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This paper deals with approximating properties of the newly defined 𝑞-generalization of the genuine Bernstein-Durrmeyer
polynomials in the case 𝑞 > 1, which are no longer positive linear operators on 𝐶[0, 1]. Quantitative estimates of the convergence,
the Voronovskaja-type theorem, and saturation of convergence for complex genuine 𝑞-Bernstein-Durrmeyer polynomials attached
to analytic functions in compact disks are given. In particular, it is proved that, for functions analytic in {𝑧 ∈ C : |𝑧| < 𝑅}, 𝑅 > 𝑞, the
rate of approximation by the genuine 𝑞-Bernstein-Durrmeyer polynomials (𝑞 > 1) is of order 𝑞−𝑛 versus 1/𝑛 for the classical genuine
Bernstein-Durrmeyer polynomials. We give explicit formulas of Voronovskaja type for the genuine 𝑞-Bernstein-Durrmeyer for
𝑞 > 1. This paper represents an answer to the open problem initiated by Gal in (2013, page 115).

1. Introduction

In several recent papers, convergence properties of complex
𝑞-Bernstein polynomials, proposed by Phillips [1], attached
to an analytic function 𝑓 in closed disks, were intensively
studied. Ostrovska [2, 3] and Wang and Wu [4, 5] have
investigated convergence properies of 𝐵

𝑛,𝑞

in the case 𝑞 > 1.
In the case 𝑞 > 1, the 𝑞-Bernstein polynomials are no longer
positive operators; however, for a function analytic in a disc
D
𝑅

:= {𝑧 ∈ C : |𝑧| < 𝑅}, 𝑅 > 𝑞, it was proved in [2] that the
rate of convergence of {𝐵

𝑛,𝑞

(𝑓; 𝑧)} to 𝑓(𝑧) has the order 𝑞−𝑛
(versus 1/𝑛 for the classical Bernstein polynomials). More-
over, Ostrovska [3] obtained Voronovskaya-type theorem
for monomials. If 𝑞 ≥ 1, then qualitative Voronovskaja-
type theorem and saturation results for complex 𝑞-Bernstein
polynomials were obtained by Wang and Wu [4]. Wu [5]
studied saturation of convergence on the interval [0, 1] for
the 𝑞-Bernstein polynomials of a continuous function 𝑓 for
arbitrary fixed 𝑞 > 1.

Genuine Bernstein-Durrmeyer operators were first con-
sidered by Chen [6] and Goodman and Sharma [7] around
1987. In recent years, the genuine Bernstein-Durrmeyer
operators have been investigated intensively by a number of
authors. Among the many papers written on the genuine

Bernstein-Durrmeyer operators, we mention here only the
ones by Gonska et al. [8], Parvanov and Popov [9], Sauer [10],
Waldron [11], and the book of Păltănea [12].

On the other hand, Gal [13] obtained quantitative esti-
mates of the convergence and of the Voronovskaja-type the-
orem in compact disks, for the complex genuine Bernstein-
Durrmeyer polynomials attached to analytic functions.
Besides, in other very recent papers, similar studieswere done
for complex Bernstein-Durrmeyer operators in Anastassiou
and Gal [14], for complex Bernstein-Durrmeyer operators
based on Jacobi weights in Gal [15], for complex genuine 𝑞-
Bernstein-Durrmeyer operators (0 < 𝑞 < 1) by Mahmudov
[16], and for other kinds of complex Durrmeyer operators in
Mahmudov [17] and Gal et al. [18]. It should be stressed out
that study of 𝑞-Durrmeyer-type operators (0 < 𝑞 < 1) in the
real case was first initiated by Derriennic [19].

Also, for the case 𝑞 > 1, exact quantitative estimates and
quantitativeVoronovskaja-type results for complex 𝑞-Lorentz
polynomials, 𝑞-Stancu polynomials [20], 𝑞-Stancu-Faber
polynomials, 𝑞-Bernstein-Faber polynomials, 𝑞-Kantorovich
polynomials [21], 𝑞-Szász-Mirakjan operators [22] obtained
by different researchers are collected in the recent book of
Gal [23]. In this book the definition and study of complex
𝑞-Durrmeyer-kind operators for 𝑞 > 1 presented an open
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problem. This paper presents a positive solution to this
problem.

In this paper we define the genuine 𝑞-Bernstein-Durr-
meyer polynomials for 𝑞 > 1. Note that similar to the 𝑞-
Bernstein operators the genuine 𝑞-Bernstein-Durrmeyer
operators in the case 𝑞 > 1 are not positive operators
on 𝐶[0, 1]. The lack of positivity makes the investigation of
convergence in the case 𝑞 > 1 essentially more difficult than
that for 0 < 𝑞 < 1. We present upper estimates in approx-
imation and we prove the Voronovskaja-type convergence
theorem in compact disks in C, centered at origin, with
quantitative estimate of this convergence. These results allow
us to obtain the exact degrees of approximation by complex
genuine 𝑞-Bernstein-Durrmeyer polynomials. Our results
show that approximation properties of the complex genuine
𝑞-Bernstein-Durrmeyer polynomials are better than approx-
imation properties of the complex Bernstein-Durrmeyer
polynomials considered in [13].

2. Main Results

We begin with some notations and definitions of 𝑞-calculus;
see, for example, [24, 25]. Let 𝑞 > 0. For any 𝑛 ∈ N ∪ {0}, the
𝑞-integer [𝑛]

𝑞

is defined by

[𝑛]
𝑞

:= 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞
𝑛−1

, [0]
𝑞

:= 0; (1)

and the 𝑞-factorial [𝑛]
𝑞

! is defined by

[𝑛]
𝑞

! := [1]
𝑞

[2]
𝑞

⋅ ⋅ ⋅ [𝑛]
𝑞

, [0]
𝑞

! := 1. (2)

For integers 0 ≤ 𝑘 ≤ 𝑛, the 𝑞-binomial is defined by

[
𝑛

𝑘
]

𝑞

:=
[𝑛]
𝑞

!

[𝑘]
𝑞

![𝑛 − 𝑘]
𝑞

!
. (3)

For 𝑞 = 1 we obviously get [𝑛]
𝑞

= 𝑛, [𝑛]
𝑞

! = 𝑛!, and [ 𝑛
𝑘

]
𝑞

=

(
𝑛

𝑘

). Moreover

(1 − 𝑧)
𝑛

𝑞

:=

𝑛−1

∏

𝑠=0

(1 − 𝑞
𝑠

𝑧) ,

𝑝
𝑛,𝑘

(𝑞; 𝑧) := [
𝑛

𝑘
]

𝑞

𝑧
𝑘

(1 − 𝑧)
𝑛−𝑘

𝑞

, 𝑧 ∈ C.

(4)

For fixed 𝑞 > 0, 𝑞 ̸= 1, we denote the 𝑞-derivative 𝐷
𝑞

𝑓(𝑧)

of 𝑓 by

𝐷
𝑞

𝑓 (𝑧) =

{{

{{

{

𝑓 (𝑞𝑧) − 𝑓 (𝑧)

(𝑞 − 1) 𝑧
, 𝑧 ̸= 0,

𝑓


(0) , 𝑧 = 0.

(5)

The 𝑞-analogue of integration in the interval [0, 𝐴] (see
[24]) is defined by

∫

𝐴

0

𝑓 (𝑡) 𝑑
𝑞

𝑡 := 𝐴 (1 − 𝑞)

∞

∑

𝑛=0

𝑓 (𝐴𝑞
𝑛

) 𝑞
𝑛

, 0 < 𝑞 < 1. (6)

Let D
𝑅

be a disc D
𝑅

:= {𝑧 ∈ C : |𝑧| < 𝑅} in the complex
plane C. Denote by𝐻(D

𝑅

) the space of all analytic functions
on D
𝑅

. For 𝑓 ∈ 𝐻(D
𝑅

) we assume that 𝑓(𝑧) = ∑
∞

𝑚=0

𝑎
𝑚

𝑧
𝑚

for all 𝑧 ∈ D
𝑅

. The norm ‖𝑓‖
𝑟

:= max{|𝑓(𝑧)| : |𝑧| ≤ 𝑟}. We
denote 𝑒

𝑚

(𝑧) = 𝑧
𝑚 for all𝑚 ∈ N ∪ {0}.

Definition 1. For 𝑓 : [0, 1] → C, the genuine 𝑞-Bernstein-
Durrmeyer operator is defined as follows:

𝑈
𝑛,𝑞

(𝑓; 𝑧)

:=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑓 (0) 𝑝
𝑛,0

(𝑞; 𝑧) + 𝑓 (1) 𝑝
𝑛,𝑛

(𝑞; 𝑧)

+[𝑛 − 1]
𝑞

𝑛−1

∑

𝑘=1

𝑞
1−𝑘

𝑝
𝑛,𝑘

(𝑞; 𝑧)

×∫

1

0

𝑝
𝑛−2,𝑘−1

(𝑞; 𝑞𝑡) 𝑓 (𝑡) 𝑑
𝑞

𝑡, 0 < 𝑞 < 1,

𝑓 (0) 𝑝
𝑛,0

(𝑧) + 𝑓 (1) 𝑝
𝑛,𝑛

(𝑧)

+ (𝑛 − 1)

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑧)

×∫

1

0

𝑝
𝑛−2,𝑘−1

(𝑡) 𝑓 (𝑡) 𝑑𝑡, 𝑞 = 1,

𝑓 (0) 𝑝
𝑛,0

(𝑞; 𝑧) + 𝑓 (1) 𝑝
𝑛,𝑛

(𝑞; 𝑧)

+[𝑛 − 1]
𝑞

−1

𝑛−1

∑

𝑘=1

𝑞
𝑘−1

𝑝
𝑛,𝑘

(𝑞; 𝑧)

×∫

1

0

𝑝
𝑛−2,𝑘−1

(𝑞
−1

; 𝑞
−1

𝑡) 𝑓 (𝑞
𝑘−𝑛

𝑡) 𝑑
𝑞

−1𝑡, 𝑞 > 1,

(7)

where for 𝑛 = 1 the sum is empty; that is, it is equal to 0.

𝑈
𝑛,𝑞

(𝑓; 𝑧) are linear operators reproducing linear func-
tions and interpolating every function 𝑓 ∈ 𝐶[0, 1] at 0 and
1.The genuine 𝑞-Bernstein-Durrmeyer operators are positive
operators on 𝐶[0, 1] for 0 < 𝑞 ≤ 1, and they are not positive
for 𝑞 > 1. As a consequence, the cases 0 < 𝑞 ≤ 1 and 𝑞 > 1

are not similar to each other regarding the convergence. For
𝑞 → 1

− and 𝑞 → 1
+ we recapture the classical (𝑞 = 1)

genuine Bernstein-Durrmeyer polynomials.
We start with the following quantitative estimates of the

convergence for complex 𝑞-Bernstein-Durrmeyer polynomi-
als attached to an analytic function in a disk of radius 𝑅 > 1

and center 0.

Theorem 2. Let 𝑓 ∈ 𝐻(D
𝑅

), 1 ≤ 𝑟 < 𝑅/𝑞, and 𝑞 > 1. Then
for all |𝑧| ≤ 𝑟 one has


𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧)

≤
𝑟 (1 + 𝑟)

[𝑛 + 1]
𝑞

∞

∑

𝑚=2

𝑎𝑚
 𝑚 (𝑚 − 1) 𝑞

𝑚−2

𝑟
𝑚−2

.

(8)

Theorem 2 says that, for functions analytic in D
𝑅

, 𝑅 >

𝑞, the rate of approximation by the genuine 𝑞-Bernstein-
Durrmeyer polynomials (𝑞 > 1) is of order 𝑞−𝑛 versus 1/𝑛
for the classical genuine Bernstein-Durrmeyer polynomials;
see [13].
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The Voronovskaja theorem for the real case with a quan-
titative estimate is obtained by Gonska et al. [26] in the
following form:


𝑈
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥) −
𝑥 (1 − 𝑥)

𝑛 + 1
𝑓


(𝑧)



≤
𝑥 (1 − 𝑥)

𝑛 + 1
𝜔(𝑓


2

3√𝑛 + 3
) ,

(9)

and, for all 𝑛 ∈ N, 0 ≤ 𝑥 ≤ 1. For the complex genuine 𝑞-
Bernstein-Durrmeyer (0 < 𝑞 ≤ 1) a quantitative estimate is
obtained by Gal [13] (𝑞 = 1) and Mahmudov [16] (0 < 𝑞 < 1)
in the following form:


𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧) −
𝑧 (1 − 𝑧)

[𝑛 + 1]
𝑞

𝑓


(𝑧)



≤
𝑀
𝑟,𝑓

[𝑛]
2

𝑞

, 0 < 𝑞 ≤ 1,

(10)

and, for all 𝑛 ∈ N, |𝑧| ≤ 𝑟.
To formulate and prove the Voronovskaja-type theorem

with a quantitative estimate in the case 𝑞 > 1 we introduce a
function 𝐿

𝑞

(𝑓; 𝑧).
Let 𝑅 > 𝑞 ≥ 1 and let 𝑓 ∈ 𝐻(D

𝑅

). For |𝑧| < 𝑅/𝑞
2, we

define

𝐿
𝑞

(𝑓; 𝑧) :=
(1 − 𝑧) 𝑞 (𝐷

𝑞

𝑓 (𝑧) − 𝐷
𝑞

−1𝑓 (𝑧))

𝑞 − 1
for 𝑞 > 1.

(11)

And, for 0 < 𝑞 ≤ 1,

𝐿
𝑞

(𝑓; 𝑧) = 𝐿
1

(𝑓; 𝑧) := 𝑓


(𝑧) 𝑧 (1 − 𝑧) . (12)

The next theorem gives Voronovskaja-type result in com-
pact disks; for complex 𝑞-Bernstein-Durrmeyer polynomials
attached to an analytic function inD

𝑅

, 𝑅 > 𝑞
2

> 1 and center
0 in terms of the function 𝐿

𝑞

(𝑓; 𝑧).

Theorem 3. Let 𝑓 ∈ 𝐻(D
𝑅

), 1 ≤ 𝑟 < 𝑅/𝑞
2, and 𝑞 > 1. The

following Voronovskaja-type result holds:


𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧) −
1

[𝑛 + 1]
𝑞

𝐿
𝑞

(𝑓; 𝑧)



≤
4𝑟
2

(1 + 𝑟)
2

[𝑛 + 1]
2

𝑞

∞

∑

𝑚=3

𝑎𝑚
 (𝑚 − 1)

2

(𝑚 − 2)
2

(𝑞
2

𝑟)
𝑚−2

.

(13)

For all 𝑛 ∈ N, |𝑧| ≤ 𝑟.

Nowwe are in position to prove that the order of approxi-
mation inTheorem 2 is exactly 𝑞−𝑛 versus 1/𝑛 for the classical
genuine Bernstein-Durrmeyer polynomials; see [13].

Theorem 4. Let 1 < 𝑞 < 𝑅, 1 ≤ 𝑟 < 𝑅/𝑞
2, and 𝑓 ∈ 𝐻(D

𝑅

). If
𝑓 is not a polynomial of degree ≤1, the estimate,


𝑈
𝑛,𝑞

(𝑓) − 𝑓
𝑟
≥

1

[𝑛 + 1]
𝑞

𝐶
𝑟,𝑞

(𝑓) , 𝑛 ∈ N, (14)

holds, where the constant 𝐶
𝑟,𝑞

(𝑓) depends on 𝑓, 𝑞, and 𝑟 but is
independent of 𝑛.

From Theorem 3 we conclude that, for 𝑞 > 1,
[𝑛 + 1]

𝑞

(𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓(𝑧)) → 𝐿
𝑞

(𝑓; 𝑧) in 𝐻(D
𝑅/𝑞

2) and
therefore 𝐿

𝑞

(𝑓; 𝑧) ∈ 𝐻(D
𝑅/𝑞

2). Furthermore, we have
the following saturation of convergence for the genuine 𝑞-
Bernstein-Durrmeyer polynomials for fixed 𝑞 > 1.

Theorem 5. Let 1 < 𝑞 < 𝑅, 1 ≤ 𝑟 < 𝑅/𝑞
2. If a function 𝑓

is analytic in the disc D
𝑅/𝑞

2 , then |𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓(𝑧)| = 𝑜(𝑞
−𝑛

)

for infinite number of points having an accumulation point on
D
𝑅/𝑞

2 if and only if 𝑓 is linear.

The next theorem shows that 𝐿
𝑞

(𝑓; 𝑧), 𝑞 ≥ 1, is continu-
ous in the parameter 𝑞 for 𝑓 ∈ 𝐻(D

𝑅

), 𝑅 > 1.

Theorem 6. Let 𝑅 > 1 and 𝑓 ∈ 𝐻(D
𝑅

). Then, for any 𝑟, 0 <
𝑟 < 𝑅,

lim
𝑞→1+

𝐿
𝑞

(𝑓; 𝑧) = 𝐿
1

(𝑓; 𝑧) (15)

uniformly on D
𝑅

.

3. Auxiliary Results

The 𝑞-analogue of beta function for 0 < 𝑞 < 1 (see [24]) is
defined as

𝐵
𝑞

(𝑚, 𝑛) = ∫

1

0

𝑡
𝑚−1

(1 − 𝑞𝑡)
𝑛−1

𝑞

𝑑
𝑞

𝑡, 𝑚, 𝑛 > 0, 0 < 𝑞 < 1.

(16)

Since we consider the case 𝑞 > 1, we need to use 𝐵
𝑞

−1(𝑚, 𝑛) as
follows:

𝐵
𝑞

−1 (𝑚, 𝑛) = ∫

1

0

𝑡
𝑚−1

(1 − 𝑞
−1

𝑡)
𝑛−1

𝑞

−1

𝑑
𝑞

−1𝑡,

𝑚, 𝑛 > 0, 0 < 𝑞
−1

< 1.

(17)

Also, it is known that

𝐵
𝑞

−1 (𝑚, 𝑛) =
[𝑚 − 1]

𝑞

−1 ![𝑛 − 1]
𝑞

−1 !

[𝑚 + 𝑛 − 1]
𝑞

−1 !
, 0 < 𝑞

−1

< 1. (18)

For𝑚 = 0, 1, . . ., we have

[𝑛 − 1]
𝑞

−1𝑞
𝑘−1

∫

1

0

𝑡
𝑚

𝑝
𝑛−2,𝑘−1

(𝑞
−1

; 𝑞
−1

𝑡) 𝑑
𝑞

−1𝑡

= [𝑛 − 1]
𝑞

−1[
𝑛 − 2

𝑘 − 1
]

𝑞

−1

𝑞
𝑚(𝑘−𝑛)

× ∫

1

0

𝑡
𝑘+𝑚−1

(1 − 𝑞
−1

𝑡)
𝑛−𝑘−1

𝑞

−1

𝑑
𝑞

−1𝑡

= 𝑞
𝑚(𝑘−𝑛)

[𝑛 − 1]
𝑞

−1 !

[𝑘 − 1]
𝑞

−1 ![𝑛 − 𝑘 − 1]
𝑞

−1 !
𝐵
𝑞

−1 (𝑘 + 𝑚, 𝑛 − 𝑘)
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= 𝑞
𝑚(𝑘−𝑛)

[𝑛 − 1]
𝑞

−1 !

[𝑘 − 1]
𝑞

−1 ![𝑛 − 𝑘 − 1]
𝑞

−1 !

×
[𝑘 + 𝑚 − 1]

𝑞

−1 ![𝑛 − 𝑘 − 1]
𝑞

−1 !

[𝑘 + 𝑚 + 𝑛 − 𝑘 − 1]
𝑞

−1 !

=
[𝑛 − 1]

𝑞

![𝑘 + 𝑚 − 1]
𝑞

!

[𝑘 − 1]
𝑞

![𝑛 + 𝑚 − 1]
𝑞

!
=
[𝑘 + 𝑚 − 1]

𝑞

⋅ ⋅ ⋅ [𝑘]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

⋅ ⋅ ⋅ [𝑛]
𝑞

.

(19)

Thus, we get the following formula for 𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧):

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) = 𝑓 (0) 𝑝
𝑛,0

(𝑞; 𝑧) + 𝑓 (1) 𝑝
𝑛,𝑛

(𝑞; 𝑧)

+ [𝑛 − 1]
𝑞

−1

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧)

× ∫

1

0

𝑝
𝑛−2,𝑘−1

(𝑞
−1

; 𝑞
−1

𝑡) 𝑓 (𝑞
𝑘−𝑛

𝑡) 𝑑
𝑞

−1𝑡

= 𝑧
𝑛

+

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧)
[𝑘 + 𝑚 − 1]

𝑞

⋅ ⋅ ⋅ [𝑘]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

⋅ ⋅ ⋅ [𝑛]
𝑞

.

(20)

Note that, for𝑚 = 0, 1, 2, we have

𝑈
𝑛,𝑞

(𝑒
0

; 𝑧) = 1, 𝑈
𝑛,𝑞

(𝑒
1

; 𝑧) = 𝑧,

𝑈
𝑛,𝑞

(𝑒
2

; 𝑧) = 𝑧
2

+
(1 + 𝑞) 𝑧 (1 − 𝑧)

[𝑛 + 1]
.

(21)

Lemma 7. 𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) is a polynomial of degree less than or
equal tomin(𝑚, 𝑛) and

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) =
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑛]
𝑠

𝑞

𝐵
𝑛,𝑞

(𝑒
𝑠

; 𝑧) .

(22)

Proof. From (20) it follows that

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

=

𝑛

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧)
[𝑘 + 𝑚 − 1]

𝑞

⋅ ⋅ ⋅ [𝑘]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

⋅ ⋅ ⋅ [𝑛]
𝑞

=
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑛

∑

𝑘=1

[𝑘]
𝑞

[𝑘 + 1]
𝑞

⋅ ⋅ ⋅ [𝑘 + 𝑚 − 1]
𝑞

𝑝
𝑛,𝑘

(𝑞; 𝑧) .

(23)

Now using

[𝑘]
𝑞

[𝑘 + 1]
𝑞

⋅ ⋅ ⋅ [𝑘 + 𝑚 − 1]
𝑞

=

𝑚−1

∏

𝑠=0

(𝑞
𝑠

[𝑘]
𝑞

+ [𝑠]
𝑞

) =

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑘]
𝑠

𝑞

,

(24)

where 𝑆
𝑞

(𝑚, 𝑠) > 0, 𝑠 = 1, 2, . . . , 𝑚, are the constants inde-
pendent of 𝑘, we get

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) =
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑛

∑

𝑘=0

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑘]
𝑠

𝑞

𝑝
𝑛,𝑘

(𝑞; 𝑧)

=
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑛]
𝑠

𝑞

𝐵
𝑛,𝑞

(𝑒
𝑠

; 𝑧) .

(25)

Since 𝐵
𝑛,𝑞

(𝑒
𝑠

; 𝑧) is a polynomial of degree less than or equal
to min(𝑠, 𝑛) and 𝑆

𝑞

(𝑚, 𝑠) > 0, 𝑠 = 1, 2, . . . , 𝑚, it follows that
𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) is a polynomial of degree less than or equal to
min(𝑚, 𝑛).

Lemma8. Thenumbers 𝑆
𝑞

(𝑚, 𝑠), (𝑚, 𝑠) ∈ (N∪{0})×(N∪{0}),
given by (24), enjoy the following properties:

𝑆
𝑞

(0, 0) = 1, 𝑆
𝑞

(𝑚, 0) = 0, 𝑚 ∈ 𝑁,

𝑆
𝑞

(𝑚 + 1, 𝑠) = [𝑚]
𝑞

𝑆
𝑞

(𝑚, 𝑠) + 𝑞
𝑚

𝑆
𝑞

(𝑚, 𝑠 − 1) ,

𝑚 ∈ 𝑁
0

, 𝑠 ∈ 𝑁,

𝑆
𝑞

(𝑚 + 1,𝑚 + 1) = 𝑞
𝑚

𝑆
𝑞

(𝑚,𝑚) ,

𝑆
𝑞

(𝑚, 𝑠) = 0 𝑓𝑜𝑟 𝑠 > 𝑚.

(26)

Also, the following lemma holds.

Lemma 9. For all𝑚, 𝑛 ∈ N the identity,

[𝑛 − 1]
𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑛]
𝑠

𝑞

= 1, (27)

holds.

Proof. It follows from end points interpolation property of
𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) and 𝐵
𝑛,𝑞

(𝑒
𝑠

; 𝑧). Indeed

1 = 𝑈
𝑛,𝑞

(𝑒
𝑚

; 1) =
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑛]
𝑠

𝑞

𝐵
𝑛,𝑞

(𝑒
𝑠

; 1)

=
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑛]
𝑠

𝑞

.

(28)

Lemma 9 implies that for all𝑚, 𝑛 ∈ N and |𝑧| ≤ 𝑟we have

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)


≤
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑛]
𝑠

𝑞


𝐵
𝑛,𝑞

(𝑒
𝑠

; 𝑧)


≤
[𝑛 − 1]

𝑞

!

[𝑛 + 𝑚 − 1]
𝑞

!

𝑚

∑

𝑠=1

𝑆
𝑞

(𝑚, 𝑠) [𝑛]
𝑠

𝑞

𝑟
𝑠

≤ 𝑟
𝑚

.

(29)

For our purpose first we need a recurrence formula for
𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧).
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Lemma 10. For all𝑚, 𝑛 ∈ N ∪ {0} and 𝑧 ∈ C one has

𝑈
𝑛,𝑞

(𝑒
𝑚+1

; 𝑧) =
𝑞
𝑚

𝑧 (1 − 𝑧)

[𝑛 + 𝑚]
𝑞

𝐷
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

+
𝑞
𝑚

[𝑛] 𝑧 + [𝑚]
𝑞

[𝑛 + 𝑚]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) .

(30)

Proof. By simple calculation we obtain (see [27])

𝑧 (1 − 𝑧)𝐷
𝑞

(𝑝
𝑛,𝑘

(𝑞; 𝑧)) = ([𝑘]
𝑞

− [𝑛]
𝑞

𝑧) 𝑝
𝑛,𝑘

(𝑞; 𝑧) ,

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) = 𝑧
𝑛

+

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧)
[𝑘 + 𝑚 − 1]

𝑞

⋅ ⋅ ⋅ [𝑘]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

⋅ ⋅ ⋅ [𝑛]
𝑞

= 𝑧
𝑛

+

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧) 𝐼
𝑘,𝑚

,

𝐼
𝑘,𝑚

:=
[𝑘 + 𝑚 − 1]

𝑞

⋅ ⋅ ⋅ [𝑘]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

⋅ ⋅ ⋅ [𝑛]
𝑞

.

(31)

It follows that

𝑧 (1 − 𝑧)𝐷
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

= [𝑛]
𝑞

𝑧 (1 − 𝑧) 𝑧
𝑛−1

+

𝑛−1

∑

𝑘=1

([𝑘]
𝑞

− [𝑛]
𝑞

𝑧) 𝑝
𝑛,𝑘

(𝑞; 𝑧) 𝐼
𝑘,𝑚

= [𝑛]
𝑞

𝑧
𝑛

+

𝑛−1

∑

𝑘=1

[𝑘]
𝑞

𝑝
𝑛,𝑘

(𝑞; 𝑧) 𝐼
𝑘,𝑚

− [𝑛]
𝑞

𝑧

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧) 𝐼
𝑘,𝑚

− [𝑛]
𝑞

𝑧
𝑛+1

= [𝑛]
𝑞

𝑧
𝑛

+

𝑛−1

∑

𝑘=1

[𝑘]
𝑞

𝑝
𝑛,𝑘

(𝑞; 𝑧) 𝐼
𝑘,𝑚

− 𝑧[𝑛]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

= [𝑛]
𝑞

𝑧
𝑛

+ 𝑞
−𝑚

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧) (𝑞
𝑚

[𝑘]
𝑞

+ [𝑚]
𝑞

− [𝑚]
𝑞

) 𝐼
𝑘,𝑚

− 𝑧[𝑛]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

= [𝑛]
𝑞

𝑧
𝑛

+ 𝑞
−𝑚

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧) (𝑞
𝑚

[𝑘]
𝑞

+ [𝑚]
𝑞

− [𝑚]
𝑞

) 𝐼
𝑘,𝑚

− 𝑧[𝑛]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

= 𝑞
−𝑚

(𝑞
𝑚

[𝑛]
𝑞

+ [𝑚]
𝑞

− [𝑚]
𝑞

) 𝑧
𝑛

+ 𝑞
−𝑚

[𝑛 + 𝑚]
𝑞

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧) 𝐼
𝑘,𝑚+1

− 𝑞
−𝑚

[𝑚]
𝑞

𝑛−1

∑

𝑘=1

𝑝
𝑛,𝑘

(𝑞; 𝑧) 𝐼
𝑘,𝑚

− 𝑧[𝑛]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

= 𝑞
−𝑚

[𝑛 + 𝑚]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚+1

; 𝑧) − 𝑞
−𝑚

[𝑚]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧)

− 𝑧[𝑛]
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) ,

(32)

which implies the recurrence in the statement.

Let

Θ
𝑛,𝑚

(𝑞; 𝑧) := 𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚

−
1

[𝑛 + 1]
𝑞

× (𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−1

(1 − 𝑧) .

(33)

Using the recurrence formula (30) we prove two more recur-
rence formulas.

Lemma 11. For all𝑚, 𝑛 ∈ N and 𝑧 ∈ C one has

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚

=
𝑞
𝑚−1

𝑧 (1 − 𝑧)

[𝑛 + 𝑚 − 1]
𝑞

𝐷
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧)

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

(𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1

)

+
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

(1 − 𝑧) 𝑧
𝑚−1

,

(34)

Θ
𝑛,𝑚

(𝑞; 𝑧)

=
𝑞
𝑚−1

𝑧 (1 − 𝑧)

[𝑛 + 𝑚 − 1]
𝑞

𝐷
𝑞

(𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1

)

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

Θ
𝑛,𝑚−1

(𝑞; 𝑧) + 𝑅
𝑛,𝑚

(𝑞; 𝑧) ,

(35)

where

𝑅
𝑛,𝑚

(𝑞; 𝑧)

=
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

× [(1 + 𝑞
𝑚−1

) + (𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1) (𝑧 + 1)]

× 𝑧
𝑚−2

(1 − 𝑧) .

(36)
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Proof. From the recurrence formula in Lemma 10, for all𝑚 ≥

2, we get

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚

=
𝑞
𝑚−1

𝑧 (1 − 𝑧)

[𝑛 + 𝑚 − 1]
𝑞

𝐷
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧)

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

(𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1

)

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

𝑧
𝑚−1

− 𝑧
𝑚

=
𝑞
𝑚−1

𝑧 (1 − 𝑧)

[𝑛 + 𝑚 − 1]
𝑞

𝐷
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧)

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

(𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1

)

+
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

(1 − 𝑧) 𝑧
𝑚−1

,

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚

−
1

[𝑛 + 1]
𝑞

(𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−1

(1 − 𝑧)

=
𝑞
𝑚−1

𝑧 (1 − 𝑧)

[𝑛 + 𝑚 − 1]
𝑞

𝐷
𝑞

(𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1

)

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

× (𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚−1

−
1

[𝑛 + 1]
𝑞

× (𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−2

(1 − 𝑧))

+ 𝑅
𝑛,𝑚

(𝑞; 𝑧) ,

(37)

where

𝑅
𝑛,𝑚

(𝑞; 𝑧)

=
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

(1 − 𝑧) 𝑧
𝑚−1

−
1

[𝑛 + 1]
𝑞

(𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−1

(1 − 𝑧)

+
𝑞
𝑚−1

[𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

(1 − 𝑧) 𝑧
𝑚−1

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

1

[𝑛 + 1]
𝑞

× (𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−2

(1 − 𝑧)

:= 𝑇
𝑛



𝑚

(𝑞) 𝑧
𝑚−1

(1 − 𝑧) +
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

× (𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−2

(1 − 𝑧) .

(38)

Again by simple calculation we obtain

𝑇
𝑛,𝑚

(𝑞)

=
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

−
1

[𝑛 + 1]
𝑞

(𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)

+
𝑞
𝑚−1

[𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

+
𝑞
𝑚−1

[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

1

[𝑛 + 1]
𝑞

× (𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)

−
𝑞
𝑚−1

[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

1

[𝑛 + 1]
𝑞

(𝑞[𝑚 − 1]
𝑞

+ [𝑚 − 1]
𝑞

−1)

= (
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

+
𝑞
𝑚−1

[𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

−
𝑞
𝑚−1

[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

×
1

[𝑛 + 1]
𝑞

(𝑞[𝑚 − 1]
𝑞

+ [𝑚 − 1]
𝑞

−1))

+ (
𝑞
𝑚−1

[𝑛]
𝑞

𝑞𝑚−1[𝑛]
𝑞

+ [𝑚 − 1]
𝑞

− 1)
1

[𝑛 + 1]
𝑞

× (𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)

:= 𝑇
1

𝑛,𝑚

(𝑞) + 𝑇
2

𝑛,𝑚

(𝑞) ,

(39)

where 𝑇1
𝑛,𝑚

(𝑞) and 𝑇2
𝑛,𝑚

(𝑞) can be simplified as follows:

𝑇
2

𝑛,𝑚

(𝑞) = (1 −
𝑞
𝑚−1

[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

)
1

[𝑛 + 1]
𝑞

× (𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1)

=
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

(𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1) ,
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𝑇
1

𝑛,𝑚

(𝑞) =
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

+
𝑞
𝑚−1

[𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

−
𝑞
𝑚−1

[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

1

[𝑛 + 1]
𝑞

× (𝑞[𝑚 − 1]
𝑞

+ [𝑚 − 1]
𝑞

−1)

= [𝑚 − 1]
𝑞

(
1

[𝑛 + 𝑚 − 1]
𝑞

−
𝑞

[𝑛 + 1]
𝑞

𝑞
𝑚−1

[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

)

+[𝑚 − 1]
𝑞

(
𝑞
𝑚−1

[𝑛 + 𝑚 − 1]
𝑞

−
1

[𝑛 + 1]
𝑞

𝑞[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

)

= [𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

− 𝑞
𝑚

[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

+ [𝑚 − 1]
𝑞

𝑞
𝑚−1

[𝑛 + 1]
𝑞

− 𝑞[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

= [𝑚 − 1]
𝑞

(1 + 𝑞
𝑚−1

) [𝑛 + 1]
𝑞

− (1 + 𝑞
𝑚−1

) 𝑞[𝑛]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

=
[𝑚 − 1]

𝑞

(1 + 𝑞
𝑚−1

)

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

.

(40)

Lemma 12. Let 𝑞 > 1 and 𝑓 ∈ 𝐻(D
𝑅

). The function 𝐿
𝑞

(𝑓; 𝑧)

has the following representation:

𝐿
𝑞

(𝑓; 𝑧) =

∞

∑

𝑚=2

𝑎
𝑚

(𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−1

(1 − 𝑧) ,

𝑧 ∈ D
𝑅

.

(41)

Proof. Using the following identity:

[𝑚]
𝑞

− 𝑚

= 1 + 𝑞 + 𝑞
2

+ ⋅ ⋅ ⋅ + 𝑞
𝑚−1

− 𝑚

= (1 − 1) + (𝑞 − 1) + (𝑞
2

− 1) + ⋅ ⋅ ⋅ + (𝑞
𝑚−1

− 1)

= (𝑞 − 1) [1]
𝑞

+ (𝑞 − 1) [2]
𝑞

+ ⋅ ⋅ ⋅ + (𝑞 − 1) [𝑚 − 1]
𝑞

= (𝑞 − 1) ([1]
𝑞

+ ⋅ ⋅ ⋅ + [𝑚 − 1]
𝑞

) = (𝑞 − 1)

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

,

(42)

we get

𝐿
𝑞

(𝑓; 𝑧)

=

∞

∑

𝑚=2

𝑎
𝑚

(
𝑞 ([𝑚]

𝑞

− [𝑚]
𝑞

−1)

𝑞 − 1
)𝑧
𝑚−1

(1 − 𝑧)

=

∞

∑

𝑚=2

𝑎
𝑚

(
𝑞 ([𝑚]

𝑞

− 𝑚)

𝑞 − 1
+
[𝑚]
𝑞

−1 − 𝑚

𝑞−1 − 1
)𝑧
𝑚−1

(1 − 𝑧)

=

∞

∑

𝑚=2

𝑎
𝑚

(𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−1

(1 − 𝑧) ,

(43)

where 𝑓(𝑧) = ∑
∞

𝑚=0

𝑎
𝑚

𝑧
𝑚.

4. Proofs of the Main Results

Firstly we prove that 𝑈
𝑛,𝑞

(𝑓; 𝑧) = ∑
∞

𝑚=0

𝑎
𝑚

𝑈
𝑛,𝑞

(𝑒
𝑚

, 𝑧). Indeed
denoting 𝑓

𝑘

(𝑧) = ∑
𝑘

𝑗=0

𝑎
𝑗

𝑧
𝑗

, |𝑧| ≤ 𝑟 with 𝑚 ∈ N, by the
linearity of 𝑈

𝑛,𝑞

, we have

𝑈
𝑛,𝑞

(𝑓
𝑘

, 𝑧) =

𝑘

∑

𝑚=0

𝑎
𝑚

𝑈
𝑛,𝑞

(𝑒
𝑚

, 𝑧) , (44)

and it is sufficient to show that, for any fixed 𝑛 ∈ N and
|𝑧| ≤ 𝑟 with 𝑟 ≥ 1, we have lim

𝑘→∞

𝑈
𝑛,𝑞

(𝑓
𝑘

, 𝑧) = 𝑈
𝑛,𝑞

(𝑓; 𝑧).
But this is immediate from lim

𝑘→∞

‖𝑓
𝑘

− 𝑓‖
𝑟

= 0, the norm
being defined as ‖𝑓‖

𝑟

= max{|𝑓(𝑧)| : |𝑧| ≤ 𝑟}, and from the
inequality


𝑈
𝑛,𝑞

(𝑓
𝑘

, 𝑧) − 𝑈
𝑛,𝑞

(𝑓, 𝑧)


≤
𝑓𝑘 (0) − 𝑓 (0)

 ⋅
(1 − 𝑧)

𝑛
 +

𝑓𝑘 (1) − 𝑓 (1)
 ⋅
𝑧
𝑛


+ [𝑛 + 1]
𝑞

−1

𝑛−1

∑

𝑗=1


𝑝
𝑛,𝑗

(𝑞; 𝑧)

𝑞
𝑗−1

× ∫

1

0

𝑝
𝑛−2,𝑗−1

(𝑞
−1

, 𝑞
−1

𝑡)
𝑓𝑘 (𝑡) − 𝑓 (𝑡)

 𝑑𝑞−1𝑡

≤ 𝐶
𝑟,𝑛

𝑓𝑘 − 𝑓
𝑟,

(45)

valid for all |𝑧| ≤ 𝑟, where

𝐶
𝑟,𝑛

= (1 + 𝑟)
𝑛

+ 𝑟
𝑛

+ [𝑛 + 1]
𝑞

−1

×

𝑛−1

∑

𝑗=1

[
𝑛

𝑗
]

𝑞

(1 + 𝑟)
𝑛−𝑗

𝑟
𝑗

𝑞
𝑗−1

× ∫

1

0

𝑝
𝑛−2,𝑗−1

(𝑞
−1

; 𝑞
−1

𝑡) 𝑑
𝑞

−1𝑡

= (1 + 𝑟)
𝑛

+ 𝑟
𝑛

+

𝑛−1

∑

𝑗=1

[
𝑛

𝑗
]

𝑞

(1 + 𝑞
𝑛−𝑗

𝑟)
𝑛−𝑗

𝑟
𝑗

𝑞
𝑗−1

.

(46)
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Therefore we get

𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧)


≤

∞

∑

𝑚=0

𝑎𝑚



𝑈
𝑛,𝑞

(𝑒
𝑚

, 𝑧) − 𝑒
𝑚

(𝑧)

=

∞

∑

𝑚=2

𝑎𝑚


×

𝑈
𝑛,𝑞

(𝑒
𝑚

, 𝑧) − 𝑒
𝑚

(𝑧)

,

(47)

as 𝑈
𝑛,𝑞

(𝑒
0

, 𝑧) = 𝑒
0

(𝑧) and 𝑈
𝑛,𝑞

(𝑒
1

, 𝑧) = 𝑒
1

(𝑧).

Proof of Theorem 2. From the recurrence formula (34) and
the inequality (29) for𝑚 ≥ 2 we get


𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚



≤
𝑞
𝑚−1

𝑧 (1 − 𝑧)

𝑞𝑚−2[𝑛 + 1]
𝑞

+ [𝑚 − 2]
𝑞


𝐷
𝑞

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧)


+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

𝑞𝑚−1[𝑛]
𝑞

+ [𝑚 − 1]
𝑞

×

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1



+
[𝑚 − 1]

𝑞

𝑞𝑚−2[𝑛 + 1]
𝑞

+ [𝑚 − 2]
𝑞

|1 − 𝑧| |𝑧|
𝑚−1

.

(48)

It is known that, by a linear transformation, the Bernstein
inequality in the closed unit disk becomes


𝑃


𝑘

(𝑧)

≤

𝑘

𝑞𝑟
1

𝑃𝑘
𝑞𝑟, ∀ |𝑧| ≤ 𝑞𝑟, 𝑟 ≥ 1, (49)

which, combined with the mean value theorem in complex
analysis, implies


𝐷
𝑞

(𝑃
𝑘

; 𝑧)

≤

𝑃


𝑘

𝑞𝑟
≤

𝑘

𝑞𝑟

𝑃𝑘
𝑞𝑟, (50)

for all |𝑧| ≤ 𝑞𝑟, where𝑃
𝑘

(𝑧) is a complex polynomial of degree
≤ 𝑘. It follows that

𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚



≤
𝑞
𝑚−1

𝑟 (1 + 𝑟)

𝑞𝑚−2[𝑛 + 1]
𝑞

+ [𝑚 − 2]
𝑞

𝑚 − 1

𝑞𝑟


𝑈
𝑛,𝑞

(𝑒
𝑚−1

)
𝑞𝑟

+ 𝑟

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1


+
[𝑚 − 1]

1/𝑞

[𝑛 + 1]
𝑞

(1 + 𝑟) 𝑟
𝑚−1

≤
(𝑚 − 1)

[𝑛 + 1]
𝑞

(1 + 𝑟) 𝑞
𝑚−1

𝑟
𝑚−1

+ 𝑟

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1


+
[𝑚 − 1]

1/𝑞

[𝑛 + 1]
𝑞

(1 + 𝑟) 𝑟
𝑚−1

≤ 2𝑞 (𝑚 − 1)
𝑟 (1 + 𝑟)

[𝑛 + 1]
𝑞

(𝑞𝑟)
𝑚−2

+ 𝑟

𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1


.

(51)

By writing the last inequality for 𝑚 = 2, 3, . . ., we easily
obtain, step by step, the following:


𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚



≤ 𝑟 (𝑟

𝑈
𝑛,𝑞

(𝑒
𝑚−2

; 𝑧) − 𝑧
𝑚−2


+ 2

(𝑚 − 2)

[𝑛 + 1]
𝑞

𝑟 (1 + 𝑟) (𝑞𝑟)
𝑚−3

)

+ 2
(𝑚 − 1)

[𝑛 + 1]
𝑞

𝑟 (1 + 𝑟) (𝑞𝑟)
𝑚−2

= 𝑟
2


𝑈
𝑛,𝑞

(𝑒
𝑚−2

; 𝑧) − 𝑧
𝑚−2



+ 2
𝑟 (1 + 𝑟)

[𝑛 + 1]
𝑞

𝑟
𝑚−2

(𝑚 − 1 + 𝑚 − 2)

≤ ⋅ ⋅ ⋅ ≤
𝑟 (1 + 𝑟)

[𝑛 + 1]
𝑞

𝑚(𝑚 − 1) 𝑞
𝑚−2

𝑟
𝑚−2

.

(52)

It follows that


𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧)

≤

∞

∑

𝑚=2

𝑎𝑚



𝑈
𝑛,𝑞

(𝑒
𝑚

; 𝑧) − 𝑧
𝑚



≤
𝑟 (1 + 𝑟)

[𝑛 + 1]
𝑞

∞

∑

𝑚=2

𝑎𝑚
 𝑚 (𝑚 − 1) 𝑞

𝑚−2

𝑟
𝑚−2

.

(53)

The second main result of the paper is the Voronovskaja-
type theorem with a quantitative estimate for the complex
version of genuine 𝑞-Bernstein-Durrmeyer polynomials.

Proof of Theorem 3. By Lemma 11 we have

Θ
𝑛,𝑚

(𝑞; 𝑧)

=
𝑞
𝑚−1

𝑧 (1 − 𝑧)

[𝑛 + 𝑚 − 1]
𝑞

𝐷
𝑞

(𝑈
𝑛,𝑞

(𝑒
𝑚−1

; 𝑧) − 𝑧
𝑚−1

)

+
𝑞
𝑚−1

[𝑛] 𝑧 + [𝑚 − 1]
𝑞

[𝑛 + 𝑚 − 1]
𝑞

Θ
𝑛,𝑚−1

(𝑞; 𝑧) + 𝑅
𝑛,𝑚

(𝑞; 𝑧) ,

(54)

where

𝑅
𝑛,𝑚

(𝑞; 𝑧)

=
[𝑚 − 1]

𝑞

[𝑛 + 𝑚 − 1]
𝑞

[𝑛 + 1]
𝑞

× [(1 + 𝑞
𝑚−1

) + (𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1) (𝑧 + 1)]

× 𝑧
𝑚−2

(1 − 𝑧) .

(55)
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It follows that

𝑅𝑛,𝑚 (𝑞; 𝑧)


≤
[𝑚 − 1]

𝑞

[𝑛 + 1]
2

𝑞

× ((1 + 𝑞
𝑚−1

) 𝑟 + (𝑞

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−2

∑

𝑖=1

[𝑖]
𝑞

−1) (1 + 𝑟))

× (1 + 𝑟) 𝑟
𝑚−2

≤
[𝑚 − 1]

𝑞

[𝑛 + 1]
2

𝑞

× ((1 + 𝑞
𝑚−1

) + (𝑞 (𝑚 − 2) [𝑚 − 2]
𝑞

+ (𝑚 − 2)
2

))

× (1 + 𝑟)
2

𝑟
𝑚−2

=
𝑞
𝑚−2

[𝑚 − 1]
𝑞

−1

[𝑛 + 1]
2

𝑞

𝑞
𝑚−2

× ((
1

𝑞𝑚−2
+ 𝑞) + (𝑚 − 2) [𝑚 − 2]

𝑞

−1 +
1

𝑞𝑚−2
(𝑚 − 2)

2

)

× (1 + 𝑟)
2

𝑟
𝑚−2

≤
3

[𝑛 + 1]
2

𝑞

(𝑚 − 1) (𝑚 − 2)
2

(1 + 𝑟)
2

(𝑞
2

𝑟)
𝑚−2

(56)

for all 𝑚 ≥ 2, 𝑛 ∈ N, and 𝑧 ∈ C. Equation (54) implies that
for |𝑧| ≤ 𝑟

Θ𝑛,𝑚 (𝑞; 𝑧)


≤ 𝑟
Θ𝑛,𝑚−1 (𝑞; 𝑧)

 +
𝑞
𝑚−1

𝑟 (1 + 𝑟)

𝑞𝑚−2[𝑛 + 1]
𝑞

𝑚 − 1

𝑞𝑟

×

𝑈
𝑛,𝑞

(𝑒
𝑚−1

) − 𝑒
𝑚−1

𝑞𝑟

+
3

[𝑛 + 1]
2

𝑞

(𝑚 − 1) (𝑚 − 2)
2

(1 + 𝑟)
2

(𝑞
2

𝑟)
𝑚−2

≤ 𝑟
Θ𝑛,𝑚−1 (𝑞; 𝑧)

 +
𝑟
2

(1 + 𝑟)
2

[𝑛 + 1]
2

𝑞

× (𝑚 − 1)
2

(𝑚 − 2) (𝑞
2

𝑟)
𝑚−3

+
3

[𝑛 + 1]
2

𝑞

(𝑚 − 1) (𝑚 − 2)
2

(1 + 𝑟)
2

(𝑞
2

𝑟)
𝑚−2

≤ 𝑟
Θ𝑛,𝑚−1 (𝑞; 𝑧)

 +
4𝑟
2

(1 + 𝑟)
2

[𝑛 + 1]
2

𝑞

× (𝑚 − 1)
2

(𝑚 − 2) (𝑞
2

𝑟)
𝑚−2

.

(57)

By writing the last inequality for 𝑚 = 3, 4, . . ., we easily
obtain, step by step, the following:



𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧) −
1

[𝑛 + 1]
𝑞

𝐿
𝑞

(𝑓; 𝑧)



≤
4𝑟
2

(1 + 𝑟)
2

[𝑛 + 1]
2

𝑞

∞

∑

𝑚=2

𝑎𝑚
 (𝑞
2

𝑟)
𝑚−2

×

𝑚

∑

𝑗=2

(𝑗 − 1)
2

(𝑗 − 2) ≤
4𝑟
2

(1 + 𝑟)
2

[𝑛 + 1]
2

𝑞

×

∞

∑

𝑚=2

𝑎𝑚
 (𝑚 − 1)

2

(𝑚 − 2)
2

(𝑞
2

𝑟)
𝑚−2

.

(58)

Proof of Theorem 4. For all 𝑧 ∈ D
𝑅

and 𝑛 ∈ N we get

𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧)

=
1

[𝑛 + 1]
𝑞

{𝐿
𝑞

(𝑓; 𝑧) + [𝑛 + 1]
𝑞

× (𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧) −
1

[𝑛 + 1]
𝑞

𝐿
𝑞

(𝑓; 𝑧))} .

(59)

It follows that

𝑈
𝑛,𝑞

(𝑓) − 𝑓
𝑟

≥
1

[𝑛 + 1]
𝑞

{

𝐿
𝑞

(𝑓; 𝑧)
𝑟
− [𝑛 + 1]

𝑞

×



𝑈
𝑛,𝑞

(𝑓) − 𝑓 −
1

[𝑛 + 1]
𝑞

𝐿
𝑞

(𝑓; 𝑧)


𝑟

} .

(60)

Because by hypothesis 𝑓 is not a polynomial of degree ≤1 in
D
𝑅

, it follows ‖𝐿
𝑞

(𝑓; 𝑧)‖
𝑟

> 0. Indeed, assuming the contrary
it follows that 𝐿

𝑞

(𝑓; 𝑧) = 0 for all 𝑧 ∈ D
𝑟

; that is, 𝐷
𝑞

𝑓(𝑧) =

𝐷
𝑞

−1𝑓(𝑧) for all 𝑧 ∈ D
𝑟

. Thus 𝑎
𝑚

= 0, 𝑚 = 2, 3, . . . and 𝑓 is
linear, which is a contradiction with the hypothesis.

Now, byTheorem 3, we have

[𝑛 + 1]
𝑞



𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓 (𝑧) −
1

[𝑛 + 1]
𝑞

𝐿
𝑞

(𝑓; 𝑧)



≤
4𝑟
2

(1 + 𝑟)
2

[𝑛 + 1]
𝑞

∞

∑

𝑚=3

𝑎𝑚
 (𝑚 − 1)

2

(𝑚 − 2)
2

(𝑞
2

𝑟)
𝑚−2

→ 0 as 𝑛 → ∞.

(61)

Consequently, there exists 𝑛
1

(depending only on 𝑓 and 𝑟)
such that for all 𝑛 ≥ 𝑛

1

we have


𝐿
𝑞

(𝑓; 𝑧)
𝑟
− [𝑛 + 1]

𝑞



𝑈
𝑛,𝑞

(𝑓) − 𝑓 −
1

[𝑛 + 1]
𝑞

𝐿
𝑞

(𝑓; 𝑧)


𝑟

≥
1

2


𝐿
𝑞

(𝑓; 𝑧)
𝑟
,

(62)
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which implies that


𝑈
𝑛,𝑞

(𝑓) − 𝑓
𝑟
≥

1

2[𝑛 + 1]
𝑞


𝐿
𝑞

(𝑓; 𝑧)
𝑟
, ∀𝑛 ≥ 𝑛

1

. (63)

For 1 ≤ 𝑛 ≤ 𝑛
1

− 1 we have


𝑈
𝑛,𝑞

(𝑓) − 𝑓
𝑟
≥

1

[𝑛 + 1]
𝑞

([𝑛 + 1]
𝑞


𝑈
𝑛,𝑞

(𝑓) − 𝑓
𝑟
)

=
1

[𝑛 + 1]
𝑞

𝑀
𝑟,𝑛,𝑞

(𝑓) > 0,

(64)

which finally implies that


𝑈
𝑛,𝑞

(𝑓) − 𝑓
𝑟
≥

1

[𝑛 + 1]
𝑞

𝐶
𝑟,𝑞

(𝑓) , (65)

for all 𝑛, with 𝐶
𝑟,𝑞

(𝑓) = min{𝑀
𝑟,1,𝑞

(𝑓), . . . ,𝑀
𝑟,𝑛

1

−1,𝑞

(𝑓),

(1/2)‖𝐿
𝑞

(𝑓; 𝑧)‖
𝑟

}, which ends the proof.

Proof of Theorem 6. Let 1 ≤ 𝑟 < 𝑅, 1 < 𝑞
0

< 𝑅/𝑟 be fixed.
Then, by Lemma 12 for any 1 ≤ 𝑞 ≤ 𝑞

0

and |𝑧| ≤ 𝑟, we have

𝐿
𝑞

(𝑓; 𝑧) =

∞

∑

𝑚=2

𝑎
𝑚

(𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

+

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1)𝑧
𝑚−1

(1 − 𝑧) ,

𝐿
1

(𝑓; 𝑧) =

∞

∑

𝑚=2

𝑎
𝑚

𝑚(𝑚 − 1) 𝑧
𝑚−1

(1 − 𝑧) .

(66)

Using the inequality


𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−
𝑚 (𝑚 − 1)

2



= 𝑞

𝑚−1

∑

𝑖=2

([𝑖]
𝑞

− 𝑖) + (𝑞 − 1)
𝑚 (𝑚 − 1)

2

= 𝑞 (𝑞 − 1)

𝑚−1

∑

𝑖=2

𝑖

∑

𝑗=1

[𝑗]
𝑞

+ (𝑞 − 1)
𝑚 (𝑚 − 1)

2

≤ 𝑞 (𝑞 − 1) [𝑚 − 1]
𝑞

𝑚(𝑚 − 1)

2
+ (𝑞 − 1)

𝑚 (𝑚 − 1)

2

= (𝑞 − 1)
𝑚 (𝑚 − 1)

2
(𝑞[𝑚 − 1]

𝑞

+ 1)

≤ (𝑞 − 1) 𝑞
𝑚−1

𝑚
2

(𝑚 − 1)

2
,



𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1 −
𝑚 (𝑚 − 1)

2



=

𝑚−1

∑

𝑖=2

(𝑖 − [𝑖]
𝑞

−1)

= (1 − 𝑞
−1

)

𝑚−1

∑

𝑖=2

𝑖

∑

𝑗=1

[𝑗]
𝑞

−1

≤ (1 − 𝑞
−1

)
𝑚(𝑚 − 1)

2

2
,

(67)

we get, for 1 ≤ 𝑞 ≤ 𝑞
0

and |𝑧| ≤ 𝑟,

𝐿
𝑞

(𝑓; 𝑧) − 𝐿
1

(𝑓; 𝑧)


≤

𝑁−1

∑

𝑚=2

𝑎𝑚




𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−
𝑚 (𝑚 − 1)

2




𝑧
𝑚−1

− 𝑧
𝑚



+

∞

∑

𝑚=𝑁

𝑎𝑚




𝑞

𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−
𝑚 (𝑚 − 1)

2




𝑧
𝑚−1

− 𝑧
𝑚



+

𝑁−1

∑

𝑚=2

𝑎𝑚




𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1 −
𝑚 (𝑚 − 1)

2




𝑧
𝑚−1

− 𝑧
𝑚



+

∞

∑

𝑚=𝑁

𝑎𝑚




𝑚−1

∑

𝑖=1

[𝑖]
𝑞

−1 −
𝑚 (𝑚 − 1)

2




𝑧
𝑚−1

− 𝑧
𝑚



≤ (𝑞 − 1)

𝑁−1

∑

𝑚=2

𝑎𝑚
 𝑚
2

(𝑚 − 1) 𝑞
𝑚−1

0

𝑟
𝑚

+ 4

∞

∑

𝑚=𝑁

𝑎𝑚
 (𝑚 − 1)

2

𝑞
𝑚

0

𝑟
𝑚

+ (1 − 𝑞
−1

)

𝑁−1

∑

𝑚=2

𝑎𝑚
 𝑚(𝑚 − 1)

2

𝑟
𝑚

+ 2

∞

∑

𝑚=𝑁

𝑎𝑚
 𝑚 (𝑚 − 1) 𝑟

𝑚

.

(68)

Since 𝑓 ∈ 𝐻(D
𝑅

), we can find that𝑁 = 𝑁
𝜀

∈ N such that

4

∞

∑

𝑚=𝑁

𝑎𝑚
 (𝑚 − 1)

2

𝑞
𝑚

0

𝑟
𝑚

+ 2

∞

∑

𝑚=𝑁

𝑎𝑚
 𝑚 (𝑚 − 1) 𝑟

𝑚

<
𝜀

2
.

(69)

Thus, for 𝑞 sufficiently close to 1 from the right, we conclude
that

lim
𝑞→1

+1

𝐿
𝑞

(𝑓; 𝑧) = 𝐿
1

(𝑓; 𝑧) (70)

uniformly on D
𝑟

. The proof is finished.

Proof of Theorem 5. Then, by Theorem 3, we get 𝐿
𝑞

(𝑓; 𝑧) =

lim
𝑛→∞

[𝑛 + 1]
𝑞

(𝑈
𝑛,𝑞

(𝑓; 𝑧) − 𝑓(𝑧)) = 0 for infinite number
of points having an accumulation point on D

𝑅/𝑞

2 . Since
𝐿
𝑞

(𝑓; 𝑧) ∈ 𝐻(D
𝑅/𝑞

2), by the unicity Theorem for analytic
functions, we get 𝐿

𝑞

(𝑓; 𝑧) = 0 in D
𝑅/𝑞

2 , and, therefore, by
(11), 𝑎

𝑚

= 0, 𝑚 = 2, 3, . . .. Thus, 𝑓 is linear. Theorem 5 is
proved.
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