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We prove a generalized result on the existence of equilibria for a monotone set-valued map defined on noncompact domain and
take its values in an order of topological vector space. As consequence, we give a new variational inequality.

1. Introduction

In the literature, the notion of an equilibrium point (or
equilibrium problem) has been firstly introduced by Kara-
mardian in [1] and Allen in [2]. By using the well-known
KKM principle, they proved that for a real valued function
𝑓 defined on a product of two sets 𝑋 and 𝑌, there exists an
element 𝑥 of 𝑋, which will be called an equilibrium point,
satisfying for all 𝑦 ∈ 𝑋:

𝑓 (𝑥, 𝑦) ≥ 0. (1)

The classical hypothesis used to prove this type of
equilibrium result concerns the convexity and compactness
of the domain 𝑋, the monotonicity, the convexity, and the
continuity of 𝑓 and all extensions of this result obtained in
the literature are about these hypotheses. In a recentwork (see
[3]), this result was extended to the noncompact case by using
a coercivity type condition on a bifunction 𝑓. In this context
the function 𝑓 is supposed to take its values in a topological
vector space endowed with an order defined by a cone
𝐶 in the same way that has been used by [4–7]. Note that
the result on the existence of equilibrium points proved in [3]
was obtained via a result on the existence of what we called
weak equilibrium points, that is, a point 𝑥 ∈ 𝑋, satisfying the
following condition:

𝑓 (𝑥, 𝑦) ∉ − int𝐶, ∀𝑦 ∈ 𝑋, (2)

where int𝐶 denotes the interior of the cone 𝐶 in 𝑌.
In this paper, we investigate the extension of equilibrium

points to set-valued maps 𝐹 in the same context. Generally,

we have many choices to formulate the notion of equilibrium
point. In fact, if 𝑃 is a closed convex cone of a topological
vector space 𝑌 with nonempty interior, (𝑃 ̸= 𝑌), and 𝐹 : 𝑋 ×
𝑋 → 𝑌 is a set-valued map, then the equilibrium point for a
set-valued map can be extended in several possible ways (see
[8, 9]) as follows: 𝐹(𝑥, 𝑦) ⊆ 𝑃; 𝐹(𝑥, 𝑦) ∩ − int𝑃 = 0; 𝐹(𝑥, 𝑦) ̸⊆
− int𝑃;𝐹(𝑥, 𝑦)∩𝑃 ̸= 0. In this paper, we select the one that will
be more adapted technically to our arguments. We will put a
“moving” order on 𝑌 by a cone and the notions of convexity
and continuity are naturally extended in our setting. We will
use the pseudomonotonicity condition on 𝐹 borrowed from
[10]. As an application, we prove a variational inequality. The
results obtained in this paper generalize the corresponding
one in [9, 10].

2. Preliminaries

We extend the notions of convexity, monotonicity, and
continuity given previously to set-valuedmaps. If𝑋 and𝑌 are
two sets, a set-valued map 𝐹 : 𝑋 → 2𝑌, where 2𝑋 denotes
the family of all subsets of𝑋, is a map that is assigned to each
𝑥 ∈ 𝑋, a subset 𝐹(𝑥) ⊆ 𝑌. Note that for the notation of set-
valued maps, we will simply write 𝐹 : 𝑋 → 𝑌 instead of
𝐹 : 𝑋 → 2𝑌.

We firstly need to define an order on the codomain of
set-valued maps as it has done for single valued maps. If 𝑋
is a subset of some real topological vector space 𝐸, let 𝑌 be
another real topological vector space, and let 𝐶 ⊆ 𝑌 be a
closed convex cone (not necessarily pointed) with nonempty
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interior and 𝐶 ̸= 𝑌. Then 𝐶 defines an ordering “⪰” on 𝑌 by
means of

𝑦 ⪰ 0 ⇐⇒ 𝑦 ∈ 𝐶, 𝑦 ≻ 0 ⇐⇒ 𝑦 ∈ int𝐶. (3)

We extend this notation to arbitrary subset 𝑆 ⊆ 𝑌 by setting

𝑆 ⪰ 0 ⇐⇒ 𝑆 ⊆ 𝐶, 𝑆 ≻ 0 ⇐⇒ 𝑆 ⊆ int𝐶,

𝑆 ⪯ 0 ⇐⇒ 𝑆 ⊆ −𝐶, 𝑆 ≺ 0 ⇐⇒ 𝑆 ⊆ − int𝐶.
(4)

By using this order, we naturally extend the notion of
convexity for set-valued maps as follows.

Definition 1. Given a set-valued map 𝐹 : 𝑋 → 𝑌 defined
on a vector space𝑋 with values in a vector space 𝑌 endowed
with an order defined by a convex cone 𝐶 ⊆ 𝑌, we say that 𝐹
is convex with respect to 𝐶 if for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ [0, 1]:

𝐹 (𝛼𝑥 + (1 − 𝛼) 𝑦) ⪯ 𝛼𝐹 (𝑥) + (1 − 𝛼) 𝐹 (𝑦) , (5)

which means that

𝐹 (𝛼𝑥 + (1 − 𝛼) 𝑦) ⊆ 𝛼𝐹 (𝑥) + (1 − 𝛼) 𝐹 (𝑦) − 𝐶. (6)

Note that in particular, if 𝑋 = 𝑌 = R and 𝐶 = R+, we
obtain the standard definition of convex set-valued maps.

As in the case of single valued maps, we can find many
kinds of monotonicity for set-valued maps in the literature.
We will use the notion of pseudomonotonicity defined in [10]
which in turn extends the corresponding one defined in [7]
for single valued maps.

Definition 2. Let 𝐸 and 𝑌 be two real topological vector
spaces, let 𝑋 ⊂ 𝐸 be a nonempty closed and convex set, and
let 𝐶 : 𝑋 → 𝑌 be a set-valued map such that for every
𝑥 ∈ 𝑋,𝐶(𝑥) is a closed and convex cone in𝑌with int𝐶(𝑥) ̸= 0.
Consider a set-valued map 𝐹 : 𝑋 × 𝑋 → 𝑌. 𝐹 is said to be
pseudomonotone if, for any given 𝑥, 𝑦 ∈ 𝑋,

𝐹 (𝑥, 𝑦) ̸⊆ − int𝐶 (𝑥) 󳨐⇒ 𝐹 (𝑦, 𝑥) ⊆ −𝐶 (𝑦) . (7)

We recall the classical notions of continuity for set-valued
maps as follows.

Definition 3. Given a set-valued map 𝐹 : 𝑋 → 𝑌 defined on
a vector space𝑋 with values in a vector space 𝑌. Then

(1) 𝐹 is said to be lower semicontinuous (l.s.c) at 𝑥
0
∈ 𝑋

if, for every open set 𝑉 ⊆ 𝑌 with 𝐹(𝑥
0
) ∩ 𝑉 ̸= 0, there

exists a neighborhood 𝑈 ⊆ 𝑋 of 𝑥 with 𝐹(𝑥) ∩ 𝑉 ̸= 0
for all 𝑥 ∈ 𝑈. 𝐹 is said to be l.s.c. on 𝑋 if 𝐹 is l.s.c. at
every 𝑥 ∈ 𝑋.

(2) 𝐹 is said to be upper semicontinuous (u.s.c) at 𝑥
0
∈ 𝑋

if, for every open set 𝑉 ⊆ 𝑌 with 𝐹(𝑥
0
) ⊆ 𝑉, there

exists a neighborhood set 𝑈 ⊆ 𝑋 of 𝑥 with 𝐹(𝑥) ⊆ 𝑉
for all 𝑥 ∈ 𝑈. 𝐹 is said to be u.s.c. on 𝑋 if 𝐹 is u.s.c. at
every 𝑥 ∈ 𝑋.

(3) A set-valued map which is both lower and upper
semicontinuous is called continuous.

In this paper, we will use the definition of coercing family
borrowed from [11].

Definition 4. Consider a subset 𝑋 of a topological vector
space and a topological space 𝑌. A family {(𝐶

𝑖
, 𝐾
𝑖
)}
𝑖∈𝐼

of pair
of sets is said to be coercing for a set-valued map 𝐹 : 𝑋 → 𝑌
if and only if

(i) for each 𝑖 ∈ 𝐼, 𝐶
𝑖
is contained in a compact convex

subset of𝑋 and𝐾
𝑖
is a compact subset of 𝑌;

(ii) for each 𝑖, 𝑗 ∈ 𝐼, there exists 𝑘 ∈ 𝐼 such that 𝐶
𝑖
⋃𝐶
𝑗
⊆

𝐶
𝑘
;

(iii) for each 𝑖 ∈ 𝐼, there exists 𝑘 ∈ 𝐼with⋂
𝑥∈𝐶𝑘

𝐹(𝑥) ⊂ 𝐾
𝑖
.

Remark 5. Definition 1 can be reformulated by using the
“dual” set-valued map 𝐹∗ : 𝑌 → 𝑋 defined for all 𝑦 ∈ 𝑌
by 𝐹∗(𝑦) = 𝑋 \ 𝐹−1(𝑦). Indeed, a family {(𝐶

𝑖
, 𝐾
𝑖
)}
𝑖∈𝐼

is
coercing for 𝐹 if and only if it satisfies conditions (i), (ii) of
Definition 4, and the following one:

∀𝑖 ∈ 𝐼, ∃𝑘 ∈ 𝐼, ∀𝑦 ∈ 𝑌 \ 𝐾
𝑖
, 𝐹∗ (𝑦) ∩ 𝐶

𝑘
̸= 0. (8)

Note that in the case where the family is reduced to one
element, condition (iii) of Definition 4 and in the sense of
Remark 5 appeared first in this generality (with two sets 𝐾
and 𝐶) in [12] and generalized condition of Karamardian
[1] and Allen [2]. Condition (iii) is also an extension of the
coercivity condition given by Fan [13]. For other examples
of set-valued maps admitting a coercing family that is not
necessarily reduced to one element, see [11].

The following generalization of KKM principle obtained
in [11] will be used in the proof of themain result of this paper.

Proposition 6. Let 𝐸 be a Hausdorff topological vector space,
𝑌 a convex subset of𝐸,𝑋 a nonempty subset of𝑌, and𝐹 : 𝑋 →
𝑌 a KKM map with compactly closed values in 𝑌 (i.e., for all
𝑥 ∈ 𝑋, 𝐹(𝑥) ∩ 𝐶 is closed for every compact set 𝐶 of 𝑌). If 𝐹
admits a coercing family, then⋂

𝑥∈𝑋
𝐹(𝑥) ̸= 𝜙.

3. The Main Result

As it is mentioned in the introduction, at an abstract level all
possible extension of equilibria can be handled equally well.
But there are great practical differences if we try to replace the
resulting abstract conditions by simpler, verifiable hypotheses
like convexity or semicontinuity. This is even more so if we
admit a “moving” ordering cone 𝑃(𝑥) (see [10]). For these
reasons we choose to consider here the following generalized
equilibrium problem.

Definition 7. Let𝑋 be a nonempty convex subset of some real
topological vector space 𝐸, 𝑌 a real topological vector space,
and 𝑃 : 𝑋 → 𝑌 a set-valued map such that for any 𝑥 ∈ 𝑋,
𝑃(𝑥) is a closed convex cone with int𝑃(𝑥) ̸= 0 and 𝑃(𝑥) ̸= 𝑌.
Let 𝐹 : 𝑋 × 𝑋 → 𝑌 be a set-valued map. The generalized
equilibrium problem is to find 𝑥 ∈ 𝑋 such that

𝐹 (𝑥, 𝑦) ̸⊆ − int𝑃 (𝑥) ∀𝑦 ∈ 𝑋; (9)

in this case, 𝑥 is said to be an equilibrium point.
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Theorem 8. Let 𝐸 and 𝑌 be real topological vector spaces (not
necessarily Hausdorff). Let a nonempty, convex set 𝑋 ⊆ 𝐸 and
three set-valued mappings 𝐹 : 𝑋 × 𝑋 → 𝑌, 𝐶 : 𝑋 → 𝑌, and
𝐷 : 𝑋 → 𝑌 be given. Suppose that the following conditions are
satisfied.

(1) For all 𝑥, 𝑦 ∈ 𝑋, 𝐹(𝑥, 𝑦) ̸⊆ 𝐶(𝑥) implies 𝐹(𝑦, 𝑥) ⊆
𝐷(𝑦) (pseudomonotonicity).

(2) For all 𝑦 ∈ 𝑋, {𝑥 ∈ 𝑋 : 𝐹(𝑦, 𝑥) ⊆ 𝐷(𝑦)} is closed in𝑋.
(3) For all 𝑥 ∈ 𝑋, {𝑦 ∈ 𝑋 : 𝐹(𝑥, 𝑦) ⊆ 𝐶(𝑥)} is convex.
(4) For all 𝑥 ∈ 𝑋, 𝐹(𝑥, 𝑥) ̸⊆ 𝐶(𝑥).
(5) There exists a family {(𝐶

𝑖
, 𝐾
𝑖
)}
𝑖∈𝐼

satisfying conditions
(i) and (ii) of Definition 4 and the following one: for
each 𝑖 ∈ 𝐼, there exists 𝑘 ∈ 𝐼 such that

{𝑥 ∈ 𝑋 : 𝐹 (𝑦, 𝑥) ⊆ 𝐷 (𝑦) , ∀𝑦 ∈ 𝐶
𝑘
} ⊆ 𝐾
𝑖
. (10)

Then there exists 𝑥 ∈ 𝑋 such that𝐹(𝑦, 𝑥) ⊆ 𝐷(𝑦) for all 𝑦 ∈ 𝑋.

Proof. Let us consider a set-valued map 𝑆 : 𝑋 → 𝑌 defined
for every 𝑦 ∈ 𝑋 by

𝑆 (𝑦) := {𝑥 ∈ 𝑋 : 𝐹 (𝑦, 𝑥) ⊆ 𝐷 (𝑦)} . (11)

Then we can see firstly that 𝑆 is a KKM map; that is, for
every finite subset {𝑦

1
, . . . , 𝑦

𝑛
} of𝑋 there holds

co {𝑦
1
, . . . , 𝑦

𝑛
} ⊆
𝑛

⋃
𝑖=1

𝑆 (𝑦
𝑖
) . (12)

In fact, let 𝑧 ∈ co{𝑦
1
, . . . , 𝑦

𝑛
} and assume by contradiction

that 𝑧 ∉ ⋃𝑛
𝑖=1
𝑆(𝑦
𝑖
); it means that 𝑧 = ∑

𝑖∈𝐼
𝜆
𝑖
𝑦
𝑖
with 𝜆

𝑖
≥ 0,

∑
𝑖∈𝐼
𝜆
𝑖
= 1 and 𝑧 ∉ 𝑆(𝑦

𝑖
) for all 𝑖. Then 𝐹(𝑦

𝑖
, 𝑧) ̸⊆ 𝐷(𝑦

𝑖
)

for all 𝑖, hence from condition (1) 𝐹(𝑧, 𝑦
𝑖
) ⊆ 𝐶(𝑧) for all 𝑖.

It follows from condition (3) that 𝐹(𝑧, ∑
𝑖∈𝐼
𝜆
𝑖
𝑦
𝑖
) ⊆ 𝐶(𝑧), and

then𝐹(𝑧, 𝑧) ⊆ 𝐶(𝑧), which contradicts condition (4); thus 𝑆 is
a KKMmap.

It is also clear from condition (2) that, for all 𝑦 ∈ 𝑋, 𝑆(𝑦)
is closed.

In addition, we can verify that condition (5) implies that
the family {(𝐶

𝑖
, 𝐾)}
𝑖∈𝐼

satisfies the following condition: for all
𝑖 ∈ 𝐼 there exists 𝑘 ∈ 𝐼 with

⋂
𝑦∈𝐶𝑘

𝑆 (𝑦) ⊂ 𝐾
𝑖
. (13)

We deduce that 𝑆 satisfies all hypothesis of Proposition 6,
so we have

⋂
𝑦∈𝑋

𝑆 (𝑦) ̸= 0. (14)

Therefore there exists 𝑥 ∈ 𝑋 such that for any 𝑦 ∈ 𝑋, 𝑥 ∈
𝑆(𝑦). Hence

𝐹 (𝑦, 𝑥) ⊆ 𝐷 (𝑦) , ∀𝑦 ∈ 𝑋. (15)

Theorem 9. Let 𝐸, 𝑌, 𝑋, 𝐹, 𝐶, and 𝐷 satisfy the assumptions
of Theorem 8 and the additional following conditions.

(6) For all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥 and 𝑢 ∈ (𝑥, 𝑦) if 𝐹(𝑢, 𝑥) ⊆
𝐷(𝑢) and 𝐹(𝑢, 𝑦) ⊆ 𝐶(𝑢), then 𝐹(𝑢, V) ⊆ 𝐶(𝑢) for all
V ∈ (𝑥, 𝑦).

(7) For all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥, {𝑢 ∈ [𝑥, 𝑦] : 𝐹(𝑢, 𝑦) ⊆
𝐶(𝑢)} is open in [𝑥, 𝑦].

Then there exists 𝑥 ∈ 𝑋 such that 𝐹(𝑥, 𝑦) ̸⊆ 𝐶(𝑥) for all
𝑦 ∈ 𝑋.

Proof. ByTheorem 8, there exists 𝑥 ∈ 𝑋 with 𝐹(𝑦, 𝑥) ⊆ 𝐷(𝑦)
for all 𝑦 ∈ 𝑋. Assume that 𝐹(𝑥, 𝑦) ⊆ 𝐶(𝑥) for some 𝑦 ∈ 𝑋;
then 𝑦 ̸= 𝑥 by (6) and from (7) there exists 𝑢 ∈ (𝑥, 𝑦) such
that 𝐹(𝑢, 𝑦) ⊆ 𝐶(𝑢). Since 𝐹(𝑢, 𝑥) ⊆ 𝐷(𝑢), we deduce that
𝐹(𝑢, 𝑢) ⊆ 𝐶(𝑢), but this contradicts (6) and the theorem is
proved.

The following result, which corresponds to Theorem 1 in
[10], can be deduced from the two previous theorems.

Corollary 10. Let 𝐹, 𝐶, 𝐷 satisfy hypothesis (1–4) of
Theorem 8, (6, 7) of Theorem 9 and the following condition.

(5󸀠)There exists a nonempty compact set 𝐴 ⊆ 𝑋 and a
compact convex set 𝐵 ⊆ 𝑋 such that for every 𝑥 ∈ 𝑋\𝐴
there exists 𝑦 ∈ 𝐵 with 𝐹(𝑥, 𝑦) ⊆ 𝐶(𝑥).

Then there exists 𝑥 ∈ 𝐴 such that 𝐹(𝑥, 𝑦) ̸⊆ 𝐶(𝑥) for all
𝑦 ∈ 𝑋.

Proof. By taking for all 𝑖 ∈ 𝐼, 𝐶
𝑖
= 𝐵, which is convex

compact set, and 𝐾
𝑖
= 𝐴, which is compact set, and by using

hypothesis (5󸀠), we can see that 𝑆 admits a coercing family in
the sense of Remark 5; that is, for all 𝑥 ∈ 𝑋 \𝐴, 𝑆∗(𝑥) ∩ 𝐵 ̸= 0.
Suppose, per absurdum, that there exists 𝑥

0
∈ 𝑋 \ 𝐴 with

𝑆∗(𝑥
0
) ∩ 𝐵 = 0. Hence for all 𝑦 ∈ 𝐵, 𝑦 ∉ 𝑆∗(𝑥

0
). This means

that for all 𝑦 ∈ 𝐵, 𝑦 ∈ 𝑆−1(𝑥
0
) and so 𝑥

0
∈ 𝑆(𝑦). Therefore,

there exists 𝑥
0
∈ 𝑋 \ 𝐴 such that for all 𝑦 ∈ 𝐵, we have

𝐹 (𝑦, 𝑥
0
) ⊆ 𝐷 (𝑦) . (16)

Then byTheorem 9, we deduce that there exists𝑥
0
∈ 𝑋\𝐴

such that for all 𝑦 ∈ 𝐵

𝐹 (𝑥
0
, 𝑦) ̸⊆ 𝐶 (𝑥

0
) , (17)

but this contradicts hypothesis (5󸀠).

Corollary 11. Let 𝐹 : 𝑋×𝑋 → 𝑌 be a set-valued map satisfy
the following conditions.

(1) For all 𝑥, 𝑦 ∈ 𝑋,𝐹(𝑥, 𝑦) ̸⊆ − int𝑃(𝑥) implies𝐹(𝑦, 𝑥) ⊆
−𝑃(𝑦).

(2) For all 𝑦 ∈ 𝑋, 𝐹(𝑦, ⋅) is lower semicontinuous.
(3) For all 𝑥 ∈ 𝑋, 𝐹(𝑥, ⋅) is convex with respect to 𝑃(𝑥).
(4) The map int𝑃(𝑥) has open graph in𝑋 × 𝑌.
(5) For all 𝑥, 𝑦 ∈ 𝑋, 𝐹(⋅, 𝑦) is upper semicontinuous and

compact valued on [𝑥, 𝑦].
(6) For all 𝑥 ∈ 𝑋, 𝐹(𝑥, 𝑥) ̸⊆ − int𝑃(𝑥).
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(7) There exists a family {𝐶
𝑖
, 𝐾
𝑖
}
𝑖∈𝐼

satisfying conditions (i)
and (ii) of Definition 4 coercing and the following one.
For each 𝑖 ∈ 𝐼, there exists 𝑘 ∈ 𝐼 such that

{𝑥 ∈ 𝑋 : 𝐹 (𝑦, 𝑥) ⊆ −𝑃 (𝑦) , ∀𝑦 ∈ 𝐶
𝑘
} ⊆ 𝐾
𝑖
. (18)

Then there exists 𝑥 ∈ 𝑋 such that 𝐹(𝑥, 𝑦) ̸⊆ − int𝑃(𝑥) for all
𝑦 ∈ 𝑋.

Proof. Following [10], if the map 𝐹(𝑦, ⋅) is lower semicontin-
uous and 𝐷(𝑦) is closed, then condition (7) of Theorem 9
is satisfied. Furthermore and also by [10], condition (7) of
Theorem 9 is fulfilled, if for all 𝑥 ∈ 𝑋, themap 𝐹(⋅, 𝑥) is upper
semicontinuous along line segments [𝑥, 𝑦] ⊆ 𝑋with compact
values, and the map 𝐶(⋅) has open graph in𝑋 × 𝑌.

Now let 𝐿 : 𝑋 → 𝑍 denote the space of all continuous
linear operators 𝑋 → 𝑍. For 𝜙 ∈ 𝐿(𝑋, 𝑍), we write ⟨𝜙, 𝑥⟩ :
𝜙(𝑥) and forΦ ⊆ 𝐿(𝑋, 𝑍), wewrite ⟨Φ, 𝑥⟩ := {⟨𝜙, 𝑥⟩ : 𝜙 ∈ Φ}.
The following result is a variational inequality formulation of
our main result.

Corollary 12. Let a mapΦ : 𝐾 → 𝐿(𝑋,𝑍) be given such that
for all 𝑥 ∈ 𝐾,Φ(𝑥) is nonempty. Suppose the following.

(1) For all 𝑥, 𝑦 ∈ 𝐾, ⟨Φ(𝑥), 𝑦 − 𝑥⟩ ̸⊆ − int𝑃(𝑥) implies
⟨Φ(𝑦), 𝑥 − 𝑦⟩ ⊆ −𝑃(𝑦).

(2) The map int𝑃(⋅) has open graph in 𝐾 × 𝑍.
(3) For all 𝑥, 𝑦 ∈ 𝐾, ⟨Φ(⋅), 𝑦 − 𝑥⟩ is upper semicontinuous

on [𝑥, 𝑦] and compact valued.
(4) There exists a family {𝐶

𝑖
, 𝐾
𝑖
}
𝑖∈𝐼

satisfying conditions (i)
and (ii) of Definition 4 and the following one: for each
𝑖 ∈ 𝐼, there exists 𝑘 ∈ 𝐼 such that

{𝑥 ∈ 𝑋 : ⟨Φ (𝑦) , 𝑥 − 𝑦⟩ ⊆ −𝑃 (𝑦) , ∀𝑦 ∈ 𝐶
𝑘
} ⊆ 𝐾
𝑖
. (19)

Then there exists 𝑥 ∈ 𝑋 such that ⟨Φ(𝑥), 𝑦 − 𝑥⟩) ̸⊆ − int𝑃(𝑥)
for all 𝑦 ∈ 𝐾.

Proof. Take 𝐹(𝑥, 𝑦) := ⟨Φ(𝑥), 𝑦 − 𝑥⟩, 𝐶(𝑥) := − int𝑃(𝑥), and
𝐷(𝑥) := −𝑃(𝑥). Then conditions (1) and (5) of Theorem 9
are clearly satisfied. (2) holds since each member of Φ(𝑦) is
continuous and𝐷(𝑦) is closed. (4) is satisfied since 𝐹(𝑥, 𝑥) =
{0} and 𝑃(𝑥) ̸= 𝑍. (3) and (6) hold since for all 𝛼 ∈ [0, 1]:

𝐹 (𝑥, 𝛼𝑦
1
+ (1 − 𝛼) 𝑦2) ⊆ 𝛼𝐹 (𝑥, 𝑦1) + (1 − 𝛼) 𝐹 (𝑥, 𝑦2) .

(20)

To verify hypothesis (7), we have to show that 𝑅 = {𝑢 ∈
[𝑥, 𝑦] : ⟨Φ(𝑢), 𝑦 − 𝑢⟩} is closed in [𝑥, 𝑦]. Let {𝑢

𝑖
} be a net

in 𝑅 converging to 𝑢 ∈ [𝑥, 𝑦]; we may assume 𝑢 ̸= 𝑦, since
𝑦 ∈ 𝑅, and wemay assume 𝑢

𝑖
̸= 𝑦 for all 𝑖 as well.Thus 𝑦−𝑢 =

𝜆(𝑦 − 𝑥) with 𝜆 ̸= 0 and 𝑦 − 𝑢
𝑖
= 𝜆
𝑖
(𝑦 − 𝑥) with 𝜆

𝑖
̸= 0. For

every 𝑖, there exists𝑤
𝑖
∈ ⟨Φ(𝑢

𝑖
), 𝑦 − 𝑢

𝑖
⟩ with𝑤

𝑖
∉ − int𝑃(𝑢

𝑖
);

then 𝑧
𝑖
= 𝜆−1
𝑖
𝑤
𝑖
∈ ⟨Φ(𝑢

𝑖
), 𝑦 − 𝑥⟩. We conclude as above that

there is a subnet 𝑧
𝑗
converging to some 𝑧 ∈ ⟨Φ(𝑢), 𝑦−𝑥⟩.The

corresponding 𝑤
𝑗
converges to 𝑤 = 𝜆𝑧⟨Φ(𝑢), 𝑦 − 𝑢⟩, since

− int𝑃(⋅) has open graph; we obtain 𝑤 ∉ − int𝑃(𝑢); hence
𝑢 ∈ 𝑅.

Note that Corollaries 11 and 12 extend, respectively, Corol-
laries 1 and 2 in [10] obtained in noncompact case since our
coercivity condition is more general.
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Sciences I, vol. 295, no. 3, pp. 257–259, 1982.

[13] K. Fan, “Some properties of convex sets related to fixed point
theorems,”Mathematische Annalen, vol. 266, no. 4, pp. 519–537,
1984.


