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The traveling wave solutions and multiwave solutions to (3 + 1)-dimensional Jimbo-Miwa equation are investigated in this paper.
As a result, besides the exact bounded solitary wave solutions, we obtain the existence of two families of bounded periodic traveling
wave solutions and their implicit formulas by analysis of phase portrait of the corresponding traveling wave system. We derive the
exact 2-wave solutions and two families of arbitrary finite N-wave solutions by studying the linear space of its Hirota bilinear
equation, which confirms that the (3 + 1)-dimensional Jimbo-Miwa equation admits multiwave solutions of any order and is
completely integrable.

1. Introduction

Various nonlinear partial differential equations (NLPDEs)
have been proposed to model different kinds of phenomena
in natural and applied sciences such as fluid dynamics,
plasma physics, solid-state physics, optical fibers, acoustics,
mechanics, biology, and mathematical finance. Obviously, it
is of significant importance to study the solutions of such
NLPDEs from both theoretical and practical points of view.
However, the solution spaces of nonlinear equations are
infinite-dimensional and contain diverse solution structures,
so it is usually a difficult job to determine the solutions to
nonlinear NLPDEs.

A great idea to generate exact solutions of NLPDEs is to
reduce the NLPDEs into some algebraic equations by assum-
ing the solutions to have some special forms or satisfy some
solvable simpler equations. This can be seen in, for example,
the exp-function method [1], the tanh function method
[2], the homogeneous balance method [3, 4], the auxi-
liary function method [5, 6], the sech-function method [7],
the sine-cosine method [8, 9], the tanh-coth method [10],
the Jacobi elliptic function method [11], the 𝐹-expansion
method, and the extended 𝐹-expansion method [12]. Nor-
mally, it is not an easy task to solve these nonlinear algebraic

equations reduced from NLPDEs because they involve many
parameters. However, the rapid development of symbolic
computation makes it relatively easy to solve these algebraic
equations [13]. At the same time one should be very careful
when applying thesemethods as differentmethodsmight give
the same solutions. For example, solutions obtained by using
the sech-function method, the tanh-coth method, and the
exp-function method are actually the same [14, 15], because
𝑓(sech2𝑥) = 𝑓(1 − tanh2𝑥) = 𝑓(4/(𝑒

𝑥
+ 𝑒
−𝑥

)
2
), for any

function 𝑓.
Recently, the planar dynamical system theorem has been

employed to study the traveling wave solutions of NLPDEs
[16, 17]. The best advantage of this approach is that the
boundedness, periodicity, the shapes of the solutions, and
even the singular traveling wave solutions of NLPDEs can
be recognized easily from the corresponding orbits of their
phase portraits under various different parametric condi-
tions. Also the exact solutions can be derived at the same
time. It is worth pointing out that Hirota’s bilinear method
[18] is also an amazingmethod to find exact solutions to some
NLPDEs. By some independent variable transformation,
various nonlinear equations of mathematical physics are
transformed into Hirota’s bilinear equations [18, 19], which
possess some specific properties and thus might be applied
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to study the solution sets of nonlinear differential equations.
Recently, even some programs have been designed and some
algorithms have been proposed on searching for integrable
bilinear equations [20–26]. Based on Hirota’s bilinear form,
soliton solutions were obtained by the Hirota perturbation
technique [18], themultiple exp-function algorithm [27], and
other methods [28–31]. Even some generalized bilinear form
has been proposed recently by Ma [32].

The (3 + 1)-dimensional Jimbo-Miwa equation

𝑢
𝑥𝑥𝑥𝑦

+ 3(𝑢
𝑥
𝑢
𝑦
)
𝑥
+ 2𝑢
𝑦𝑡

− 3𝑢
𝑥𝑧

= 0 (1)

was first proposed and studied by Jimbo and Miwa [33].
Recently, this equation has attracted a great deal of attention
whichmainly focuses on its solutions, integrability properties
and symmetries. Ma and Lee [34] proposed a direct approach
to solve (1) by using rational function transformations. Li and
Dai [35] applied the generalized Riccati equation method to
look for its exact solutions. However, in [36], Kudryashov
and Sinelshchikov pointed out somemistakes and proved that
some solutions in [35] could bewritten in a uniform form and
thus they are not new at all.

The (3 + 1)-dimensional Jimbo-Miwa equation can be
transformed into the Hirota bilinear equation

(𝐷
3

𝑥
𝐷
𝑦
+ 2𝐷
𝑡
𝐷
𝑦
− 3𝐷
𝑥
𝐷
𝑧
) 𝑓 ⋅ 𝑓 = 0 (2)

through the dependent variable transformation 𝑢 = 2(ln𝑓)
𝑥
.

In this paper, we firstly study the bounded traveling wave
solutions of the Jimbo-Miwa equation (1) by investigating the
bifurcation and phase portraits of a planar cubic polynomial
ordinary differential equation by using the planar dynamical
system theory [16, 37]. We then explore the 1-wave and 2-
wave solutions and the infinite-dimensional linear spaces of
multiwave solutions to Jimbo-Miwa equation by employing
Hirota’s bilinear method, thus confirming that Jimbo-Miwa
equation possesses multiwave solutions of arbitrary order.

2. Traveling Wave Solutions to the
(3 + 1)-Dimensional Jimbo-Miwa Equation

To investigate the traveling wave solutions to the (3 +

1)-dimensional Jimbo-Miwa equation, we make the traveling
wave transformation 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘𝑥 + 𝑙𝑦 +

𝑚𝑧+𝑛𝑡, under which (1) is reduced to the nonlinear ordinary
differential equation

𝑘
3
𝑙
𝑑
4
𝑢

𝑑𝜉4
+ 6𝑘
2
𝑙
𝑑𝑢

𝑑𝜉

𝑑
2
𝑢

𝑑𝜉2
+ (2𝑙𝑛 − 3𝑘𝑚)

𝑑
2
𝑢

𝑑𝜉2
= 0. (3)

Integrating (1) once with respect to 𝜉 gives

𝑘
3
𝑙
𝑑
3
𝑢

𝑑𝜉3
+ 3𝑘
2
𝑙(

𝑑𝑢

𝑑𝜉
)

2

+ (2𝑙𝑛 − 3𝑘𝑚)
𝑑𝑢

𝑑𝜉
= 𝑔, (4)

where 𝑔 is an arbitrary constant. Let V = 𝑑𝑢/𝑑𝜉; then (1)
becomes

𝑘
3
𝑙
𝑑
2V

𝑑𝜉2
+ 3𝑘
2
𝑙V2 + (2𝑙𝑛 − 3𝑘𝑚) V = 𝑔, (5)

which is a second-order nonlinear ordinary differential equa-
tion. We will study the solutions of (5) by planar dynamical
system method and thus derive the traveling wave solutions
to the (3 + 1)-dimensional Jimbo-Miwa equation.

2.1. Bounded Solutions of (5). First, we rewrite (5) in a simpler
and more general form, namely,

𝑑
2V

𝑑𝜉2
= 𝑎V2 + 𝑏V + 𝑐, (6)

where 𝑎 = −3/𝑘, 𝑏 = (3𝑘𝑚 − 2𝑙𝑛)/(𝑘
3
𝑙), and 𝑐 = 𝑔/(𝑘

3
𝑙).

We now study the bifurcation and exact solutions of (6). Let
V󸀠 = 𝑤; then (6) is equivalent to the dynamical system

V󸀠 = 𝑤,

𝑤
󸀠
= 𝑎V2 + 𝑏V + 𝑐,

(7)

which has the Hamiltonian

𝐻(V, 𝑤) =
𝑤
2

2
−

𝑎

3
V3 −

𝑏

2
V2 − 𝑐V. (8)

Clearly, the phase orbits defined by the vector fields of system
(7) determine all solutions of (6). The bounded solutions of
(6) correspond to the bounded phase orbits of system (7),
which we now investigate. Along the orbit corresponding to
𝐻(V, 𝑤) = ℎ,

(
𝑑V
𝑑𝜉

)

2

=
2𝑎

3
V3 + 𝑏V2 + 2𝑐V + 2ℎ. (9)

Consequently, the general formula of the solutions of (6) can
be expressed as

∫

V

0

𝑑V

√(2𝑎V3/3) + 𝑏V2 + 2𝑐V + 2ℎ

= ±∫

𝜉

𝜉0

𝑑𝜉. (10)

However, it is not easy to know the properties and the
shapes of (10) which actually is determined by the parameters
𝑎, 𝑏, 𝑐, and ℎ. Clearly, the abscissas of equilibrium points of
system (7) are the zeros of 𝑎V2 + 𝑏V + 𝑐 = 0. Obviously,
the system has no bounded orbits when 𝑏

2
− 4𝑎𝑐 < 0. We

suppose that 𝑏
2
− 4𝑎𝑐 > 0 in order to study the bounded

orbits of system (7). Denoting V
±
= (−𝑏±√𝑏2 − 4𝑎𝑐)/2𝑎, then

𝐸
+
(V
+
, 0) and 𝐸

−
(V
−
, 0) are two equilibrium points of system

(7). By the theory of planar dynamical system, we know that
𝐸
+
is a saddle point and 𝐸

−
is a center. Denote ℎ

±
= 𝐻(V

±
, 0),

and, by careful computation, we get

ℎ
±
=

(𝑏
2
− 4𝑎𝑐) (−𝑏 ± √𝑏2 − 4𝑎𝑐) + 2𝑎𝑏𝑐

12𝑎2
. (11)

Obviously, ℎ
−

< ℎ < ℎ
+
. 𝐻(V, 𝑤) = ℎ

+
corresponds to

homoclinic orbits, and 𝐻(V, 𝑤) = ℎ
−
corresponds to the

center𝐸
−
and𝐻(V, 𝑤) = ℎ, where ℎ

+
< ℎ < ℎ

−
corresponds to

a family of closed orbits surrounding the center𝐸
−
, which are

surrounded by a homoclinic orbit. That is to say, (10) defines
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bounded solutions if and only if ℎ
+

≤ ℎ < ℎ
−
. To be exact,

(10) defines a family of periodic solutions when ℎ
+
< ℎ < ℎ

−
.

When ℎ = ℎ
+
, (10) defines a bounded solution which

approaches V
+
as 𝜉 goes to infinity. Actually,

2𝑎

3
V3 + 𝑏V2 + 2𝑐V + 2ℎ

+
=

2𝑎

3
(V − V

+
)
2

(V − V
0
) , (12)

where V
0
= −(𝑏 + 2√𝑏2 − 4𝑎𝑐)/2𝑎, so (10) can be reduced to

∫

V

V0

𝑑V

(V − V
+
)√𝑎 (V − V

0
)

= √
2

3
(𝜉 − 𝜉

0
) , (13)

from which we can get the exact solution as

V = V
+
− (V
+
− V
0
) sech2(√

𝑎 (V
+
− V
0
)

6
(𝜉 − 𝜉

0
)) . (14)

By further simplification, (14) becomes

V = V
+
−

3√𝑏2 − 4𝑎𝑐

2𝑎
sech2 [1

2
(𝑏
2
− 4𝑎𝑐)

1/4

(𝜉 − 𝜉
0
)] , (15)

which is an exact bounded solution of (5).
Thus, we have the following lemma.

Lemma 1. The general second-order ODE (6) has bounded
solutions if and only if 𝑏2 − 4𝑎𝑐 > 0. The bounded solutions
can be expressed as (10) in an implicit form. In fact, provided
ℎ
−
< ℎ < ℎ

+
, (10) defines a family of bounded periodic solutions

and ℎ = ℎ
+
defines a bounded solution which approaches V

+
as

𝜉 goes to infinity and can be expressed explicitly as (15), where
V
+
= (−𝑏 + √𝑏2 − 4𝑎𝑐)/2𝑎 and ℎ

±
is defined by (11).

2.2. Bounded Traveling Wave Solutions to the (3 + 1)-Dimen-
sional Jimbo-Miwa Equation. According to the analysis and
results in Section 2.1, we know that (5) has only two kinds of
bounded solutions, among which one is a family of periodic
solutions and another is a family of solutions approaching a
fixed number as 𝜉 goes to infinity. Note that what we aim to
study is the bounded traveling wave solutions to the (3 + 1)-
dimensional Jimbo-Miwa equation which are determined by
V = 𝑑𝑢/𝑑𝜉 and V satisfies (5). So we have to investigate how
we can get the bounded solutions to (3) from the bounded
solution of (5).

Clearly, 𝑢(𝜉) = ∫
𝜉

𝜉0

V(𝜉)𝑑𝜉, and V(𝜉) can be expressed im-
plicitly as (10). By the geometry meaning of the integral and
the properties of the solutions of (5), we get the travelingwave
solutions to the (3+1)-dimensional Jimbo-Miwa equation. To
get the bounded solution, we choose the integral constant 𝑔
to be 0; that is, 𝑐 = 0 in (15), and so

𝑢 (𝜉) = 𝑔 −
3√|𝑏|

𝑎
tanh[

√|𝑏|

2
(𝜉 − 𝜉

0
)] ; (16)

that is,

𝑢 (𝜉) = 𝑔 − 𝑘√

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑙𝑛 − 3𝑘𝑚

𝑘3𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× tanh[
1

2
√

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑙𝑛 − 3𝑘𝑚

𝑘3𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜉 − 𝜉
0
)] ,

(17)

which is a family of exact bounded kink traveling wave
solutions to the (3 + 1)-dimensional Jimbo-Miwa equation,
where 𝑔 is an arbitrary constant.

However, we may not get bounded solutions from the
family of periodic solutions of (5). It is easy to see that if
V(𝜉) is a periodic solution of (5), then 𝑢(𝜉) = ∫

𝜉

𝜉0

V(𝜉)𝑑𝜉 is

bounded if and only if ∫𝑇
0
V(𝜉)𝑑𝜉 = 0, where 𝑇 is the period

of the function V(𝜉). Recall that the period of the function
V(𝜉) which is defined by (10) with ℎ

−
< ℎ < ℎ

+
continuously

depends on the parameters 𝑎, 𝑏, 𝑐, and ℎ. So ∫
𝑇

0
V(𝜉)𝑑𝜉 contin-

uously depends on the parameters 𝑎, 𝑏, 𝑐, and ℎ too. Let
𝑉(𝑎, 𝑏, 𝑐, ℎ) = ∫

𝑇

0
V(𝜉)𝑑𝜉; then 𝑉(𝑎, 𝑏, 𝑐, ℎ) is a continuous

function of 𝑎, 𝑏, 𝑐, and ℎ. We now prove the existence of the
root of 𝑉(𝑎, 𝑏, 𝑐, ℎ) = 0 to get the existence of the bounded
periodic traveling wave solutions to the (3 + 1)-dimensional
Jimbo-Miwa equation.

By the theory of planar dynamical system, when ℎ
−
< ℎ <

ℎ
+
,

2𝑎

3
V3 + 𝑏V2 + 2𝑐V + 2ℎ

+
=

2𝑎

3
(V − V

1
) (V − V

2
) (V − V

3
) ,

(18)

where V
1
> V
+

> V
2
> V
−

> V
3
> V
0
in the case of 𝑎 > 0 and

V
0
> V
1
> V
−
> V
2
> V
+
> V
3
in the case of 𝑎 < 0. The periodic

solution satisfies V
+

> V
2

> V(𝜉) > V
3

> V
0
when 𝑎 > 0

and V
0

> V
1

> V(𝜉) > V
2

> V
+
when 𝑎 < 0. Clearly, V

0
> 0

when 𝑎 > 0 and 0 > 𝑏 > −4√𝑎𝑐/3. So V(𝜉) > 0 and thus
𝑉(𝑎, 𝑏, 𝑐, ℎ) > 0 when 𝑎 > 0 and 0 > 𝑏 > −4√𝑎𝑐/3. However,
V(𝜉) < V

+
< 0 and thus𝑉(𝑎, 𝑏, 𝑐, ℎ) < 0when 𝑎 > 0, 𝑐 > 0, and

𝑏 > 0. There must exist at least one zero of 𝑉(𝑎, 𝑏, 𝑐, ℎ) = 0 in
the region 𝑎 > 0 of the parameter space since 𝑉(𝑎, 𝑏, 𝑐, ℎ) is a
continuous function of 𝑎, 𝑏, 𝑐, and ℎ.The same happens in the
region 𝑎 < 0 of the parameter space. So, we know that there
exist at least two families of bounded periodic traveling wave
solutions to the (3 + 1)-dimensional Jimbo-Miwa equation.
Thus we have the following theorem.

Theorem 2. The (3 + 1)-dimensional Jimbo-Miwa equation
has two types of bounded traveling wave solutions as given
below.

(1) The (3 + 1)-dimensional Jimbo-Miwa equation has a
family of exact bounded kink traveling wave solutions

𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝑔 − 𝑘√

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑙𝑛 − 3𝑘𝑚

𝑘3𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× tanh[
1

2
√

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑙𝑛 − 3𝑘𝑚

𝑘3𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 + 𝑛𝑡 − 𝜉
0
)] ,

(19)

where 𝜉
0
and 𝑔 are two arbitrary constants.
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(2) The (3 + 1)-dimensional Jimbo-Miwa equation has at
least two families of bounded periodic traveling wave
solutions which are determined implicitly by (10) and
𝑢(𝜉) = ∫

𝜉

𝜉0

V(𝜉)𝑑𝜉, where 𝜉 = 𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 + 𝑛𝑡 and 𝜉
0

is an arbitrary constant.

3. 𝑁-Wave Solutions Linear Subspace of the
(3 + 1)-Dimensional Jimbo-Miwa Equation

In this section we study the 𝑁-wave solutions to the (3 +

1)-dimensional Jimbo-Miwa equation by the linear super-
position principle to Hirota bilinear equations which was
proposed firstly by Ma and Fan [30].

Let wave variables 𝜂
𝑖
= ki ⋅ x, 1 ≤ 𝑖 ≤ 𝑁, where ki =

{𝑘
1,𝑖
, 𝑘
2,𝑖
, 𝑘
3,𝑖
, 𝑘
4,𝑖
}
𝑇, x = {𝑥, 𝑦, 𝑧, 𝑡}

𝑇. According to the linear
superposition principle to Hirota bilinear equations [30, 31],
we can get the following sufficient and necessary conditions
for span{𝑒𝜂1 , . . . , 𝑒𝜂𝑁} being a subspace of the Hirota bilinear
equation (2).

Theorem3. Let ki = {𝑘
1,𝑖
, 𝑘
2,𝑖
, 𝑘
3,𝑖
, 𝑘
4,𝑖
}
𝑇, x = {𝑥, 𝑦, 𝑧, 𝑡}

𝑇, and
𝑓
𝑁

= ∑
𝑁

𝑖=1
𝜖
𝑖
𝑒
ki⋅x. Then, for any constants {𝜖

𝑖
, 1 ≤ 𝑖 ≤ 𝑁}, 𝑓

𝑁

solves the Hirota bilinear equation (2) if and only if

(𝑘
1,𝑖

− 𝑘
1,𝑗

)
3

(𝑘
2,𝑖

− 𝑘
2,𝑗

) + 2 (𝑘
4,𝑖

− 𝑘
4,𝑗

) (𝑘
2,𝑖

− 𝑘
2,𝑗

)

− 3 (𝑘
1,𝑖

− 𝑘
1,𝑗

) (𝑘
3,𝑖

− 𝑘
3,𝑗

) = 0

(20)

for any 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.

It follows from Theorem 3 that 𝑓
𝑁

is an 𝑁-wave solu-
tion to the Hirota bilinear equation (2) if (20) holds for
any 1 ≤ 𝑗 < 𝑖 ≤ 𝑁. However, the corresponding
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 2(𝑓

𝑁
)
𝑥
/𝑓
𝑁

is not necessarily an 𝑁-wave
solution to the (3 + 1)-dimensional Jimbo-Miwa equation (1)
even if {𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑁
} is linear independent. In fact,

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 2
(𝑓
𝑁
)
𝑥

𝑓
𝑁

= 2
∑
𝑁

𝑖=1
𝜖
𝑖
𝑘
1,𝑖
𝑒
ki ⋅x

∑
𝑁

𝑖=1
𝜖
𝑖
𝑒ki⋅x

= 2
𝑘
1,1

+ ∑
𝑁

𝑖=2
𝑘
1,𝑖
𝜖
󸀠

𝑖
𝑒
(ki−k1)⋅x

1 + ∑
𝑁

𝑖=2
𝜖
󸀠

𝑖
𝑒(ki−k1)⋅x

= 2𝑘
1,1

+ 2
∑
𝑁

𝑖=2
𝑘
󸀠

1,𝑖
𝜖
󸀠

𝑖
𝑒
k󸀠i ⋅x

1 + ∑
𝑁

𝑖=2
𝜖
󸀠

𝑖
𝑒
k󸀠i ⋅x

,

(21)

where 𝜖
󸀠

𝑖
= 𝜖
𝑖
/𝜖
1
, 𝑘󸀠
1,𝑖

= 𝑘
1,𝑖

− 𝑘
1,1

and k󸀠i = ki − k1. Obviously,
the function above is an 𝑁 − 1-wave solution to the (3 +

1)-dimensional Jimbo-Miwa equation (1) if {𝜂󸀠
𝑖
, 𝑖 = 2, 3, . . . ,

𝑁} is independent; that is, {k󸀠i , 𝑖 = 2, . . . , 𝑁} is linear
independent, solves (20), and satisfies the dispersion rela-
tions. Here, k󸀠i = {𝑘

󸀠

1,𝑖
, 𝑘
󸀠

2,𝑖
, 𝑘
󸀠

3,𝑖
, 𝑘
󸀠

4,𝑖
}
𝑇 satisfies the dispersion

relations meaning that 𝑘󸀠3
1,𝑖
𝑘
󸀠

2,𝑖
+ 2𝑘
󸀠

4,𝑖
𝑘
󸀠

2,𝑖
− 3𝑘
󸀠

1,𝑖
𝑘
󸀠

3,𝑖
= 0 holds.

Recall that the goal of this paper is to investigate the
multiwave solutions to the (3 + 1)-dimensional Jimbo-Miwa
equation. Combining the conclusion of Theorem 3 with the

analysis above, we can now state the following theorem on
the𝑁-wave solution to the (3 + 1)-dimensional Jimbo-Miwa
equation (1).

Theorem 4. Let ki = {𝑘
1,𝑖
, 𝑘
2,𝑖
, 𝑘
3,𝑖
, 𝑘
4,𝑖
}
𝑇, x = {𝑥, 𝑦, 𝑧, 𝑡}

𝑇,
1 ≤ 𝑖 ≤ 𝑁. For any constants 𝑔 and {𝜖

𝑖
, 1 ≤ 𝑖 ≤ 𝑁}, suppose

that

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 2
∑
𝑁

𝑖=1
𝑘
1,𝑖
𝜖
𝑖
𝑒
ki⋅x

1 + ∑
𝑁

𝑖=1
𝜖
𝑖
𝑒ki ⋅x

+ 𝑔. (22)

Then 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is an 𝑁-wave solution to the (3 +

1)-dimensional Jimbo-Miwa equation (1), if {k1, k2, . . . , kN} is
a linear independent solution set of equation (20) satisfying the
dispersion relations.

To get other𝑁-wave solutions to the (3 + 1)-dimensional
Jimbo-Miwa equation, we study the linear independent solu-
tion sets to (20) which are required to satisfy the dispersion
relations. Actually, (20) is a system possessing 𝑁(𝑁 + 1)/2

coupled equations (plus the dispersion conditions). It is
usually not so easy to get the solutions of (20). Fortunately,
the number of the equations is 1 when 𝑁 = 1 and it is 3
when𝑁 = 2, which might make it easy to get the solutions in
these two cases. Clearly, 1-wave solution is the traveling wave
solution. Let us check what kinds of traveling wave solutions
we can obtain by the Hirota bilinear method first.

For the case 𝑁 = 1 in (22), we only need to find the
independent solutions k1 of the dispersion relation

(𝑘
1,1

)
3

𝑘
2,1

+ 2𝑘
4,1

𝑘
2,1

− 3𝑘
1,1

𝑘
3,1

= 0. (23)

That is to say, we get the traveling wave solutions to the
(3+1)-dimensional Jimbo-Miwa equation from (20). Suppose
that 𝑙
𝑖
, 𝑖 = 1, 2, 3, 4 are any arbitrary constants, 𝑙

1
̸= 0 and 𝑙

3
=

𝑙
2
(𝑙
3

1
+2𝑙
4
)/(3𝑙
1
); then k1 = {𝑙

1
, 𝑙
2
, 𝑙
3
, 𝑙
4
}
𝑇 satisfies (23), and thus

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 2
𝑙
1
𝜖𝑒

ki ⋅x

1 + 𝜖𝑒ki⋅x
+ 𝑔, (24)

where 𝜖 and 𝑔 are any arbitrary constants, is a 1-wave solu-
tion, that is, travelingwave solution to the (3+1)-dimensional
Jimbo-Miwa equation.

By further computation, (24) could be rewritten as

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑔 −
2𝑙
1

1 + 𝜖𝑒ki⋅x
. (25)

For 𝜖 > 0,
2𝑙
1

1 + 𝜖𝑒ki ⋅x
= 𝑙
1
[1 − tanh 1

2
(ki ⋅ x + 𝜉0)] (26)

and, for 𝜖 < 0,
2𝑙
1

1 + 𝜖𝑒ki ⋅x
= 𝑙
1
[1 − coth 1

2
(ki ⋅ x + 𝜉0)] , (27)

where 𝜉
0
= ln |𝜖| is an arbitrary constant. Consequently, (24)

can be rewritten as

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑔 − 𝑙
1
tanh 1

2
(ki ⋅ x + 𝜉0) , (28)

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑔 − 𝑙
1
coth 1

2
(ki ⋅ x + 𝜉0) . (29)



Abstract and Applied Analysis 5

By parametric transformation, we can find that the traveling
wave solution (28) is exactly the same as solution (19) in
Section 2. However, (29) is a family of unbounded solutions.

3.1. 2-Wave Solutions to the (3 + 1)-Dimensional Jimbo-Miwa
Equation. To obtain the 2-wave solutions to the (3 +

1)-dimensional Jimbo-Miwa equation, we now study the
solutions to the following coupled algebraic equations:

𝑘
3

1,1
𝑘
2,1

+ 2𝑘
4,1

𝑘
2,1

− 3𝑘
1,1

𝑘
3,1

= 0,

𝑘
3

1,2
𝑘
2,2

+ 2𝑘
4,2

𝑘
2,2

− 3𝑘
1,2

𝑘
3,2

= 0,

(𝑘
1,2

− 𝑘
1,1

)
3

(𝑘
2,2

− 𝑘
2,1

) + 2 (𝑘
4,2

− 𝑘
4,1

) (𝑘
2,2

− 𝑘
2,1

)

−3 (𝑘
1,2

− 𝑘
1,1

) (𝑘
3,2

− 𝑘
3,1

) = 0.

(30)

From (30), we get

𝑘
3,1

=
𝑘
3

1,1
+ 2𝑘
4,1

3𝑘
1,1

𝑘
2,1

, (31)

𝑘
3,2

=
𝑘
3

1,2
+ 2𝑘
4,2

3𝑘
1,2

𝑘
2,2

, (32)

𝑘
3,2

− 𝑘
3,1

=
(𝑘
1,2

− 𝑘
1,1

)
3

+ 2 (𝑘
4,2

− 𝑘
4,1

)

3 (𝑘
1,2

− 𝑘
1,1

)

× (𝑘
2,2

− 𝑘
2,1

) .

(33)

Clearly, from (31)–(33), we have

(𝑘
1,2

− 𝑘
1,1

)
3

+ 2 (𝑘
4,2

− 𝑘
4,1

)

3 (𝑘
1,2

− 𝑘
1,1

)
(𝑘
2,2

− 𝑘
2,1

)

=
𝑘
3

1,2
+ 2𝑘
4,2

3𝑘
1,2

𝑘
2,2

−
𝑘
3

1,1
+ 2𝑘
4,1

3𝑘
1,1

𝑘
2,1

,

(34)

from which we get

𝑘
2,2

= ( ((𝑘
3

1,1
+ 2𝑘
4,1

) (𝑘
1,2

− 𝑘
1,1

)

−𝑘
1,1

[(𝑘
1,2

− 𝑘
1,1

)
3

+ 2 (𝑘
4,2

− 𝑘
4,1

)])

× ((𝑘
3

1,2
+ 2𝑘
4,2

) (𝑘
1,2

− 𝑘
1,1

)

−𝑘
1,2

[(𝑘
1,2

− 𝑘
1,1

)
3

+ 2 (𝑘
4,2

− 𝑘
4,1

)])
−1

)

×
𝑘
1,1

𝑘
1,2

𝑘
2,1

.

(35)

Now, substituting (35) into (32), we obtain

𝑘
3,2

= ( ((𝑘
3

1,1
+ 2𝑘
4,1

) (𝑘
1,2

− 𝑘
1,1

)

−𝑘
1,1

[(𝑘
1,2

− 𝑘
1,1

)
3

+ 2 (𝑘
4,2

− 𝑘
4,1

)])

× ((𝑘
3

1,2
+ 2𝑘
4,2

) (𝑘
1,2

− 𝑘
1,1

)

−𝑘
1,2

[(𝑘
1,2

− 𝑘
1,1

)
3

+ 2 (𝑘
4,2

− 𝑘
4,1

)])
−1

)

×

(𝑘
3

1,2
+ 2𝑘
4,2

)

3𝑘
2

1,2

𝑘
1,1

𝑘
2,1

.

(36)

Consequently, we get the 2-wave solutions to the (3 +

1)-dimensional Jimbo-Miwa equation and we can now state
the following theorem.

Theorem 5. Let ki = {𝑘
1,𝑖
, 𝑘
2,𝑖
, 𝑘
3,𝑖
, 𝑘
4,𝑖
}
𝑇, x = {𝑥, 𝑦, 𝑧, 𝑡}

𝑇, 𝑖 =
1, 2. For any constants 𝑔 and {𝜖

𝑖
, 𝑖 = 1, 2},

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 2
𝑘
1,1

𝜖
1
𝑒
k1 ⋅x + 𝑘

1,2
𝜖
2
𝑒
k2 ⋅x

1 + 𝜖
1
𝑒k1 ⋅x + 𝜖

2
𝑒k2 ⋅x

+ 𝑔 (37)

is a 2-wave solution to the (3 + 1)-dimensional Jimbo-Miwa
equation (1), where 𝑘

1,1
, 𝑘
1,2
, 𝑘
2,1
, 𝑘
4,1
, and 𝑘

4,2
are arbitrary

constants and the constants 𝑘
3,1
, 𝑘
2,2
, and 𝑘

3,2
are determined

by (31), (35), and (36), respectively.

3.2. 𝑁-Wave Solutions to the (3 + 1)-Dimensional Jimbo-
Miwa Equation. To get the 𝑁-wave solutions to the (3 +

1)-dimensional Jimbo-Miwa equation, we need to investigate
the independent solution set {k1, k2, . . . , kN} of (20), which
satisfies the dispersion relations. Generally, it is very difficult
to get the solution if 𝑁 is greater than 3 in which case the
number of (20) is𝑁(𝑁+ 1)/2. However, it might be possible
to solve these equations by assuming some special relations
between these parameters [30, 31].

Following the idea in [30, 31], suppose that ki =

{𝑎
1
𝑘
𝑛1

𝑖
, 𝑎
2
𝑘
𝑛2

𝑖
, 𝑎
3
𝑘
𝑛3

𝑖
, 𝑎
4
𝑘
𝑛4

𝑖
}
𝑇, 𝑖 = 1, 2, . . . , 𝑁, where 𝑎

󸀠

𝑗
𝑠 and

𝑛
󸀠

𝑗
𝑠, 𝑗 = 1, 2, 3, 4, are parameters to be determined later. To

get the possible solutions to (20), we choose (𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑛
4
) to

be (1, 2, 4, 3) or (1, −1, 1, 3).
For the casewhen (𝑛

1
, 𝑛
2
, 𝑛
3
, 𝑛
4
) = (1, 2, 4, 3), substituting

ki = {𝑎
1
𝑘
𝑛1

𝑖
, 𝑎
2
𝑘
𝑛2

𝑖
, 𝑎
3
𝑘
𝑛3

𝑖
, 𝑎
4
𝑘
𝑛4

𝑖
}
𝑇, 𝑖 = 1, 2, . . . , 𝑁, into (20)

gives

𝑎
3

1
𝑎
2
(𝑘
𝑖
− 𝑘
𝑗
)
3

(𝑘
2

𝑖
− 𝑘
2

𝑗
) + 2𝑎

4
𝑎
2
(𝑘
3

𝑖
− 𝑘
3

𝑗
) (𝑘
2

𝑖
− 𝑘
2

𝑗
)

−3𝑎
1
𝑎
4
(𝑘
𝑖
− 𝑘
𝑗
) (𝑘
4

𝑖
− 𝑘
4

𝑗
) = 0.

(38)

Obviously, (38) holds for arbitrary values of 𝑘
𝑖
and 𝑘

𝑗
if and

only if 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑎

4
satisfy the two equations

2𝑎
2
(𝑎
3

1
+ 2𝑎
4
) − 3𝑎

1
𝑎
3
= 0,

𝑎
2
(𝑎
3

1
− 4𝑎
4
) = 0.

(39)

Solving (39), we get 𝑎
4

= (1/4)𝑎
3

1
, 𝑎
3

= 𝑎
2

1
𝑎
2
, where

𝑎
1
and 𝑎

2
are free parameters. It is easy to see that ki =

{𝑎
1
𝑘
𝑖
, 𝑎
2
𝑘
2

𝑖
, 𝑎
3
𝑘
4

𝑖
, 𝑎
4
𝑘
3

𝑖
}
𝑇, 𝑖 = 1, 2, . . . , 𝑁, satisfy the dis-

persion condition. Consequently, we know that the (3 +

1)-dimensional Jimbo-Miwa equation (1) possesses 𝑁-wave
solution for any arbitrary positive integer 𝑁. Thus, we have
the following theorem.
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Theorem 6. For any arbitrary positive integer 𝑁 and for any
different 𝑘

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

= 2𝑎
1

∑
𝑁

𝑖=1
𝑘
𝑖
𝜖
𝑖
𝑒
𝑎1𝑘𝑖𝑥+𝑎2𝑘

2

𝑖
𝑦+𝑎
2

1
𝑎2𝑘
4

𝑖
𝑧+(1/4)𝑎

3

1
𝑘
3

𝑖
𝑡

1 + ∑
𝑁

𝑖=1
𝜖
𝑖
𝑒
𝑎1𝑘𝑖𝑥+𝑎2𝑘

2

𝑖
𝑦+𝑎
2

1
𝑎2𝑘
4

𝑖
𝑧+(1/4)𝑎

3

1
𝑘
3

𝑖
𝑡
+ 𝑔

(40)

is a family of 𝑁-wave solutions to the (3 + 1)-dimensional
Jimbo-Miwa equation (1), where 𝜖

𝑖
, 𝑖 = 1, 2, . . . , 𝑁, and 𝑎

1
and

𝑎
2
are arbitrary constants.

For the case when (𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑛
4
) = (1, −1, 1, 3), substitut-

ing ki = {𝑎
1
𝑘
𝑖
, 𝑎
2
𝑘
−1

𝑖
, 𝑎
3
𝑘
𝑖
,𝑎
4
𝑘
3

𝑖
}
𝑇, 𝑖 = 1, 2, . . . , 𝑁, into (20)

gives

𝑎
3

1
𝑎
2
(𝑘
𝑖
− 𝑘
𝑗
)
3

(𝑘
−1

𝑖
− 𝑘
−1

𝑗
) + 2𝑎

4
𝑎
2
(𝑘
3

𝑖
− 𝑘
3

𝑗
) (𝑘
−1

𝑖
− 𝑘
−1

𝑗
)

− 3𝑎
1
𝑎
4
(𝑘
𝑖
− 𝑘
𝑗
) (𝑘
3

𝑖
− 𝑘
3

𝑗
) = 0.

(41)

Clearly, (41) holds for arbitrary values of 𝑘
𝑖
and 𝑘
𝑗
if and only

if 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑎

4
satisfy

2𝑎
2
(𝑎
3

1
− 𝑎
4
) − 3𝑎

1
𝑎
3
= 0,

𝑎
2
(𝑎
3

1
+ 2𝑎
4
) = 0.

(42)

Solving (42), we obtain 𝑎
4

= −𝑎
3

1
/2, 𝑎
3

= 𝑎
2

1
𝑎
2
, where 𝑎

1

and 𝑎
2
are free parameters. Unfortunately, unlike the case

when (𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑛
4
) = (1, 2, 4, 3) above, it is easy to see that

ki = {𝑎
1
𝑘
𝑖
, 𝑎
2
𝑘
−1

𝑖
, 𝑎
3
𝑘
𝑖
, 𝑎
4
𝑘
3

𝑖
}
𝑇, 𝑖 = 1, 2, . . . , 𝑁, do not satisfy

the dispersion condition any more. However, if we let k0 =

{𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}
𝑇, then, for any 𝑖 = 1, 2, . . . , 𝑁,

k󸀠
𝑖
= k
𝑖
− k0 = {𝑎

1
(𝑘
𝑖
− 1) , 𝑎

2
(𝑘
−1

𝑖
− 1) ,

𝑎
3
(𝑘
𝑖
− 1), 𝑎

4
(𝑘
3

𝑖
− 1)}
𝑇

(43)

satisfies the dispersion relations because {k0, k1, k2, . . . , kN} is
a solution set of (20).

Consequently, besides the family of𝑁-wave solution (40),
the (3+1)-dimensional Jimbo-Miwa equation (1) has another
group of𝑁-wave solution for any arbitrary positive integer𝑁
and so we have the following theorem.

Theorem 7. For any arbitrary positive integer 𝑁 and for any
different 𝑘

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

=2𝑎
1

∑
𝑁

𝑖=1
(𝑘
𝑖
− 1) 𝜖
𝑖
𝑒
𝑎1(𝑘𝑖−1)𝑥+𝑎2(𝑘

−1

𝑖
−1)𝑦+𝑎

2

1
𝑎2(𝑘𝑖−1)𝑧−(1/2)𝑎

3

1
(𝑘
3

𝑖
−1)𝑡

1 +∑
𝑁

𝑖=1
𝜖
𝑖
𝑒
𝑎1(𝑘𝑖−1)𝑥+𝑎2(𝑘

−1

𝑖
−1)𝑦+𝑎

2

1
𝑎2(𝑘𝑖−1)𝑧−(1/2)𝑎

3

1
(𝑘
3

𝑖
−1)𝑡

+𝑔

(44)

is a family of 𝑁-wave solutions to the (3 + 1)-dimensional
Jimbo-Miwa equation (1), where 𝜖

𝑖
, 𝑖 = 1, 2, . . . , 𝑁, and 𝑎

1
and

𝑎
2
are arbitrary constants.

4. Concluding Remarks

The dynamical system theory was employed to study the
traveling wave solutions of the (3 + 1)-dimensional Jimbo-
Miwa equation (1).Themultiwave solutionswere investigated
by studying the linear space of the corresponding Hirota
bilinear equation. The exact formulas of two families of mul-
tiwave solutions of any order were obtained as well. Wazwaz
[38] employed Hirota’s bilinear method and derived 1-wave
and 2-wave solutions to this equation and stated that it is
completely integrable and it admitsmultiple-soliton solutions
of any order. In this paper we explicitly obtained two different
families of 𝑁-wave solutions to the (3 + 1)-dimensional
Jimbo-Miwa equation (1) given by (40) and (44) and this
confirmed the statement given in [38] that the Jimbo-Miwa
equation (1) admits multiple-wave solutions of any order 𝑁.
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