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This paper is concerned with the robust quantized state-feedback controller design problem for a class of continuous-time
Markovian jump linear uncertain systems with general uncertain transition rates and input quantization. The uncertainties under
consideration emerge in both system parameters and mode transition rates. This new uncertain model is more general than the
existing ones and can be applicable to more practical situations because each transition rate can be completely unknown or only
its estimate value is known. Based on linear matrix inequalities, the quantized state-feedback controller is formulated to ensure
the closed-loop system is stable in mean square. Finally, a numerical example is presented to verify the validity of the developed
theoretical results.

1. Introduction

Markovian jump systems have been serving as popular tools
for analyzing plants subjected to random abrupt changes,
such as random component failures, abrupt environment
changes, disturbance, and changes in the interconnections
of subsystems; see [1–11] and the references therein. In
practice, transition rates are difficult to precisely estimate
the transition rates. Therefore, developing the analysis and
synthesis method for MJS with uncertain transition rates
is of great importance. Bounded uncertain transition rates
(BUTRs) are introduced when the precise values of the tran-
sition rates are unknown, but their bounds (upper bounds
and lower bounds) are known; see, for example, [12–14].
However, in some practical cases, to obtain the bound of
every TR is difficult or even impossible. Zhang et al. [15–18]
proposed another description for the uncertain TRs, which
is partly unknown TRs (PUTRs). In this description, some
of the TRs can be unknown. This model also simulates
researchers’ interests (see, e.g., [19–22]). In this PUTRmodel,
every transition rate is either exactly known or completely

unknown, which may be too restrictive in many practical
situations.Therefore, Guo andWang [23] proposed generally
uncertain TRs to deal with a more practical situation where
the transition rates can be completely unknown or only its
bound is known.

On the other hand, in many modern engineering prac-
tices, information processing devices, such as analog-to-
digital and digital-to-analog converters, have been widely
used and brought about some advantages, such as lower
cost, reduced weight and power, and simple installation
and maintenance. However, server deterioration of system
performance or even system instability may also be induced.
Signal quantization should be fully considered in such cases.
Nowadays, the feedback stabilization problem is considered
by utilizing dynamic quantizers [24–26] and static quantizers
[27–36]. The stabilization problem for single-input discrete
Markov jump linear systems via mode dependent quantized
state feedback is addressed by Xiao et al. in [37], but the
transition rates are assumed to be completely known. Ye et al.
[38, 39] considered𝐻
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with unknown transition rates and input quantization. To
the best of our knowledge, no result has been presented
for control design of delayed continuous-time Markov jump
linear uncertain systems with generally unknown transition
rates and input signal quantization.

In this paper, robust quantized state-feedback stabi-
lization for delayed Markovian jump linear systems with
generally uncertain transition rates is addressed. In Section 2,
the considered systems are formulated and the purposes of
the paper are stated. In Section 3, the main results are derived
via linear matrix inequalities. The structure of the controller
consists of two parts. The nonlinear part is provided to
eliminate the effect of input quantization. The linear part is
obtained by solving LMIs to deal with model uncertainties
and unknown transition rates. Section 4 concludes the paper.

Notation. In this paper, R𝑛 and R𝑛×𝑚 denote the 𝑛-
dimensional Euclidean space and the set of all 𝑛 × 𝑚

real matrices, respectively. N+ represents the set of positive
integers. The notation 𝑃 > 0 (𝑃 ≥ 0) means that 𝑃 is a
real symmetric and positive-definite (semi-positive-definite)
matrix. For notation (Ω,F, 𝑃), Ω represents the space, F is
the 𝜎-algebra of subsets of the sample space, and 𝑃 is the
probability measure on F. 𝐸{⋅} stands for the mathematical
expectation. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation

Consider the following stochastic system with Markovian
jump parameters, defined on a complete probability space
(Ω,F, 𝑃):

�̇� (𝑡) = 𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐴

𝑑
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏)

+ (𝐵 (𝑟
𝑡
) + Δ𝐵 (𝑟

𝑡
)) 𝑞 (𝑢 (𝑡)) , 𝑡 ≥ 0,

𝑥
0
= 𝑥 (0) , 𝑟

0
= 𝑟 (0) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the system state. The mode jumping
process {𝑟

𝑡
, 𝑡 ≥ 0} is a right-continuous Markov process on

the probability space taking values in a finite state space S =

{1, 2, . . . , 𝑠} with the mode transition probabilities:

𝑃𝑟 {𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , if 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , if 𝑖 = 𝑗,

(2)

where Δ > 0, lim
Δ→0

(𝑜(Δ)/Δ) = 0, and 𝜋
𝑖𝑗
≥ 0(𝑖, 𝑗 ∈ S, 𝑗 ̸= 𝑖)

is the TR from mode 𝑖 at time 𝑡 to mode 𝑗 at time 𝑡 + Δ, and

𝜋
𝑖𝑖
= −

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
. (3)

for each 𝑖 ∈ S.
The mode TR matrix Π ≜ (𝜋

𝑖𝑗
) is considered to be

generally uncertain. For instance, the TR matrix for system
(1) with 𝑠 operation modes may be expressed as

[
[
[
[

[

�̂�
11
+ Δ
11

? �̂�
13
+ Δ
13

⋅ ⋅ ⋅ ?

? ? �̂�
23
+ Δ
23

⋅ ⋅ ⋅ �̂�
2𝑠
+ Δ
2𝑠

...
...

... d
...

? �̂�
𝑠2
+ Δ
𝑠2

? ⋅ ⋅ ⋅ �̂�
𝑠𝑠
+ Δ
𝑠𝑠

]
]
]
]

]

, (4)

where �̂�
𝑖𝑗
and Δ

𝑖𝑗
∈ [−𝛿

𝑖𝑗
, 𝛿
𝑖𝑗
](𝛿
𝑖𝑗
≥ 0) represent the estimate

value and estimate error of the uncertain TR 𝜋
𝑖𝑗
, respectively,

where �̂�
𝑖𝑗
and 𝛿

𝑖𝑗
are known. “?” represents the complete

unknownTR, whichmeans its estimate value �̂�
𝑖𝑗
and estimate

error bound are unknown. For notational clarity, for all 𝑖 ∈
S, the set 𝑈𝑖 denotes 𝑈

𝑖
= 𝑈
𝑖

𝑘
∪ 𝑈
𝑖

𝑢𝑘
with 𝑈

𝑖

𝑘
≜ {𝑗 :

the estimate value of 𝜆
𝑖𝑗
is known for 𝑗 ∈ S}, 𝑈𝑖

𝑢𝑘
≜ {𝑗 :

the estimate value of 𝜆
𝑖𝑗
is unknown for 𝑗 ∈ S}. Moreover,

if 𝑈𝑖
𝑘

̸=Ø, it is further described as 𝑈
𝑖

𝑘
= {𝑘
𝑖

1
, 𝑘
𝑖

2
, . . . , 𝑘

𝑖

𝑚
},

where 𝑘
𝑖

𝑚
∈ N+ represent the 𝑚th bound-known element

with the index 𝑘𝑖
𝑚
in the 𝑖th row ofmatrixΠ. According to the

properties of the TRs (e.g., 𝜆
𝑖𝑗
≥ 0 (∀𝑖, 𝑗 ∉ S, 𝑖 ̸= 𝑗) and 𝜆

𝑖𝑖
=

−∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝜆
𝑖𝑗
), we assume that the known estimate values of

the TRs are well defined. That is, the following assumptions
hold.

Assumption 1. If 𝑈
𝑖

𝑘
= S, then �̂�

𝑖𝑗
− 𝛿
𝑖𝑗

≥ 0 (∀𝑗 ∈

S, 𝑗 ̸= 𝑖), �̂�
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
≤ 0, and 𝛿

𝑖𝑖
= ∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝛿
𝑖𝑗
> 0.

Assumption 2. If 𝑈𝑖
𝑘

̸=S, and 𝑖 ∈ 𝑈
𝑖

𝑘
, then �̂�

𝑖𝑗
− 𝛿
𝑖𝑗
≥ 0 (∀𝑗 ∈

𝑈
𝑖

𝑘
, 𝑗 ̸= 𝑖), �̂�

𝑖𝑖
+ 𝛿
𝑖𝑖
≤ 0 and ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
≤ 0.

Assumption 3. If 𝑈𝑖
𝑘

̸=S and 𝑖 ∉ 𝑈
𝑖

𝑘
, then �̂�

𝑖𝑗
− 𝛿
𝑖𝑗
≥ 0 (∀𝑗 ∈

𝑈
𝑖

𝑘
).

Remark 4. The above assumption is reasonable, since it is the
direct result from the properties of the TRs

(e.g., 𝜋
𝑖𝑗
≥ 0 (∀𝑖, 𝑗 ∉ S, 𝑖 ̸= 𝑗) , 𝜋

𝑖𝑖
= −

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
) . (5)

The above description about uncertain TRs is more general
than either the BUTR or PUTR models. To show this, we
rewrite the two uncertain models as follows: BUTR model
(see [12–14]):

[
[
[
[

[

�̂�
11
+ Δ
11

�̂�
12
+ Δ
12

⋅ ⋅ ⋅ �̂�
1𝑠
+ Δ
1𝑠

�̂�
21
+ Δ
21

�̂�
22
+ Δ
22

⋅ ⋅ ⋅ �̂�
2𝑠
+ Δ
2𝑠

...
... d

...
�̂�
𝑠1
+ Δ
𝑠1

�̂�
𝑠2
+ Δ
𝑠2

⋅ ⋅ ⋅ �̂�
𝑠𝑠
+ Δ
𝑠𝑠

]
]
]
]

]

(6)

with �̂�
𝑖𝑗
−𝛿
𝑖𝑗
≥ 0 (∀𝑗 ∈ S, 𝑗 ̸= 𝑖), �̂�

𝑖𝑖
= −∑

𝑠

𝑗=1,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
, and 𝛿

𝑖𝑖
=

−∑
𝑠

𝑗=1,𝑗 ̸= 𝑖
𝛿
𝑖𝑗
. PUTR model (see [15–22]):

[
[
[
[

[

𝜋
11

? 𝜋
13

⋅ ⋅ ⋅ ?

? ? 𝜋
23

⋅ ⋅ ⋅ 𝜋
2𝑠

...
...

... d
...

? 𝜋
𝑠2

? ⋅ ⋅ ⋅ 𝜋
𝑠𝑠

]
]
]
]

]

. (7)

Obviously, if 𝑈𝑖
𝑘
Ø, ∀𝑖 ∈ S, the GUTR model (4) will reduce

to the BUTR model (6); if 𝛿
𝑖𝑗

= 0, ∀𝑖 ∈ S, ∀𝑗 ∈ 𝑈
𝑖

𝑘
, the

GUTR model (4) will reduce to the PUTR model (7). The
GUTR model (4) is more general than the other two models;
therefore, it is more practicable.
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For convenience, the system matrices 𝐴
𝑖
≜ 𝐴 (𝑟

𝑡
= 𝑖),

𝐴
𝑑𝑖
≜ 𝐴
𝑑
(𝑟
𝑡
= 𝑖), and 𝐵

𝑖
≜ 𝐵 (𝑟

𝑡
= 𝑖), Δ𝐵

𝑖
≜ Δ𝐵 (𝑟

𝑡
= 𝑖), 𝑖 ∈

S, are known matrix functions of the Markovian process.
Then system (1) can be described by

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏)

+ (𝐵
𝑖
+ Δ𝐵
𝑖
) 𝑞 (𝑢 (𝑡)) , 𝑡 ≥ 0,

𝑥
0
= 𝑥 (0) , 𝑟

0
= 𝑟 (0) .

(8)

The following assumptions are assumed to be valid.

Assumption 5. Δ𝐵
𝑖
= 𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡)𝐹
𝑖
and |𝑀

𝑖
Ξ
𝑖
(𝑡)𝐹
𝑖
|
∞

≤ 𝜓
𝑖
,

where 𝑀
𝑖
and 𝐹

𝑖
are known constant matrices with appro-

priate dimensions, Ξ
𝑖
(𝑡) is time-varying uncertain matrix

satisfying Ξ
𝑖
(𝑡)Ξ
𝑇

𝑖
(𝑡) ≤ 𝐼, and parameter 𝜓

𝑖
satisfies 0 ≤ 𝜓

𝑖
<

1.

In addition, the quantizer 𝑞(⋅) is defined by an operator
function round (⋅) which rounds to the nearest integer; that
is,

𝑞 (𝑢 (𝑡)) = 𝜇 ⋅ round(𝑢 (𝑡)
𝜇

) , (9)

where 𝜇(> 0) is called a quantizing level of the quantizer.
In computer-based control systems, the value of 𝜇 depends
on the sampling accuracy and is known a priori. 𝑞(⋅) is the
uniformquantizer with the fixed level𝜇. Define 𝑒

𝜇
= 𝑞(𝑢(𝑡))−

𝑢(𝑡); since each component of 𝑒
𝜇
is bounded by the half of the

quantizing level 𝜇, we have |𝑒
𝜇
|
∞

≤ 𝜇/2.
The objective of this paper is to design a state-feedback

control law

𝑢 (𝑡) = 𝐾
𝑖
𝑥 + 𝑢
𝑖𝑐
, 𝐾

𝑖
= 𝐾 (𝑟

𝑡
) , when 𝑟

𝑡
= 𝑖 (10)

such that the resulting closed-loop system is stochastically
stable. The nonlinear part of the controller 𝑢

𝑖𝑐
is designed

against the effect of signal quantization, and the linear
part 𝐾

𝑖
𝑥 is proposed to deal with model uncertainties and

unknown transition rates.

Lemma 6 (Petersen, 1987). Given a symmetric matrix Π

and matrices 𝑀, 𝑁 with appropriate dimensions, then Π +

𝑀𝐹(𝑡)𝑁 +𝑁
𝑇
𝐹
𝑇
(𝑡)𝑀
𝑇
< 0 for all 𝐹(𝑡) satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ≤

𝐼, if and only if there exists a scalar 𝜀 > 0 such that the following
inequality holds:

Π + 𝜀𝑀𝑀
𝑇
+ 𝜀
−1
𝑁
𝑇
𝑁 < 0. (11)

Lemma 7. Given any real number 𝜀 and any matrix 𝑄, the
matrix inequality

𝜀 (𝑄 + 𝑄
𝑇
) ≤ 𝜀
2
𝑇 + 𝑄𝑇

−1
𝑄
𝑇 (12)

holds for any matrix 𝑇 > 0.

3. Stochastic Stability Analysis

The goal of this section is to develop an analysis result of
stability for system (1) with general uncertain TRs.
Theorem 8. Consider that uncertain Markovian jump system
(8)with a GUTRmatrix (4) is stochastically stable if there exist
matrices 𝑃

𝑖
> 0 (𝑖 ∈ S), 𝑇

𝑖𝑗
> 0 (𝑖 ∉ 𝑈

𝑖

𝑘
, 𝑗 ∈ 𝑈

𝑖

𝑘
), 𝑉
𝑖𝑗𝑙

>

0 (𝑖, 𝑗 ∈ 𝑈
𝑖

𝑘
, 𝑈
𝑖

𝑢𝑘
̸=Ø, 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
),𝑊
𝑖𝑗
> 0 (𝑖, 𝑗 ∈ 𝑈

𝑖

𝑘
, 𝑈
𝑖

𝑢𝑘
= Ø),

and 𝑄 > 0 such that the following LMIs are feasible for 𝑖 =

1, 2, . . . , 𝑠.
If 𝑖 ∉ 𝑈

𝑖

𝑘
,

[
[
[
[
[
[

[

Γ
11

𝑃
𝑖
𝐴
𝑑𝑖

𝑃
𝑖𝑘
𝑖

1

− 𝑃
𝑖
⋅ ⋅ ⋅ 𝑃
𝑖𝑘
𝑖

𝑚

− 𝑃
𝑖

∗ −𝑄 0 ⋅ ⋅ ⋅ 0

∗ ∗ −𝑇
𝑖𝑘
𝑖

1

⋅ ⋅ ⋅ 0

∗ ∗ ∗ d
...

∗ ∗ ∗ ∗ −𝑇
𝑖𝑘
𝑖

𝑚

]
]
]
]
]
]

]

< 0 (13)

𝑃
𝑖
− 𝑃
𝑗
≥ 0 , ∀𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖. (14)

If 𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈𝑖

𝑢𝑘
̸=Ø, for one 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
,

[
[
[
[
[
[

[

Θ
11

𝑃
𝑖
𝐴
𝑑𝑖

𝑃
𝑘
𝑖

1

− 𝑃
𝑙
⋅ ⋅ ⋅ 𝑃
𝑘
𝑖

𝑚

− 𝑃
𝑙

∗ −𝑄 0 ⋅ ⋅ ⋅ 0

∗ ∗ −𝑉
𝑖𝑘
𝑖

1
𝑙

⋅ ⋅ ⋅ 0

∗ ∗ ∗ d
...

∗ ∗ ∗ ∗ −𝑉
𝑖𝑘
𝑖

𝑚
𝑙

]
]
]
]
]
]

]

< 0. (15)

If 𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈𝑖

𝑢𝑘
= Ø,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ
11

𝑃
𝑖
𝐴
𝑑𝑖

𝑃
1
− 𝑃
𝑖
⋅ ⋅ ⋅ 𝑃
𝑖−1

− 𝑃
𝑖
𝑃
𝑖+1

− 𝑃
𝑖
⋅ ⋅ ⋅ 𝑃
𝑠
− 𝑃
𝑖

∗ −𝑄 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

∗ ∗ −𝑊
𝑖1

⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

∗ ∗ ∗ d
...

...
...

...

∗ ∗ ∗ ∗ −𝑊
𝑖(𝑖−1)

0
...

...

∗ ∗ ∗ ∗ ∗ −𝑊
𝑖(𝑖+1)

...
...

∗ ∗ ∗ ∗ ∗ ∗ d
...

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑊
𝑖𝑠

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (16)
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where

Γ
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝜎
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖

+
1

𝜎
𝑖

𝐾
𝑇

𝑖
𝐹
𝑇

𝑖
𝐹
𝑖
𝐾
𝑖
+ ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

𝛿
2

𝑖𝑗

4
𝑇
𝑖𝑗
+ 𝑄

Θ
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖

+ 𝜎
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

1

𝜎
𝑖

𝐾
𝑇

𝑖
𝐹
𝑇

𝑖
𝐹
𝑖
𝐾
𝑖

+ ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
) + ∑

𝑗∈𝑈
𝑖

𝑘

𝛿
2

𝑖𝑗

4
𝑉
𝑖𝑗𝑙
+ 𝑄

Ψ
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖

+ 𝜎
𝑖
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+

1

𝜎
𝑖

𝐾
𝑇

𝑖
𝐹
𝑇

𝑖
𝐹
𝑖
𝐾
𝑖

+ ∑

𝑗∈S,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈S,𝑗 ̸= 𝑖

𝛿
2

𝑖𝑗

4
𝑊
𝑖𝑗
+ 𝑄.

(17)

Then the controller designed as

𝑢 (𝑡) = 𝐾
𝑖
𝑥 + 𝑢
𝑖𝑐 (18)

can drive the state trajectory to the origin asymptotically, where
𝐾
𝑖

= 𝑌
𝑖
𝑋
−1

𝑖
, 𝑃
𝑖

= 𝑋
−1

𝑖
, and 𝑢

𝑖𝑐
= (1 + 𝜓)𝑢/(2(1 −

𝜓)) sign(𝑥𝑇𝑃
𝑖
𝐵
𝑖
).

Proof. Take the Lyapunov function candidate 𝑉 = 𝑥
𝑇
𝑃
𝑖
𝑥 +

∫
𝑡

𝑡−𝜏
𝑥
𝑇
(𝛼)𝑄𝑥(𝛼)𝑑𝛼; then along the system trajectory of plant

(8), the weak infinitesimal operator J𝑥
𝑎
[⋅] of the process

𝑥(𝑡), 𝑟
𝑡
, 𝑡 ≥ 0, for plant (8) at the point 𝑡, 𝑥, 𝑖 is as follows:

J
𝑥

𝑎
[𝑉] = �̇�

𝑇
𝑃
𝑖
𝑥 + 𝑥
𝑇
𝑃
𝑖
�̇� + 𝑥
𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥

= [𝐴
𝑖
𝑥 + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏)

+ (𝐵
𝑖
+ Δ𝐵
𝑖
) (𝐾
𝑖
𝑥 + 𝑢
𝑖𝑐
+ 𝑒
𝜇
)]
𝑇

𝑃
𝑖
𝑥

+ 𝑥
𝑇
𝑃
𝑖
[𝐴
𝑖
𝑥 + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏)

+ (𝐵
𝑖
+ Δ𝐵
𝑖
) (𝐾
𝑖
𝑥 + 𝑢
𝑖𝑐
+ 𝑒
𝜇
)]

+ 𝑥
𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥

= 𝑥
𝑇
[𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)𝐾
𝑖

+ 𝐾
𝑇

𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)
𝑇

𝑃
𝑖
+ 𝑄] 𝑥

+ 𝑥
𝑇
(𝑡 − 𝜏)𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝑥 + 𝑥
𝑇
𝑃
𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏)

− 𝑥
𝑇
(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏)

+ 2𝑥
𝑇
𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
) (𝑢
𝑖𝑐
+ 𝑒
𝜇
) + 𝑥
𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥.

(19)
According to Assumption 2, 𝑢

𝑖𝑐
inTheorem 8, and Lemma 6,

one can obtain that
2𝑥
𝑇
𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
) (𝑢
𝑖𝑐
+ 𝑒
𝜇
)

= 2𝑥
𝑇
𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2𝑥
𝑇
𝑃
𝑖
Δ𝐵
𝑖
(𝑢
𝑖𝑐
+ 𝑒
𝜇
) + 2𝑥

𝑇
𝑃
𝑖
𝐵
𝑖
𝑒
𝜇

= 2𝑥
𝑇
𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2𝑥
𝑇
𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡) 𝐹
𝑖
(𝑢
𝑖𝑐
+ 𝑒
𝜇
) + 2𝑥

𝑇
𝑃
𝑖
𝐵
𝑖
𝑒
𝜇

≤ 2𝑥
𝑇
𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2


𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1

𝑀𝑖Ξ𝑖 (𝑡) 𝐹𝑖
∞

(
𝑢𝑖𝑐

∞
+
𝜇

2
)

+ 2

𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1

𝜇

2

= 2𝑥
𝑇
𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ 2


𝑥
𝑇
𝑃
𝑖
𝐵
𝑖
𝐵
𝑖

1
𝜓(

𝑢𝑖𝑐
∞

+
𝜇

2
)

+

𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1
𝜇

≤ 2𝑥
𝑇
𝑃
𝑖
𝐵
𝑖
𝑢
𝑖𝑐
+ (1 + 𝜓)


𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1
𝜇

+ 2𝜓

𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1

𝑢𝑖𝑐
∞

= −
(1 + 𝜓) 𝜇

1 − 𝜓


𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1
+ (1 + 𝜓)


𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1
𝜇

+
𝜓 (1 + 𝜓) 𝜇

1 − 𝜓


𝑥
𝑇
𝑃
𝑖
𝐵
𝑖

1
= 0.

(20)

It follows from (19) and (20) that

J
𝑥

𝑎
[𝑉] ≤ 𝑥

𝑇
[𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝑃
𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)𝐾
𝑖

+ 𝐾
𝑇

𝑖
(𝐵
𝑖
+ Δ𝐵
𝑖
)
𝑇

𝑃
𝑖
+ 𝑄] 𝑥

+ 𝑥
𝑇
(𝑡 − 𝜏) 𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝑥 + 𝑥
𝑇
𝑃
𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏)

− 𝑥
𝑇
(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏) + 𝑥

𝑇

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
𝑥.

(21)

Since Δ𝐵
𝑖
= 𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡)𝐹
𝑖
, we introduce

Φ
𝑖
≜ 𝑥
𝑇
[𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖

+ 𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡) 𝐹
𝑖
𝐾
𝑖
+𝐾
𝑇

𝑖
𝐹
𝑇

𝑖
Ξ
𝑇

𝑖
(𝑡)𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄] 𝑥

+ 𝑥
𝑇
(𝑡 − 𝜏) 𝐴

𝑇

𝑑𝑖
𝑃
𝑖
𝑥 + 𝑥
𝑇
𝑃
𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏)

− 𝑥
𝑇
(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏) .

(22)
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Then, the above inequality can be rewritten as

J
𝑥

𝑎
[𝑉] ≤ Φ

𝑖
+ 𝑥
𝑇[

[

N

∑

𝑗=1

𝜆
𝑖𝑗
𝑃
𝑗
]

]

𝑥. (23)

Three cases should be considered.

Case I (𝑖 ∉ 𝑈
𝑖

𝑘
). In this case, note that ∑

𝑗∈𝑈
𝑖

𝑢𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
= −𝜋
𝑖𝑖
−

∑
𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
and 𝜋

𝑖𝑗
≥ 0, 𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖; then from (23), we have

J
𝑥

𝑎
[𝑉] ≤ Φ

𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝜋
𝑖𝑖
𝑃
𝑖
+ ∑

𝑗∈𝑈
𝑖

𝑢𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑃
𝑖
]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝜋
𝑖𝑖
𝑃
𝑖

+ (−𝜋
𝑖𝑖
− ∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
)𝑃
𝑖
]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

(�̂�
𝑖𝑗
+ Δ
𝑖𝑗
) (𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥.

(24)

There, note that 𝜋
𝑖𝑗
= �̂�
𝑖𝑗
+ Δ
𝑖𝑗
for 𝑗 ∈ 𝑈

𝑖

𝑘
.

On the other hand, in view of Lemma 7, we have

∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

= ∑

𝑗∈𝑈
𝑖

𝑘

[
1

2
Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) +

1

2
Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[(
1

2
Δ
𝑖𝑗
)

2

𝑇
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑇
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)] .

(25)

From (24) and (25), we have

J
𝑥

𝑎
[𝑉] ≤ Φ

𝑖
+ 𝑥
𝑇

×

{

{

{

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑇
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

}

}

}

𝑥.

(26)

Hence,J𝑥
𝑎
[𝑉] < 0 holds if

H = [
A
11

𝑃
𝑖
𝐴
𝑑𝑖

∗ −𝑄
] < 0, (27)

where

A
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡) 𝐹
𝑖
𝐾
𝑖

+ 𝐾
𝑇

𝑖
𝐹
𝑇

𝑖
Ξ
𝑇

𝑖
(𝑡)𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑇
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)] .

(28)

Let

A
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝑄

+ ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑇
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)] ;

(29)

then we have

H = [
A
11

𝑃
𝑖
𝐴
𝑑𝑖

∗ −𝑄
] + [

𝑃
𝑖
𝐵
𝑖
𝑀
𝑖

0
]Ξ
𝑖
(𝑡) [𝐹𝑖𝐾𝑖 0]

+ [𝐹𝑖𝐾𝑖 0]
𝑇

Ξ
𝑇

𝑖
(𝑡) [

𝑃
𝑖
𝐵
𝑖
𝑀
𝑖

0
]

𝑇

< 0,

(30)

which is equivalent to (13) by Schur complement.

Case II (𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
̸=Ø). There must be an 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
such

that 𝑃(𝑙) − 𝑃(𝑗) ≥ 0, ∀𝑗 ∈ 𝑈
𝑖

𝑢𝑘
. We define

J
𝑥

𝑎
[𝑉] ≤ Φ

𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜆
𝑖𝑗
𝑃 (𝑗) + ∑

𝑗∈𝑈
𝑖

𝑢𝑘

𝜆
𝑖𝑗
𝑃 (𝑙)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝑃
𝑗
− (∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
)𝑃
𝑙
]

]

𝑥
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= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

(�̂�
𝑖𝑗
+ Δ
𝑖𝑗
) (𝑃
𝑗
− 𝑃
𝑙
)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
) + ∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)]

]

𝑥.

(31)

By using Lemma 7 again, we have

∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)

= ∑

𝑗∈𝑈
𝑖

𝑘

[
1

2
Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
) +

1

2
Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[(
1

2
Δ
𝑖𝑗
)

2

𝑉
𝑖𝑗𝑙
+ (𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑉
𝑖𝑗𝑙
+ (𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
)] .

(32)

From (31) and (32), we have

J
𝑥

𝑎
[𝑉] ≤ Φ

𝑖
+ 𝑥
𝑇

×

{

{

{

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑉
𝑖𝑗𝑙
+ (𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
)]

}

}

}

𝑥.

(33)

Hence,J𝑥
𝑎
[𝑉] < 0 holds if

A = [
A
11

𝑃
𝑖
𝐴
𝑑𝑖

∗ −𝑄
] < 0, (34)

where

A
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡) 𝐹
𝑖
𝐾
𝑖

+ 𝐾
𝑇

𝑖
𝐹
𝑇

𝑖
Ξ
𝑇

𝑖
(𝑡)𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑉
𝑖𝑗𝑙
+ (𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
)] .

(35)

Let

A
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝑄

+ ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑉
𝑖𝑗𝑙
+ (𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
)] ;

(36)

then we have

A = [
A
11

𝑃
𝑖
𝐴
𝑑𝑖

∗ −𝑄
] + [

𝑃
𝑖
𝐵
𝑖
𝑀
𝑖

0
] Ξ
𝑖
(𝑡) [𝐹𝑖𝐾𝑖 0]

+ [𝐹𝑖𝐾𝑖 0]
𝑇

Ξ
𝑇

𝑖
(𝑡) [

𝑃
𝑖
𝐵
𝑖
𝑀
𝑖

0
]

𝑇

< 0,

(37)

which is equivalent to (14) by Schur complement.

Case III (𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
= Ø). In this case,

J
𝑥

𝑎
[𝑉] ≤ Φ

𝑖
+ 𝑥
𝑇[

[

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝜆
𝑖𝑗
𝑃 (𝑗) + 𝜆

𝑖𝑖
𝑃 (𝑖)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝑃
𝑗
− (∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
)𝑃
𝑖
]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

(�̂�
𝑖𝑗
+ Δ
𝑖𝑗
) (𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥

= Φ
𝑖
+ 𝑥
𝑇[

[

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥.

(38)

In view of Lemma 7, we have

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

=

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

[
1

2
Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) +

1

2
Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

≤

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

[(
1

2
Δ
𝑖𝑗
)

2

𝑊
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
)𝑊
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

≤

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

[

𝛿
2

𝑖𝑗

4
𝑊
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
)𝑊
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)] .

(39)
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From (38) and (39), we have

J
𝑥

𝑎
[𝑉] ≤ Φ

𝑖
+ 𝑥
𝑇

×

{

{

{

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

[

𝛿
2

𝑖𝑗

4
𝑊
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
)

× 𝑊
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) ]

}

}

}

𝑥.

(40)

Hence,J𝑥
𝑎
[𝑉] < 0 holds if

R = [
R
11

𝑃
𝑖
𝐴
𝑑𝑖

∗ −𝑄
] < 0, (41)

where

R
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝑀
𝑖
Ξ
𝑖
(𝑡) 𝐹
𝑖
𝐾
𝑖

+ 𝐾
𝑇

𝑖
𝐹
𝑇

𝑖
Ξ
𝑇

𝑖
(𝑡)𝑀
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑊
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
)𝑊
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)] .

(42)

Let

R
11

= 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+ 𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐵
𝑖
𝐾
𝑖
+ 𝑄

+ ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+ ∑

𝑗∈𝑈
𝑖

𝑘

[

𝛿
2

𝑖𝑗

4
𝑊
𝑖𝑗
+ (𝑃
𝑗
− 𝑃
𝑖
)𝑊
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)] ;

(43)

then we have

R = [
R
11

𝑃
𝑖
𝐴
𝑑𝑖

∗ −𝑄
] + [

𝑃
𝑖
𝐵
𝑖
𝑀
𝑖

0
] Ξ
𝑖
(𝑡) [𝐹𝑖𝐾𝑖 0]

+ [𝐹𝑖𝐾𝑖 0]
𝑇

Ξ
𝑇

𝑖
(𝑡) [

𝑃
𝑖
𝐵
𝑖
𝑀
𝑖

0
]

𝑇

< 0,

(44)

which is equivalent to (15) by Schur complement. The proof
is completed.

Remark 9. As mentioned in Section 2, if, 𝑈𝑖
𝑢𝑘

= Ø ∀𝑖 ∈ S,
then GUTR matrix reduces to BUTR one. Similarly, if, 𝛿

𝑖𝑗
=

0 ∀𝑗 ∈ 𝑈
𝑖

𝑘
, ∀𝑖 ∈ S, GUTR matrix reduces to PUTR one.

Therefore, Theorem 8 can also be applicable to the MJSs with
BUTRs or PUTRs. Because the BUTR methods require the
estimate of every rate to be known, such methods cannot be

applied to the GUTR model. By replacing the uncertain TRs
with unknown ones, the generally uncertain TR matrix can
become partly known TR matrix, so that the PUTR methods
can be applied to GUTR model. However, such methods are
inevitably conservative for GUTRs since the information of
the TRs’ estimates cannot be utilized.

4. Conclusions

The stability problems for a class of Markovian jump linear
systems with generally uncertain transition rates are investi-
gated in this paper. The considered systems are more general
than the systems with bounded uncertain transition rates or
partly unknown transition rates, which can be viewed as two
special cases of the systems we tackled here. The LMI-based
stochastic stability condition for the underlying systems is
derived. There are some possible directions to extend the
proposed model and method. Tracking control and fault-
tolerant control are two important research areas due to their
wide application in the practical systems [40–46]. However,
for the tracking control and fault-tolerant control, no research
has focused on the case of general uncertain transition rates.
Therefore, it is worth further extending the proposedmethod
to deal with these problems.
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