 with 𝑇 =

0.5,𝑚 = 59,𝑁 = 59, and 𝑡0 = 1𝑒 − 10 for noise 𝜖 = 1%.
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Figure 5: Exact solution 𝑢(𝑥, 0) and numerical solution for 𝜖 ∈

{11%, 7%, 3%, 0.5%} with the final time 𝑇 = 0.1 and 𝑚 = 59,
𝑁 = 55, and 𝑡0 = 1𝑒 − 10.
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Figure 6: The illustration of the set𝑋𝑁.

Table 3: Example 3: the relative errors with 𝑡0 = 1𝑒−10 and𝑚 = 100

for 𝛾 = 1/2.

𝜖
𝑇

1 2 5 10
1% 0.0131 0.0117 0.0138 0.0199
2% 0.0118 0.0141 0.0229 0.0201
5% 0.0272 0.0192 0.0304 0.0535

general, it can been seen from Table 1 that, at the smaller 𝑇
and 𝜖, the numerical effects are better. In addition, when the
measurement time 𝑇 = 25, the exact solution 𝑢(𝑥, 0) and the
numerical solution𝑓𝛼,𝑁,𝜖 with the relative noise level 𝜖 = 20%
are displayed in Figure 3. It can be observed that the method
works even for the case of 𝑇 = 25 with noise level 𝜖 = 20% as
well.

Finally, we hope to use Example 1 to show that the
proposed algorithm is robust for order 𝛾. For varying 𝛾, we
plot the relative error versus 𝛾 in Figure 4. The displayed
results show that the numerical method is robust when 𝛾 is
varying.
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Figure 7: The comparison between the exact solution and regularized solution for Example 3.
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Figure 8: The relative error versus order 𝛾 for Example 3 with 𝑇 =

1, 𝑚 = 100, and 𝑡0 = 1𝑒 − 10 for noise 𝜖 = 1%.

Example 2. Consider the following Neumann boundary
value problem:

0𝐷
1/2

𝑡
𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
, 𝑥 ∈ (0, 𝜋) , 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 0) = cos𝑥 + cos 2𝑥, 𝑥 ∈ [0, 𝜋] ,

𝑢𝑥 (0, 𝑡) = 𝑢𝑥 (𝜋, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] .

(56)

The unique solution to (56) is given by

𝑢 (𝑥, 𝑡) = 𝐸1/2 (−𝑡
1/2
) cos𝑥 + 𝐸1/2 (−4𝑡

1/2
) cos 2𝑥. (57)

In this example, we show the numerical results for 𝑇 = 0.1

under the setting 𝑚 = 59, 𝑡0 = 1𝑒 − 10, and 𝑁 = 55.
Figure 5 shows that the proposed method is capable of giving
satisfactory results for the case of the Neumann boundary
condition.

Example 3. We consider a two-dimensional fractional dif-
fusion problem with the Dirichlet boundary value in Ω =

(0, 1) × (0, 1):

0𝐷
𝛾

𝑡
𝑢 (𝑥, 𝑦, 𝑡) = Δ𝑢, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 0) = sin𝜋𝑥 sin𝜋𝑦, 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑦, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(58)

The initial distribution 𝑢(𝑥, 𝑦, 0) is to be recovered by
using the exact solution

𝑢 (𝑥, 𝑦, 𝑡) = 𝐸𝛾 (−𝜋
2
𝑡
𝛾
) sin𝜋𝑥 sin𝜋𝑦. (59)

We firstly display the choice of the set 𝑋𝑁 in Figure 6.
According to the analysis for 1-dimensional case about the
number of 𝐽 and 𝑚, we only deal with the case of 𝑡0 = 1𝑒 −

10 and 𝑚 = 100. The measurement points {𝑥1, 𝑥2, . . . , 𝑥𝑚}

are scattered in Ω, which are generated using the Matlab
command rand. We report the relative error of 𝑓𝛼,𝑁,𝜖 for
different final times 𝑇 and noise levels 𝜖 in Table 3 for 𝛾 =

1/2. The numerical comparison between exact solution and
regularized solution is shown in Figure 7. The numerical
results show that the proposed method is acceptable for the
2-dimensional example. We also consider the influence of
varying 𝛾 on the numerical stability. The relative error versus
𝛾 is plotted in Figure 8, from which we can see that the
proposed method is robust about parameter 𝛾.



10 Abstract and Applied Analysis

5. Conclusion

In this paper, in a reproducing kernel Hilbert space setting,
we propose a numerical reconstruction method, namely, the
discretized Tikhonov regularization method, to recover the
initial temperature distribution of the backward fractional
diffusion problem. The implementation of the proposed
method is simple and easy. Numerical tests show that the
method is efficient.

Appendix

Reproducing the Kernel Hilbert Spaces and
Positive Definite Kernels

Most of the material in this appendix can be found in the
excellent monograph [26]. For the readers’ convenience we
would like to repeat the theoretical results of RKHS. We are
interested in linear vector spaces consisting of functions 𝑓 :

Ω → R defined on a connected domain Ω of R𝑑.

Definition A.1. Let 𝐻 be a Hilbert space consisting of func-
tions 𝑓 : Ω → R. 𝐻 is called a reproducing kernel Hilbert
space and a kernel Φ : Ω × Ω → R is called a reproducing
kernel for𝐻 if

(i) Φ(⋅, 𝑦) ∈ 𝐻 for all 𝑦 ∈ R𝑑,

(ii) 𝑓(𝑦) = (𝑓,Φ(⋅, 𝑦))𝐻 for all 𝑓 ∈ 𝐻 and all 𝑦 ∈ R𝑑,

where (⋅, ⋅)𝐻 is the inner product of𝐻.

The reproducing kernel of a RKHS is uniquely deter-
mined. According to [26],𝐻 is a RKHS if and only if the point
evaluation functionals are continuous, that is, 𝛿𝑦 ∈ 𝐻

∗ for all
𝑦 ∈ Ω. Also [26] discloses the connection between RKHS
and positive definite kernels. Here, we call Φ symmetric if
Φ(𝑥, 𝑦) = Φ(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Ω.

Definition A.2. A continuous symmetric Φ : Ω × Ω → R is
called positive definite on Ω ⊂ R𝑑 if, for all 𝑁 ∈ N, all sets
of pairwise distinct centers 𝑋𝑁 = {𝜉1, 𝜉2, . . . , 𝜉𝑁} ⊂ Ω; the
quadratic form

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝜆𝑗𝜆𝑘Φ(𝜉𝑗, 𝜉𝑘) > 0,

∀𝜆 := (𝜆1, 𝜆2, . . . , 𝜆𝑁)
𝑇
∈ R

𝑁
\ {0} .

(A.1)

If Φ is a symmetric positive definite kernel, then a unique
RKHS in which the given kernel acts as the reproducing
kernel can be constructed. Now, it follows from the definition
of RKHS that

(i) Φ(𝑥, 𝑦) = (Φ(⋅, 𝑥), Φ(⋅, 𝑦))𝐻 for all 𝑥, 𝑦 ∈ Ω,

(ii) ‖𝑓‖2

𝐻
= ∑

𝑁

𝑗=1
∑

𝑁

𝑘=1
𝜆𝑗𝜆𝑘Φ(𝜉𝑗, 𝜉𝑘) for all 𝑓 ∈ 𝐻 in the

form of 𝑓 = ∑
𝑁

𝑘=1
𝜆𝑘Φ(⋅, 𝜉𝑘) with 𝜉𝑘 ∈ Ω.

For a symmetric positive definite kernel, introduce integral
operator 𝑇 : 𝐿

2
(Ω) → 𝐿

2
(Ω) by

𝑇V (𝑥) := ∫
Ω

Φ(𝑥, 𝑦) V (𝑦) 𝑑𝑦, V ∈ 𝐿2
(Ω) , 𝑥 ∈ Ω. (A.2)

By [26, Proposition 10.28], 𝑇 maps 𝐿2
(Ω) continuously into

the RKHS 𝐻 and is the adjoint of the embedding operator
of the RKHS 𝐻 into 𝐿2

(Ω). For such an operator, Mercer’s
theorem [39] shows thatΦ can be represented as

Φ(𝑥, 𝑦) =

∞

∑

𝑗=1

𝜌𝑗𝜑𝑗 (𝑥) 𝜑𝑗 (𝑦) , 𝑥, 𝑦 ∈ Ω, (A.3)

where {𝜌𝑗} are the nonnegative eigenvalues and 𝜑𝑗 are the
eigenfunctions of 𝑇. This allows us to derive the final
characterization for RKHS𝐻.

Theorem A.3. Suppose Φ is a symmetric positive definite
kernel on a compact set Ω ⊆ R𝑑. Then the RKHS is given by

𝐻 =
{

{

{

𝑓 ∈ 𝐿
2
(Ω) :

∞

∑

𝑗=1

1

𝜌𝑗


(𝑓, 𝜑𝑗)𝐿2(Ω)



2

< ∞
}

}

}

(A.4)

and the inner product has the representation

(𝑓, 𝑔)
𝐻
=

∞

∑

𝑛=1

1

𝜌𝑗

(𝑓, 𝜑𝑗)𝐿2(Ω)
(𝑔, 𝜑𝑗)𝐿2(Ω)

, 𝑓, 𝑔 ∈ 𝐻. (A.5)

For a finite set of points 𝑋𝑁 := {𝜉1, 𝜉2, . . . , 𝜉𝑁} ⊂ Ω and 𝑓 ∈

H, consider the finite sum

𝑆𝑓,𝑋
𝑁
(𝑥) =

𝑁

∑

𝑗=1

𝜆𝑗Φ(𝑥, 𝜉𝑗) , 𝑥 ∈ Ω, (A.6)

as an approximation of𝑓(𝑥), which is actually the interpolant
function of 𝑓. We also can consider 𝑆𝑓,𝑋

𝑁

in the following
way: define a subspace H𝑁 := span{Φ(⋅, 𝜉) | 𝜉 ∈ 𝑋𝑁} ⊂ 𝐻.
We define the projection operator 𝑃𝑁 : H → H𝑁 ⊂ H by

𝑃𝑁 (𝑓) (𝑥) = 𝑆𝑓,𝑋
𝑁
(𝑥) , 𝑥 ∈ Ω, (A.7)

where 𝑃𝑁 is an orthogonal projection operator [26]. If the
unknown function 𝑓 belongs to the related RKHS 𝐻, the
error bound for the interpolant 𝑆𝑓,𝑋

𝑁

setup by the reproduc-
ing kernelΦ can be obtained by the following theorem.

TheoremA.4. Let domainΩ be open and bounded, satisfying
an interior cone condition. Suppose that the Φ ∈ 𝐶

2𝑘
(Ω × Ω)

is positive definite. If 𝑓 ∈ 𝐻 and ℎ𝑋
𝑁

,Ω is small enough, then

𝐷

𝛼
𝑓 (𝑥) − 𝐷

𝛼
𝑆𝑓,𝑋
𝑁


≤ 𝐶ℎ

𝑘−|𝛼|

𝑋
𝑁

,Ω

𝑓
𝐻
, 𝑥 ∈ Ω, (A.8)

where 𝐶 is a positive constant independent of 𝑥 and 𝑓 and 𝛼 ∈
N𝑑

0
with |𝛼| ≤ 𝑘. Here 𝐷𝛼 denotes a derivative of order 𝛼 =

(𝛼1, 𝛼2, . . . , 𝛼𝑑)
𝑇; that is,

𝐷
𝛼
:=

𝑑

∏

𝑘=1

𝜕
𝛼
𝑘

𝜕𝑥
𝛼
𝑘

𝑘

. (A.9)
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