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A higher order compact difference (HOC) scheme with uniform mesh sizes in different coordinate directions is employed to
discretize a two- and three-dimensional Helmholtz equation. In case of two dimension, the stencil is of 9 points while in three-
dimensional case, the scheme has 27 points and has fourth- to fifth-order accuracy.Multigridmethod using Gauss-Seidel relaxation
is designed to solve the resulting sparse linear systems. Numerical experiments were conducted to test the accuracy of the sixth-
order compact difference schemewithMultigridmethod and to compare it with the standard second-order finite-difference scheme
and fourth-order compact difference scheme. Performance of the scheme is tested through numerical examples. Accuracy and
efficiency of the new scheme are established by using the errors norms 𝑙

2
.

1. Introduction

The struggle for computing accurate solution using different
grid sizes has increased researchers’ curiosity for developing
high order difference schemes. Compact finite-difference
scheme iswidely used in vast area of computational problems,
such as the Helmholtz equations and other elliptic equations
[1, 2].We seek high-accuracy numerical solution of the three-
dimensional Helmholtz equation as follows:

∇
2
𝑢 (𝑥, 𝑦, 𝑧) + ℓ

2
𝑢 (𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧) , (𝑥, 𝑦, 𝑧) ∈ Ω,

(1)

where Ω is a cubic solid domain and ℓ is a wave number.
The above equation is an elliptic partial differential equation.
This equation has broad application in physical phenomena,
such as elasticity, electromagnetic waves, potential in time
harmonic acoustic and electromagnetic fields, acoustic wave
scattering, water wave propagation, noise reduction in
silencers, radar scattering, and membrane vibration which
are governed in frequency domain. The solution 𝑢(𝑥, 𝑦, 𝑧)

and the forcing function 𝑓(𝑥, 𝑦, 𝑧) are assumed to have the
required continuous partial derivatives up to specific orders
and are sufficiently smooth. In this study we analyze finite-
difference approximation on uniform grids Δ𝑥 = Δ𝑦 = Δ𝑧 in

𝑥, 𝑦, and 𝑧 directions. In this study we also use a constant
value of ℓ to obtain a scheme with sixth order of accuracy [3].
The second-order central-difference operator at 𝑥

𝑖
, denoted

by 𝛿2
𝑥
, is defined as follows:

𝛿
2

𝑥
𝑢
𝑖,𝑗,𝑘

=
𝑢
𝑖+1,𝑗,𝑘

− 2𝑢
𝑖,𝑗,𝑘

+ 𝑢
𝑖−1,𝑗,𝑘

ℎ2
1

. (2)

Difference operators 𝛿2
𝑦
and 𝛿2
𝑧
are defined similarly. Equation

(1) can be discretized at given grid points (𝑥
𝑖
, 𝑦
𝑗
, and 𝑧

𝑘
) as

follows:

𝛿
2

𝑥
𝑢
𝑖,𝑗,𝑘

+ 𝛿
2

𝑦
𝑢
𝑖,𝑗,𝑘

+ 𝛿
2

𝑧
𝑢
𝑖,𝑗,𝑘

+ ℓ
2
𝑢
𝑖,𝑗,𝑘

= 𝑓
𝑖,𝑗,𝑘

+ 𝑂 (ℎ
2
) ,

(3)

where𝑂(ℎ2) denotes the truncated terms on the order𝑂(ℎ2
1
+

ℎ
2

2
+ ℎ
2

3
). Helmholtz equation has been numerically solved by

different techniques and different approaches are developed
such as the finite-difference method [4], the finite-element
method [5], the spectral-element method [6], and the
compact finite-difference method [7].

In finite-difference methods, the stencil of grid points
needs to be enlarged, in order to increase the order of accu-
racy of approximation, but this is not desirable. Helmholtz

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 954658, 14 pages
http://dx.doi.org/10.1155/2014/954658

http://dx.doi.org/10.1155/2014/954658


2 Abstract and Applied Analysis

equation is extensively solved by finite-element methods, but
the disadvantage of finite-elementmethod is the high compu-
tational cost; another disadvantage is the pollution effect; that
is, its results are less accurate solution at higher wave number
for the given nodes per wavelength. In spectral-element
method, it shows that it requires fever grid nodes per wave-
length as compared to the finite-element methods for the
Helmholtz equation [6]. But due to the less sparse resultant
matrix, compared to the resulting finite-element matrix,
computational time of both methods is the same [6]. Turkel
et al. solved Helmholtz equation in 2D and 3D domain for
variable wave number ℓ [8]. Many iterative techniques for the
Helmholtz equation suffer because of their slow convergence,
when high frequencies are required. The struggle for fast
iterative methods for high-frequency Helmholtz equations
becomes the focus of research.

In general to obtain more accurate numerical solution
add more nodes and use smaller mesh sizes, which needs
more computational time and storage space. Singer and
Turkel have conducted an important work in this regard [4].
They used Dirichlet and/or Neumann boundary conditions
for the development of a fourth-order compact finite-differ-
ence method. Later on a sixth-order finite-difference method
was developed by Nabavi et al. for solving Helmholtz equa-
tion in one-dimensional and two-dimensional domain with
Neumann boundary conditions [7]. It is shown that sixth-
order accuracy is the best that can be achieved for Poisson
andHelmholtz equation in 2D case [4]. In this work the basic
issue discussed is to develop a sixth-order compact finite-
difference method for solving three-dimensional Helmholtz
equationwithMultigridmethod.The present study is the first
that uses sixth-order compact finite-difference scheme for
three dimensions and the designing of specialized Multigrid
method.This scheme is different from [1, 7] but the difference
is of high order, because the term 𝜕

6
𝑢/𝜕𝑥
2
𝜕𝑦
2
𝜕𝑧
2 in 3

dimensions has no counterpart in 2 dimensions. It is also
different when ℓ is kept constant in [8].

2. Higher Order Compact Scheme

2.1. Two-Dimensional Case. Consider the two-dimensional
Helmholtz equation:

𝑢
𝑥𝑥

(𝑥, 𝑦) + 𝑢
𝑦𝑦
(𝑥, 𝑦) + ℓ

2
𝑢 = 𝑓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω.

(4)

In order to achieve an appropriate description, from Taylor
series expansion, we have

𝑢
𝑖+1,𝑗

= 𝑢
𝑖,𝑗
+ ℎ𝜕
𝑥
𝑢
𝑖,𝑗
+
ℎ
2

2
𝜕
2

𝑥
𝑢
𝑖,𝑗
+
ℎ
3

6
𝜕
3

𝑥
𝑢
𝑖,𝑗
+
ℎ
4

24
𝜕
4

𝑥
𝑢
𝑖,𝑗

+
ℎ
5

120
𝜕
5

𝑥
𝑢
𝑖,𝑗
+

ℎ
6

720
𝜕
6

𝑥
𝑢
𝑖,𝑗
+ 𝑂 (ℎ

7
) ,

𝑢
𝑖−1,𝑗

= 𝑢
𝑖,𝑗
− ℎ𝜕
𝑥
𝑢
𝑖,𝑗
+
ℎ
2

2
𝜕
2

𝑥
𝑢
𝑖,𝑗
−
ℎ
3

6
𝜕
3

𝑥
𝑢
𝑖,𝑗
+
ℎ
4

24
𝜕
4

𝑥
𝑢
𝑖,𝑗

−
ℎ
5

120
𝜕
5

𝑥
𝑢
𝑖,𝑗
+

ℎ
6

720
𝜕
6

𝑥
𝑢
𝑖,𝑗
+ 𝑂 (ℎ

7
) ,

(5)

where the grid space is Δ𝑥 = ℎ; adding above expressions (5)
and solving for the second-order derivative which gives

𝜕
2

𝑥
𝑢
𝑖,𝑗
=
𝑢
𝑖+1,𝑗

− 2𝑢
𝑖,𝑗
+ 𝑢
𝑖−1,𝑗

ℎ2
−
ℎ
2

12
𝜕
4

𝑥
𝑢
𝑖,𝑗

−
ℎ
4

360
𝜕
6

𝑥
𝑢
𝑖,𝑗
+ 𝑂 (ℎ

6
) ,

(6)

using (2) and (6), we have

𝛿
2

𝑥
𝑢
𝑖,𝑗
= 𝜕
2

𝑥
𝑢
𝑖,𝑗
+
ℎ
2

12
𝜕
4

𝑥
𝑢
𝑖,𝑗
+

ℎ
4

360
𝜕
6

𝑥
𝑢
𝑖,𝑗
+ 𝑂 (ℎ

6
) ; (7)

similarly we can find the approximation for the variable 𝑦.
Therefore the central difference scheme for Helmholtz equa-
tion can be written as follows:

𝛿
2

𝑥
𝑢
𝑖,𝑗
+ 𝛿
2

𝑦
𝑢
𝑖,𝑗
+ ℓ
2
(𝑢
𝑖,𝑗
) + 𝛼
𝑖,𝑗
= 𝑓
𝑖,𝑗
+ 𝑂 (ℎ

6
) , (8)

where

𝛼
𝑖,𝑗
= −

ℎ
2

12
[
𝜕
4
𝑢
𝑖,𝑗

𝜕𝑥4
+
𝜕
4
𝑢
𝑖,𝑗

𝜕𝑦4
] −

ℎ
4

360
[
𝜕
6
𝑢
𝑖,𝑗

𝜕𝑥6
+
𝜕
6
𝑢
𝑖,𝑗

𝜕𝑦6
]

+ 𝑂 (ℎ
6
) .

(9)

The higher order derivatives are expressed through mixed
derivatives by successively differentiating (4); this process
also includes derivative of the forcing function𝑓(𝑥, 𝑦). Appl-
ying the appropriate derivatives of (4), we get

(
𝜕
4
𝑢

𝜕𝑥4
)

𝑖,𝑗

= (
𝜕
2
𝑓

𝜕𝑥2
− ℓ
2 𝜕
2
𝑢

𝜕𝑥2
−

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
)

𝑖,𝑗

,

(
𝜕
4
𝑢

𝜕𝑦4
)

𝑖,𝑗

= (
𝜕
2
𝑓

𝜕𝑦2
− ℓ
2 𝜕
2
𝑢

𝜕𝑦2
−

𝜕
4
𝑢

𝜕𝑦2𝜕𝑥2
)

𝑖,𝑗

,

(10)

and putting the above equation in (9), we get

𝛼
𝑖,𝑗
= −

ℎ
2

12
[(

𝜕
2
𝑓

𝜕𝑥2
+
𝜕
2
𝑓

𝜕𝑦2
)

𝑖,𝑗

− ℓ
2
(
𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
)

𝑖,𝑗

−2[
𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
]

𝑖,𝑗

] −
ℎ
4

360
[
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
]

𝑖,𝑗

+ 𝑂 (ℎ
6
) ,

(11)

in order to find the fourth-order approximation of
[𝜕
4
𝑢/𝜕𝑥
2
𝜕𝑦
2
]
𝑖,𝑗

in above equation, which can be obtained
from Taylor series expansion such that

[
𝜕
4
𝑢

𝜕2𝑥𝜕2𝑦
]

𝑖,𝑗

= 𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
−
ℎ
2

12
(

𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
)

𝑖,𝑗

+ 𝑂 (ℎ
4
) ;

(12)
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putting (12) in (11), we get

𝛼
𝑖,𝑗
=
ℎ
2

12
(−∇
2
𝑓
𝑖,𝑗
+ 2𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
+ ℓ
2
𝑓
𝑖,𝑗
− ℓ
4
𝑢
𝑖,𝑗
)

−
ℎ
4

360
[
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
+ 5

𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+ 5

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
]

𝑖,𝑗

+ 𝑂 (ℎ
6
) ,

(13)

where∇2 is laplace operator; for compact sixth-order approx-
imation, differentiating (4), we have

(
𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
+ ℓ
2 𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
)

𝑖,𝑗

=
𝜕
4
𝑓
𝑖,𝑗

𝜕𝑥2𝜕𝑦2
, (14)

(
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
)

𝑖,𝑗

= ∇
4
𝑓
𝑖,𝑗
− ℓ
2
(
𝜕
4
𝑢

𝜕𝑥4
+
𝜕
4
𝑢

𝜕𝑦4
)

𝑖,𝑗

− (
𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
)

𝑖,𝑗

,

(15)

where∇4 is biharmonic operator; putting (10) and (14) in (15),
we get

(
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
)

𝑖,𝑗

= ∇
4
𝑓
𝑖,𝑗
− [

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
]

𝑖,𝑗

+ 3ℓ
2
(

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
− ℓ
2
∇
2
𝑓 + ℓ
2
(−ℓ
2
𝑢 + 𝑓))

𝑖,𝑗

,

(16)

and using (14), (16), and (12), we have

𝛼
𝑖,𝑗
=
ℎ
2

12
(−∇
2
𝑓
𝑖,𝑗
+ 2𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
+ ℓ
2
𝑓
𝑖,𝑗
− ℓ
4
𝑢
𝑖,𝑗
)

−
ℎ
4

360
(∇
4
𝑓
𝑖,𝑗
− ℓ
2
∇
2
𝑓
𝑖,𝑗
+ 4[

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
]

𝑖,𝑗

− 2ℓ
2
𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
− ℓ
6
𝑢
𝑖,𝑗
+ ℓ
4
𝑓
𝑖,𝑗
) + 𝑂(ℎ

6
) .

(17)

Consequently, the compact sixth-order approximation of
the two-dimensional Helmholtz equation can be written in
modified form which leads to

ℎ
2

6
(1 +

ℓ
2
ℎ
2

30
) (𝛿
2

𝑥
𝛿
2

𝑦
) V
𝑖,𝑗
+ (𝛿
2

𝑥
+ 𝛿
2

𝑦
) V
𝑖,𝑗

+ ℓ
2
(1 −

ℓ
2
ℎ
2

12
+
ℓ
4
ℎ
4

360
) V
𝑖,𝑗

= (1 −
ℓ
2
ℎ
2

12
+
ℓ
4
ℎ
4

360
)𝑓
𝑖,𝑗
+ (

ℎ
2

12
(1 −

ℓ
2
ℎ
2

30
))∇
2
𝑓
𝑖,𝑗

+
ℎ
4

360
∇
4
𝑓
𝑖,𝑗
+
ℎ
4

90
[

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
]

𝑖,𝑗

,

L.H.S = R.H.S,
(18)

where V
𝑖,𝑗
is the approximate solution of (4), such that V

𝑖,𝑗
=

𝑢
𝑖,𝑗
+ 𝑂(ℎ

6
). Since

(𝛿
2

𝑥
𝛿
2

𝑦
) V
𝑖,𝑗

=
1

ℎ4
[(V
𝑖+1,𝑗+1

+ V
𝑖+1,𝑗−1

+ V
𝑖−1,𝑗+1

+ V
𝑖−1,𝑗−1

)

−2 (V
𝑖,𝑗+1

+ V
𝑖,𝑗−1

+ V
𝑖+1,𝑗

+ V
𝑖−1,𝑗

) + 4 (V
𝑖,𝑗
)] ,

(19)

using (19), (18) can be written as follows:

L.H.S = 𝑎
1
V
𝑖,𝑗
+ 𝑎
2
𝐿
1

𝑖,𝑗
+ 𝑎
3
𝐿
2

𝑖,𝑗
, (20)

where

𝑎
1
= −

10

3
+ ℓ
2
ℎ
2
(
46

45
−
ℓ
2
ℎ
2

12
+
ℓ
4
ℎ
4

360
) , 𝑎

2
=
2

3
−
ℓ
2
ℎ
2

90
,

𝑎
3
=
1

6
+
ℓ
2
ℎ
2

180
,

𝐿
1

𝑖,𝑗
= V
𝑖+1,𝑗

+ V
𝑖−1,𝑗

+ V
𝑖,𝑗+1

+ V
𝑖,𝑗−1

,

𝐿
2

𝑖,𝑗
= V
𝑖+1,𝑗+1

+ V
𝑖+1,𝑗−1

+ V
𝑖−1,𝑗+1

+ V
𝑖−1,𝑗−1

.

(21)

Also the right-hand side of (18) can be expressed as follows:

R.H.S = 𝑏
11
𝑓
𝑖,𝑗
+ 𝑏
12
∇
2
𝑓
𝑖,𝑗
+ 𝑏
13
∇
4
𝑓
𝑖,𝑗
+ 𝑏
14
[

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
]

𝑖,𝑗

,

= 𝑏
1
𝑓
𝑖,𝑗
+ 𝑏
2
𝑅
1

𝑖,𝑗
+ 𝑏
3
𝑅
2

𝑖,𝑗
,

(22)

where

𝑏
1
=

ℎ
2

90
(63 −

13ℎ
2
ℓ
2

2
+
ℎ
4
ℓ
4

4
) , 𝑏

2
=

ℎ
2

360
(23−ℎ

2
ℓ
2
) ,

𝑏
3
=
ℎ
2

90
,

𝑅
1

𝑖,𝑗
= 𝑓
𝑖+1,𝑗

+ 𝑓
𝑖−1,𝑗

+ 𝑓
𝑖,𝑗+1

+ 𝑓
𝑖,𝑗−1

,

𝑅
2

𝑖,𝑗
= 𝑓
𝑖+1,𝑗+1

+ 𝑓
𝑖+1,𝑗−1

+ 𝑓
𝑖−1,𝑗+1

+ 𝑓
𝑖−1,𝑗−1

;

(23)
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therefore (18) can be written as follows:

𝑎
1
V
𝑖,𝑗
+ 𝑎
2
𝐿
1

𝑖,𝑗
+ 𝑎
3
𝐿
2

𝑖,𝑗
= 𝑏
1
𝑓
𝑖,𝑗
+ 𝑏
2
𝑅
1

𝑖,𝑗
+ 𝑏
3
𝑅
2

𝑖,𝑗
. (24)

This is the compact sixth-order approximation of two-dimen-
sional Helmholtz equation, which can be written in the form
𝐴𝑈 = 𝑏, where 𝐴 is a sparse, symmetric, and block tridiago-
nal matrix.

2.2. Three-Dimensional Case. Consider the three-dimen-
sional Helmholtz equation:

𝑢
𝑥𝑥

(𝑥, 𝑦, 𝑧) + 𝑢
𝑦𝑦
(𝑥, 𝑦, 𝑧) + 𝑢

𝑧𝑧
(𝑥, 𝑦, 𝑧) + ℓ

2
𝑢 (𝑥, 𝑦, 𝑧)

= 𝑓 (𝑥, 𝑦, 𝑧) , (𝑥, 𝑦, 𝑧) ∈ Ω.

(25)

In order to achieve an appropriate description, from Taylor
series expansion, we have

𝑢
𝑖+1,𝑗,𝑘

= 𝑢
𝑖,𝑗,𝑘

+ ℎ𝜕
𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
2

2
𝜕
2

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
3

6
𝜕
3

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
4

24
𝜕
4

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
5

120
𝜕
5

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
6

720
𝜕
6

𝑥
𝑢
𝑖,𝑗,𝑘

+ 𝑂 (ℎ
7
) ,

𝑢
𝑖−1,𝑗,𝑘

= 𝑢
𝑖,𝑗,𝑘

− ℎ𝜕
𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
2

2
𝜕
2

𝑥
𝑢
𝑖,𝑗,𝑘

−
ℎ
3

6
𝜕
3

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
4

24
𝜕
4

𝑥
𝑢
𝑖,𝑗,𝑘

−
ℎ
5

120
𝜕
5

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
6

720
𝜕
6

𝑥
𝑢
𝑖,𝑗,𝑘

+ 𝑂 (ℎ
7
) ,

(26)

and adding the above expressions and solving for the second
derivative which gives

𝜕
2

𝑥
𝑢
𝑖,𝑗,𝑘

=
𝑢
𝑖+1,𝑗,𝑘

− 2𝑢
𝑖,𝑗,𝑘

+ 𝑢
𝑖−1,𝑗,𝑘

ℎ2
−
ℎ
2

12
𝜕
4

𝑥
𝑢
𝑖,𝑗,𝑘

−
ℎ
4

360
𝜕
6

𝑥
𝑢
𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) ,

(27)

using (2) and (27), we have

𝛿
2

𝑥
𝑢
𝑖,𝑗,𝑘

= 𝜕
2

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
2

12
𝜕
4

𝑥
𝑢
𝑖,𝑗,𝑘

+
ℎ
4

360
𝜕
6

𝑥
𝑢
𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) ;

(28)

similarly we can find the approximation for the variables 𝑦
and 𝑧. Therefore the central difference scheme for Helmholtz
equation can be written as follows:

𝛿
2

𝑥
𝑢
𝑖,𝑗,𝑘

+ 𝛿
2

𝑦
𝑢
𝑖,𝑗,𝑘

+ 𝛿
2

𝑧
𝑢
𝑖,𝑗,𝑘

+ ℓ
2
(𝑢
𝑖,𝑗,𝑘

) + 𝛼
𝑖,𝑗,𝑘

= 𝑓
𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) ,

(29)

where

𝛼
𝑖,𝑗,𝑘

= −
ℎ
2

12
[
𝜕
4
𝑢

𝜕𝑥4
+
𝜕
4
𝑢

𝜕𝑦4
+
𝜕
4
𝑢

𝜕𝑧4
]

𝑖,𝑗,𝑘

−
ℎ
4

360
[
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
+
𝜕
6
𝑢

𝜕𝑧6
]

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) .

(30)

For simplicity we use 𝑢(𝑥
𝑖
, 𝑦
𝑗
, 𝑧
𝑘
) = 𝑢
𝑖,𝑗,𝑘

and 𝑓(𝑥
𝑖
, 𝑦
𝑗
, 𝑧
𝑘
) =

𝑓
𝑖,𝑗,𝑘

. The higher order derivatives are expressed through
mixed derivatives by successively differentiating (25); this
process also includes derivative of the forcing function
𝑓(𝑥, 𝑦, 𝑧). Differentiating (25) twice with respect to 𝑥, 𝑦, 𝑧

and then solving it for 𝜕
4
𝑢/𝜕𝑥
4, 𝜕
4
𝑢/𝜕𝑦
4, and 𝜕

4
𝑢/𝜕𝑧
4,

respectively, we have

(
𝜕
4
𝑢

𝜕𝑥4
)

𝑖,𝑗,𝑘

= (
𝜕
2
𝑓

𝜕𝑥2
− ℓ
2 𝜕
2
𝑢

𝜕𝑥2
−

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
−

𝜕
4
𝑢

𝜕𝑥2𝜕𝑧2
)

𝑖,𝑗,𝑘

,

(
𝜕
4
𝑢

𝜕𝑦4
)

𝑖,𝑗,𝑘

= (
𝜕
2
𝑓

𝜕𝑦2
− ℓ
2 𝜕
2
𝑢

𝜕𝑦2
−

𝜕
4
𝑢

𝜕𝑦2𝜕𝑥2
−

𝜕
4
𝑢

𝜕𝑦2𝜕𝑧2
)

𝑖,𝑗,𝑘

,

(
𝜕
4
𝑢

𝜕𝑧4
)

𝑖,𝑗,𝑘

= (
𝜕
2
𝑓

𝜕𝑧2
− ℓ
2 𝜕
2
𝑢

𝜕𝑧2
−

𝜕
4
𝑢

𝜕𝑧2𝜕𝑥2
−

𝜕
4
𝑢

𝜕𝑧2𝜕𝑦2
)

𝑖,𝑗,𝑘

;

(31)

therefore (30) becomes

𝛼
𝑖,𝑗,𝑘

= −
ℎ
2

12
[∇
2
𝑓
𝑖,𝑗,𝑘

− ℓ
2
∇
2
𝑢
𝑖,𝑗,𝑘

− 2(
𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑢

𝜕𝑥2𝜕𝑧2
+

𝜕
4
𝑢

𝜕𝑦2𝜕𝑧2
)

𝑖,𝑗,𝑘

]

−
ℎ
4

360
[
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
+
𝜕
6
𝑢

𝜕𝑧6
]

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) ,

(32)

where ∇2 is laplace operator; for compact sixth-order scheme
of 3D problem consider the following discretization:

[
𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
]

𝑖,𝑗,𝑘

= 𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗,𝑘

−
ℎ
2

12
(

𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
)

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
4
) ,

[
𝜕
4
𝑢

𝜕𝑥2𝜕𝑧2
]

𝑖,𝑗,𝑘

= 𝛿
2

𝑥
𝛿
2

𝑧
𝑢
𝑖,𝑗,𝑘

−
ℎ
2

12
(

𝜕
6
𝑢

𝜕𝑥4𝜕𝑧2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑧4
)

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
4
) ,

[
𝜕
4
𝑢

𝜕𝑦2𝜕𝑧2
]

𝑖,𝑗,𝑘

= 𝛿
2

𝑦
𝛿
2

𝑧
𝑢
𝑖,𝑗,𝑘

−
ℎ
2

12
(

𝜕
6
𝑢

𝜕𝑦4𝜕𝑧2
+

𝜕
6
𝑢

𝜕𝑦2𝜕𝑧4
)

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
4
) ;

(33)

now (32) becomes

𝛼
𝑖,𝑗,𝑘

=
ℎ
2

12
(−∇
2
𝑓
𝑖,𝑗,𝑘

+ ℓ
2
∇
2
𝑢
𝑖,𝑗,𝑘

+2 (𝛿
2

𝑥
𝛿
2

𝑦
+ 𝛿
2

𝑥
𝛿
2

𝑧
+ 𝛿
2

𝑦
𝛿
2

𝑧
) 𝑢
𝑖,𝑗,𝑘

)
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−
ℎ
4

360
[
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
+
𝜕
6
𝑢

𝜕𝑧6
]

𝑖,𝑗,𝑘

−
ℎ
4

72
[

𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
+

𝜕
6
𝑢

𝜕𝑥4𝜕𝑧2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑧4

+
𝜕
6
𝑢

𝜕𝑧4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑧2𝜕𝑦4
]

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) .

(34)
Hence

𝛼
𝑖,𝑗,𝑘

=
ℎ
2

12
(−∇
2
𝑓
𝑖,𝑗,𝑘

+ ℓ
2
∇
2
𝑢
𝑖,𝑗,𝑘

+2 (𝛿
2

𝑥
𝛿
2

𝑦
+ 𝛿
2

𝑥
𝛿
2

𝑧
+ 𝛿
2

𝑦
𝛿
2

𝑧
) 𝑢
𝑖,𝑗,𝑘

)

−
ℎ
4

360
[
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
+
𝜕
6
𝑢

𝜕𝑧6

+ 5(
𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
+

𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑧4

+
𝜕
6
𝑢

𝜕𝑧2𝜕𝑥4
+

𝜕
6
𝑢

𝜕𝑧2𝜕𝑦4
+

𝜕
6
𝑢

𝜕𝑧4𝜕𝑦2
)]

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) .

(35)
For compact sixth-order approximation, from (25), we

have
𝜕
4
𝑓
𝑖,𝑗,𝑘

𝜕𝑥2𝜕𝑦2
= (

𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦2𝜕𝑧2

+ℓ
2 𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
)

𝑖,𝑗,𝑘

𝜕
4
𝑓
𝑖,𝑗,𝑘

𝜕𝑥2𝜕𝑧2
= (

𝜕
6
𝑢

𝜕𝑧4𝜕𝑥2
+

𝜕
6
𝑢

𝜕𝑥4𝜕𝑧2
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦2𝜕𝑧2

+ℓ
2 𝜕
4
𝑢

𝜕𝑥2𝜕𝑧2
)

𝑖,𝑗,𝑘

𝜕
4
𝑓
𝑖,𝑗,𝑘

𝜕𝑦2𝜕𝑧2
= (

𝜕
6
𝑢

𝜕𝑦4𝜕𝑧2
+

𝜕
6
𝑢

𝜕𝑦2𝜕𝑧4
+

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦2𝜕𝑧2

+ℓ
2 𝜕
4
𝑢

𝜕𝑧2𝜕𝑦2
)

𝑖,𝑗,𝑘

,

(36)

and also

(
𝜕
6
𝑢

𝜕𝑥6
)

𝑖,𝑗,𝑘

= (
𝜕
4
𝑓

𝜕𝑥4
−

𝜕
6
𝑢

𝜕𝑥4𝜕𝑦2
−

𝜕
6
𝑢

𝜕𝑥4𝜕𝑧2
)

𝑖,𝑗,𝑘

− ℓ
2
(
𝜕
4
𝑢

𝜕𝑥4
)

𝑖,𝑗,𝑘

,

(
𝜕
6
𝑢

𝜕𝑦6
)

𝑖,𝑗,𝑘

= (
𝜕
4
𝑓

𝜕𝑦4
−

𝜕
6
𝑢

𝜕𝑥2𝜕𝑦4
−

𝜕
6
𝑢

𝜕𝑧2𝜕𝑦4
)

𝑖,𝑗,𝑘

− ℓ
2
(
𝜕
4
𝑢

𝜕𝑦4
)

𝑖,𝑗,𝑘

,

(37)

(
𝜕
6
𝑢

𝜕𝑧6
)

𝑖,𝑗,𝑘

= (
𝜕
4
𝑓

𝜕𝑧4
−
𝜕
6
𝑢
𝑖,𝑗,𝑘

𝜕𝑥2𝜕𝑧4
−

𝜕
6
𝑢

𝜕𝑦2𝜕𝑧4
)

𝑖,𝑗,𝑘

− ℓ
2
(
𝜕
4
𝑢

𝜕𝑧4
)

𝑖,𝑗,𝑘

;

(38)

using (31) and (36) in (37), we get

(
𝜕
6
𝑢

𝜕𝑥6
+
𝜕
6
𝑢

𝜕𝑦6
+
𝜕
6
𝑢

𝜕𝑧6
)

𝑖,𝑗,𝑘

= ∇
4
𝑓
𝑖,𝑗,𝑘

− ℓ
2
∇
4
𝑢
𝑖,𝑗,𝑘

− [
𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑓

𝜕𝑥2𝜕𝑧2
+

𝜕
4
𝑓

𝜕𝑦2𝜕𝑧2
]

𝑖,𝑗,𝑘

+ ℓ
2
(

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑢

𝜕𝑦2𝜕𝑧2
+

𝜕
4
𝑢

𝜕𝑥2𝜕𝑧2
)

𝑖,𝑗,𝑘

+ 3
𝜕
6
𝑢
𝑖,𝑗,𝑘

𝜕𝑥2𝜕𝑦2𝜕𝑧2
,

(39)

and using (19) and (39), we have

𝛼
𝑖,𝑗,𝑘

=
ℎ
2

12
(−∇
2
𝑓 + ℓ
2
∇
2
𝑢

+2 (𝜕
2
𝑥𝜕
2
𝑦 + 𝜕
2
𝑥𝜕
2
𝑧 + 𝜕
2
𝑦𝜕
2
𝑧) 𝑢)
𝑖,𝑗,𝑘

−
ℎ
4

360
(∇
4
𝑓 − ℓ
2
∇
4
𝑢

+ 4 [
𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑓

𝜕𝑥2𝜕𝑧2
+

𝜕
4
𝑓

𝜕𝑦2𝜕𝑧2
]

−12
𝜕
6
𝑢

𝜕𝑥2𝜕𝑦2𝜕𝑧2
)

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) .

(40)

Finally

𝛼
𝑖,𝑗,𝑘

=
ℎ
2

12
(−∇
2
𝑓 + ℓ
2
(𝑓 − ℓ

2
𝑢)

+2 (𝛿
2

𝑥
𝛿
2

𝑦
+ 𝛿
2

𝑥
𝛿
2

𝑧
+ 𝛿
2

𝑦
𝛿
2

𝑧
) 𝑢)
𝑖,𝑗,𝑘

−
ℎ
4

360
(∇
4
𝑓 − ℓ
2
∇
4
𝑢

+ 4 [
𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑓

𝜕𝑥2𝜕𝑧2
+

𝜕
4
𝑓

𝜕𝑦2𝜕𝑧2
]

− 12
𝜕
6
𝑢

𝜕𝑥2𝜕𝑦2𝜕𝑧2
− ℓ
2
∇
2
𝑓 + ℓ
4
𝑓 − ℓ
6
𝑢

−2ℓ
2
(

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑢

𝜕𝑥2𝜕𝑧2
+

𝜕
4
𝑢

𝜕𝑦2𝜕𝑧2
))

𝑖,𝑗,𝑘

+ 𝑂 (ℎ
6
) .

(41)
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Consequently, the compact sixth-order approximation of
the three-dimensional Helmholtz equation can be written in
modified form which leads to the following:

(𝛿
2

𝑥
+ 𝛿
2

𝑦
+ 𝛿
2

𝑧
) V
𝑖,𝑗,𝑘

+
ℎ
2

6
(1 +

ℓ
2
ℎ
2

30
)

× (𝛿
2

𝑥
𝛿
2

𝑦
+ 𝛿
2

𝑥
𝛿
2

𝑧
+ 𝛿
2

𝑦
𝛿
2

𝑧
) V
𝑖,𝑗,𝑘

+
ℎ
4

30
(

𝜕
6V
𝑖,𝑗,𝑘

𝜕𝑥2𝜕𝑦2𝜕𝑧2
)

+ ℓ
2
(1 −

ℓ
2
ℎ
2

12
+
ℓ
4
ℎ
4

360
) V
𝑖,𝑗,𝑘

= (1 −
ℓ
2
ℎ
2

12
+
ℓ
4
ℎ
4

360
)𝑓
𝑖,𝑗,𝑘

+ (
ℎ
2

12
(1 −

ℓ
2
ℎ
2

30
))∇
2
𝑓
𝑖,𝑗,𝑘

+
ℎ
4

360
∇
4
𝑓
𝑖,𝑗,𝑘

+
ℎ
4

90
[

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑓

𝜕𝑥2𝜕𝑧2
+

𝜕
4
𝑓

𝜕𝑦2𝜕𝑧2
]

𝑖,𝑗,𝑘

.

L.H.S = R.H.S,
(42)

where V
𝑖,𝑗,𝑘

is the approximate solution to (25) and V
𝑖,𝑗,𝑘

=

𝑢
𝑖,𝑗,𝑘

+ 𝑂(ℎ
6
); also ∇4 is the biharmonic operator. Since

(𝛿
2

𝑥
+ 𝛿
2

𝑦
+ 𝛿
2

𝑧
) V
𝑖,𝑗,𝑘

=
1

ℎ2
[V
𝑖+1,𝑗,𝑘

+ V
𝑖−1,𝑗,𝑘

+ V
𝑖,𝑗+1,𝑘

+ V
𝑖,𝑗−1,𝑘

+ V
𝑖,𝑗,𝑘+1

+ V
𝑖,𝑗,𝑘−1

− 6 (V
𝑖,𝑗,𝑘

)] ,

(𝛿
2

𝑥
𝛿
2

𝑦
+ 𝛿
2

𝑥
𝛿
2

𝑧
+ 𝛿
2

𝑦
𝛿
2

𝑧
) V
𝑖,𝑗,𝑘

=
1

ℎ4
[(V
𝑖+1,𝑗+1,𝑘

+ V
𝑖+1,𝑗−1,𝑘

+ V
𝑖−1,𝑗+1,𝑘

+ V
𝑖−1,𝑗−1,𝑘

+ V
𝑖+1,𝑗,𝑘+1

+ V
𝑖+1,𝑗,𝑘−1

+ V
𝑖−1,𝑗,𝑘+1

+ V
𝑖−1,𝑗,𝑘−1

+V
𝑖,𝑗+1,𝑘+1

+ V
𝑖,𝑗−1,𝑘−1

+ V
𝑖,𝑗+1,𝑘−1

+ V
𝑖,𝑗−1,𝑘+1

)

− 4 (V
𝑖+1,𝑗,𝑘

+ V
𝑖−1,𝑗,𝑘

+ V
𝑖,𝑗+1,𝑘

+ V
𝑖,𝑗−1,𝑘

+V
𝑖,𝑗,𝑘+1

+ V
𝑖,𝑗,𝑘−1

) + 12 (V
𝑖,𝑗,𝑘

)] ,

(
𝜕
6

𝜕𝑥2𝜕𝑦2𝜕𝑧2
) V
𝑖,𝑗,𝑘

=
1

ℎ6
[(V
𝑖+1,𝑗+1,𝑘+1

+ V
𝑖+1,𝑗−1,𝑘+1

+ V
𝑖+1,𝑗−1,𝑘−1

+ V
𝑖−1,𝑗+1,𝑘+1

+ V
𝑖−1,𝑗−1,𝑘+1

+ V
𝑖−1,𝑗−1,𝑘−1

+ V
𝑖+1,𝑗+1,𝑘−1

+ V
𝑖−1,𝑗+1,𝑘+1

)

− 2 (V
𝑖+1,𝑗+1,𝑘

+ V
𝑖+1,𝑗−1,𝑘

+ V
𝑖−1,𝑗+1,𝑘

+ V
𝑖−1,𝑗−1,𝑘

+ V
𝑖+1,𝑗,𝑘+1

+ V
𝑖+1,𝑗,𝑘−1

+ V
𝑖−1,𝑗,𝑘+1

+ V
𝑖−1,𝑗,𝑘−1

+ V
𝑖,𝑗+1,𝑘+1

+ V
𝑖,𝑗−1,𝑘−1

+V
𝑖,𝑗+1,𝑘−1

+ V
𝑖,𝑗−1,𝑘+1

) − 8𝑢
𝑖,𝑗,𝑘

+ 4 (V
𝑖+1,𝑗,𝑘

+ V
𝑖−1,𝑗,𝑘

+ V
𝑖,𝑗+1,𝑘

+ V
𝑖,𝑗−1,𝑘

+V
𝑖,𝑗,𝑘+1

+ V
𝑖,𝑗,𝑘−1

)] ,

(43)

using (43) the left-hand side of (42) is

L.H.S = 𝑎
1
V
𝑖,𝑗,𝑘

+ 𝑎
2
𝐿
1

𝑖,𝑗,𝑘
+ 𝑎
3
𝐿
2

𝑖,𝑗,𝑘
+ 𝑎
4
𝐿
3

𝑖,𝑗,𝑘
, (44)

where

𝑎
1
= −

64

15
+ ℓ
2
ℎ
2
(
16

15
−
ℓ
2
ℎ
2

12
+
ℓ
4
ℎ
4

360
) ,

𝑎
2
=

7

15
−
ℓ
2
ℎ
2

45
,

𝑎
3
=
−1

15
+
ℎ
2

6
+
ℓ
2
ℎ
2

180
, 𝑎

4
=

1

30
,

𝐿
1

𝑖,𝑗,𝑘
= V
𝑖+1,𝑗,𝑘

+ V
𝑖−1,𝑗,𝑘

+ V
𝑖,𝑗+1,𝑘

, +V
𝑖,𝑗−1,𝑘

+ V
𝑖,𝑗,𝑘+1

+ V
𝑖,𝑗,𝑘−1

,

𝐿
2

𝑖,𝑗,𝑘
= V
𝑖+1,𝑗+1,𝑘

+ V
𝑖+1,𝑗−1,𝑘

+ V
𝑖−1,𝑗+1,𝑘

+ V
𝑖−1,𝑗−1,𝑘

+ V
𝑖+1,𝑗,𝑘+1

+ V
𝑖+1,𝑗,𝑘−1

+ V
𝑖−1,𝑗,𝑘+1

+ V
𝑖−1,𝑗,𝑘−1

+ V
𝑖,𝑗+1,𝑘+1

+ V
𝑖,𝑗−1,𝑘+1

+ V
𝑖,𝑗+1,𝑘−1

+ V
𝑖,𝑗−1,𝑘−1

,

𝐿
3

𝑖,𝑗,𝑘
= (V
𝑖+1,𝑗+1,𝑘+1

+ V
𝑖+1,𝑗−1,𝑘+1

+ V
𝑖+1,𝑗−1,𝑘−1

+ V
𝑖−1,𝑗+1,𝑘+1

+ V
𝑖−1,𝑗−1,𝑘+1

+ V
𝑖−1,𝑗−1,𝑘−1

+V
𝑖+1,𝑗+1,𝑘−1

+ V
𝑖−1,𝑗+1,𝑘+1

) .

(45)

Also the right-hand side of (42) can be expressed as follows:

R.H.S = 𝑏
11
𝑓
𝑖,𝑗,𝑘

+ 𝑏
12
∇
2
𝑓
𝑖,𝑗,𝑘

+ 𝑏
13
∇
4
𝑓
𝑖,𝑗,𝑘

+ 𝑏
14
[

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
+

𝜕
4
𝑓

𝜕𝑥2𝜕𝑧2
+

𝜕
4
𝑓

𝜕𝑦2𝜕𝑧2
]

𝑖,𝑗,𝑘

= 𝑏
1
𝑓
𝑖,𝑗,𝑘

+ 𝑏
2
𝑅
1

𝑖,𝑗,𝑘
+ 𝑏
3
𝑅
2

𝑖,𝑗,𝑘
,

(46)

where

𝑏
1
= ℎ
2
(
111

180
+
ℎ
2

60
−
ℎ
2
ℓ
2

12
+
ℎ
4
ℓ
4

310
) ,

𝑏
2
=

ℎ
2

360
(47 − ℎ

2
ℓ
2
) , 𝑏

3
=
ℎ
2

90
,
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𝑅
1

𝑖,𝑗,𝑘
= 𝑓
𝑖+1,𝑗,𝑘

+ 𝑓
𝑖−1,𝑗,𝑘

+ 𝑓
𝑖,𝑗+1,𝑘

+ 𝑓
𝑖,𝑗−1,𝑘

+ 𝑓
𝑖,𝑗,𝑘+1

+ 𝑓
𝑖,𝑗,𝑘−1

,

𝑅
2

𝑖,𝑗,𝑘
= 𝑓
𝑖+1,𝑗+1,𝑘

+ 𝑓
𝑖+1,𝑗−1,𝑘

+ 𝑓
𝑖−1,𝑗+1,𝑘

+ 𝑓
𝑖−1,𝑗−1,𝑘

+ 𝑓
𝑖+1,𝑗,𝑘+1

+ 𝑓
𝑖+1,𝑗,𝑘−1

+ 𝑓
𝑖−1,𝑗,𝑘+1

+ 𝑓
𝑖,𝑗−1,𝑘−1

+ 𝑓
𝑖,𝑗+1,𝑘+1

+ 𝑓
𝑖,𝑗−1,𝑘+1

+ 𝑓
𝑖,𝑗+1,𝑘−1

+ 𝑓
𝑖,𝑗−1,𝑘−1

.

(47)

Thus the compact sixth-order approximation of three-dimen-
sional Helmholtz equation in simplest form is as follows:

𝑎
1
V
𝑖,𝑗,𝑘

+ 𝑎
2
𝐿
1

𝑖,𝑗,𝑘
+ 𝑎
3
𝐿
2

𝑖,𝑗,𝑘
+ 𝑎
4
𝐿
3

𝑖,𝑗,𝑘

= 𝑏
1
𝑓
𝑖,𝑗,𝑘

+ 𝑏
2
𝑅
1

𝑖,𝑗,𝑘
+ 𝑏
3
𝑅
2

𝑖,𝑗,𝑘
.

(48)

Equation (48) can be written in the form 𝐴𝑈 = 𝑏. In this
equation we assume that the derivative of the right-hand
side function 𝑓

𝑖,𝑗,𝑘
can be determined numerically. In case

where 𝑓
𝑖,𝑗,𝑘

is not known analytically, then one can approx-
imate the derivatives with high order finite differences. We
need only a fourth-order accurate approximation of ∇2𝑓

𝑖,𝑗,𝑘

and a second-order accurate approximation of ∇4𝑓
𝑖,𝑗,𝑘

and
[𝜕
4
𝑓/𝜕𝑥
2
𝜕𝑦
2
+ 𝜕
4
𝑓/𝜕𝑥
2
𝜕𝑧
2
+ 𝜕
4
𝑓/𝜕𝑦
2
𝜕𝑧
2
]
𝑖,𝑗,𝑘

. Fourth-order
accurate approximation to ∇

2
𝑓
𝑖,𝑗,𝑘

is obtained by using (1 −

(ℎ
2
/12)𝛿
2
)
−1
𝛿
2
𝑓
𝑖,𝑗,𝑘

.

3. Boundary Condition

When aDirichlet boundary condition is applied, then the for-
mula in (18) can be used for all interior points. In case of Neu-
mann boundary condition, we develop a sixth-order accu-
rate method for two- and three-dimensional cases; that is,
𝑢
𝑥
= 𝑔(𝑦) and 𝑢

𝑥
= 𝑔(𝑦, 𝑧). Similar formulas hold in the

other directions. To be specific, we consider the coordinate
line 𝑖 = 0, in (18) and introduce a ghost point 𝑖 = −1. At the
boundary 𝑖 = 0, we specify both the Helmholtz equation and
the Neumann boundary condition.

3.1. Two-Dimensional Case. Considering (4), using (5), we
have

𝛿
𝑥0
𝑢
𝑖
= 𝜕
𝑥
𝑢
𝑖,𝑗
+
ℎ
2

6
𝜕
3

𝑥
𝑢
𝑖,𝑗
+

ℎ
4

120
𝜕
5

𝑥
𝑢
𝑖,𝑗
+ 𝑂 (ℎ

6
) . (49)

From (4), we have

(
𝜕
3
𝑢

𝜕𝑥3
)

𝑖,𝑗

= [(
𝜕𝑓

𝜕𝑥
−

𝜕
3
𝑢

𝜕𝑥𝜕𝑦2
) − ℓ
2
(
𝜕𝑢

𝜕𝑥
)]

𝑖,𝑗

,

(
𝜕
5
𝑢

𝜕𝑥5
)

𝑖,𝑗

= [(
𝜕
3
𝑓

𝜕𝑥3
−

𝜕
5
𝑢

𝜕𝑥3𝜕𝑦2
) − ℓ
2
(
𝜕
3
𝑢

𝜕𝑥3
)]

𝑖,𝑗

.

(50)

In above equation (50), we need fourth-order approximation
of (𝜕3𝑢/𝜕𝑥𝜕𝑦2); that is,

(
𝜕
3
𝑢

𝜕𝑥𝜕𝑦2
)

𝑖,𝑗

= 𝛿
𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
−
ℎ
2

6
(

𝜕
5
𝑢

𝜕𝑥𝜕𝑦4
+ 2

𝜕
5
𝑢

𝜕𝑥3𝜕𝑦2
)

𝑖,𝑗

+ 𝑂 (ℎ
4
) .

(51)

Making use of (51) in (50), we have

(
𝜕
3
𝑢

𝜕𝑥3
)

𝑖,𝑗

=
ℎ
2

12
(

𝜕
5
𝑢

𝜕𝑥𝜕𝑦4
+ 2

𝜕
5
𝑢

𝜕𝑥3𝜕𝑦2
)

𝑖,𝑗

− 𝛿
𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗

− ℓ
2
(
𝜕𝑢

𝜕𝑥
)

𝑖,𝑗

+ (
𝜕
3
𝑓

𝜕𝑥3
)

𝑖,𝑗

+ 𝑂 (ℎ
4
) .

(52)

Now the second-order approximation of (𝜕3𝑢/𝜕𝑥3) is

(
𝜕
3
𝑢

𝜕𝑥3
)

𝑖,𝑗

= (
𝜕𝑓

𝜕𝑥
)

𝑖,𝑗

− 𝛿
𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
− ℓ
2
(
𝜕𝑢

𝜕𝑥
)

𝑖,𝑗

+ 𝑂 (ℎ
2
) ,

(53)

and also the second-order approximation of (𝜕5𝑢/𝜕𝑥5) is

(
𝜕
5
𝑢

𝜕𝑥5
)

𝑖,𝑗

= (
𝜕
3
𝑓

𝜕𝑥3
)

𝑖,𝑗

− ℓ
2
(
𝜕𝑓

𝜕𝑥
)

𝑖,𝑗

+ ℓ
4
(
𝜕𝑢

𝜕𝑥
)

𝑖,𝑗

− ℓ
2
𝛿
𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
− (

𝜕
5
𝑢

𝜕𝑥3𝜕𝑦2
)

𝑖,𝑗

+ 𝑂 (ℎ
2
) .

(54)

Using the derivatives of (4), we have

(
𝜕
5
𝑢

𝜕𝑥3𝜕𝑦2
+

𝜕
5
𝑢

𝜕𝑥𝜕𝑦4
)

𝑖,𝑗

= (
𝜕
3
𝑓

𝜕𝑥3
− ℓ
2
(

𝜕
3
𝑢

𝜕𝑥𝜕𝑦2
))

𝑖,𝑗

. (55)

Using (52), (54), and (55) in (49), we have

𝛿
𝑥0
𝑢
𝑖
−
ℓ
4
ℎ
4

120
(
𝜕𝑢

𝜕𝑥
)

𝑖,𝑗

+
ℎ
2

6
(1 +

ℓ
2
ℎ
2

30
) 𝛿
𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗

= (1 −
ℓ
2
ℎ
2

6
(
𝜕𝑢

𝜕𝑥
)

𝑖,𝑗

) +
ℎ
2

6
(1 −

ℓ
2
ℎ
2

20
)(

𝜕𝑓

𝜕𝑥
)

𝑖,𝑗

+
ℎ
4

120
(
𝜕
3
𝑢

𝜕𝑥3
)

𝑖,𝑗

+
ℎ
4

72
(

𝜕
3
𝑓

𝜕𝑥𝜕𝑦2
)

𝑖,𝑗

+ 𝑂 (ℎ
6
) ,

(56)

for (𝜕𝑢/𝜕𝑥); in (56) the approximation used is

(
𝜕𝑢

𝜕𝑥
)

𝑖,𝑗

= 𝛿
𝑥0
𝑢
𝑖
+ 𝛽ℎ
2
𝛿
𝑥
𝛿
2

𝑦
𝑢
𝑖,𝑗
, (57)

where 𝛽 is arbitrary constant; using (57) in (56), we have

𝐿
∗

1
(V
1,𝑗

− V
−1,𝑗

) + 𝐿
∗

2
(V
1,𝑗+1

+ V
1,𝑗−1

+ V
−1,𝑗+1

+ V
−1,𝑗−1

)

= [(1 −
ℓ
2
ℎ
2

6
)𝑔 +

ℎ
2

6
(1 −

ℓ
2
ℎ
2

20
)(

𝜕𝑓

𝜕𝑥
)

+
ℎ
4

120
(
𝜕
3
𝑢

𝜕𝑥3
) +

ℎ
4

72
(

𝜕
3
𝑓

𝜕𝑥𝜕𝑦2
)]

𝑖,𝑗

,

(58)
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where 𝑔 = 𝑔(𝑦), 𝐿∗
1
= 1 − (ℓ

4
ℎ
4
/120)(1 − 2𝛽) − (1/6ℎ)(1 +

ℓ
2
ℎ
2
/30), and 𝐿∗

2
= −(ℓ

4
ℎ
4
/120)(−𝛽) − (1/12ℎ)(1 + ℓ

2
ℎ
2
/30).

Putting 𝑖 = 0 in (24), we have

𝑎
1
V
0,𝑗

+ 𝑎
2
(V
1,𝑗

+ V
−1,𝑗

+ V
0,𝑗+1

+ V
0,𝑗−1

)

+ 𝑎
3
(V
1,𝑗+1

+ V
1,𝑗−1

+ V
−1,𝑗+1

+ V
−1,𝑗−1

)

= 𝑏
11
𝑓
0,𝑗

+ 𝑏
12
∇
2
𝑓
0,𝑗

+ 𝑏
13
∇
4
𝑓
0,𝑗

+ 𝑏
14
[

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
]

0,𝑗

.

(59)

Multiplying (58) by 𝛽 and adding (59), we get formula for
boundary nodes

𝑎
1
V
0,𝑗

+ 𝑎
2
(2V
1,𝑗

+ V
0,𝑗+1

+ V
0,𝑗−1

) + 𝑎
3
(V
1,𝑗+1

+ V
1,𝑗−1

)

= 𝑏
11
𝑓
0,𝑗

+ 𝑏
12
∇
2
𝑓
0,𝑗

+ 𝑏
13
∇
4
𝑓
0,𝑗

+ 𝑏
14
[

𝜕
4
𝑓

𝜕𝑥2𝜕𝑦2
]

0,𝑗

+ 𝛽[(1 −
ℓ
2
ℎ
2

6
)𝑔
𝑦
+
ℎ
2

6
(1 −

ℓ
2
ℎ
2

20
)(

𝜕𝑓

𝜕𝑥
)

0,𝑗

+
ℎ
4

120
(
𝜕
3
𝑢

𝜕𝑥3
)

0,𝑗

+
ℎ
4

72
(

𝜕
3
𝑓

𝜕𝑥𝜕𝑦2
)

0,𝑗

] ,

(60)

where 𝛽 = 𝑎
2
/𝐿
∗

1
= 𝑎
3
/𝐿
∗

2
= 120/(120 − ℓ

4
ℎ
4
) in order to

eliminate all the elements with 𝑖 = −1.

3.2. Three-Dimensional Case. Consider (25), by using (26),
we have

𝑢
𝑖+1

− 𝑢
𝑖−1

2ℎ
= 𝜕
𝑥
𝑢 +

ℎ
2

6
𝜕
3

𝑥
𝑢 +

ℎ
4

120
𝜕
5

𝑥
𝑢 + 𝑂 (ℎ

6
) . (61)

To be specific, we consider the coordinate line 𝑖 = 0 and intro-
duce a ghost point 𝑖 = −1; from (25), we have

(
𝜕
3
𝑢

𝜕𝑥3
) = −(

𝜕
3
𝑢

𝜕𝑥𝜕𝑦2
) − (

𝜕
3
𝑢

𝜕𝑥𝜕𝑧2
) − ℓ
2
(
𝜕𝑢

𝜕𝑥
) +

𝜕𝑓

𝜕𝑥
,

(62)

(
𝜕
5
𝑢

𝜕𝑥5
) = −(

𝜕
5
𝑢

𝜕𝑥3𝜕𝑦2
) − (

𝜕
5
𝑢

𝜕𝑥3𝜕𝑧2
) − ℓ
2
(
𝜕
3
𝑢

𝜕𝑥3
) +

𝜕
3
𝑓

𝜕𝑥3
.

(63)
Using (62) in (63), we have

(
𝜕
5
𝑢

𝜕𝑥5
) = (

𝜕
5
𝑢

𝜕𝑥3𝜕𝑦2
+

𝜕
5
𝑢

𝜕𝑥3𝜕𝑧2
)

− ℓ
2
(−

𝜕
3
𝑢

𝜕𝑥𝜕𝑦2
−

𝜕
3
𝑢

𝜕𝑥𝜕𝑧2
− ℓ
2
(
𝜕𝑢

𝜕𝑥
) +

𝜕𝑓

𝜕𝑥
) +

𝜕
3
𝑓

𝜕𝑥3

= (
𝜕
5
𝑢

𝜕𝑥𝜕𝑦4
+

𝜕
5
𝑢

𝜕𝑥𝜕𝑧4
) + 2

𝜕
5
𝑢

𝜕𝑥𝜕𝑦2𝜕𝑧2

+ 2ℓ
2
(

𝜕
3
𝑢

𝜕𝑥𝜕𝑦2
+

𝜕
3
𝑢

𝜕𝑥𝜕𝑧2
) + ℓ
4
(
𝜕𝑢

𝜕𝑥
) − ℓ
2 𝜕𝑓

𝜕𝑥

+
𝜕
3
𝑓

𝜕𝑥3
−

𝜕
3
𝑓

𝜕𝑥𝜕𝑦2
−

𝜕
3
𝑓

𝜕𝑥𝜕𝑧2
.

(64)

Nowusing center difference discretization at (0, 𝑗, 𝑘), (25)will
become

𝑔 −
ℎ
2

6
[
𝜕
2
𝑔

𝜕𝑦2
+
𝜕
2
𝑔

𝜕𝑧2
+ ℓ
2
(𝑔) −

𝜕𝑓

𝜕𝑥
] +

ℎ
4

120

× [
𝜕
4
𝑔

𝜕𝑦4
+
𝜕
4
𝑔

𝜕𝑧4
+ 2

𝜕
4
𝑔

𝜕𝑦2𝜕𝑧2
+ 2ℓ
2
(
𝜕
2
𝑔

𝜕𝑦2
+
𝜕
2
𝑔

𝜕𝑧2
)

+ℓ
4
(𝑔) − ℓ

2 𝜕𝑓

𝜕𝑥
+
𝜕
3
𝑓

𝜕𝑥3
−

𝜕
3
𝑓

𝜕𝑥𝜕𝑦2
−

𝜕
3
𝑓

𝜕𝑥𝜕𝑧2
] .

(65)

Equations (60) and (65) yield that for Neumann boundary
points the stencil is of five points for two-dimensional case
while in three-dimensional case the stencil has seven points.
The matrix is inverted including the extra line 𝑖 = −1.
Applying Neumann boundary conditions accuracy and CPU
timing remain the same in all examples.

Differentmethods are used to solve (48) such as finite-dif-
ference scheme, fourth-order compact finite-difference
scheme, and LU decomposition.We are solving this equation
by Multigrid method with sixth-order compact finite-differ-
ence scheme using Gauss-Seidel method as a smoother.

4. Multigrid Method

The results of second-order finite-difference scheme and
sixth-order compact finite-difference scheme are in sparse
linear systems; that can be solved efficiently by Multigrid
methods. In order to remove high frequency error, Multigrid
method utilizes some relaxation methods. Multigrid method
makes use of coarse grid correction to smooth the errors. Effi-
cient Multigrid method is implemented in [9, 10] for solving
2DPoisson equation discretized by the standard fourth-order
compact difference schemes. It is shown that the sixth-order
compact difference scheme is the most cost effective com-
pared to the second-order finite-difference schemes and the
corresponding conventional second-order central-difference
scheme with Multigrid methods. The standard Multigrid
method with a point Gauss-Seidel type relaxation and stan-
dard mesh coarsening strategy does not work very well with
unequal mesh sizes discretized Poisson equation [11].

The strategy used is the line relaxation to replace point
relaxation.That is, line Gauss-Seidel relaxation can be shown
to be very effective in removing high frequency errors. Con-
sider in this paper for the particular problem the dominant
direction is always either the 𝑥 or 𝑦 direction, but not both.
Let 𝑥 be the dominant direction; we only perform line relax-
ation along 𝑥 direction on each successive grid. The coeffi-
cient matrix of the sixth-order compact finite difference with
this ordering can be written in block tridiagonal matrix of the
block order (𝑁 − 1). The order of the coefficient matrix 𝑈

is of (𝑁−1)×(𝑁−1), where𝑈 = diag[𝑈
1
, 𝑈
0
, 𝑈
1
], where𝑈

0
=

diag[𝑎
2
, 𝑎
1
, 𝑎
2
] and 𝑈

1
= diag[𝑎

3
, 𝑎
2
, 𝑎
3
] are both symmetric

tridiagonal submatrices of order (𝑁 − 1). They represent the
submatrix of of each grid line along one direction, where 𝑢

𝑗

is the part of the solution vector representing the grid points
on each jth line, and 𝑓

𝑗
is the corresponding part on the
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Table 1: Comparison of maximum absolute errors and CPU (seconds) for a Multigrid method with different schemes, for Example 1, ‖𝑒
2
‖,

ℓ = 10, and𝑁 = 4, 8, 16, 32, 64, 128.

𝑁 𝑀
1
(‖𝑒
2
‖) CPU V 𝑀

2
(‖𝑒
2
‖) CPU V 𝑀

3
(‖𝑒
2
‖) CPU V

4 1.0000𝑒
0 0.105 2 2.2284𝑒

−4 0.042 2 6.2252𝑒
−7 0.042 2

8 3.1345𝑒
−3 0.140 2 9.7200𝑒

−5 0.055 2 3.2845𝑒
−7 0.054 2

16 7.8851𝑒
−4 0.780 2 1.9170𝑒

−6 0.061 2 4.5025𝑒
−9 0.060 2

32 1.9741𝑒
−4 0.810 2 6.9331𝑒

−8 0.088 2 6.6001𝑒
−11 0.087 2

64 4.9377𝑒
−5 0.940 2 3.5772𝑒

−9 0.322 2 9.9922𝑒
−13 0.313 2

128 1.2346𝑒
−5 1.137 2 2.1063𝑒

−10 2.233 2 1.5369𝑒
−14 2.224 2

right-hand side vector. On each level 𝑈
0
needs only one fac-

torization. The factorization cost of 𝑈
0
is negligible because

matrix B has constant blocks which does not change fromone
grid line to another grid line.

In Multigrid method with LU-decompositon or Gauss-
Seidel relaxations, we use bilinear interpolation to transfer
correction from a coarse grid to a fine grid, and we also use a
full-weighting scheme to update the residual on a coarse grid.

Algorithm 1 (Multigrid Algorithm). Assuming that we set up
these Multigrid parameters:

V
1
pre smoothing steps on each level.

V
2
post smoothing steps on each level.

𝑟 is the number ofMultigrid cycles on each level (𝑟 = 1

for V-cycling and 𝑟 = 2 forW-cycling), here we use V-
cycle with 𝑟 = 1.

FAS Multigrid Cycle

𝜙
ℎ
←󳨀 FASCYCℎ (𝜙ℎ, 𝑓ℎ, V

1
, V
2
, 𝑟) (66)

(1) ifΩℎ is the coarsest grid, then solve (48) using a time
marching technique and then stop.
Else do the pre-smoothing step:

𝜙
ℎ
←󳨀 Smoother (𝜙ℎ, 𝑓ℎ, V

1
, tol) , (Pre-Smoothig) .

(67)

(2) Restriction: consider

𝜙
2ℎ

= 𝐼
2ℎ

ℎ
𝜙
ℎ
, 𝜙

2ℎ
= 𝜙
2ℎ

,

𝑓
2ℎ

= 𝐼
2ℎ

ℎ
(𝑓
ℎ
− 𝑁
ℎ
𝜙
ℎ
) + 𝑁

2ℎ
𝜙
2ℎ
,

𝜙
2ℎ

←󳨀 FASCYC2ℎ (𝜙2ℎ, 𝑓2ℎ, V
1
, V
2
) .

(68)

(3) Interpolation: consider

𝜙
ℎ
←󳨀 𝜙

ℎ
+ 𝐼
ℎ

2ℎ
(𝜙
2ℎ
− 𝜙
2ℎ

) . (69)

(4) One has

𝜙
ℎ
←󳨀 SmootherV2 (𝜙ℎ, 𝑓ℎ, V

2
) . (Post-Smoothing) .

(70)

Here the restriction operator 𝐼2ℎ
ℎ

is by full weighting and
the interpolation 𝐼

ℎ

2ℎ
is by bilinear operator.

5. Numerical Calculations

In order to show the efficiency and applicability of the Multi-
grid method, numerical experiments are conducted to solve
a two-dimensional Helmholtz equation (1) on the unit square
domain [0, 1] × [0, 1]. The right hand-side function and the
pure Dirichlet boundary conditions are applied on all side of
a unit square and unit cubic domain.

5.1. 2D Case

Example 1. Consider the following:

𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ ℓ
2
𝑢 = (ℓ

2
− 2𝜋
2
) sin (𝜋𝑥) sin (𝜋𝑦) ,

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1.

(71)

The exact solution is 𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦).The sixth-
order compact finite-difference scheme is compared against
the standard second-order central difference scheme and
fourth-order compact difference scheme, in terms of solution
of accuracy, Multigrid convergence rate, and CPU timing.
One pre-smoothing and post-smoothing are applied at each
level. The iteration stops when the Euclidean norm (2-norm)
of the residual vector is reduced by 10

−14. The maximum
absolute error reported is the maximum absolute error
between the computed solution and the exact solution over
the entire fine grid points. In order to compare the numerical
solution and the exact solution, we use 𝑙

2
-norm. The matrix

𝑙
2
-norm of the error vector is defined as follows:

󵄩󵄩󵄩󵄩𝑒2
󵄩󵄩󵄩󵄩 =

1

𝑁
√

𝑁

∑

𝑖,𝑗=0

𝑒2
𝑖,𝑗
, (72)

where the error vector 𝑒
𝑖𝑗
= 𝑢
𝑖𝑗
− V
𝑖𝑗
and the residual 𝑟 = (𝑓 −

𝐴V) = 𝐴𝑒, 𝑁 is the number of nodes, ℓ is the wave number,
and furthermore 𝑀

1
is the MG with 2nd order, 𝑀

2
is MG

with 4th order, and𝑀
3
is MG with 6th order. The 𝑙

2
-norm of

the error for ℓ = 10 and the data in Table 1, Table 2 indicates
the behavior of𝑁 for different values (see Figure 1).
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Table 2: Comparison of maximum absolute errors and CPU (seconds) for a Multigrid method with different schemes, for Example 2, ‖𝑒
2
‖,

ℓ = 100, and𝑁 = 4, 8, 16, 32, 64, 128.

𝑁 𝑀
1
(‖𝑒
2
‖) CPU V 𝑀

2
(‖𝑒
2
‖) CPU V 𝑀

3
(‖𝑒
2
‖) CPU V

4 6.0562𝑒
−2 0.062 2 6.3220𝑒

−6 0.042 2 5.6567𝑒
−7 0.042 2

8 1.2872𝑒
−4 0.074 2 8.1311𝑒

−7 0.059 2 7.5902𝑒
−8 0.057 2

16 3.2304𝑒
−5 0.080 2 3.2134𝑒

−7 0.080 2 6.2834𝑒
−8 0.063 2

32 8.1531𝑒
−6 0.093 2 9.8314𝑒

−8 0.187 2 5.5698𝑒
−8 0.181 2

64 2.0389𝑒
−6 0.118 2 7.0389𝑒

−8 0.329 2 5.2102𝑒
−8 0.313 2

128 5.0970𝑒
−7 0.290 2 6.9061𝑒

−8 2.269 2 5.1442𝑒
−8 2.252 2
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Figure 1: (a)The error graph. (b) Exact solution. (c)The approximation solution.The error vector 𝑒
𝑖𝑗
= 𝑢
𝑖𝑗
− V
𝑖𝑗
and𝑁 = 128 are the number

of nodes and ℓ = 10 for Example 1.

Example 2. Consider the following:

𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ ℓ
2
𝑢

= −2 [(1 − 6𝑥
2
) (𝑦
2
− 𝑦
4
) + (1 − 6𝑦

2
) (𝑥
2
− 𝑥
4
)]

+ ℓ
2
((𝑥
2
− 𝑥
4
) (𝑦
4
− 𝑦
2
)) ,

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1.

(73)
With the pure Dirichlet boundary conditions on all sides

of a unit square.
The exact solution, for Example 2, is 𝑢(𝑥, 𝑦) = (𝑥

2
− 𝑥
4
)

(𝑦
4
− 𝑦
2
) (see Figure 2).
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l2 norm of solution error versus V-cycle
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Figure 2: (a)The error graph. (b) Exact solution. (c)The approximation solution.The error vector 𝑒
𝑖𝑗
= 𝑢
𝑖𝑗
− V
𝑖𝑗
and𝑁 = 128 are the number

of nodes and ℓ = 100 for Example 2.

5.2. 3D Case

Example 3. Consider the following:

𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ℓ
2
𝑢 (𝑥, 𝑦)

= (ℓ
2
− 3𝜋
2
) (cos (𝜋𝑥) sin (𝜋𝑦) sin (𝜋𝑧)) ,

0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1,

(74)

with the Neumann boundary condition on the left-hand side
of the cubic domain and Dirichlet boundary conditions on
the remaining five sides, that is, 𝑢

𝑥
(0, 𝑦, 𝑧) = 0, 𝑢(1, 𝑦, 𝑧) =

− sin(𝜋𝑦) sin(𝜋𝑧), and 𝑢(𝑥, 0, 𝑧) = 𝑢(𝑥, 1, 𝑧) = 𝑢(𝑥, 𝑦, 0) =

𝑢(𝑥, 𝑦, 1) = 0. The exact solution for above example is
𝑢(𝑥, 𝑦, 𝑧) = cos(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧). The Multigrid with
sixth-order compact finite-difference scheme is compared
against the second-order finite-difference scheme and sixth-
order compact finite-difference scheme withoutMultigrid, in
terms of solution of accuracy,Multigrid convergence rate, and
CPU timing. The iteration stops when the Euclidean norm
(2-norm) of the residual vector is reduced by 10

−5. The

maximum absolute error is reported in (72).𝑀
4
is the second

order finite difference scheme, 𝑀
5
is sixth order compact

finite difference scheme without Multigrid and 𝑀
6
is MG

with sixth order compact finite difference scheme. The 𝑙
2
-

norm of the error for ℓ = 10 and different values of 𝑁 = 𝑛-
grids, are presented in Table 3.

The data in Tables 3 and 4 indicates the behavior of 𝑁
and ℓ for different values in 3-dimensional case. Figures 3
and 4 show the error graph of both problems. Figure 5(a) is
the solution of two-dimensional Helmholtz equation while
Figure 5(b) is the solution of three-dimensional Helmholtz
equation.

Example 4. Consider the following:

𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ℓ
2
𝑢

= (1 − ℓ
2
) (sin (𝑘𝑥2𝜋) sin (𝑘𝑦2𝜋) sin (𝑘𝑧2𝜋)) ,

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑧 ≤ 1,

(75)
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Table 3: Comparison of maximum absolute errors and CPU (seconds) for a Multigrid method with different schemes, for Example 3, ‖𝑒
2
‖,

ℓ = 10, and𝑁 = 2, 3, 4, 5, 6.

𝑁 𝑀
4
(‖𝑒
2
‖) CPU (seconds) 𝑀

5
(‖𝑒
2
‖) CPU (seconds) 𝑀

6
(‖𝑒
2
‖) CPU (seconds)

2 8.447𝑒
−1 4.130 3.665𝑒

−1 2.427 8.454𝑒
−3 0.430

3 3.132𝑒
−2 6.768 2.762𝑒

−2 2.298 3.192𝑒
−3 0.677

4 2.152𝑒
−2 6.976 9.928𝑒

−3 3.010 9.853𝑒
−4 0.898

5 8.312𝑒
−3 9.203 5.886𝑒

−3 3.243 5.229𝑒
−4 1.574

6 6.502𝑒
−3 14.800 3.990𝑒

−3 4.512 1.009𝑒
−4 1.906

Table 4: Comparison of maximum absolute errors and CPU (seconds) for a Multigrid method with different schemes, for Example 4, ‖𝑒
2
‖,

ℓ = 10, and𝑁 = 2, 3, 4, 5, 6.

𝑁 𝑀
4
(‖𝑒
2
‖) CPU (seconds) 𝑀

5
(‖𝑒
2
‖) CPU (seconds) 𝑀

6
(‖𝑒
2
‖) CPU (seconds)

2 8.690𝑒
−1 3.908 3.000𝑒

−3 2.188 1.630𝑒
−4 0.039

3 2.429𝑒
−1 4.502 5.4781𝑒

−4 2.550 8.913𝑒
−5 0.317

4 1.109𝑒
−2 6.880 2.5575𝑒

−4 3.701 5.810𝑒
−5 0.856

5 5.616𝑒
−3 10.024 1.55553𝑒

−4 3.924 2.183𝑒
−5 1.538

6 2.700𝑒
−3 12.385 1.0792𝑒

−4 4.618 9.71𝑒
−6 1.876
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Figure 3: The error graph. The error vector 𝑒
𝑖𝑗
= 𝑢
𝑖𝑗
− V
𝑖𝑗
and𝑁 = 6 are the number of nodes and ℓ = 10 for Example 3.
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Figure 4: The error graph. The error vector 𝑒
𝑖𝑗
= 𝑢
𝑖𝑗
− V
𝑖𝑗
and𝑁 = 6 are the number of nodes and ℓ = 10 for Example 4.
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Figure 5: (a) The approximate solution for 2D. (b) The approximate solution for 3D. ((c) and (d)) The nonzero entries in block tridiagonal
matrices, nz are the number of nodes in 2D and 3D cases.

with the pure Dirichlet boundary conditions on all sides of a
unit square.

The exact solution for Example 4 is 𝑢(𝑥, 𝑦, 𝑧) =

(sin(𝑘𝑥2𝜋) sin(𝑘𝑦2𝜋) sin(𝑘𝑧2𝜋))/(𝑘𝜋2(𝑥2 + 𝑦
2
+ 𝑧
2
)).

6. Conclusion

We have studied a sixth-order compact finite-difference
scheme with equal mesh sizes for discretizing a two and
three-Dimensional Helmholtz equation. We have developed
special Multigrid method to solve the resulting sparse system
efficiently. It is observed that Multigrid method with the
Gauss-Seidel relaxation works very well in solving the sixth-
order compact finite-difference scheme-discretized 2D and
3D Helmholtz equation. Numerical results show that Multi-
gridmethod on sixth-order compact schemehas the expected

accuracy and is faster than the second-order finite-difference
scheme and sixth-order compact finite-difference scheme
without Multigrid. It is also obvious from the results that the
overall error does not decrease with the increase of the wave
number ℓ.
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